SECTION 1 – GENERAL

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
1-i	7/18	1-106	7/15	1-204	7/15
1-ii	1/06	1-107	7/15	1-205	7/15
1-1	7/17	1-108	7/15	1-206	7/15
1-2	7/18	1-109	7/15	1-207	7/15
1-3	7/17	1-110	7/15	1-218	7/15
1-4	7/18	1-111	7/15	1-209	7/15
1-5	7/18	1-112	7/15	1-210	7/15
1-101	7/15	1-113	7/16	1-211	7/15
1-102	7/15	1-114	7/15	1-212	7/15
1-103	7/15	1-201	7/15	1-213	7/15
1-104	7/15	1-202	7/15	1-NOTES	7/18
1-105	7/15	1-203	7/15		

SECTION 2 - POLES/HARDWARE

Business Use

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
2-i	7/16	2-10	7/14	2-106	7/11
2-ii	7/08	2-11	7/17	2-111	1/07
2-1	7/16	2-12	7/14	2-112	7/11
2-2	7/14	2-13	7/17	2-113	7/17
2-3	7/14	2-14	7/14	2-501	7/18
2-4	7/14	2-15	7/17	2-501B	7/18
2-5	7/14	2-16	7/14	2-502	7/08
2-6	7/15	2-17	7/14	2-503	7/08
2-7	7/14	2-101	7/14	2-504	7/08
2-8	7/14	2-102	7/14	2-NOTES	7/18
2-9	7/14	2-105	7/11		

	CHECKLIST		
Wille.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	1 of 13	7/19

SECTION 3 – GUYING

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
3-i	7/19	3-23	7/10	3-107Y	7/17
3-ii	7/19	3-24	7/10	3-108D	7/17
3-1	7/19	3-25	7/10	3-108Y	7/17
3-2	7/19	3-26	7/10	3-109D	7/17
3-3	7/19	3-27	7/10	3-109Y	7/17
3-4	7/19	3-28	7/10	3-111	7/17
3-5	7/13	3-29	7/10	3-112	7/10
3-6	7/10	3-30	7/10	3-114	7/09
3-7	7/15	3-31	7/18	3-115D	7/19
3-8	7/15	3-32	7/10	3-115Y	7/19
3-9	7/11	3-33	7/10	3-118	7/17
3-10	7/11	3-34	7/18	3-119	7/17
3-11	7/11	3-35	7/19	3-120	7/17
3-12	7/10	3-36	7/19	3-121	7/17
3-12A	7/18	3-37	7/17	3-122	7/17
3-12B	7/18	3-38	7/10	3-123	7/17
3-13	7/10	3-39	7/10	3-124	7/17
3-14	7/10	3-40	7/10	3-125	7/19
3-15	7/10	3-102	7/16	3-126	7/17
3-16	7/10	3-103	7/16	3-NOTES	7/18
3-17	7/10	3-104	7/16		
3-18	7/10	3-104B	7/16		
3-19	7/10	3-104C	7/16		
3-20	7/10	3-105	7/17		
3-21	7/10	3-106	7/17		
3-22	7/10	3-107D	7/17		

SECTION 4 – STORM HARDENING

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
4-i	7/18	4-4	7/18	4-9	7/18
4-ii	7/18	4-5	7/18	4-10	7/18
4-1	7/18	4-6	7/18	4-11	7/18
4-2	7/18	4-7	7/18	4-NOTES	7/18
4-3	7/18	4-8	7/18		

SECTION 5 – CONNECTORS

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
5-i	7/08	5-121	7/13	5-143	7/13
5-ii	7/08	5-122	1/06	5-144	7/08
5-1	7/17	5-123	7/16	5-147	7/13
5-2	7/12	5-131	7/15	5-148	1/06
5-3	7/12	5-132	1/06	5-149	7/13
5-4	7/08	5-133	7/16	5-NOTES	7/17
5-111	1/06	5-141	7/08		
5-112	1/06	5-142	7/13		

	CHECKLIST						
	ISSUE	PAGE NUMBER		NAID.			
Busi	ne s/19 se	2 of 13	OVERHEAD CONSTRUCTION STANDARD	ppl			

SECTION 6 - PRIMARY CONDUCTORS

Business Use

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
6-i	7/18	6-116	7/17	6-211	7/10
6-ii	7/18	6-117	7/17	6-212	7/15
6-1	1/07	6-118	7/17	6-213	7/10
6-2	1/07	6-119	7/15	6-214	7/15
6-3	1/07	6-120	7/15	6-215	7/15
6-4	7/17	6-121	7/17	6-216	7/15
6-5	1/07	6-122	7/17	6-217	7/15
6-6	1/07	6-123	7/17	6-218	7/15
6-7	1/07	6-124	7/17	6-219	7/15
6-8	1/07	6-125	7/17	6-220	7/09
6-100	1/07	6-126	7/17	6-300	1/07
6-101	7/15	6-127	7/17	6-301	1/07
6-102	7/15	6-128	7/17	6-302	7/15
6-103	7/15	6-129	7/17	6-303	1/07
6-104	7/15	6-130	7/17	6-304	7/15
6-105	7/17	6-200	1/07	6-305	7/15
6-106	7/17	6-201	7/15	6-306	7/09
6-107	7/17	6-202	7/15	6-307	7/15
6-108	7/17	6-203	7/15	6-308	7/15
6-109	7/17	6-204	1/07	6-309	7/15
6-110	7/17	6-205	7/15	6-310	7/15
6-111	7/17	6-206	7/10	6-311	7/15
6-112	7/15	6-207	7/10	6-312	7/15
6-113	7/17	6-208	7/15	6-313	7/15
6-114	7/17	6-209	7/10	6-314	7/18
6-115	7/17	6-210	7/18	6-NOTES	7/17

	CHECKLIST		
Wille		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3 of 13	7/19

SECTION 7 – CLEARANCES

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
7-i	7/18	7-10	7/13	7-21	7/08
7-ii	7/08	7-11	7/13	7-22	7/10
7-1	7/15	7-12	7/13	7-23	7/10
7-2	7/08	7-13	7/08	7-24	7/10
7-3	7/08	7-14	7/08	7-25	7/10
7-4	7/08	7-15	7/08	7-26	7/10
7-5	7/08	7-16	7/16	7-27	7/10
7-6	7/08	7-17	7/17	7-124	7/18
7-7	7/08	7-18	7/08	7-127	1/06
7-8	7/16	7-19	7/18	7-128	1/06
7-9	7/08	7-20	7/10	7-NOTES	7/18

SECTION 8 – COASTLINE CONSTRUCTION

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
8-i	7/13	8-3	7/14	8-7	7/13
8-ii	7/09	8-4	7/14	8-8	7/13
8-1	7/09	8-5	7/13	8-9	7/13
8-2	7/09	8-6	7/13	8-NOTES	7/14

SECTION 9 - PRIMARY

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
9-i	7/17	9-205	7/18	9-437	7/17
9-ii	7/17	9-206	7/17	9-438	7/17
9-iii	7/17	9-411	7/17	9-439	7/17
9-BLANK	7/17	9-411F	7/17	9-440	7/17
9-1	7/17	9-412	7/17	9-441	7/17
9-2	7/17	9-413	7/17	9-711	7/17
9-3	7/17	9-413F	7/17	9-712	7/17
9-4	7/17	9-414	7/17	9-713	7/17
9-5	7/18	9-415	7/17	9-714	7/17
9-6	7/18	9-415F	7/17	9-715	7/17
9-7	7/17	9-416	7/17	9-716	7/17
9-8	7/17	9-416F	7/17	9-719	7/17
9-9	7/17	9-417	7/17	9-720	7/17
9-105	7/17	9-417F	7/17	9-811	7/17
9-115	7/18	9-419 Fig 1	7/17	9-812	7/17
9-118	7/17	9-419 Fig 2	7/17	9-813	7/17
9-120	7/17	9-421 Fig 1	7/17	9-814	7/17
9-122	7/17	9-421 Fig 2	7/17	9-823	7/17
9-124	7/17	9-422	7/17	9-BLANK	7/17
9-200	7/18	9-423 Fig 1	7/17	9-825	7/17
9-201	7/18	9-423 Fig 2	7/17	9-835	7/17
9-202	7/18	9-424	7/17	9-NOTES-1	7/17
9-203	7/18	9-435	7/17	9-NOTES-2	7/17
9-204	7/18	9-436	7/17		

	CHECKLIST						
	ISSUE	PAGE NUMBER		sMI//>			
Busi	ne s/19 se	4 of 13	OVERHEAD CONSTRUCTION STANDARD	ppl			

SECTION 10 - SECONDARY

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
10-i	7/18	10-6	7/18	10-100	7/18
10-ii	7/18	10-7	7/18	10-101	7/18
10-1	7/18	10-8	7/18	10-102	7/18
10-2	7/18	10-9	7/18	10-103	7/18
10-3	7/18	10-10	7/18	10-NOTES	7/18
10-4	7/18	10-11	7/18		
10-5	7/18	10-12	7/18		

SECTION 11 – SERVICES

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
11-i	7/18	11-4	7/18	11-122	7/18
11-ii	7/18	11-61	7/18	11-141	7/18
11-1	7/18	11-62	7/18	11-151	7/18
11-2	7/19	11-115	7/18	11-NOTES	7/19
11-3	1/18	11-121	7/18		

SECTION 12 – PROTECTION

Page Number	Iss	sue Date	Page Number	Issue	e Date	Page Number	Issue Date
12-i		7/18	12-130	7/	18	12-336	7/18
12-ii		7/18	12-131	7/	18	12-337	7/18
		12-1	7/17	12-132	7/18	12-337A	7/18
		12-2	1/06	12-133A	7/18	12-337B	7/18
12-3		7/07	12-133B	7/	18	12-338	7/18
	12-4	7/07	12-134	7/18	12-338A	7/18	
	12-5	7/14	12-135A	7/18	12-338B	7/18	
	12-6	7/15	12-135B	7/18	12-339	7/18	
12-7		6/10	12-136	7/	18	12-340	7/18
	12-8	6/10	12-137A	7/18	12-340A	7/18	
	12-9	7/15	12-137B	7/18	12-340B	7/18	
	12-10	7/18	12-138	7/18	12-341	7/18	
12-10A		7/18	12-139	7/	18	12-900	7/18
	12-11	7/18	12-140	7/18	12-911A	7/18	
	12-11A	7/18	12-141	7/18	12-911B	7/18	
	12-12	7/18	12-142	7/18	12-913A	7/18	
	12-12A	7/18	12-143	7/18	12-914	7/18	
	12-13	7/17	12-144	7/18	12-938	7/18	
	12-14	7/18	12-145	7/18	12-950	7/18	
	12-15	7/16	12-328	7/18	12-950A	7/18	
	12-16	7/16	12-329	7/18	12-950B	7/18	
	12-17	7/16	12-330	7/18	12-951	7/18	
12-18		7/16	12-331	7/	18	12-951A	7/18
12-19		7/18	12-332	7/	18	12-951B	7/18
12-20		7/16	12-333	7/	18	12- Notes-1	7/18
	12- 127	7/18	12-334	7/18	12-Notes-2	7/18	

	CHECKLIST		
WW.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	5 of 13	7/19

Page Numb		Issue Date	Page Number	Issue	Date	Page Number	Issue Date
	12- 128	7/18	12-335	7/18			
	12- 129	7/18	12-335A	7/18			

SECTION 13 – GROUNDING

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
13-i	7/14	13-6	7/10	13-112	7/08
13-ii	7/08	13-7	7/10	13-113	7/15
13-1	7/09	13-8	7/10	13-114	7/12
13-2	7/15	13-9	7/15	13-115	7/17
13-3	7/10	13-10	7/10	13-116	7/14
13-4	7/10	13-11	7/10	13-NOTES-1	7/17
13-5	7/10	13-111	7/15	13-NOTES-2	7/15

SECTION 14 - TRANSFORMERS

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
14-i	7/13	14-77	7/08	14-304	7/18
14-ii	7/15	14-78	1/07	14-305	7/12
14-1	7/11	14-79	7/08	14-312	7/18
14-2	7/10	14-80	7/08	14-326	7/18
14-3	7/15	14-81	1/06	14-343	7/15
14-4	7/11	14-121	7/08	14-344	7/08
14-5	7/15	14-131	7/09	14-345	7/15
14-6	7/15	14-132	7/08	14-346	7/08
14-7	1/06	14-171	7/09	14-347	7/10
14-8	7/13	14-172	7/10	14-348	7/15
14-9	1/06	14-173	7/11	14-352	7/18
14-50	7/08	14-174	7/08	14-371	7/18
14-51	7/13	14-175	7/15	14-373	7/11
14-52	7/08	14-176	7/08	14-374	7/11
14-53	7/13	14-177	7/15	14-375	1/06
14-54	7/10	14-204	7/12	14-377	7/16
14-55	10/17	14-212	1/06	14-378	7/18
14-56	1/06	14-247	7/10	14-379	7/17
14-57	1/06	14-248	7/10	14-NOTES-1	7/16
14-58	1/06	14-249	7/10	14-NOTES-2	7/16
14-59	1/06	14-250	7/10		
14-60	1/07	14-252	7/10		
14-61	1/06	14-263	7/08		
14-74	1/06	14-264	1/06		
14-75	1/06	14-271	7/08		
14-76	1/06	14-301	7/10		

	CHECKLIST							
	ISSUE	PAGE NUMBER		SMIZZ				
Busi	7/18 ness Use	6 of 13	OVERHEAD CONSTRUCTION STANDARD	ppl				

SECTION 15 - CAPACITORS / REGULATORS / PRIMARY METERING

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
15-i	7/18	15-156	7/15	15-400	7/12
15-ii	7/16	15-157	7/10	15-401	1/06
15-1	7/09	15-158	7/10	15-402	7/12
15-2	7/18	15-BLANK	7/17	15-403	7/11
15-3	7/18	15-160	7/17	15-404	7/12
15-4	7/18	15-211	7/11	15-405	1/06
15-5	7/18	15-212	7/11	15-406	1/06
15-6	7/18	15-331	7/12	15-407	7/12
15-111	7/10	15-332	7/14	15-409	7/12
15-112	7/09	15-333	7/12	15-500	7/14
15-113	7/09	15-334	7/14	15-501	7/14
15-121	7/09	15-134A	7/17	15-502	7/14
15-122	7/17	15-BLANK	7/17	15-503	7/14
15-131	7/17	15-335	7/14	15-550	7/15
15-151	7/17	15-335A	7/14	15-600	7/16
15-152	7/16	15-336	7/14	15-650	7/16
15-153	7/17	15-336A	7/12	15-NOTES-1	7/18
15-154	7/17	15-363	7/12	15-NOTES-2	7/17
15-155	7/15	15-399	7/10		

	CHECKLIST		
SMZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	7 of 13	7/19

Business Use

SECTION 16 - AERIAL / SPACER CABLE

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
16-i	7/15	16-44	7/12	16-160	7/15
16-ii	7/13	16-45	7/12	16-161	7/15
16-iii	7/15	16-46	7/12	16-163	7/15
16-iv	1/06	16-47	7/15	16-165	7/15
16-1	7/07	16-48	7/15	16-166	7/15
16-2	7/07	16-49	7/15	16-168	7/15
16-3	7/07	16-50	7/15	16-169	7/15
16-4	7/11	16-51	7/15	16-171	7/18
16-5	7/15	16-52	7/15	16-173	7/18
16-6	7/15	16-53	7/15	16-200	1/06
16-7	7/18	16-54	7/15	16-201	7/09
16-8	7/11	16-55	7/15	16-205	7/15
16-9	7/07	16-56	7/15	16-206	7/15
16-10	7/07	16-57	7/15	16-210	7/15
16-11	7/07	16-58	7/15	16-213	7/15
16-12	7/07	16-100	1/06	16-214	7/15
16-13	7/07	16-101	7/15	16-217	7/15
16-14	7/07	16-102	7/15	16-220	7/13
16-15	7/07	16-103	7/15	16-223	7/09
16-16	7/07	16-106	7/15	16-226	7/15
16-17	7/07	16-107	7/15	16-227	7/15
16-18	7/07	16-108	7/15	16-228	7/15
16-19	7/12	16-109	7/15	16-232	7/15
16-20	7/12	16-114	7/15	16-233	7/15
16-21	7/12	16-115	7/15	16-236	7/15
16-22	7/12	16-118	7/09	16-237	7/15
16-23	7/12	16-122	7/09	16-240	7/15
16-24	7/12	16-123	7/09	16-243	7/15
16-25	7/12	16-124	7/07	16-246	7/15
16-26	7/12	16-126	7/09	16-249	7/09
16-27	7/12	16-127	7/09	16-252	7/15
16-28	7/12	16-130	1/06	16-255	7/09
16-29	7/12	16-131	7/15	16-258	7/13
16-30	7/12	16-134	7/09	16-259	7/15
16-31	7/12	16-135	7/10	16-262	7/07
16-32	7/12	16-138	7/15	16-263	7/07
16-33	7/12	16-139	7/10	16-265	7/18
16-34	7/12	16-142	7/15	16-300	1/06
16-35	7/12	16-143	7/15	16-301	7/07
16-36	7/12	16-146	7/15	16-305	7/07
16-37	7/12	16-148	7/15	16-310	7/09
16-38	7/12	16-150	7/15	16-315	7/07
16-39	7/12	16-151	7/15	16-320	7/07
16-40	7/12	16-153	7/15	16-321	7/07
16-41	7/12	16-155	7/10	16-NOTES	7/15
16-42	7/12	16-157	7/15	16-NOTES	7/15
16-43	7/12	16-158	7/15		

	CHECKLIST					
	ISSUE	PAGE NUMBER		WHA		
Busi	7/18 ness Use	8 of 13	OVERHEAD CONSTRUCTION STANDARD	ppl		

SECTION 17 – JOINT USE

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
17-i	7/16	17-101	7/10	17-113	7/10
17-ii	1/16	17-102	7/10	17-114	7/10
17-1	7/07	17-103	7/10	17-115	7/10
17-2	7/16	17-105	1/06	17-116	7/10
17-3	7/16	17-107	1/06	17-117	7/10
17-4	7/10	17-108	7/07	17-118	7/07
17-5	7/10	17-109	7/16	17-119	7/07
17-6	7/07	17-110	7/10	17-NOTES	7/16
17-7	7/07	17-111	7/10		
17-100	7/07	17-112	7/10		

SECTION 18 - RISERS

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
18-i	7/18	18-116	7/18	18-341	7/18
18-ii	7/18	18-117	7/18	18-353	7/18
18-1	7/11	18-118	7/18	18-370	7/18
18-2	7/14	18-124	7/18	18-400	7/18
18-3	7/18	18-124M	7/18	18-400M	7/18
18-4	7/18	18-125	7/18	18-405	7/18
18-5	7/11	18-125M	7/18	18-734	7/18
18-6	7/16	18-126	7/18	18-735	7/18
18-7	7/14	18-126D	7/18	18-736	7/18
18-BLANK	7/12	18-BLANK	7/18	18-737	7/18
18-104	7/18	18-127	7/18	18-738	7/18
18-107	7/18	18-128	7/18	18-739	7/18
18-109	7/18	18-335	7/18	18-1273A	7/18
18-110	7/18	18-336	7/18	18-1277A	7/18
18-111	7/18	18-336D	7/18	18-1277B	7/18
18-112	7/18	18-337	7/18	18-BLANK	7/18
18-115	7/18	18-338	7/18	18-NOTES	7/18
18-115B	7/18	18-340	7/18	18-NOTES	7/18

SECTION 19 – LIGHTING

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
19-i	7/17	19-9	7/17	19-121	7/13
19-ii	7/15	19-10	7/17	19-122	7/13
19-1	7/17	19-11	7/17	19-130	7/15
19-2	7/17	9-12	7/17	19-131	7/15
19-3	7/15	19-100	7/13	19-140	7/15
19-4	7/15	19-101	7/13	19-141	7/13
19-5	7/17	19-110	7/15	19-150	7/13
19-6	7/17	19-111	7/15	19-151	7/13
19-7	7/15	19-112	7/13	19-152	7/13
19-8	7/17	19-120	7/15	19-NOTES	7/17

CHECKLIST					
SMA		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	9 of 13	7/19		

SECTION 20 – 25-35 KV DISTRIBUTION PRIMARY

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
20-i	7/18	20-200	7/07	20-421 Fig 1	7/07
20-ii	7/07	20-201	7/07	20-421 Fig 2	7/07
20-1	7/15	20-202	7/07	20-423 Fig 1	7/07
20-2	7/15	20-203	7/07	20-423 Fig 2	7/07
20-3	7/07	20-204	7/07	20-435	7/07
20-4	7/07	20-205	7/07	20-436	7/07
20-5	7/07	20-205A	7/07	20-437	7/07
20-6	7/07	20-206	7/18	20-438	7/07
20-7	7/07	20-411	7/07	20-439	7/07
20-8	7/07	20-412	7/07	20-440	7/07
20-9	7/07	20-413	7/07	20-441	7/07
20-105	7/07	20-414	7/07	20-711	7/07
20-115	7/18	20-415	7/18	20-713	7/07
20-118	7/07	20-416	7/18	20-715	7/07
20-120	7/07	20-417	7/18	20-719	7/07
20-122	7/07	20-419 Fig 1	7/07	20-NOTES	7/18
20-124	7/07	20-419 Fig 2	7/07		

	CHECKLIST					
	ISSUE	PAGE NUMBER		SMI//2		
Busi	7/18 ness Use	10 of 13	OVERHEAD CONSTRUCTION STANDARD	ppl		

SECTION 21 - DISTRIBUTION SUPPLY

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
21-i	7/17	21-38	7/17	21-244	7/17
21-ii	7/18	21-39	7/17	21-245	7/17
21-iii	7/18	21-40	7/17	21-246	7/17
21-BLANK	7/15	21-41	7/17	21-247	7/17
21-1	7/17	21-42	7/17	21-300	7/18
21-2	7/12	21-43	7/17	21-301	7/18
21-3	7/12	21-44	7/17	21-302	7/18
21-4	7/17	21-45	7/17	21-303	7/18
21-5	7/12	21-46	7/17	21-400	7/12
21-6	7/12	21-47	7/17	21-401	7/12
21-7	7/12	21-48	7/17	21-402	7/12
21-8	7/12	21-49	7/17	21-403	7/12
21-9	7/12	21-BLANK	7/17	21-404	7/12
21-10	7/12	21-101	7/17	21-405	7/12
21-11	7/12	21-102	7/17	21-406	7/12
21-12	7/12	21-103	7/17	21-407	7/12
21-13	7/17	21-104	7/16	21-408	7/12
21-14	7/17	21-105	7/17	21-409	7/12
21-15	7/17	21-106	7/16	21-410	7/12
21-16	7/17	21-107	7/17	21-411	7/12
21-17	7/12	21-108	7/17	21-412	7/12
21-18	7/17	21-113	7/16	21-413	7/12
21-19	7/17	21-BLANK	7/15	21-414	7/12
21-20	7/12	21-211	7/17	21-415	7/12
21-21	7/16	21-213	7/17	21-416	7/12
21-22	7/16	21-217	7/17	21-417	7/12
21-23	7/17	21-218	7/17	21-418	7/17
21-24	7/17	21-219	7/17	21-NOTES	7/18
21-25	7/12	21-220	7/17		
21-26	7/12	21-221	7/17		
21-27	7/12	21-222	7/17		
21-28	7/12	21-223	7/17		
21-29	7/12	21-224	7/17		
21-30	7/12	21-226	7/17		
21-31	7/12	21-228	7/17		
21-32	7/12	21-230	7/17		
21-33	7/12	21-231	7/17		
21-34	7/12	21-236	7/18		
21-35	7/12	21-241	7/17		
21-36	7/12	21-242	7/17		
21-37	7/12	21-243	7/17		

	CHECKLIST		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	11 of 13	7/19

SECTION 22 – MATERIALS CATALOG

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
22-i	7/17	22-C39C- C39G	7/18	22-P11A1 - P11J3	7/14
22-ii	7/18	22-C40AA – C40NB	7/16	22-P12A1 – P13	7/13
22-iii	7/16	22-C40PFA-C40PFW	7/16	22-P14A – P16	7/13
22-iv	7/16	22-C40PSA-C40PSZA	7/18	22-P17A – P20B	7/13
22-v	7/16	22-C40SGC- C41D2	7/18	22-P20N - P20N2	7/13
22-vi	7/16	22-C43S10-C43S51	7/16	22-P21A1 – P21A3	7/13
22-vii	7/16	22-C47A – C48	7/16	22-P21L – P21N	7/13
22-viii	7/16	22-C50A - C50B	7/13	22-P21M – P21S	7/13
22-ix	7/16	22-C60B - C61B	7/14	22-P22A1 – P22A3	7/13
22-x	7/16	22-C62 - C70	7/08	22-P22P – P22U	7/13
22-xi	7/16	22-C76-C77	7/16	22-P22V – P23C2	7/13
22-xii	7/09	22-D1 – D4	7/16	22-P23CC – P23G	7/17
22-xiii	7/09	22-D4 – D7	7/18	22-P23HD – P24	7/18
22-BLANK	7/17	22-D7D – D7JB	7/18	22-P25 – P32	7/17
22-A9 – A13A8	7/18	22-D8-D9A9	7/10	22-P33A1- P33A3	7/17
22-A16A – A18K	7/16	22-E12M – E13N	7/13	22-P34A – P35	7/08
22-A18N1 – A50B	7/15	22-E15B	7/13	22-P51C-P52P	7/18
22-A50BA – A50D	7/13	22-F1K03 – F1K200	7/13	22-P54A-P77DH6	7/17
22-A50E1 – A54B	7/13	22-F1K03A -F1T200	7/16	22-P78-P80B	7/17
22-A54C – A57A	7/13	22-F2T – F5E400	7/16	22-P85A-P85B	7/17
22-A58B – A59B	7/16	22-F6E020 – F7B	7/16	22-R40A1-R42A	7/17
	7/16	22-F7A25 – F8K	7/13	22-R42C-R43GM	7/18
22-A60E – A80B 22-B1 – B8A3	7/16		7/16		7/16
	7/13	22-F9K3 – F50BA		22-R50A-R50SP	
22-B8B15 – B9N2	1/13	22-G2A2 – G5B	7/15	22-R51A – R51C1	7/16
22-B10B – B13K	7/16	22-G5C2 – G9B	7/13	22-R52A- R52H	7/16
22-B14A – B16E	7/16	22-G15A – G21E	7/13	22-R53 - R55	7/16
22-B17A – B21C	7/13	22-G33A – G36	7/16	22-S1 – S6	7/13
22-B22B – B36B	12/04	22-G50	7/16	22-S13B – S13N6	7/13
22-B37B – B54T	1/06	22-I2- I7PB	7/16	22-S14A – S14L	7/16
22-C4A – C5D	7/16	22-I8A – I11A	7/16	22-S15CB – S15X	7/14
22-C6N1 – C6N7	7/16	22-I11B – I12	7/16	22-S15W – S17R	7/16
22-C7A – C7H	7/16	22-I13A – I13EP	7/16	22-S19A – S19T	7/16
22-C7I – C7L	7/13	22-I14A – I15E	7/16	22-S19P – S20G	7/16
22-C7M – C7R	7/16	22-I15F – I16B	7/16	22-S20R1 – S21M	7/16
22-C8A – C8N3	7/16	22-I17A – I19C	7/16	22-S22H – S23N	7/13
22-C9A – C9P	7/13	22-I20A – I20E	7/18	22-S24E – S26D	7/16
22-C9F – C9FF	7/16	22-I20F	7/16	22-S27A – S27L	7/14
22-C13A1 – C13S	7/16	22-I21 – I26C	7/17	22-S28A – S28M	7/13
22-C14A - C14C	7/13	22-L2 – L3JR	7/16	22-S30 - S35	7/14
22-C15A – C17F	7/18	22-L3K – L4B	7/13	22-S40-SP1A	7/16
22-C20- C24CC	7/18	22-L6 – L10E	7/13	22-T1A – T1T5	7/13
22-C24D – C27H	7/15	22-L20B-L20F	7/13	22-T2W1 – T5E	7/13
22-C29E10 - C30	7/16	22-M36C - M37	7/16	22-T5S1 – T9AS	7/13
22-C31B – C31D	7/13	22-NC8 – NCM1	7/17	22-T9C – T15	7/13
22-C31E – C31G	7/16	22-NG9 – NL3	7/13	22-T21 – T22F1	7/13
22-C32 – C32G	7/13	22-NS4 – NT6	7/13	22-T23A - T45	7/13
22-C33- C35B	7/14	22-NTE-NW4	7/10	22-T91AA – T91AK	7/13
22-C36A – C37A	7/13	22-P1A – P1C3	7/18	22-T91AL – T91DE	7/16
22-C38A – C39A1	7/15	22-P1D - P6B	7/13	22-T91DEA – T91G3	7/18
22-C39B – C39CS3	7/13	22-P7A - P10B	7/13	:0:22:	., .

CHECKLIST						
ISSUE	PAGE NUMBER		WHZ.			
7/18	12 of 13	OVERHEAD CONSTRUCTION STANDARD	ppl			

SECTION 22 - MATERIALS CATALOG (CONTINUED)

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
22-T91G4-T91HF	7/18	22-UC5G UF10A	7/13	22-W1 – W3	7/13
22-T91HF1 – T91HN4	7/18	22-UK6S UK8R	7/13	22-W5 – W8D	7/13
22-T91HN5 – T91HR2	7/13	22-UK8W – UK12A	7/16	22-W9E – W13L	7/16
22-T91T – T91W	7/18	22-UK14GF-UK45A3	7/16	22-W15B – W16E	7/18
22-TB60 - TC12	7/16	22-UK49A – UR43	7/15	22-W17B – W21BF	7/16
22-TC20 - TC80B	7/16	22-UR44C-UR46	7/16	22 -W20CA – W21NF	7/16
22-TF2A-TF4E	7/16	22-UR47T4- UR50	7/15	22-W21NG - W33C	7/16
22-TG10 – TG20	7/16	22-UR49A2 – UK50	7/15	22-Z5 – Z10	7/13
22-TG30-TI95D	7/18	22-UR51A – UR51E	7/16	22-Z11A – Z12D	7/13
22-TL3N-TT1B	7/18	22-US1A-US1B	7/18		
22-TSKIT15-TSKIT2	7/18				

SECTION 23 - MATERIALS CATALOG - LIGHTING

Business Use

Page Number	Issue Date	Page Number	Issue Date	Page Number	Issue Date
23-i	7/13	23-SH04 SH05	7/13	23-SK70 - SK71	7/18
23-ii	7/18	23-SI03	7/14	23-SK80 - SK81	7/18
23-iii	7/18	23-SJ03	7/13	23-SN03 - SN10	7/13
23-iv	7/13	23-SJ04 SJ05	7/18	23-SP10 SP12	7/15
23-C7 - C29	7/15	23-SJ10 – SJ11	7/13	23-SP10Z	7/15
23-SB04 - SB08	7/13	23-SJ12 – SJ13	7/13	23-SR03 SR05	7/13
23-SB10 - SB20	7/13	23-SJ20 – SJ21	7/13	23-SR11	7/13
23-SB30 - SB31	7/13	23-SK03-1	7/13	23 -SR20 - SR21	7/15
23-SB40 - SB42	7/13	23-SK03-2	7/13	23-SR22 SR23	7/13
23-SC01 - SC17	7/13	23- SK05-SK06	7/15	23-ST09F	7/15
23-SC20 - SC31	7/13	23- SK10	7/13	23-ST09X	7/13
23-SH01 - SH02	7/13	23-SK20	7/13	23 -SY4	7/13
23-SH03	7/13	23-SK50 SK60	7/18		

	CHECKLIST		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	13 of 13	7/16

SECTION	PAGE
1.0 COPYRIGHT NOTICE	1-1
1.1 STANDARDS ARE PROPERTY OF PPL	1-1
1.2 TRANSMISSION VOLTAGES	1-1
1.3 SUB-TRANSMISSION VOLTAGES	1-2
1.4 PRIMARY DISTRIBUTION VOLTAGES	1-2
1.5 SECONDARY DISTRIBUTION VOLTAGES, SINGLE PHASE	1-3
1.6 SECONDARY DISTRIBUTION VOLTAGES, THREE PHASE	1-3
1.7 CONSTRUCTION GUIDELINES FOR COMLPIANCE	1-4 THRU 1-5
ABBREVIATIONS	1-101 THRU 1-114
DEFINITIONS	1-201 THRU 1-213

	GENERAL INDEX		
NMI//		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	1-i	7/20

			GENERAL INDEX	
ĺ	ISSUE	PAGE NUMBER		WWZ
	1/06	1-ii	OVERHEAD CONSTRUCTION STANDARD	ppl

1.0 COPYRIGHT NOTICE

Copyright 2022 PPL.

1.1 STANDARDS ARE PROPERTY OF PPL

1.1.10 Property of PPL, Warranties

This Distribution Standards book was prepared by PPL for the general use of PPL subsidiaries. The information in this book is confidential, proprietary, trade secret information and it remains the property of PPL. This book is made available to you with the express understanding that neither PPL nor any of its affiliates, officers, directors, agents or employees assumes any warranty or representation with respect to the contents of this book or its accuracy or completeness.

1.1.20 Confidentiality

The person(s) accepting this book shall maintain the confidentiality of the specification or standards provided except that such person(s) may disclose the information to its partner(s), employee(s), agent(s), contractor(s), or subcontractor(s) if (1) the PPL companies and (2) the party to whom the information has been disclosed acknowledges receipt of this disclosure.

1.1.20 Transfer, Copy, Reproduction and Return

This book shall not be transferred, copied, or reproduced in any form by any person or organization, without written authorization of PPL. The consignee of this manual is required to return it, in its entirety, to the PPL representative responsible for its issuance, immediately subsequent to the completion of the assignment, project, or contract.

1.2 TRANSMISSION VOLTAGES

This is a list of nominal transmission system voltages presently in use within the PPL Service Territory. All voltages are 60 Hz unless otherwise noted. Non-standard service voltages are followed by an asterisk (*).

Voltage	Operating Location	
69,000	RI	
115,000	RI	
345,000	RI	

	GENERAL		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	1-1	5/22

1.3 PRIMARY DISTRIBUTION VOLTAGES

These are lists of nominal primary distribution system voltages presently in use within the PPL Service Territory. All voltages are 60 Hz unless otherwise noted. Non-standard service voltages are followed by an asterisk (*).

1.3.10 3-Phase, 3 Wire

Voltage	BIL (kV)	Voltage Code	Operating Location
2,400Δ *	75	Н	RI
11,000Δ	95		RI (Note 1)
23,000Y	125		RI
23,000Δ	150		RI
34,500Y *	150		RI (Note 2)

Notes:

- 1. In Providence, RI, Non-effectively grounded supply.
- 2. In southern RI, 34.5 kV 3-phase, 3-wire supply.

1.3.20 3-Phase, 4 Wire

Voltage	BIL (kV)	Voltage Code	Operating Location
4,160GRDY/2,400	75	J	RI
12,470GRDY/7,200	95	F	RI
13,800GRDY/7,960	95	W	RI
34,500GRDY/19,900	150	T	RI

		GENERAL	
ISSUE	PAGE NUMBER		SMIZZ
5/22	1-2	OVERHEAD CONSTRUCTION STANDARD	ppl

1.4 SECONDARY DISTRIBUTION VOLTAGES, SINGLE PHASE

1.4.10 2 Wire

Voltage
120 (Note 1)
240 (Note 1)

1.4.10 3 Wire

Voltage
120/240
120/208 (Note 2)

Notes:

- 1. For lighting only.
- 2. Underground Network

1.5 <u>SECONDARY DISTRIBUTION VOLTAGES, THREE PHASE</u>

1.5.10 3 Wire

Voltage	
240 *	
480 *	
600 *	

1.5.20 <u>4 Wire</u>

Voltage
125/216Y (Note 1)
208Y/120
240/120 (Note 2)
480Y/277

Notes:

- 1. Underground Network
- 2. 240 V open or closed Delta with 120 V for lighting.

		GENERAL		
	OMBO		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	1-3	5/22

1.6 CONSTRUCTION GUIDELINES FOR COMPLIANCE FOR DISTRIBUTION AND SUB TRANSMISION STANDARDS

As part of the construction audit review, questions have been raised as to when existing construction shall be brought in compliance with current Distribution Standards. The following is a general outline as to what the Company expectations are with regard to this matter.

New Construction – All new construction shall be built to current PPL Distribution Standards.

Existing Construction – Existing construction or maintenance work (i.e., outside of complete structure replacement, reconductoring or conversions) does not require that the existing structure be brought in compliance with the current Distribution Standards provided that the work being done maintains the integrity of the original structure's construction. Safety concerns (such as clearances) or potential reliability issues at the structure shall be addressed as part of the work that is being performed.

Emergency Construction – Emergency or temporary construction does not require that the existing structure be brought in compliance with the current Distribution Standards provided that the work being done maintains the integrity of the original structure's construction. Critical safety concerns that may result in undue hazard or potential harm to Company personnel or to the general public shall be addressed as part of the emergency work that is being performed. Potential reliability issues or general safety concerns at the structure shall be reported to local supervision. Emergency or temporary construction shall be brought into compliance with Distribution Standards as soon as practical.

<u>Note 1:</u> During structure replacement, reconductoring, or conversion work, all minimum clearances and separations per current Distribution Standards shall be followed.

<u>Note 2:</u> In all cases, work being completed on any given structure shall be in compliance with PPL Electric Operating Procedures as well as all applicable federal, state or local law / ordinance. (e.g., For the case where a driven ground rod is found to be missing on a required structure, appropriate permissions (e.g., Dig Safe, Dig Safely) must be acquired prior to correcting the situation.)

Some examples of safety or potential reliability concerns include, but are not limited to:

Safety

- Clearances
- o Potted porcelain cutout on pole
- Missing guy marker(s)
- Missing structure or switch number
- Missing equipment locks

Reliability

- Improper bonding and grounding
- Missing or exposed ground rod(s)
- Street lighting
- Metallic Riser conduits
- o Guy wire (wye system)
- Switch handles
- Control cabinets
- Equipment tank/mounts
- Spacer cable supports (tangent, C and E-brackets)
- Arresters (flexible braid utilized for arrester disconnector)
- Secondary neutral

			GENERAL	
	ISSUE	PAGE NUMBER		SMIZZ
Busi	5/22 ness Use	1-4	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 01.00.002 © 2022 PPL Corporation. All rights reserved.

- Down ground molding
 Potted porcelain cutout on pole
 Missing surge arrester(s)
 Missing animal guard(s)

	GENERAL					
	SMIZZ		PAGE NUMBER	ISSUE		
į	ppl	OVERHEAD CONSTRUCTION STANDARD	1-5	5/22		

These abbreviations are taken from ANSI Standard Y1.1 and other standards organizations. The asterisk (*) denotes terms deemed necessary but not acceptable or defined by the above mentioned standards. The left column lists words/phrases while the right column lists the abbreviation.

Words/prinases write the right oblaminate the	words/prilases wrille the right column lists the appreviation.				
A					
ADJUST, ADJUSTING, ADJUSTABLE	ADJ	Α	AMPERE		
AIR BREAK SWITCH	ABS	*A/C	AIR CONDITIONER		
AIR CIRCUIT BREAKER	ACB	AAAC	ALL ALUMINUM ALLOY CONDUCTOR		
* AIR CONDITIONER	A/C	AAC	ALL ALUMINUM CONDUCTOR		
AL CONDUCTOR STEEL REINFORCED	ACSR	AB	ANCHOR BASE		
ALL ALUMINUM ALLOY CONDUCTOR	AAAC	ABS	AIR BREAK SWITCH		
ALL ALLUMINUM CONDUCTOR	AAC	AC	ALTERNATING CURRENT		
ALTERNATING CURRENT	AC	ACB	AIR CIRCUIT BREAKER		
ALUMINUM	AL	ACSR	AL CONDUCTOR STEEL REINFORCED		
ALUMOWELD	AW	ADJ	ADJUST, ADJUSTING, ADJUSTABLE		
ALUMOWELD ALUMINUM CONDUCTOR	AWAC	AL	ALUMINUM		
AMERICAN WIRE GAUGE	AWG	AMP	AMPERE		
AMPERE	AMP, A	APPROX	APPROXIMATE		
ANCOR BASE	AB	ARR	ARRESTER		
AND SO FORTH	ETC	ASYM	ASYMMETRICAL		
APPROXIMATE	APPROX	AUTO	AUTOMATIC		
ARRESTER	ARR	AUX	AUXILIARY		
ASYMMETRICAL	ASYM	AVE	AVENUE		
AUTOMATIC	AUTO	AVG	AVERAGE		
AUXILIARY	AUX	AW	ALUMOWELD		
AVENUE	AVE	AWAC	ALUMOWELD ALUMINUM CONDUCTOR		
AVERAGE	AVG	AWG	AMERICAN WIRE GAUGE		
		В			
BASIC INSULATION IMPULSE LEVEL	BIL	В	BLACK		
BLACK	BLK, B	BIL	BASIC INSULATION IMPULSE LEVEL		
BLUE	BLU, BL	BL	BLUE		
BOLT	BLT	BLDG	BUILDING		
BRACKET	BRKT	BLK	BLACK		
BRASS	BRS	BLT	BOLT		
BRITISH THEMAL UNIT	BTU	BLU	BLUE		
BRONZE	BNZ	BNZ	BRONZE		
BROWN	BRN,BR	BR	BROWN		
BUILDING	BLDG	BRKT	BRACKET		
BY PASS	BYP	BRN	BROWN		
		BRS	BRASS		
		BTU	BRITISH THERMAL UNIT		
		BYP	BY PASS		

		GENERAL		
-	SMIZZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	1-101	7/15

7				
		С		
CAPACITOR	CAP	C TO C	CENTER TO CENTER	
CATALOGUE	CAT	CAP	CAPACITOR	
CENTER	CTR	CC	CUBIC CENTIMETER	
CENTER LINE	CL	CFM	CUBIC FEET PER MINUTE	
CENTER TO CENTER	СТОС	CIR	CIRCLE, CIRCULAR	
CENTIGRADE	° C	CKT	CIRCUIT	
CIRCLE, CIRCULAR	CIR	CL	CENTER LINE	
CIRCUIT	CKT	CL	CLASS, CLASSIFICATION	
CLAMP	CLP	CLF	CURRENT-LIMITING FUSE	
CLASS, CLASSIFICATION	CL	CLP	CLAMP	
COMPANY	CO	CNDCT	CONDUCTOR	
COMPATIBLE UNIT	CU	CO	COMPANY	
* COMPRESS, COMPRESSION	COMP	CO	CUTOUT	
COMPLETELY SELF-PROTECTED	CSP	*COMP	COMPRESS, COMPRESSION	
* CONCENTRIC	CONC	*CONC	CONCENTRIC	
CONDUCTOR	CNDCT	CONN	CONNECTOR, CONNECTION, CONNECT	
CONDUCTOR, MULTIPLE "EXAMPLE"	3/C	CORP	CORPORATION	
* CONDUCTORS PARALLELED	CP	COV	COVER, COVERED	
* CONDUCTORS TWISTED	CT	*CP	CONDUCTORS PARALLELED	
CONNECTOR, CONNECTION, CONNECT	CONN	CSP	COMPLETELY SELF-PROTECTED	
COPPER	CU	*CT	CONDUCTORS TWISTED	
COPPERWELD	CW	СТ	CURRENT TRANSFORMER	
* COPPERWELD-COPPER	CCW	CTR	CENTER	
CORPORATION	CORP	CU	COMPATIBLE UNIT	
COVER, COVERED	COV	CU	COPPER	
CROSS LINK POLYETHYLENE	XLP	CU FT	CUBIC FEET	
CROSS SECTION	XSECT	CU IN	CUBIC INCH	
CROSSARM	XARM	CU M	CUBIC METERS	
CUBIC CENTIMETER	CC	CU YD	CUBIC YARDS	
CUBIC FEET PER MINUTE	CFM	*CUST	CUSTOMER	
CUBIC FEET	CU FT	CW	COPPERWELD	
CUBIC INCH	CU IN	*CWCU	COPPERWELD-COPPER	
CUBIC METER	CU M	CY	CYCLE	
CUBIC YARD	CU YD			
CURRENT-LIMITING FUSE	CLF			
CURRENT TRANSFORMER	CT			
* CUSTOMER	CUST			
CUTOUT	CO			
CYCLE	CY			

GENERAL				
ISSUE	PAGE NUMBER		WIII	
7/15	1-102	OVERHEAD CONSTRUCTION STANDARD	ppl	

D				
* DEADEND	DE	D	DEPTH	
DELTA	Δ	*DB	DIRECT BURIED	
DEPARTMENT	DEPT	DBL	DOUBLE	
DEPTH	D	DC	DIRECT CURRENT	
DIAMETER	DIA	*DE	DEAD END	
* DIRECT BURIED	DB	DEPT	DEPARTMENT	
DIRECT CURRENT	DC	DF	DOUGLAS FIR	
DISCONNECT	DISC	DIA	DIAMETER	
DISTRIBUTE, DISTRIBUTION	DISTR	DISC	DISCONNECT	
DOUBLE	DBL	DISTR	DISTRIBUTE, DISTRIBUTION	
DOUBLE POLE SWITCH	DP SW	DN	DOWN	
DOUGLAS FIR	DF	DP SW	DOUBLE POLE SWITCH	
DOWN	DN	*DPX	DUPLEX	
* DUPLEX	DPX			
	İ	E		
EACH	EA	Е	EAST	
EAST	E	EA	EACH	
* EIGHT HOLE	8H	EC	ELECTRICAL CONDUCTOR	
ELBOW	ELB	EG	FOR EXAMPLE	
ELECTRIC, ELECTRICAL, ELECTRONIC	ELEC	EHV	EXTRA HIGH VOLTAGE	
ELECTRICAL CONDUCTOR	EC	ELB	ELBOW	
EMBEDDED	EMB	ELEC	ELECTRIC, ELECTRICAL, ELECTRONIC	
ENGINEER, ENGINEERING	ENGR	EMB	EMBEDDED	
ENTRANCE	ENTR	ENCL	ENCLOSED, ENCLOSURE	
EQUIPMENT	EQPT	ENGR	ENGINEER, ENGINEERING	
EQUIVALENT	EQUIV	ENTR	ENTRANCE	
ETHYLENE PROPYLENE	EP	*EP	ETHYLENE PROPYLENE	
* ETHYLENE PROPYLENE RUBBER	EPR	*EPR	ETHYLENE PROPYLENE RUBBER	
* EXTRA HIGH VOLTAGE	EHV	EQPT	EQUIPMENT	
		EQUIV	EQUIVALENT	
		ETC	AND SO FORTH	

GENERAL				
SMIZZ		PAGE NUMBER	ISSUE	
se ppl	OVERHEAD CONSTRUCTION STANDARD	1-103	7/15	

F				
EALIDENHIELT			FOOT OANIDLE	
FAHRENHEIT	° F	FC	FOOT CANDLE	
FEEDER	FDR	FDR	FEEDER	
FEET	FT, '	*FG	FIBERGLASS	
* FIBERGLASS	FG	FIG	FIGURE	
FIGURE	FIG	FLDT	FLOODLIGHT	
FLOODLIGHT	FLDT	FOA	FORCED OIL W/ FORCED AIR COOLER	
FOOT	FT, '	FREQ	FREQUENCY	
FOOT CANDLE	FC	FT	FOOT, FEET	
FOOT POUNDS	FT-LB	FT-LB	FOOT POUND	
FOR EXAMPLE	EG	*FTN	FULL TENSION	
FORCED OIL W/FORCED AIR COOLER	FOA			
FOUR CONDUCTORS	4/C			
* FOUR CONDUCTORS PARALLELED	4CP			
* FOUR CONDUCTORS TWISTED	4CT			
FREQUENCY	FREQ			
* FULL TENSION	FTN			
		3		
GALLON	GAL	GAL	GALLON	
GALLONS PER HOUR	GPH	GALV	GALVANIZED	
GALLONS PER MINUTE	GPM	GALVI	GALVANIZED IRON	
GALLONS PER SECOND	GPS	GALVS	GALVANIZED STEEL	
GALVANIZED	GALV	GND	GROUND	
GALVANIZED IRON	GALVI	GP	GENERAL PURPOSE	
GALVANIZED STEEL	GALVS	GPH	GALLONS PER HOUR	
GENERAL PURPOSE	GP	GPM	GALLONS PER MINUTE	
GRAY	GRA, GY	GPS	GALLONS PER SECOND	
GREEN	GRN	GRA	GRAY	
GROUND	GND	GRN	GREEN	
	0.12	GY	GRAY	
	· · · · · · · · · · · · · · · · · · ·	<u>. </u>	0.0.1	
HANDHOLE	HH	Н	HEIGHT	
HARD DRAWN	HD DRN	HD	HEAVY DUTY	
HARDWARE	HDW	*HD	HIGH DENSITY	
HEAVY DUTY	HD	HD DRN	HARD DRAWN	
HEIGHT	Н	*HDPE	HIGH DENSITY POLYETHYLENE	
HERTZ	HZ	*HDTR	HIGH DENSITY TRACK RESISTANT	
* HIGH DENSITY	HD	HDW	HARDWARE	
* HIGH DENSITY POLYETHYLENE	HDPE	HH	HANDHOLE	
* HIGH DENSITY TRACK RESISTANT	HDTR	*HMP	HIGH MOLECULAR POLYETHYLENE	
* HIGH MOLECULAR POLYETHYLENE	HMP	HORIZ		
	HP		HORIZONTAL HIGH PRESSURE	
HIGH PRESSURE		HP		
HIGH PRESSURE SODIUM VAPOR	HPS	HP	HORSEPOWER	
HIGH TENSION	HT	HPS	HIGH PRESSURE SODIUM VAPOR	
HIGH VOLTAGE	HV	HT	HIGH TENSION	
HIGHWAY	HWY	HV	HIGH VOLTAGE	
HORIZONTAL	HORIZ	HWY	HIGHWAY	
HORSEPOWER	HP	HZ	HERTZ	

		GENERAL	
ISSUE	PAGE NUMBER		SMIZZ
7/15	1-104	OVERHEAD CONSTRUCTION STANDARD	ppl

	I		
IMPEDANCE	IMPD	ID	INSIDE DIAMETER
INCANDESCENT	INCAND	I.E.	THAT IS
INCH	IN, "	IMPD	IMPEDANCE
INCHES PER SECOND	IPS	IN	INCH
INDUCTION, INDUCTANCE	IND	INCAND	INCANDESCENT
INFORMATION	INFO	*IND	INDUCTION, INDUCTANCE
INSIDE DIAMETER	ID	INFO	INFORMATION
INSTANTANEOUS	INST	INST	INSTANTANEOUS
INSULATE, INSULATING, INSULATOR	INSUL	INSUL	INSULATE, INSULATING, INSULATOR
INTERRUPT	INTRPT	INTRPT	INTERRUPT
		IPS	INCHES PER SECOND
		I	
* JOINTLY OWNED	JO	JCT	JUNCTION
* JUMPER	JMP	*JMP	JUMPER
JUNCTION	JCT	*JO	JOINTLY OWNED
	ŀ	(
KILOVAR	KVAR	K	THOUSAND
KILOVOLT	KV	KCMIL	THOUSAND CIRCULAR MILS
KILOVOLT-AMPERE	KVA	KV	KILOVOLT
KILOWATT	KW	KVA	KILOVOLT-AMPERE
KILOWATT HOUR	KWH	KVAR	KILOVAR
		KW	KILOWATT
		KWH	KILOWATT HOUR

GENERAL					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	1-105	7/15		

L					
LARGE	LGE	L	LENGTH		
LEAD COVERED	LC	*L	LUMEN		
LEAD OVER HEIGHT	L/H	L/H	LEAD OVER HEIGHT		
LENGTH	L	LB	POUND		
LIGHT	LT	*LBK	LOAD BREAK		
LIGHT EMITTING DIODE	LED	*LBS	LOAD BREAK SWITCH		
LIGHTING	LTG	LBS	POUNDS		
LIMITER	LMTR	LC	LEAD COVERED		
* LOAD BREAK	LBK	LED	LIGHT EMITTING DIODE		
* LOAD BREAK SWITCH	LBS	LGE	LARGE		
* LOAD TAP CHANGER	LTC	LIM	LIMIT		
LOW VOLTAGE	LV	LMTR	LIMITER		
LUBRICATED, LUBRICATION	LUB	LPW	LUMENS PER WATT		
* LUMEN	L	LT	LIGHT		
LUMENS PER WATT	LPW	*LTC	LOAD TAP CHANGER		
* LUMINAIRE	LUM	LTG	LIGHTING		
		LUB	LUBRICATED, LUBRICATION		
		*LUM	LUMINAIRE		
		LV	LOW VOLTAGE		
		M			
MACRO UNIT	MU	М	THOUSAND POUNDS (GUY STRANDS)		
MAINTENANCE	MAINT	MA	MILLIAMPERE		
MANHOLE	МН	MAINT	MAINTENANCE		
MANUFACTURE, MANUFACTURER	MFR	MATL	MATERIAL		
MATERIAL	MATL	MAX	MAXIMUM		
MATERIAL LIST	ML	*MBS	MINIMUM BREAKING STRENGTH		
MAXIMUM	MAX	MCY	MEGACYCLE		
* MEDIUM HARD DRAWN	MHD	*MEG	MEGAOHM		
* MEGACYCLE	MCY	MESS	MESSEMGER		
* MEGAWATT	MWT	MFR	MANUFACTURE, MANUFACTURER		
* MEGAWATT HOUR	MWH	MGY	MULTIGROUNDED-Y CONNECTED		
* MEGAOHM	MEG	МН	MANHOLE		
* MERCURY VAPOR	MV	MH	PROBE START METAL HALIDE		
MESSENGER	MESS	*MHD	MEDIUM HARD DRAWN		
METAL-OXIDE VERISTER	MOV	MIN	MINIMUM		
METER, METERING	MTR	MISC	MISCELLANEOUS		
MILLIAMPERE	MA	ML	MATERIAL LIST		
MILLION VOLT AMPERES	MVA	MOV	METAL-OXIDE VERISTER		
MINIMUM	MIN	MT	MOUNT		
* MINIMUM BREAKING STRENGTH	MBS	MTG	MOUNTING		
MISCELLANEOUS	MISC	MTR	METER, METERING		
MOUNT	MT	MU	MACRO UNIT		
MOUNTING	MTG	*MV	MERCURY VAPOR		
MULTIGROUNDED-Y CONNECTED	MGY	MVA	MILLION VOLT AMPERES		
	14101	*MHW	MEGAWATT-HOUR		
		*MWT	MEGAWATT		

			GENERAL	
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/15 ness Use	1-106	OVERHEAD CONSTRUCTION STANDARD	ppl

	N	I	
NEGATIVE	NEG	N	NORTH
* NEOPRENE	NEO	NC	NORMALLY CLOSED
NETWORK	NTWK	NEG	NEGATIVE
NEUTRAL	NEUT	*NEO	NEOPRENE
* NICOPRESS	NICPRS	NEUT	NEUTRAL
NOMINAL	NOM	*NICPRS	NICOPRESS
NORMALLY CLOSED	NC	NO	NORMALLY OPEN, NUMBER
NORMALLY OPEN	NO	NOM	NOMINAL
NORTH	N	NTWK	NETWORK
NUMBER	NO, #		
	C)	
OBSOLETE	OBS	OBS	OBSOLETE
OHM	Ω	OCB	OIL CIRCUIT BREAKER
OIL CIRCUIT BREAKER	OCB	OD	OUTSIDE DIAMETER
ONE CONDUCTOR	1/C	*OH	OVERHEAD
OUNCE	OZ	OVLD	OVERLOAD
OUTSIDE DIAMETER	OD	OZ	OUNCE
* OVERHEAD	OH		
OVERLOAD	OVLD		

GENERAL					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	1-107	7/15		

		Р	
* PAPER & LEAD	PL	Р	PHASE
PARALLEL	PRL	Р	POLE
* PARALLEL GROOVE	PG	*PB	PUSH BRACE
* PARTIAL TENSION	PTN	PCT	PERCENT
PEDESTRIAN	PED	PE	PHOTOELECTRIC CON
PERCENT	PCT	PE	POLYETHYLENE
PHASE	P, Ø	PEC	PHOTO ELECTRIC CONTROL
PHOTO ELECTRIC CONTROL	PEC	PECR	PHOTO ELECTRIC CONTROL RECEPTACLE
PHOTO ELECTRIC CONTROL RECEPTACLE	PECR	PED	PEDESTRIAN
PHOTOELECTRIC CONTROL	PE	PF	POWER FACTOR
PINT	PT	*PG	PARALLEL GROOVE
POINT	PT	*PISA	POWER INSTALLED SCREW ANCHOR
POLE	Р	*PL	PAPER & LEAD
* POLE MOUNT	PMNT	PLD	PLATED
* POLE TOP EXTENSION	PTX	*PMNT	POLE MOUNT
POLYCARBONATE	POLYCAR	*POLY	POLYETHELENE
* POLYETHELENE	POLY,PE	POLYCAR	POLYCARBONATE
POLYVINYL CHLORIDE	PVC	PORC	PORCELAIN
PORCELAIN	PORC	POS	POSITIVE
POSITIVE	POS	POT	POTENTIAL
POST TOP	PT	PRCST	PRECAST
POTENTIAL	POT	PREFMD	PREFORMED
POTENTIAL TRANSFORMER	PT	PRESS	PRESSURE
POUND	LB	PRI	PRIMARY
POUNDS	LBS	PRL	PARALLEL
POWER	PWR	PSMH	PULSE START METAL HALIDE
POWER FACTOR	PF	PT	PINT
*POWER INSTALLED SCREW ANCHOR	PISA	PT	POINT
PRECAST	PRCST	PT	POST TOP
PREFORMED	PREFMD	PT	POTENTIAL TRANSFORMER
PRESSURE	PRESS	*PTN	PARTIAL TENSION
PRIMARY	PRI	*PTX	POLE TOP EXTENSION
PROBE START METAL HALIDE	MH	PVC	POLYVINYL CHLORIDE
PULSE START METAL HALIDE	PSMH	PWR	POWER
* PUSH BRACE	PB		
		Q	
QUADRANT	QDRNT	QDRNT	QUADRANT
* QUARDUPLEX	QPX	*QPX	QUADRUPLEX
QUANTITY	QTY	QT	QUART
QUART	QT	QTY	QUANTITY
QUART			

	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/15 ness Use	1-108	OVERHEAD CONSTRUCTION STANDARD	ppl

R					
* RADIAL, RADIUS	RAD	R	RIGHT		
RAILROAD	RR	R/W	RIGHT OF WAY		
* REACTANCE/RESISTANCE	X/R	*RAD	RADIAL, RADIUS		
* REACTANCE	X	RC	REMOTE CONTROL		
REACTOR BALLAST	REA	RCPT	RECEPTACLE		
REACTOR, REACTIVE	REAC	RD	ROAD		
RECEPTACLE	RCPT	RDC	REDUCE, REDUCER, REDUCING		
RECLOSER, RECLOSING	REC	RDWY	ROADWAY		
REDUCE, REDUCER, REDUCING	RDC	REA	REACTOR BALLAST		
REFLECTOR	REFL	REAC	REACTOR, REACTIVE		
* REFRACTOR	REFC	REC	RECLOSER, RECLOSING		
REGULAR	RGLR	*REFC	REFRACTOR		
REGULATED BALLAST	REG	REFL	REFLECTOR		
* REGULATOR	REG	REG	REGULATED BALLAST		
REMOTE CONTROL	RC	*REG	REGULATOR		
REPORT	RPRT	RES	RESISTANCE, RESISTOR		
RESISTANCE, RESISTOR	RES	REV	REVISE, REVISION		
REVISE, REVISION	REV	*RGBL	RIGID BAIL		
RIGHT	RT, R	RGD	RIGID		
RIGHT HAND	RH	RGLR	REGULAR		
RIGHT OF WAY	R/W	RH	RIGHT HAND		
RIGID	RGD	RMS	ROOT MEAN SQUARE		
* RIGID BAIL	RGBL	RND	ROUND		
ROAD	RD	RPRT	REPORT		
ROADWAY	RDWY	RR	RAILROAD		
ROOT MEAN SQUARE	RMS	RT	RIGHT		
ROUND	RND	RUB	RUBBER		
RUBBER	RUB				

		GENERAL		
	SMIZZ		PAGE NUMBER	ISSUE
se	ppl	OVERHEAD CONSTRUCTION STANDARD	1-109	7/15

S					
SECOND, SECONDARY	SEC	S	SOUTH		
SECTION, SECTIONAL	SECT	SB	SILICON BRONZE		
SECTIONALIZER	SECT	*SBLT	SPLIT BOLT		
SELF-SUPPORTING	SS	SD	SOFT DRAWN		
SEMI-FLEXIBLE BAIL	SFB	SEC	SECOND, SECONDARY		
SERIES	SER	SECT	SECTION, SECTIONAL		
SERVICE	SVCE	SECT	SECTIONALIZER		
SILICON BRONZE	SB	SER	SERIES		
SINGLE	SGL	SFB	SEMI-FLEXIBLE BAIL		
SINGLE CONDUCTOR	1/C	SGL	SINGLE		
SINGLE CONDUCTOR SINGLE HOLE	1/C	SO	SOLELY OWNED		
SINGLE PHASE	1PH, 1Ø	SOD	SODIUM		
	· -				
* SINGLE POLE DOUBLE THROW	1P	SOL *SP	SOLID		
SINGLE POLE CINCLE TUPOW	SPDT		SOUTHERN PINE		
SINGLE POLE SWITCH	SPST	*SPA	SOUTHERN PINE ASPHALT		
SINGLE POLE SWITCH	SP SW	*SPC	SOUTHERN PINE CREOSOTE SPACER CABLE		
* SINGLE STRAND EYE	SSE	*SPCA			
SIX CONDUCTORS TWISTED	6CT	*SPCT	SOUTHERN PINE-CELLON TREATMENT		
SIX HOLE	6H	SPCR	SPACER		
SODIUM	SOD	SPDT	SINGLE POLE DOUBLE THROW		
SOFT DRAWN	SD	SPEC	SPECIFICATION		
SOLELY OWNED	SO	SPPC	SOUTHERN PINE-CELLON TREATMENT		
SOLID	SOL	SPST	SINGLE POLE SINGLE THROW		
SOUTH	S	SP SW	SINGLE POLE SWITCH		
SOUTHERN PINE	SP	*SQU	STRAIN QUADRANT		
* SOUTHERN PINE ASPHALT	SPA	SS	SELF SUPPORTING		
* SOUTHERN PINE CREOSOTE	SPC	*SSE	SINGLE STRAND EYE		
* SOUTHERN PINE PENTA IN CREOSOTE	SPPC	SPPC	SOUTHERN PINE-CELLON TREATMENT		
* SOUTHERN PINE-CELLON TREATMENT	SPCT	SST	STAINLESS STEEL		
SPACER	SPCR	*SST	STRAIN STRAIGHT		
* SPACER CABLE	SPCA	STA	STATION, STATIONARY		
SPECIFICATION	SPEC	STD	STANDARD		
* SPLIT BOLT	SBLT	STL	STEEL		
STAINLESS STEEL	SST	*ST LT	STREET LIGHT		
STANDARD	STD	STR	STRAND, STRANDED		
STATION, STATIONARY	STA	STRN	STRAIN		
STEEL	STL	*SUB	SUBSTATION		
STRAIN	STRN	SUPV	SUPERVISE, SUPERVISORY		
* STRAIN QUADRANT	SQU	SUSP	SUSPENSION		
* STRAIN STRAIGHT	SST	SVCE	SERVICE		
STRAND, STRANDED	STR	SW	SWITCH, SWITCHED		
* STREET LIGHT	ST LT	SWGR	SWITCHGEAR		
* SUBSTATION	SUB	SYM	SYMBOL		
SUPERVISE, SUPERVISORY	SUPV	SYMM	SYMMETRIC, SYMMETRICAL		
* SUSPENSION	SUSP	SYS	SYSTEM		
SWITCH, SWITCHED	SW				
SWITCHGEAR	SWGR				
SYMBOL	SYM				
SYMMETRIC, SYMMETRICAL	SYMM				
SYSTEM	SYS				

	GENERAL				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/15 ness Use	1-110	OVERHEAD CONSTRUCTION STANDARD	ppl	

Т				
TANGENT	TAN	TAN	TANGENT	
TEARDROP	TDROP	TBASE	TRANSFORMER BASE	
TEMPERATURE	TEMP	TCC	TIME-CURRENT CURVE	
TERMINAL, TERMINATOR	TERM	TD	TIME DELAY	
THAT IS	I.E.	TDROP	TEARDROP	
* THERMOPLASTIC	THPL	*TEA	TRIPLE EYE ANCHOR ROD	
THOUSAND	K	TEMP	TEMPERATURE	
THOUSAND CIRCULAR MILS	KCMIL	TERM	TERMINAL, TERMINATOR	
THOUSAND POUNDS (GUY STRAND)	M	*TES	TRIPLE EYE SCREW ANCHOR	
THREAD, THREADED	THD	THD	THREAD, THREADED	
THREE CONDUCTOR	3/C	*THDLES	THREADLESS	
* THREE CONDUCTORS PARALLELED	3CP	*THPL	THERMOPLASTIC	
* THREE CONDUCTORS TWISTED	3CT	THRU	THROUGH	
THROUGH	THRU	TND	TINNED	
TIME-CURRENT CURVE	TCC	TPL	TRIPLE	
TIME DELAY	TD	TR	TRACK RESISTANT	
TINNED	TND	TRX	TRIPLEX	
TRACK RESISTANT	TR	*TSE	TRIPLE STRAND-EYE	
TRANSFORMER	XFMR			
TRANSFORMER BASE	TBASE			
TRANSMISSION	XSMN	1		
TRIPLE	TPL			
* TRIPLE EYE ANCHOR ROD	TEA			
* TRIPLE EYE SCREW ANCHOR	TES			
TRIPLE POLE DOUBLE THROW	3PDT			
TRIPLE POLE SINGLE THROW	3PST			
TRIPLE POLE SWITCH	3P SW			
* TRIPLE STRAND-EYE	TSE			
TRIPLEX	TRX			
TWO CONDUCTORS	2/C			
* TWO CONDUCTORS PARALLELED	2CP			
* TWO CONDUCTORS TWISTED	2CT			
* TWO HOLE	2H			
TWO POLE	2P			
U				
ULTRAVIOLET LIGHT	UV	*UG	UNDERGROUND	
* UNDERGROUND	UG	UGY	UNGROUNDED-Y CONNECTION	
UNGROUNDED-Y CONNECTION	UGY	UNIV	UNIVERSAL	
UNIVERSAL	UNIV	UV	ULTRAVIOLET LIGHT	
v		_		
VACUUM	VAC	V	VOLT	
VARNISHED CAMBRIC	VC	VA	VOLT AMPERE	
* VAULT	VLT	VAC	VACUUM	
VERTICAL	VERT	VC	VARNISHED CAMBRIC	
* VINYL	VEICE	VERT	VERTICAL	
VOLT	V	*VLT	VAULT	
VOLT AMPERE	VA	VOL	VACET	
VOLUME	VOL	*VYL	VOLONIE	
VOLUME	VOL	VIL	VIINIL	

	GENERAL			
	SMI		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	1-111	7/15

1				
W				
WATT	W	W	WATT	
WATT HOUR	WHR	W	WEST	
WATT HOUR METER	WHM	W	WHITE	
WATTMETER	WM	W	WIDTH	
WEATHERPROOF	WP	W/	WITH	
WEEK	WK	W/B	WITH BRACKET	
WEIGHT	WT	WD	WIDTH	
WEST	W	WD	WOOD	
WHITE	WHT, W	WHM	WATT HOUR METER	
WIDTH	WD, W	WHR	WATT HOUR	
WITH	W/	WHT	WHITE	
WITH BRACKET	W/B	WK	WEEK	
* WITHOUT	WO/	WM	WATT METER	
WOOD	WD	*WO/	WITHOUT	
WYE	Υ	WP	WEATHERPROOF	
		WT	WEIGHT	
		Χ		
		*X	REACTANCE	
		Χ	STRAND	
		*X/R	REACTANCE/RESISTANCE	
		XARM	CROSSARM	
		XFMR	TRANSFORMER	
		XLP	CROSS LINK POLYETHYLENE	
		XSECT	CROSS SECTION	
		XSMN	TRANSMISSION	
		Υ		
YARD	YD	Υ	WYE	
YARDS	YDS	Υ	YELLOW	
YEAR	YR	YD	YARD	
YELLOW	YEL, Y	YDS	YARDS	
		YEL	YELLOW	
		YR	YEAR	
Z				
ZINC	ZN	ZN	ZINC	
* ZINC PLATED	ZP	*ZP	ZINC PLATED	
			l	

GENERAL				
ISSUE	PAGE NUMBER		SMIZZ	
7/15	1-112	OVERHEAD CONSTRUCTION STANDARD	ppl	

Doc. # ST. 01.00.003

	SPECIAL CHARACTERS				
1/C	ONE CONDUCTOR				
1/C	SINGLE CONDUCTOR				
1/H	ONE HOLE				
*1/H	SINGLE HOLE				
1P	ONE POLE				
1P	SINGLE POLE				
1PH	SINGLE PHASE				
1Ø	SINGLE PHASE				
2/C	TWO CONDUCTOR				
*2CP	TWO CONDUCTORS PARALLELED				
*2CT	TWO CONDUCTORS TWISTED				
*2H	TWO HOLE				
2P	TWO POLE				
3/C	THREE CONDUCTOR				
*3CP	THREE CONDUCTORS PARALLELED				
*3CT	THREE CONDUCTORS TWISTED				
3P	THREE POLE				
3P SW	TRIPLE POLE SWITCH				
3PDT	TRIPLE POLE DOUBLE THROW SW				
3PST	TRIPLE POLE SINGLE THROW SW				
4/C	FOUR CONDUCTOR				
*4CP	FOUR CONDUCTORS PARALLELED				
*4CT	FOUR CONDUCTORS TWISTED				
*4H	FOUR HOLE				
4P	FOUR POLE				
4P SW	FOUR POLE SWITCH				
4PDT	FOUR POLE DOUBLE THROW SW				
4PST	FOUR POLE SINGLE THROW SW				
6CT	SIX CONDUCTORS TWISTED				
6H	SIX HOLE				
*8H	EIGHT HOLE				
Δ	DELTA				
Ω	OHM				
Ø	PHASE				
1	FOOT OR FEET				
"	INCH OR INCHES				
°C	CENTIGRADE				
°F	FAHRENHEIT				
#	NUMBER				

	GENERAL				
WIDE		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	1-113	7/15		

Organizations and Documents

ORGANIZATION	ABBREVIATION
AMERICAN NATIONAL STANDARDS INSTITUTE	ANSI
AMERICAN SOCIETY OF TESTING AND MATERIALS	ASTM
AMERICAN WOOD PERSERVERS ASSOCIATION	AWPA
ASSOCIATION OF EDISON ILLUMINATING COMPANIES	AEIC
DEPARTMENT OF TRANSPORTATION	DOT
EDISON ELECTRIC INSTITUTE	EEI
ILLUMINATING ENGINEERING SOCIETY	IES
INSTITUTE OF ELECTRICAL AND ELECTRONIC ENGINEERS	IEEE
INSULATED CABLE ENGINEERS ASSOCIATION	ICEA
NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION	NEMA
NATIONAL FIRE PROTECTION ASSOCIATION	NFPA
OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION	OSHA
UNDERWRITERS LABORATORY	UL
DOCUMENT	ABBREVIATION
ELECTRIC OPERATING PROCEDURE (PPL)	EOP
NATIONAL ELECTRICAL CODE	NEC
NATIONAL ELECTRICAL SAFETY CODE	NESC

GENERAL				
ISSUE	PAGE NUMBER		SMIZZ	
7/157	1-114	OVERHEAD CONSTRUCTION STANDARD	ppl	

DEFINITIONS

The following sources were used as a reference to define the following terms:

IEEE Standard Dictionary of Electrical & Electronic Terms – IEEE STD 100

2. The Lineman's and Cableman's Handbook

National Electrical Code

4. National Electrical Safety Code

<u>A</u>

AAC - (All Aluminum Conductor) A conductor made wholly of 1350 alloy aluminum.

AAAC - (All Aluminum Alloy Conductor) A conductor made wholly of 5005-H19 or 6201-T81

higher strength alloy aluminum.

ACSR - (Aluminum Conductor Steel Reinforced) A composite conductor made up of a

combination of aluminum and steel wires. In the usual construction the aluminum

wires surround the steel wires.

ACTUAL SPAN - The horizontal distance between two adjacent structures. The distance can be either

to the structure ahead, Actual Span ahead, or to the back structure, Actual Span back. The Actual Span affects sags and clearances from the conductors to the

ground.

ALIVE - Electrically connected to a source of potential difference, or electrically charged so as

to have a potential difference from that of the ground. **Note:** The term "alive" is sometimes used in place of the term "current-carrying", where the intent is clear, to

avoid repetitions of the longer term. (IEEE-100)

AMPACITY - The current-carrying capacity, expressed in amperes, of an electrical conductor

under stated thermal conditions. (Per NESC)

ANCHOR - A device that serves as a reliable support to hold an object firmly in place. The term

"anchor" is normally associated with cone, plate, screw, or concrete anchors, but terms "stub", "deadman", and "anchor log" are usually associated with pole stubs or logs set or buried in the ground to serve as temporary anchors. The latter are often

used at pull and tension sites. (IEEE-100)

ANCHOR GUY A protective cover over the guy, often a length of plastic or metal shaped to a

MARKER - semicircular or tubular section and equipped with a means of attachment to the guy.

(IEEE-100)

ANODE - An electrode through which current enters any conductor of the nonmetallic class.

(IEEE-100)

<u>ARRESTER</u> - See Surge Arrester

AWG - (American Wire Gauge) The standard system used for designating wire diameter,

also referred to as the Brown and Sharpe wire gauge. This system is based on a direct correlation between gauge number, cross section, weight, and the DC

resistance of conductors.

		GENERAL		
	sMiles		PAGE NUMBER	ISSUE
Use	ppl	OVERHEAD CONSTRUCTION STANDARD	1-201	7/15

В

<u>BAY-O-NET FUSE</u> - A pad mount transformer fuse, used to protect the line-side system from damage

caused by transformer faults. Provides transformer protection from overloading and

secondary fault current.

<u>BIL</u> - (Basic Lightning Impulse Insulation Level) A specific insulation level expressed in

kilovolts of the crest value of a standard lightning impulse. (IEEE-100)

BOLLARD - A series of short posts set at intervals to delimit an area (as a traffic island) or to

exclude vehicles

BONDING - The permanent joining of metallic parts to form an electrically conductive path that

will assure electrical continuity and the capacity to conduct safely any current likely to

be imposed. (IEEE-100)

The electrical interconnecting of conductive parts, designed to maintain a common

electrical potential. (NESC)

<u>BOOST</u> - Raise or attempt to raise voltage.

BUCK - Lower or attempt to lower voltage.

<u>BUCKARM</u> - A crossarm placed approximately at right angles to the line crossarm and used for

supporting branch or lateral conductors or turning large angles in line conductors.

(IEEE-100)

BUSHING PLUG - An interface for a transformer/switch that allows cable to be attached with an elbow

connector.

С

CABLE - A conductor with insulation, or a stranded conductor with or without insulation and

other coverings (single-conductor cable), or a combination of conductors insulated

from one another (multiple-conductor cable). (OSHA, NESC, IEEE-100)

CABLE JACKET - A protective covering over the insulation, core, or sheath of a cable. (IEEE-100)

<u>CABLE RACK</u> - A device usually secured to the wall of a manhole, cable raceway, or building to

provide support for cables. (IEEE-100)

<u>CABLE SHEATH</u> - A conductive protective covering applied to cables. **Note**: A cable sheath may

consist of multiple layers, of which one or more is conductive. (IEEE-100)

<u>CATHODE</u> - An electrode through which current leaves any conductor of the nonmetallic class.

(IEEE-100)

CATHODIC Reduction or prevention of corrosion by making a metal, the cathode in a conducting

<u>PROTECTION</u> - medium by means of a direct electric current. (IEEE-100)

CIRCULAR A unit of area equal to $\pi/4$ of a square mil (= 0.7854 square mil). The cross-

MIL - sectional area of a circle in circular mils is therefore equal to the square of its diameter

in mils. A circular inch is equal to one million circular mils. **Note**: One mil equals 0.0001 inches. There are 1974 circular mils in a square millimeter. (IEEE-100)

GENERAL					
ISSUE	PAGE NUMBER		SMIZE		
7/15	1-202	OVERHEAD CONSTRUCTION STANDARD	ppl		

The clear distance between two objects measured surface to surface. (OSHA, NESC) CLEARANCE -

CONDUCTOR -A material, usually in the form of a wire, cable, or bus bar, suitable for carrying an

electric current. (OSHA)

CONDUCTOR BR Butyl rubber

INSULATIONS -EPR Ethylene propylene rubber

XLPE Cross-linked polyethylene TRXLPE Tree-retardant polyethylene **PILC** Paper Insulated, lead covered

VC Varnish Cambric

CONDUCTOR, -BARE

One having no covering or insulation whatsoever. (IEEE-100)

CONDUCTOR COMPACT -

A round stranded conductor having all layers stranded in the same direction and successively passed through forming dies that forms the round conductor strands into a diamond-like shape. This results in a smoother, more nearly circular outer surface and effectively eliminates the void between individual wire strands.

CONDUCTOR COMPRESSED - A concentric stranded conductor which, after completion of the stranding operation, is passed through forming dies that compress the strands of the outer layer into a diamond-like shape. This results in a smoother, more nearly circular outer surface, and reduces the void between individual strands in the outer layer.

CONDUCTOR **CONCENTRIC** - A single straight core wire strand surrounded by one or more layers of helically wound wires in a fixed round geometric arrangement. Each layer after the first has six more strands than the preceding layer and is applied in a direction opposite to that of the layer under it.

CONDUCTOR COVERED -

A conductor covered with a dielectric having no rated insulating strength or having a rated insulating strength less than the voltage of the circuit in which the conductor is used.

CONDUCTOR **INSULATED -**

A conductor covered with a dielectric (other than air) having a rated insulated strength greater than or equal to the voltage of the circuit in which it is used. (NESC)

CONDUIT SYSTEM -

Any combination of duct, conduit, conduits, manholes, handholes and/or vaults joined to form an integrated whole. (IEEE-100)

CONNECTOR -

A coupling device employed to connect conductors of one circuit or transmission element with those of another circuit or transmission element. (IEEE-100)

CONTINUOUS LOAD - A load where the maximum current is expected to continue for three (3) hours or

more.

CORE LOSS, TRANSFORMER - The measured power loss, expressed in watts, attributable to the material in the core and associated clamping structure of a transformer that is excited, with no connected load, at a core flux density and frequency equal to that in the core when rated voltage and frequency is applied and rated load current is supplied. (IEEE-100)

CURRENT **CARRYING PART -** A conducting part intended to be connected in an electric circuit to a source of voltage. Note: Non-current carrying parts are those not intended to be so

connected. (OSHA)

		GENERAL		
	SMIZZ		PAGE NUMBER	ISSUE
se	ppl	OVERHEAD CONSTRUCTION STANDARD	1-203	7/15

CURRENT LIMITING

FUSE -

A fuse that, when it is melted by a current within its specified current-limiting range, abruptly introduces a high arc voltage to reduce the current magnitude and duration. **Note:** The values specified in standards for the threshold ration, peak letthrough current, and I²t characteristic are used as the measures of current-limiting ability. (IEEE-100)

CURRENT LIMITING FUSE CARRYING -

A pad mount transformer fuse that limits the potential for catastrophic failure of the transformer, due to internal faults.

CUTOUT -

An assembly of a fuse support with either a fuse holder, fuse carrier, or disconnect blade. When a fuse holder or fuse carrier is used, this device is used to automatically interrupt the flow of current through any particular apparatus or instrument. (IEEE-100)

D

<u>DEAD</u> - Isolated, tagged, tested de-energized and grounded. (Safety Manual)

DEAD-FRONT (TRANSFORMERS & SWITCHGEAR) – Without live parts exposed to a person on the operating side of the equipment.

(IEEE-100)

<u>DEADEND GUY</u> - An installation of line or anchor guys to hold the pole at the end of a line. (IEEE-100)

<u>DE-ENERGIZED</u> - The absence of normal operating voltages associated with the operation of the

system or control circuits. (Safety Manual)

Disconnected from all sources of electrical supply by open switches, disconnectors, jumpers, taps, or other means. **Note:** De-energized conductors or equipment could be electrically charged or energized through various means, such as induction from

energized circuits, portable generators, lightning, etc. (NESC) $\,$

<u>DEMAND</u> - The load integrated over a specific interval of time. (IEEE-100)

DISCONNECT - A device having a disconnecting blade for use as a disconnecting or isolating switch.

(IEEE-100)

DUCT - A single enclosed raceway for conductors or cables. (NESC)

<u>DUCT BANK</u> - An arrangement of conduit providing one or more continuous ducts between two

points. (IEEE-100)

<u>DUCT SEALING</u> - The closing of the duct entrance for the purpose of excluding water, gas, or other

undesirable substances. (IEEE-100)

<u>DUPLEX CABLE</u> - A cable composed of two (2) insulated single conductors or one (1) insulated

conductor and one (1) bare neutral conductor twisted together. (IEEE-100)

GENERAL

7/15 1-204 CONS

OVERHEAD CONSTRUCTION STANDARD

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 01.00.004

<u>DUTY</u> - Continuous Duty – Operation at a substantially constant load for an indefinitely long

time.

Intermittent Duty – Operation for alternate intervals of:

load and no load; or
 load and rest; or
 load, no load, and rest.

Periodic Duty - Intermittent operation in which the load conditions are regularly

recurrent.

<u>E</u>

EFFECTIVELY GROUNDED -

Intentionally connected to earth through a ground connection or connections of sufficiently low impedance and having sufficient current-carrying capacity to limit the buildup of voltages to levels below that which may result in undue hazard to persons or to connected equipment. (NESC)

An alternating-current system or portion thereof may be said to be effectively grounded when, for all points on

the system or specified portion thereof, the ratio of zero-sequence reactance to the positive-sequence reactance is less than three and the ratio of zero-sequence resistance to positive-sequence reactance is less than one for any condition of operation and for any amount of connected generator capacity. (IEEE-100)

ELBOW - A cable to apparatus connector.

<u>ENCLOSED</u> - Surrounded by case, cage, or fence designed to protect the contained equipment

and limit the likelihood, under normal conditions, of dangerous approach or

accidental contact by persons or objects. (NESC)

EXTRA-HIGH VOLTAGE SYSTEM -

See Voltage Systems

<u>F</u>

<u>FAULT CURRENT</u> - A current that flows from one conductor to ground or to another conductor owing to

an abnormal connection (including an arc) between the two. Note: A fault current

flowing to ground may be called a ground fault current. (IEEE-100)

FEEDER - A set of conductors originating at a main distribution center and supplying one or

more secondary distribution centers, one or more branch-circuit distribution centers,

or any combination of these two (2) types of equipment. (IEEE-100)

FEED-THRU - A device to electrically connect elbows or other accessories.

FUSE - An overcurrent protective device with a circuit-opening fusible part that is heated and

severed by the passage of overcurrent through it. (IEEE-100)

G

GROUND - A conducting connection, whether intentional or accidental, by which an electric

circuit or equipment is connected to the earth or to some conducting body of

relatively large extent that serves in place of the earth. (IEEE-100)

GROUND CURRENT - Current flowing in the earth or in a grounding connection. (IEEE-100)

	GENERAL			
	sstile.		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	1-205	7/15

GROUND GRID -A system of grounding electrodes consisting of interconnected bare cables buried in

the earth to provide a common ground for electrical devices and metallic structures.

(IEEE-100)

A system of bare conductors, on or below the surface of the Earth, connected to a **GROUND MAT -**

ground or a ground grid to provide protection from dangerous voltages. (IEEE-100)

A rod that is driven into the ground to serve as a ground terminal, such as a copper-**GROUND ROD -**

clad rod, solid copper rod, or galvanized iron pipe or rod. (IEEE-100)

GROUNDING A transformer intended primarily to provide a neutral point for grounding

TRANSFORMER purposes. Note: It may be provided with a Delta winding in which resistors or

reactors are connected. (IEEE-100)

GUARDED -Covered, fenced, enclosed, or otherwise protected, by means of suitable covers or

> casings, barrier rails or screens, mats or platforms, designed to limit the likelihood, under normal conditions, of dangerous approach or accidental contact by persons or objects. Note: Wires that are insulated but not otherwise protected are not normally

considered to be guarded. See exceptions under applicable rules. (NESC)

GUY -A tension member having one end secured to a fixed object and the other end

attached to a pole, crossarm, or other structural part that it supports. (IEEE-100)

Н

<u>I</u>

HANDHOLE -An access opening, provided in equipment or in a below-the-surface enclosure in

> connection with underground lines, into which personnel reach but do not enter, for the purpose of installing, operating, or maintaining equipment or cable or both.

(NESC)

HIGH VOLTAGE

See Voltage Systems.

SYSTEM -

IMPEDANCE VOLTAGE

(TRANSFORMER) -

The voltage required to circulate rated current through one of two specified windings of a transformer when the other winding is short-circuited, with the

windings connected as for rated voltage operation. Note: It is usually expressed in

per unit or percent, of the rated voltage of the winding in which the voltage is

measured. (IEEE-100)

INRUSH CURRENT

The maximum root-mean-square or average current value, determined for a (TRANSFORMER) -

specific interval, resulting from the excitation of the transformer with no connected load, and with essentially zero-source impedance, and using the minimum primary

turns tap available and its rated voltage. (IEEE-100)

INSULATING CAP-A cap that is used for insulating, shielding and sealing a bushing plug.

That which is relied upon to insulate the conductor from other conductors or **INSULATION-**

conducting parts or from ground (as applied to cable). (NESC)

Insulating material in a form designed to support a conductor physically and **INSULATOR -**

electrically separate from another conductor or object. (IEEE-100)

SYSTEM -

ISOLATED NEUTRAL A system that has no intentional connection to ground except through indicating,

measuring, or protective devices of very high impedance. (IEEE-100)

	GENERAL				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	ne 3/15 se	1-206	OVERHEAD CONSTRUCTION STANDARD	ppl	

J

<u>JACKET</u> - A protective covering over the insulation, core, or sheath of a cable. (NESC)

L

LATERAL CONDUCTOR - A wire or cable extending in a general horizontal direction at an angle to the

general direction of the line conductor. (IEEE-100)

<u>LAY (CABLE)</u> - The helical arrangement formed by twisting together the individual elements of a

cable. (IEEE-100)

LIGHTNING ARRESTER - See Surge Arrester.

LIVE - See Alive.

LIVE FRONT (TRANSFORMERS & SWITCHGEAR) - With live parts exposed to a person on the operating side of the equipment.

<u>LOAD FACTOR</u> - The ratio of the average load over a designated period of time to the peak load

occurring in that period. (IEEE-100)

LOAD LOSSES

Those losses which are incident to the carrying of a specified load. Load (TRANSFORMER) - losses include I²R loss in the winding due to load and eddy currents, stray

losses include I²R loss in the winding due to load and eddy currents, stray loss due to leakage fluxes in the windings, core clamps, and other parts; and the loss due to circulating current (if any) in parallel windings, or in parallel winding strands.

(IEEE-100)

<u>LOCATION</u> - Damp Location - Partially protected locations under canopies, marquees, roofed

open porches, and like locations; and interior locations subject to moderate degrees of moisture, such as some basements, some

barns, and some cold-storage warehouses.

Dry Location – A location not normally subject to dampness or wetness. Any

location classified as dry may be temporarily subject to dampness or wetness, as in the case of a building under

construction.

Wet Location – Installations underground or in concrete slabs or masonry in

direct contact with the earth, and locations subject to saturation with water or other liquids such as vehicle washing area, and

locations exposed to weather and unprotected.

LOSS FACTOR - The ratio of the average power loss to the peak-load loss during a specified period of

time. (IEEE-100)

<u>LOW VOLTAGE</u> - See Voltage Systems.

LUG - A wire connector device to which the electrical conductor is attached by mechanical

pressure or solder. (IEEE-100)

LUMINAIRE - A complete lighting unit consisting of a lamp or lamps together with the parts

designed to distribute the light, to position and protect the lamps, and to connect the

lamps to the power supply. (IEEE-100)

	GENERAL			
	SMIZZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	1-207	7/15

M

MANDREL -A tapered or cylindrical axle used to pull through conduit for inspections.

A subsurface enclosure that personnel may enter and is used for the purpose of MANHOLE -

installing, operating, and maintaining submersible equipment and cable. (NESC)

Operated by mechanical force, applied directly by personal intervention. (IEEE-100) MANUAL -

MANUAL OPERATION - Operated by hand without using any other source of power. (IEEE-100)

MEDIUM

See Voltage System.

VOLTAGE SYSTEM -

MULTI- GROUNDED A distribution system of the 4 wire type where all transformer neutrals are **NEUTRAL SYSTEM -**

grounded, and neutral conductors are directly grounded at frequent points along the

circuit. (IEEE-100, NESC)

A system of conductors in which a neutral conductor is intentionally grounded solidly at specified intervals. A multigrounded or multiple grounded systems may or may not

be effectively grounded. (NESC)

Ν

A plaque giving the manufacturer's name and the rating of the equipment to which it NAMEPLATE -

is attached. (IEEE-100)

NETWORK -An aggregation of interconnected conductors consisting of feeders, mains, and

services. (IEEE-100)

The conductor that is intended to be so energized, that, in the normal steady NEUTRAL **CONDUCTOR** state, the voltages from every other conductor to the neutral conductor, at the

terminals of entry of the circuit into a delimited region, are definitely related and

usually equal in amplitude. (IEEE-100, NESC)

A system conductor other than a phase conductor that provides a return path for current to the source. Not all systems have a neutral conductor. An example is an ungrounded delta system containing only three energized phase conductors. (NESC)

NO-LOAD LOSSES -Those losses which are incident to the excitation of the transformer. No-load

> (excitation) losses include core loss, dielectric loss, conductor loss in the winding due to exciting current, and conductor loss due to circulating current in parallel windings.

These losses change with the excitation voltage. (IEEE-100)

NOMINAL SYSTM **VOLTAGE** -

See Voltage, Nominal.

NON-EFFECTIVELY

An alternating-current system or portion thereof may be said to be non effectively grounded when, for all points on the system or specified portion thereof, the ratio of GROUNDED -

zero-sequence reactance to the positive-sequence reactance is greater than three and the ratio of zero-sequence resistance to positive-sequence reactance is greater than one for any condition of operation and for any amount of connected generator

capacity.

\sim \sim	NI		\Box	Λ	ı
ושכו	N	_	ĸ.	А	ı

	ISSUE	PAGE NUMBER		Mills
Busi	ne 3/15 se	1-208	OVERHEAD CONSTRUCTION STANDARD	ppl

NOT EFFECTIVELY **GROUNDED -**

Not permanently connected to earth through a ground connection or connections of sufficiently high impedance and not having sufficient current-carrying capacity to prevent the building up of voltages that may result in undue hazard to connected

equipment or to persons.

NOVOID X -Filling compound for G & W porcelain potheads and armored cable joint boxes.

0

OFC -Oil Fused Cutout.

OPEN WIRE -Single conductor, bare, covered or insulated, and separated by air from other

conductors, e.g, not a cable.

Ρ

A general term describing equipment positioned on a surface-mounted pad located PAD-MOUNTED -

outdoors. Note: The equipment is usually enclosed with all exposed surfaces at

ground potential. (IEEE-100)

PAD-MOUNTED A transformer utilized as part of an underground distribution system, with TRANSFORMER -

enclosed compartment(s) for high voltage and low voltage cables entering from

below and mounted on a foundation pad. (IEEE-100)

PARKING STAND -A bracket designed for installation on an apparatus, suitable for holding accessory

devices, such as insulated parking bushing and grounding bushing. (IEEE-100)

PILC-Paper Insulated Lead Covered Cable

POLE-TYPE TRANSFORMER - A transformer that is suitable for mounting on a pole or similar structure. (IEEE-100)

A device that seals the end of a cable and provides an insulated exit for the POTHEAD -

conductor or conductors. (IEEE-100)

POWER FUSE -A fuse consisting of an assembly of a fuse support and a fuse unit or fuseholder that

> may or may not include the refill unit or fuse link. Note: The power fuse is identified by the following characteristics: (1) Dielectric withstand (basic impulse insulation level) strengths at power levels; (2) Application primarily in stations and substations; (3) mechanical construction basically adapted to station and substation mounting.

(IEEE-100)

PRESSURE A means for relieving internal pressure in a transformer, possibly preventing **RELIEF DEVICE -**

explosive shattering of the tank or tank cover, following prolonged passage of fault

current due to external faults or internal transformer faults. (IEEE-100)

A device that may be fastened to the conductor or conductors of a cable or formed **PULLING EYE -**

by or fastened to the wire armor and to which a rope may be directly attached in

order to pull the cable into or from a duct. (IEEE-100)

PUSH BRACE -A supporting member, usually of timber placed between a pole or other structural

part of a line and the ground or a fixed object. (IEEE-100)

GENERAL					
WID.		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	1-209	7/15		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 01.00.004

Q

QUADRUPLEX CABLE -

A cable composed of four (4) insulated single conductors or three (3) insulated conductors and one (1) bare neutral conductor twisted together.

R

RADIAL SYSTEM -

A system in which independent feeders branch out radially from a common source of

supply. (IEEE-100)

RISER POLE -

Pole on which overhead wires connect to underground cable.

RULING SPAN -

A calculated deadend span length, which will have the same changes in conductor tension due to changes of temperature and conductor loading, as will be found in a series of spans of varying lengths between deadends. (IEEE-100)

S

SAG -

The distance measured vertically from a conductor to a straight line joining its two (2) points of support. Unless otherwise stated, the sag referred to is the sag at the midpoint of the span. (IEEE-100)

SECONDARIES -

Circuits 600 volts and below.

SEPARATION -

The distance between two objects, measured surface to surface, and usually filled with a solid or liquid material. (NESC)

SERVICE DROP -

The overhead conductors between the electric supply or communication line and the building or structure being served. (NESC)

CONDUCTORS, **OVERHEAD** SYSTEM -

SERVICE ENTRANCE The service conductors between the terminals of the service equipment and point usually outside the building, clear of building walls, where jointed by tap or splice to the service drop. (NEC)

CONDUCTORS UNDERGROUND SYSTEM -

SERVICE ENTRANCE The service conductors between the terminals of the service equipment and the point of connection to the service lateral. Note: Where service equipment is located outside the building walls there may be no serviceentrance conductors, or they may be entirely outside the building. (NEC)

SERVICE LATERAL -

The underground service conductors between the street main, including any risers at a pole or other structure or from transformers, and the first point of connection to the service-entrance conductors in a terminal box, meter, or other enclosure with adequate space, inside or outside the building wall. Where there is no terminal box, meter, or other enclosure with adequate space, the point of connection shall be considered to be the point of entrance of the service conductors into the building. (NEC)

SIDE BREAK SWITCH -

A switch in which the travel of the blade is in a plane parallel to the base of the switch. (IEEE-100)

SIDEWALL PRESSURE -

Busines 15 se

The crushing force exerted on a cable during installation. (IEEE-100, NESC)

PAGE NUMBER	
	OVERHEAD
1-210	CONSTRUCTION STANDARD

SOLIDLY -**GROUNDED**

Grounded through all adequate ground connection in which no impedance has been inserted intentionally. Note: Adequate as used herein means suitable for the

purpose intended. (IEEE-100)

SPACER CABLE -

A type of electric supply-line construction consisting of an assembly of one or more covered conductors, separated from each other and supported from a messenger by

insulating spacers. (IEEE-100, NESC)

SPAN LENGTH -

The horizontal distance of two (2) adjacent supporting points of a conductor. (IEEE-100)

SPLICE -

A physical connection of two (2) or more conductors to provide electrical continuity. (IEEE-100)

SPLICE TYPES-

Double Wye: also known as a double double or an H splice, splices four cables together.

Modula/Separable: A joint that is built that can be easily taken apart by mechanical means.

Normal: A splice of two similar cables.

Reducing: A type of splice that will join two different sizes of cable together.

Reducing/Transition: To splice a PILC cable to a smaller solid dielectric cable.

Transition: Splicing together PILC cable to solid dielectric cable.

Trifurcating: Splicing a 1-3/C cable to a 3-1/C cable.

Trifurcating/Transition: Splicing a 1- 3/C PILC cable to 3-1/C solid dielectric cable.

Wye: Splicing 3 cables together.

STEP-DOWN TRANSFORMER - A transformer in which the energy transfer is from a higher voltage circuit

to a lower voltage circuit. (IEEE-100)

STEP-UP

A transformer in which the energy transfer is from a lower voltage circuit

TRANSFORMER to a higher voltage circuit. (IEEE-100)

SUBMARINE CABLE - A cable designed for service under water. **Note:** Submarine cable is usually a leadcovered cable with a steel armor applied between layers of jute. (IEEE-100)

SUBMERSIBLE TRANSFORMER - A transformer so constructed as to be successfully operable when submerged in water under predetermined conditions of pressure and time. (IEEE-100)

SUBWAY TRANSFORMER - A submersible-type distribution transformer suitable for installation in an

underground vault. (IEEE-100)

SURGE ARRESTER -

A protective device for limiting surge voltage on equipment by discharging or bypassing surge current; it prevents continued flow of follow current to ground, and is

capable of repeating these functions as specified. (IEEE-100)

SWEEP -A manufactured bend installed at pad mounted equipment locations.

	GENERAL				
	SMID		PAGE NUMBER	ISSUE	
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	1-211	7/15	

SWITCH -

Disconnecting or Isolation Switch -

A mechanical switching device used for changing the connections in a circuit or equipment from the source of power. Note: It is required to carry normal load current continuously, and also abnormal or short-circuit currents for short intervals as specified. It is required to open or close circuits either when negligible current is broken or made, or when no significant change in the voltage across the terminals of each of the switch poles occurs.

Load-Interrupter

Switch -

A disconnecting or isolating switch equipped with an

interrupter and designed to interrupt currents not in excess of

the continuous-current rating of the switch.

Regulator Bypass

Switch -

A specific device or combination of devices designed to

bypass a regulator.

Т

TERMINAL -

A conducting element of equipment or a circuit intended for connection to an external

conductor. (IEEE-100)

TERMINAL CONNECTOR - A connector used for attaching a conductor to a lead, terminal block, or stud

of electric apparatus. (IEEE-100)

TERMINAL PAD -

A usually flat conducting part of a device to which a terminal connector is fastened.

(IEEE-100)

TERMINATOR -

An insulator used to protect each cable conductor passing through the device and

provide complete external leakage insulation between the cable conductor(s) and

ground.

TERMINATOR /POTHEAD -

A device that seals the end of a cable and provides insulated egress for the

conductor or conductors. (IEEE-100)

TIE LINE -

A transmission/distribution line connecting two (2) or more power systems.

(IEEE-100)

TOTAL LOSSES -

The sum of the no-load and load losses, excluding losses due to accessories.

(IEEE-100)

TRIPLEX CABLE -

A cable composed of three (3) insulated single conductors or two (2) insulated single

conductors and a bare neutral conductor twisted together. (IEEE-100)

U

ULTRA HIGH

VOLTAGE SYSTEM -

See Voltage System

UNGROUNDED -

A system, circuit, or apparatus without an intentional connection to ground except

through potential indicating or measuring devices or other very high impedance

devices. (IEEE-100)

UNIGROUNDED

A system of conductors in which one conductor is intentionally grounded solidly

NEUTRAL SYSTEM at a specific location, typically at the source.

	GENERAL			
	ISSUE	PAGE NUMBER		WHZ
Busi	ne 3/15 se	1-212	OVERHEAD CONSTRUCTION STANDARD	ppl

V

VAULT -

A structurally sound enclosure, including all side, top, and bottom, above or below ground where entry is limited to personnel qualified to install, maintain, operate, or inspect the equipment or cable enclosed. The enclosure may have openings for ventilation, personnel access, cable entrance, and other openings required for operation of equipment in the vault. (NESC)

VOLTAGE, -NOMINAL A nominal value assigned to a circuit or system for the purpose of conveniently designating its voltage class (as 120/240, 480Y/277, 600, etc.). The actual voltage at which a circuit operates can vary from the nominal within a range that permits satisfactory operation of equipment. See "Electric Power Systems and Equipment – Voltage Ratings (60 Hz)" (ANSI C84.1-82, IEEE-100)

VOLTAGE -SYSTEMS Low-Voltage System -

An electric system having a maximum root-mean-square alternating-current voltage of 1000 volts or less.

(IEEE-100)

Medium Voltage System - An electric system having a maximum root-mean-

square alternating-current voltage above 1000 volts to 72,500

volts. (IEEE-100)

High Voltage System - An electric system having a maximum root-mean-

square alternating current voltage above 72,500 volts to 240,000

volts. (IEEE-100)

Extra-High Voltage System - An electric system having a maximum root-meansquare alternating current voltage above 240,000 volts to

800,000 volts. (IEEE-100)

Ultra-High

An electric system having a maximum root-mean-

Voltage System - square alternating current voltage above 800,000 volts to

2,000,000 volts. (IEEE-100)

VOLTAGE TO -GROUND For grounded circuits, the voltage between the given conductor and that point or conductor of the circuit that is grounded. For ungrounded circuits, the greatest voltage between the given conductor and any other conductor of the circuit.

(IEEE-100)

W

WEIGHT SPAN -

Distance to the low point in the Actual Span ahead + distance to the low point in the Actual Span back. The weight span is a calculated term used to determine the vertical loading in crossarms and poles from the weight of ice coated conductors.

WIND SPAN -

 $\frac{1}{2}$ Actual Span ahead + $\frac{1}{2}$ Actual Span back. The wind span is a calculated term used to determine the transverse loading on the pole from the wind on ice coated conductors.

CO

WOUND -

Business Use

Single Wound – One cable wound on a reel.

Triple Wound – Three cables in parallel wound on a reel.

GENERAL

OVERHEAD
CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
1-213 7/15

Doc. # ST. 01.00.004

Version	Date	Modification	Author(s)	Approval by (Name/Title)
2.4	7/20	 Added sub-transmission voltage section Reformed section numbering Removed NH references in distribution voltages. Removed 25 Hertz feeder references. 		
2.3	7/18	 Corrected note 2 in 1.3.10 New Section 1.6 Compliance Updated Copyright 		
2.2	7/17	Corrected title in 1.3.20		
2	7/15	 Added new section 1.0 and 1.1. Renumbered later sections and pages. Added document control notices at tops of pages. 		
1/1	7/12	Added additional abbreviations		

	GENERAL			
	ISSUE	PAGE NUMBER		SMW.
Busi	ne 3/39 se	1-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl

SECTION	PAGE
2.0 GENERAL	2-1
2.1 POLE SPECIFICATION AND IDENTIFICATION	2-1
2.2 POLE LENGTH	2-2
2.3 POLE STRENGTH	2-2 THRU 2-4
2.4 POLE SETTING	2-4 THRU 2-5
2.5 POLE LOCATION	2-5
2.6 POLE ATTACHMENTS	2-5
2.7 WOOD POLE SALVAGE	2-5 THRU 2-6
2.8 ALTERNATIVE POLES	2-6
2.9 POLE LINE HARDWARE	2-6 THRU 2-9
2.10 POLE CLASSIFICATION	2-10 THRU 2-17
CONSTRUCTION DRAWINGS	
 Wood pole specifications and setting depths 	2-101
 Average pole weights and center of gravity 	2-102
 Installation of pole on solid rock (rock anchors) 	2-105
 Pole Top Extensions 	2-106
 Method of pole numbering wood poles 	2-111
 Phase and feeder identification 	2-112 – 2-112A
 Self-supporting fiberglass poles 	2-113
 Clean Corridor Pole Set 	2-301
 3 Phase UG Primary Clean Corridor Pole Set 	2-301A
 Nesting Platform – Wood Frame 	2-501
 Nesting Platform - Fiberglass 	2-501B
 Cutout Cover 	2-502
 Conductor Cover 	2-503
o Conductor Arm	2-504

POLES/HARDWARE INDEX					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	2-i	7/21		

POLES/HARDWARE INDEX			
ISSUE	PAGE NUMBER		WIN
7/08	2-ii	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved.

2.0 GENERAL

This Section covers the selection and installation of distribution poles and hardware for use on the overhead distribution systems. To ensure that the structural integrity is economically maintained for the expected life of the equipment, all wood products are treated with an acceptable preservative. Currently, pentachlorophenol (penta) preservative is purchased. The use of such equipment is most critical for maintaining a safe, reliable, and efficient overhead distribution system.

2.1 POLE SPECIFICATION AND IDENTIFICATION

Distribution poles shall be solid wood, fiberglass (fiber-reinforced polymer), or metal and in accordance with applicable standards such as ANSI Standard O5.1, Company MS2005, and MS2010. In general, poles listed on Page 2-101 are used for distribution circuits. However, where taller poles are required or pole loading is such that larger poles are required, poles traditionally stocked for transmission or sub-transmission structures may be used. Distribution pole strengths are designated by "class" 1 through 6. These classes establish pole circumference minimums Transmission Class H1 poles are utilized for critical structures as part of our storm hardening efforts (refer to Section 4 – Storm Hardening).

2.1.10 Pole Numbering

Each pole carrying Company attachments shall be Company identified and individually numbered on the road-side face of the pole, approximately 7 feet above grade, as shown on Drawing 2-111. On privately owned poles, which have Company equipment attached, a single letter "P" shall be installed below the pole number. Main junction and equipment support poles may also be identified by having the line number placed above the pole number.

Each individual pole line (8 or more poles) shall have poles consecutively numbered beginning at its origination from the main line. Short branch lines expected to never contain more than eight poles shall be sub-numbered from the tap pole.

2.1.20 Reflectors

All states within the PPL service territory do not have a reflector requirement, but reflectors may be used where deemed appropriate.

<u>Reflective Color</u> – On ramps, freeways, divided highways, and one-way streets, reflective material shall face oncoming traffic and shall be colored white on the right side of the roadway and yellow on the left side of the roadway. On two-way undivided roadways, reflective material shall be colored white and shall be placed on poles to the right of, and facing, oncoming traffic on each side of the road.

2.1.30 Phase and Feeder Numbering

Phase and feeder identification shall be installed on the first pole outside of the substation and when requested.

Phase identification shall be installed and located per construction drawings (2-112, 2-112A) on all smart technology devices as follows:

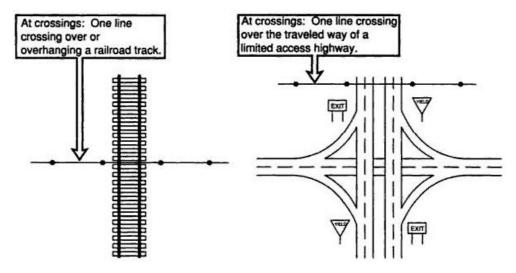
a. 3Φ reclosers 3Φ advanced capacitors, 3Φ voltage regulators, and 3Φ feeder monitors.

Prior to any work on multi-phase lines, phase identification shall always be confirmed with proper testing equipment (e.g. phase tester). Absolute phase relationship can be best identified using Company approved long distance phasing tools.

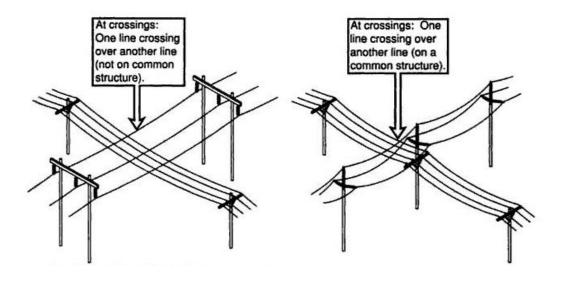
POLES/HARDWARE				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	2-1	7/21	

2.2 POLE LENGTH

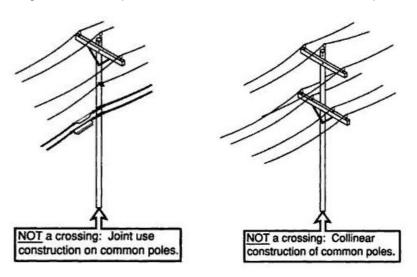
The pole length and the available Company space on the pole shall be selected so that there is adequate clearance for all Company conductors and equipment that may reasonably be needed in the future. Space should be provided for communication circuits only if the communication company has arranged for joint ownership of the pole. Refer to Section 17 - Joint Use - for more information on pole ownership.


The conductor profile should also be considered in selecting pole length. If poles are set less than 150 feet apart, a difference of more than 5 feet in elevation should be avoided. For longer spans, this difference may be increased proportionately. If it is not possible to stay within these limits, it may be necessary to check the stringing and final tensions and to deadend conductors to avoid uplift or excessively heavy downward loads.

2.3 POLE STRENGTH


2.3.10 National Electric Safety Code Construction Grades and Overload Factors

The National Electrical Safety Code (NESC) specifies grades of construction which satisfy required strength for safety. The relative order of grades for supply and communication conductors and supporting structures is B, C, and N, with Grade B being the highest strength. PPL structures are typically built to Grade C except where Grade B is required per the NESC or other PPL requirements. Grade N is not used. Increases in strength are accomplished by the use of overload factors and strength factors. For example, when designing a line to support transverse wind loads the calculated value must be multiplied by 2.5 to satisfy Grade B. The same design would be multiplied by 1.75 to satisfy Grade C. See Tables 1 and 2 for applicable overload and strength factors. Additionally, see Section 2.10.10 Examples 1, 2 and 3.

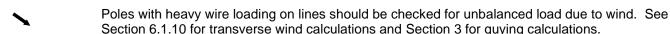

Grade B construction is primarily required at crossings. Refer to the following figures for where Grade B is required. For crossings where one line crosses over another, Grade B is required for the top line only. The bottom line need only have the grade of construction that would be required if the line at the higher level were not there.

	POLES/HARDWARE				
ISSUE	PAGE NUMBER		MIZZ		
7/19	2-2	OVERHEAD CONSTRUCTION STANDARD	ppl		

The following two figures are examples where Grade B construction is **not** required:

Breaking strengths of poles are shown on Page 2-101. The appropriate NESC overload factors and strength factors for structures and supported facilities not exceeding 60 feet above ground or water level are shown in Table 1 and Table 2. In the application of overload factors and strength factors, the objective is to design a structure with resistance greater than the maximum load expected during the lifetime of the structure and to design the structure with an acceptable level of safety and reliability. Final design loading is calculated by multiplying the transverse, vertical, and longitudinal forces by these overload factors and by installing appropriate guying per the requirements in Section 3. Spacing of holes shall be drilled on centers at least 4 inches apart when drilled on the same plane and holes located on opposing planes shall be drilled on centers at least four hole diameters apart. NOTE: On joint owned poles, the joint pole owner should be consulted for minimum spacing requirements relating to attachments located in the "communication space".

Table 1


Overload Factors				
	Grade B	Grade C		
		At crossings	Elsewhere	
Vertical Loads	1.50	1.90**	1.90**	
Transverse Loads				
Wind	2.50	2.20	1.75	
Wire Tension	1.65	1.30*	1.30*	
Longitudinal Loads				
In General	1.10	No requirement	No requirement	
At Deadends	1.65	1.30*	1.30*	

^{*} For metal or prestressed concrete, portions of structures, crossarms, guys, foundations, and anchors, use a value of 1.10

Table 2

Strength Factors				
	Grade B	Grade C		
Wood Structures	0.65	0.85		
Metal, Fiber-Reinforced Polymer Structures	1.0	1.0		

2.3.20 Transverse Strength

2.3.30 Deadend and Angle Strength

Poles at deadends and angles shall be guyed as specified in Section 3. If guys are not practical, the bearing of the soil rather than the pole strength is usually the critical value. In general, unbalanced loads at 60°F shall not exceed 300 pounds. Slack spans should be used to limit unbalanced loading. Other options such as alternate poles (laminated wood, steel, etc) or concrete embedment can be considered. Contact Distribution Standards Engineering for assistance with pole selection or other options.

2.3.40 Vertical Strength

When transformers or other such equipment approaches their maximum size and there are other loads from down guys, change of grade, etc., heavier poles may be required. Heavy anchor guys should be avoided on these particular poles. Head guys or slack spans are recommended to keep the size of the anchor guy at a minimum.

Poles with heavy vertical loads may require additional support to prevent the pole from tipping or sinking into the ground. A footing and appropriate backfill such as #2 crushed stone is recommended where there is good reason to doubt the bearing of the soil. Particular weights can be determined through various standard or material specification sections or by checking nameplate information.

2.4 POLE SETTING

Any permits or rights-of-way required from authorities or property owners regarding pole location, digging, tree trimming, and/or conductor installation shall be obtained before proceeding with the work. The communication companies shall be notified and provision made for joint occupancy, if desired, before pole installation plans are issued.

POLES/HARDWARE				
ISSUE	PAGE NUMBER		WIN	
7/14	2-4	OVERHEAD CONSTRUCTION STANDARD	ppl	

^{**} For metal, prestressed concrete, or fiber-reinforced polymer portions of structures and crossarms, guys, foundations, and anchors, use a value of 1.50

For depth of setting into earth, rock, or wet soil, see Page 2-101. The general setting depth of a pole into earth is 10% of its total length plus two feet. The depth of holes on slopes shall be measured from the low or downhill side of the pole. For solid rock, granite, or basalt, blasting or rock drilling may not be practical, and poles may be installed in rock anchored mounts as shown on Drawing 2-105. Consult with Standards Engineering for poles that will be located in very wet or standing water areas, as they may require the use of multiple pole guys or foundation supports.

Every effort should be made to set poles so that the resulting line will be as straight, orderly, and inconspicuous as possible. The poles shall be vertical and in line with each other when the conductors have been installed. This requires care and judgment when raking poles against the pull and towards the uphill side on slopes, tamping backfill, and in using appropriate backfill such as #2 crushed stone when necessary. Increased setting depth should be considered where soil conditions may be unreliable. Poles that tip after installation should be straightened and thoroughly retamped, and/or appropriate backfill such as #2 crushed stone shall be used if necessary. The diameter of the hole shall be large enough to permit free entrance of the butt, and to permit tamping throughout the entire depth. Sides of the hole shall be straight.

Pole gains shall normally be faced away from deadends, long spans, or other construction. They shall be faced away from crossings (where one line crosses over or under another line). This arrangement is recommended even when construction does not require crossarms. Pole gains should alternate direction faced along the line. This improves the crossarm resistance to unbalanced longitudinal loads such as in the event of partial line failures.

2.4.10 Contaminated Sites

For sites with environmental conditions associated with the presence of subsurface oil or hazardous material contamination, establishment of a "Clean Corridor" for Company electric facilities would limit potential, present and future hazardous exposures to our field workers. Drawing 2-301 and Drawing 2-301A provide details concerning "Clean Corridor" installations. "Clean Corridors" may be established by PPL or by third parties (e.g., site developers). Coordinate with Environmental during project planning, as specified in procedures EG-301 – Project Planning and Permitting and EG-1709 – Projects on Sites with Environmental Encumbrances.

2.5 POLE LOCATION

Poles should be located where they can best serve both present and future customer requirements, where appearance is not objectionable to the community, where they are not likely to have to be moved in the near future, and where they are least likely to be struck by motor vehicles. Adequate conductor clearances, per Section 7, must be maintained. Poles shall not be set closer than 6 inches from the street side of a curb.

When staking out new lines or when rebuilding on streets with existing poles, the overall appearance of the line after completion should be considered. Existing poles should be used when practical, but installing more poles than necessary must be avoided. Frequent road crossings should also be avoided.

Poles and accompanying guys set in alleys, parking lots, and similar areas should be located to minimize vehicle damage. If necessary, arrange for guard rail installation, concrete bumpers, or other protection to minimize vehicle damage to poles and guys in these areas. Special attention shall be given to guard poles holding overhead primary equipment.

Pole line layout must include planning for future buildings or structures along the property lines or, if local ordinances specify, along the established building line. If it is likely that a new structure will be erected in the foreseeable future, the right-of-way should be adequate enough to provide required clearances for such structure.

POLES/HARDWARE					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	2-5	7/20		

2.6 POLE ATTACHMENTS

No Company attachments to poles owned by others (foreign poles) shall be made until proper approval has been obtained from the pole's owner(s). Likewise, no attachments, temporary or permanent, to Company owned poles by any entity, including persons, companies, or government entities, other than those specifically approved in a written agreement with the entity, shall be made to Company poles without prior approval.

In addition, permanent pole steps shall not be utilized on wood distribution poles.

2.7 WOOD POLE SALVAGE

When a wood distribution pole that has been in service for less than ten years needs to be removed, one should consider reusing the pole if the following conditions are met.

- 1. The pole shall be at least a 35 foot, class 5 pole.
- 2. The pole shall be in sound condition. It shall be free from surface defects that would interfere with climbing. It shall also be free of surface rot, butt decay, ragged or decayed roof, and with no sign of longitudinal cracks or crossbreaks.
- 3. The pole shall also be of standard framing.

2.8 ALTERNATIVE POLES

Alternative poles including fiberglass and metal per appropriate material specifications can be purchased and installed resulting in a cost effective installation.

2.8.10. Fiberglass Poles

Lightweight easy to handle fiberglass poles can be selected for difficult locations including rights-ofways, wetlands, and backyards. Unique environmental conditions including woodpecker attack may also warrant a fiberglass pole installation.

2.8.20. Metal Poles

Metal poles can be selected for installation locations when increase pole strength requirements are necessary due to heavy equipment loading, environmental loading, or where guying cannot be accomplished. Since these poles are designed specific, all specifications and moments shall be calculated and provided to supplier for appropriate fabrication. Metal pole installations will require additional insulation equipment such as fiberglass crossarms and brackets, insulators, and additional surge arresters to maintain appropriate lightning insulation values. In addition, metal poles shall not be installed in heavily corrosive environments which results in oxidation.

2.8.30. Attachments

Most standard, non-cleated line hardware can be used on alternative poles with conventional fasteners and installation practices. Structural attachments must be made with through bolts and square washers which enhances the load-bearing capacity interface. Fiberglass crossarms and fiberglass armless brackets shall be used. Fiberglass crossarms include centermounts for attaching and down grounds shall be installed using nylon clips with self tapping screws. Equipment and line attachment bolts may, when practical utilize the standard evenly spaced step bolt holes. Except for un-quyed installations, the same wood pole burial depth and backfill requirements exist.

2.8.40. Unguyed Poles

For installations where guying is not an option due to structures near the pole or other objects restricting guy wire placement, an unguyed fiberglass pole can be installed. Three pole sizes are available; 45/H4 (STD ID P77DH4), 50'/H5 (STD ID P77DH5) and a 55'/H6 (STD ID P77DH6).

POLES/HARDWARE				
ISSUE	PAGE NUMBER		MID	
7/21	2-6	OVERHEAD CONSTRUCTION STANDARD	ppl	

2.9 POLE LINE HARDWARE

Pole line hardware will be of a type specifically developed for utility pole line installation in accordance with industry specifications.

2.9.10 Crossarms

Overhead distribution crossarms shall be solid wood or fiberglass and in accordance with applicable standards such as Company MS2121 and MS2142. Both wood and fiberglass crossarms can be installed on any type of pole (wood, fiberglass, steel, etc.), however, fiberglass arms are not designed to be used for alley-arm construction.

For installations above 2000 lbs. tension, Engineering shall make sure that the conductor tension under NESC heavy loading conditions obtained from Section 6 is less than the permissible deadend loading per conductor of the crossarm assembly. However, if the conductor tension is limited to 2000 lbs, the NESC allows the use of double wood crossarm or equivalent strength fiberglass assemblies for Grade B and C. In addition, the deadend span should be less than the maximum span length allowed due to vertical crossarm strength limitations. However, this is seldom a limiting factor in distribution design.

For Grade B construction, the NESC requires the use of double wood or equivalent strength fiberglass crossarms at each crossing structure, at deadends, and at corners where line angles exceed 20 degrees. Under similar conditions, where brackets are used to support conductors and there is no crossarm below, double brackets or a support assembly equivalent in strength to double wood crossarms shall be used (NESC 261D5c). Wires, conductors, or other cables of one line are considered to be at crossings when they cross over another line, whether or not on a common supporting structure, or when they cross over or overhang on a railroad track or the traveled way of a limited access highway or navigable waterways requiring waterway crossing permits. Joint-use or collinear construction in itself is not considered to be at crossings (refer to Section 2.3.10 above for more information).

2.9.20 Vertical Strength of Wood Crossarms

The NESC requires that the sum of each vertical load attached to a crossarm assembly, multiplied by the load's appropriate NESC vertical overload factor (Table 1), and the load's distance to the center of the crossarm assembly not exceed the permitted vertical moment capacity of the crossarm.

Vertical loads on the crossarm assembly per NESC include;

- 1. The weight of the conductors.
- 2. The weight of a 250 lb line worker.
- 3. The self-weight of the crossarm.
- 4. The weight of other hardware including cutouts.

Depending on this information, the maximum span length allowed for various conductors can be obtained by using the following formula:

∑Applied vertical load moments ≤ Permitted vertical moment capacity

$$((D_1 + D_2) \times S \times W \times F_V) + M_E \leq N \times M_V \times F_S$$

S = Weight span length (ft.)

 D_1 , D_2 = distance of conductor from center of the crossarm (ft., see Figure 1)

N = number of crossarms

W = unit weight of conductor (lbs/ft.)

ME = moment due to weight of equip. attached to crossarm (ft.-lbs.)

	POLES/HARDWARE		
WIIV		PAGE NUMBER	ISSUE
lse ppl	OVERHEAD CONSTRUCTION STANDARD	2-7	7/20

 $M_{\mbox{\scriptsize V}} = \mbox{\scriptsize vertical}$ moment capacity of the crossarm with predrilled holes

 $M_v = F_b \times X_v$ (ft.-lbs.)

 $X_v = vertical section modulus of the crossarm (in.³)$

 $X_v = (bd^3 - ba^3 - ad^3)/6d$

b = width(in., top of arm), d = depth(in., face of arm)

a = diameter (in.) of crossarm mounting holes

 F_b = the designated modulus of rupture for crossarms

 $(ANSI 05.1 \rightarrow F_b = 8,000 lbs/in^2)$

Fs = NESC strength factor

F_V = NESC vertical overload factor

2.9.30 Longitudinal Strength of Wood Crossarms

It may be assumed that longitudinal loads do not contribute to the vertical loading on crossarm assemblies. However applied vertical loads do have to be considered when determining the permitted longitudinal load of a crossarm assembly. Depending on this information, the following relationship needs to be satisfied to avoid overloading the wood fibers of crossarms:

$$\frac{\sum \text{Applied Vertical Load Moments}}{\text{Permitted Vertical Moment Capacity}} + \frac{\sum \text{Applied Longitudin al Load Moments}}{\text{Permitted Longitudin al Moment Capacity}} \le 1$$

Applied vertical load moments and permitted vertical moment capacity were defined in 2.9.20 above. Applied longitudinal load moments and permitted longitudinal moment capacity for deadend crossarm assemblies are as follows:

 $\sum\!\!\mathsf{Applied longitudinal load moments} = (D_1 + D_2) \times L \times F_{OL}$

Permitted longitudinal moment capacity = $N \times M_h \times F_S$

L = permissible deadend loading per conductor (lbs.)

 D_1 , D_2 = distance of conductor from center of the crossarm (ft., see Figure 1)

N = number of crossarms

 $\ensuremath{M_{h}}\xspace = \ensuremath{\mbox{longitudinal}}\xspace$ moment capacity of the crossarm with predrilled holes

 $M_h = F_b \times X_h$ (ft.-lbs.)

 X_h = longitudinal section modulus of the crossarm (in.3)

 $X_h = (db^3 - ab^3 - da^3)/6b$

b = width(in., top of arm), d = depth(in., face of arm)

a = diameter (in.) of crossarm mounting holes

F_b = the designated modulus of rupture for crossarms

$$(ANSI 05.1 \rightarrow F_b = 8,000 lbs/in^2)$$

 $F_S = NESC$ strength factor

FoL = NESC longitudinal overload factor

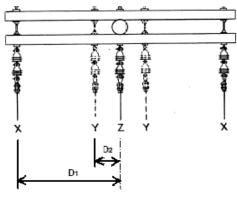


Figure 1

		POLES/HARDWARE	
ISSUE	PAGE NUMBER		MID
7/20	2-8	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved.

2.9.40 Crossarm Braces

The NESC requires all crossarms to be securely supported by bracing, if necessary, to support all loads including the weight of line workers. Wood crossarm braces shall be used for all standard construction installations increasing the pole top distribution insulation level.

2.9.50 <u>Insulators</u>

The operating performance of overhead distribution lines is dependent upon the quality of the line insulators. Line insulators can be porcelain or polymer. Polymer (HDPE) pin type insulators for distribution are available and shall be used with all new and existing covered conductors including tree wire, spacer cable, and older polyethylene covered conductor. HDPE insulators and conductor coverings are dielectrically compatible with neither one being electrically overstressed. During insulator replacement, always examine existing conductor covering for erosion, cracks, or puncture holes. If significant damage exists, install a porcelain radio free insulator and skin the covering back at least 30 inches on each side.

A #4 solid, soft drawn, thermoplastic rubber (TPR) covered aluminum tie wire is available and is the only tie wire that shall be used with all HDPE insulators with unskinned, covered aluminum or unskinned, covered copper conductors. The TPR covering provides similar dielectric characteristics and a slip-proof grip on covered conductors.

HDPE insulators can be used on bare conductors in areas where vandalism occurs provided environmental contamination doesn't exist and conductor operating temperatures are below 100°C.

2.9.60 Pole Top Extension

Pole top extensions shall be installed only on sound wood poles. The wood pole top should be squared off to accept the adapter base bracket and to facilitate installation; the base component may be installed onto the pole first, before the wood or fiberglass extending member is attached.

Do not use pole top extensions (wood or fiberglass) at deadends or Grade B locations (e.g. crossings). Transverse loading shall be limited to 1600 lbs (applied 12 inches below top of extension) in compliance with NESC overload factors in Table 1.

2.9.70 Raptor Protection

One or more state and federal laws legally protect many species of birds in the Company's service territory. So that the Company complies with laws and regulations protecting these birds, it is necessary to follow appropriate procedures regarding raptor protection. A 60" separation between energized and/or grounded facilities is generally recognized. Since this is rarely encountered on distribution lines, covers can be installed to prevent simultaneous contact between energized and/or grounded facilities.

Any distribution pole with an active nest or confirmed nesting attempts should be reported to Environmental. The distribution pole may need to be modified per appropriate raptor construction drawings as determined appropriate in consultation with Environmental.

	POLES/HARDWARE		
SMA		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	2-9	7/14

2.10 POLE CLASSIFICATION

Selecting the proper class pole is an important decision in distribution design. The pole class is mainly dependent upon the loading that the pole must withstand under NESC heavy loading conditions. Conductor loading, equipment loading, and downward forces caused by guying, must all be considered in order to select the proper class of pole.

This section will include methods of determining the class of an unguyed pole considering conductor loading and equipment loading only. See Section 3 for determining the class of a guyed pole.

2.10.10 **Example 1**

Given:

Determine the class of pole required to support the following wires and equipment on a 40 foot, unguyed wood pole with a 150 foot wind span for Grade C construction (non-crossing) under heavy loading conditions (4 lbs/sf wind, ½" radial ice). Assume a 3 degree line angle.

3-477kcmil Al AAC bare conductors - 33.5' attachment height

(Outside phases are the same horizontal distances from the pole, therefore no bending moment is created) 3/C-1/0 triplex secondary - 27.3' attachment height

0.750-1/4" messenger (CATV) - 24.0' attachment height

134-216 fiber optic and 1/4" messenger telephone cable - 23.0' attachment height

400 pair, #22 AWG and 3/8" messenger telephone cable - 22.0' attachment height

400 pair, #22 AWG and 3/8" messenger telephone cable - 21.0' attachment height

400 pair, #22 AWG and 3/8" messenger telephone cable - 20.0' attachment height

1-50 kVA single-phase transformer - 29.5' attachment height

- 16" from the center of transformer to the center of pole

Step	Action	Use
1	Check the pole strength due to the transformer vertical load: The weight of the transformer is 750 lbs. Check the allowable weight that can be mounted from 4.5 feet (54 inches) from the top of the pole by using Table 3. Try Class 5 first.	Transformer weight = 750 lbs Allowable weight = 2085 lbs Class 5 is adequate for vertical load. (This case will most likely not govern since vertical load typically do not govern for unguyed poles.)
2	Calculate the groundline moment due to the conductor wind load.	$\begin{aligned} &\text{Moment} = F_w \times S_w \times W_w \times H \\ &F_w = \text{NESC overload factor for wind load} \\ &(\text{See Section 2, Table 1.}) \\ &S_w = \text{wind span length (ft)} \\ &W_w = \text{transverse conductor loading (lbs/ft)} \\ &W_w = (\text{Cond Dia, in + 1 in ice}) \times 1 \text{ft/12 in x 4 psf} \\ &(\text{Section 6.1.10 "Transverse"}) \\ &H = \text{conductor attachment height (ft)} \\ &3\text{-primaries:} 3 \times 1.75 \times 150 \times 0.5977 \times 33.5 = 15,767 \\ &1\text{-secondary: } 1.75 \times 150 \times 0.6767 \times 27.3 = 4,849 \\ &1\text{-CATV: } 1.75 \times 150 \times 0.6897 \times 24.0 = 4,345 \\ &1\text{-Fiber optic cable: } 1.75 \times 150 \times 0.7297 \times 23.0 = 4,405 \\ &1\text{-400 pair tel. cable: } 1.75 \times 150 \times 1.1150 \times 22.0 = 6439 \\ &1\text{-400 pair tel. cable: } 1.75 \times 150 \times 1.1150 \times 21.0 = 6146 \\ &1\text{-400 pair tel. cable: } 1.75 \times 150 \times 1.1150 \times 21.0 = 5,854 \text{ ft-lbs} \\ &\text{Total groundline moment} = 47,806 \text{ ft-lbs} \end{aligned}$

		POLES/HARDWARE	
ISSUE	PAGE NUMBER		SMINS
7/14	2-10	OVERHEAD CONSTRUCTION STANDARD	ppl

9
Step
.⊑
error
tior
calc
Corrected
- enssi
/15
7
Supersedes

3	Calculate ground line moment due to transverse line tension from 3° line angle.	$\begin{aligned} &\text{Moment} = F_w \times W_t \times \text{H x sine } 3^\circ \div 2 \\ &F_w = \text{NESC overload factor for wind load} \\ &W_t = \text{NESC Heavy wire tension (lbs)} \\ &H = \text{equipment attachment height (ft)} \\ &3\text{-primaries: } 3 \times 1.3 \times 2,000 \times 0.0262 \times 33.5 = 6,838 \text{ ft-lbs} \\ &1\text{-secondary: } 1.3 \times 2,000 \times 0.0262 \times 27.3 = 1,857 \text{ ft-lbs} \\ &1\text{-CATV: } 1.3 \times 2,000 \times 0.6897 \times 24.0 = 1,633 \text{ ft-lbs} \\ &1\text{-Fiber optic cable: } 1.3 \times 2,000 \times 0.0262 \times 23.0 = 1,565 \text{ ft-lbs} \\ &1\text{-400 pair tel. cable: } 1.3 \times 2,000 \times 0.0262 \times 22.0 = 1,497 \text{ft-lbs} \\ &1\text{-400 pair tel. cable: } 1.3 \times 2,000 \times 0.0262 \times 21.0 = 1,429 \text{ft-lbs} \\ &1\text{-400 pair tel. cable: } 1.3 \times 2,000 \times 0.0262 \times 20.0 = 1,361 \text{ft-lbs} \\ &\text{Total groundline moment } = \textbf{16,179 ft-lbs} \end{aligned}$	
4	Calculate the groundline moment due to the equipment wind load.	Moment = F _w × W _e × H F _w = NESC overload factor for wind load (Table 1.) W _e = transverse equipment loading (lbs) (Table 6) H = equipment attachment height (ft) 1-50 kVA single-phase xfmr - 1.75 x 44 x 29.5 = 2272 Total groundline moment = 2,272 ft-lbs	
5	Calculate the bending moment due to the equipment offset.	Moment = F _v × weight of equipment × (d/12) F _v = NESC overload factor for vertical loads d = distance from the center of equipment to the center of pole (inches) 1-50 kVA single-phase xfmr - 1.90 x 750 x 16/12 = 1,900 Total bending moment = 1,900 ft-lbs	
6	Calculate the pole's groundline moment due to the wind load.	Use Table 4. (See foot note in table) Try Class 3 first. Total groundline moment = 2,934 ft-lbs	
7	Calculate total applied moment at groundline. (Sum of steps 2 through 6)	47,806 + 16,179 + 2,272 + 1,900 + 3,697 = 71,091 ft-lbs	
8	Find the permitted moment of pole at groundline by using Table 5.	40 foot Class 3 pole = 81,600 ft-lbs (Table 5) Permitted moment > Calculated moment 81,600ft-lbs>71,091 ft-lbs Since the permitted moment capacity of the wood pole at groundline is larger than the applied moments, 40 foot Class 3 is adequate	

POLES/HARDWARE		
	PAGE NUMBER	ISSUE
OVERHEAD CONSTRUCTION STANDARD	2-11	7/17

Given:

Determine the class of pole required to support the following wires and equipment on a 40 foot, unguyed wood pole with a 150 foot wind span for Grade B construction (non-crossing) under heavy loading conditions (4 lbs/sf wind, ½" radial ice). Assume a 3 degree line angle.

3-477 kcmil Al AAC bare conductors - 33.5' attachment height

(Outside phases are the same horizontal distances from the pole, therefore no bending moment is created) 3/C-1/0 triplex secondary - 27.3' attachment height

0.750-1/4" messenger (CATV) - 24.0' attachment height

134-216 fiber optic and 1/4" messenger telephone cable - 23.0' attachment height

400 pair, #22 AWG and 3/8" messenger telephone cable - 22.0' attachment height

400 pair, #22 AWG and 3/8" messenger telephone cable - 21.0' attachment height

400 pair, #22 AWG and 3/8" messenger telephone cable - 20.0' attachment height

1-50 kVA single-phase transformer - 29.5' attachment height

- 16" from the center of transformer to the center of pole

Step	Action	Use
1	Check the pole strength due to the transformer vertical load: The weight of the transformer is 750 lbs. Check the allowable weight that can be mounted from 4.5 feet (54 inches) from the top of the pole by using Table 3. Try Class 5 first.	Transformer weight = 750 lbs Allowable weight = 2085 lbs Class 5 is adequate for vertical load. (This case will most likely not govern since vertical load typically do not govern for unguyed poles.)
2	Calculate the groundline moment due to the conductor wind load.	$\begin{aligned} &\text{Moment} = F_w \times S_w \times W_w \times H \\ &F_w = \text{NESC overload factor for wind load} \\ &(\text{See Section 2, Table 1.}) \\ &S_w = \text{wind span length (ft)} \\ &W_w = \text{transverse conductor loading (lbs/ft)} \\ &Ww = (\text{Cond Dia, in + 1 in ice}) \times 1 \text{ft/12 in x 4 psf} \\ &(\text{Section 6.1.10 "Transverse"}) \\ &H = \text{conductor attachment height (ft)} \\ &3\text{-primaries:} 3 \times 2.50 \times 150 \times 0.5977 \times 33.5 = 22,525 \text{ ft-lbs} \\ &1\text{-secondary: } 2.50 \times 150 \times 0.6767 \times 27.3 = 6,927 \text{ ft-lbs} \\ &1\text{-CATV: } 2.5 \times 150 \times 0.6897 \times 24.0 = 6,207 \text{ ft-lbs} \\ &1\text{-Fiber optic cable: } 2.50 \times 150 \times 0.7297 \times 23.0 = 6,293 \text{ ft-lbs} \\ &1\text{-400 pair tel. cable: } 2.50 \times 150 \times 1.1150 \times 22.0 = 9,199 \text{ ft-lbs} \\ &1\text{-400 pair tel. cable: } 2.50 \times 150 \times 1.1150 \times 21.0 = 8,781 \text{ ft-lbs} \\ &1\text{-400 pair tel. cable: } 2.50 \times 150 \times 1.1150 \times 20.0 = 8,363 \text{ ft-lbs} \\ &Total \text{ groundline moment } = 68,294 \text{ ft-lbs} \end{aligned}$
3	Calculate ground line moment due to transverse line tension from 3° line angle.	$\begin{aligned} & \text{Moment} = F_{w} \times W_{t} \times \text{ H x sine } 3^{\circ} \div 2 & F_{w} = \text{NESC overload factor} \\ & \text{for wind load} & W_{t} = \text{NESC Heavy wire tension (lbs)} \\ & \text{H} = \text{equipment attachment height (ft)} \\ & 3\text{-primaries: } 3 \times 1.65 \times 2,000 \times 0.0262 \times 33.5 = 8,679 \text{ ft-lbs} \\ & 1\text{-secondary: } 1.65 \times 2,000 \times 0.0262 \times 27.3 = 2,357 \text{ ft-lbs} \\ & 1\text{-CATV: } 1.65 \times 2,000 \times 0.6897 \times 24.0 = 2,073 \text{ ft-lbs} \\ & 1\text{-Fiber optic cable: } 1.65 \times 2,000 \times 0.0262 \times 23.0 = 1,986 \text{ ft-lbs} \end{aligned}$
4	Calculate the groundline moment due to the equipment wind load.	$\begin{aligned} \text{Moment} &= F_{w} \!\!\times W_{e} \!\!\times H \\ &F_{w} = \text{NESC overload factor for wind load (Table 1.)} \\ &W_{e} = \text{transverse equipment loading (lbs) (Table 6)} \end{aligned}$

		POLES/HARDWARE	
ISSUE	PAGE NUMBER		WINZ
7/14	2-12	OVERHEAD CONSTRUCTION STANDARD	ppl

		H = equipment attachment height (ft)
		1-50 kVA single-phase xfmr $-2.5 \times 44 \times 29.5 = 3,245$ ft-lbs Total groundline moment $= 3,245$ ft-lbs
5	Calculate the bending moment due to the equipment offset.	$Moment = F_w \times W_e \times H$
	due to the equipment offset.	F _w = NESC overload factor for wind load (Table 1.) W _e = transverse equipment loading (lbs) (Table 6) H = equipment attachment height (ft)
		1-50 kVA single-phase xfmr – 2.5 x 44 x 29.5 = 3,245 ft-lbs Total groundline moment = 3,245 ft-lbs
6	Calculate the pole's	Moment = $F_v \times$ weight of equipment \times (d/12)
	groundline moment due to the wind load.	F _v = NESC overload factor for vertical loads d = distance from the center of equipment to the center of pole (inches)
		1-50 kVA single-phase xfmr - 1.5 x 750 x 16/12 = 1,500 Total bending moment = 1,500 ft-lbs
7	Calculate total applied moment at groundline. (Sum of steps 2 through 6)	68,294 + 20,535 + 3,245 + 1,500 + 5,245 = 98,819 ft-lbs
8	Find the permitted moment of pole at groundline by using Table 5.	40 foot Class H1 pole = 172,800 x 0.765 ft-lbs (Table 5 – see foot note) = 98,819 ft-lbs Permitted moment > Calculated moment
		132,192 ft-lbs> 98,819 ft-lbs Since the permitted moment capacity of the wood pole at groundline is larger than the applied moments, 40 foot Class H1 is adequate

POLES/HARDWARE			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	2-13	7/17

1

Example 3.

Given:

Determine the class of pole required to support the following wires and equipment on a 45 foot, unguyed wood pole with a 150 foot wind span for Grade B construction (non-crossing) under heavy loading conditions (4 lbs/sf wind, ½" radial ice). Assume a 3 degree line angle.

Double circuit Spacer Cable 6-477 kcmil Al AAC bare conductors - 38.5' attachment height (Outside phases are the same horizontal distances from the pole, therefore no bending moment is created) 3/C-1/0 triplex secondary - 32.3' attachment height 0.750-1/4" messenger (CATV) - 28.0' attachment height 134-216 fiber optic and 1/4" messenger telephone cable - 27.0' attachment height

400 pair, #22 AWG and 3/8" messenger telephone cable - 27.0 attachment height

Step	Action	Use
1	Calculate the groundline moment due to the conductor wind load.	$\begin{aligned} &\text{Moment} = F_w \times S_w \times W_w \times H \\ &F_w = \text{NESC overload factor for wind load} \\ & $
2	Calculate ground line moment due to transverse line tension from 3° line angle.	$\begin{aligned} &\text{Moment} = F_w \times W_t \times \text{H x sine } 3^\circ \div 2 & F_w = \text{NESC overload factor} \\ &\text{for wind load} \\ &W_t = \text{NESC Heavy wire tension (lbs)} \\ &H = \text{conductor attachment height (ft)} \end{aligned}$ $\begin{aligned} &2\text{-Messenger wires } 3 \times 1.65 \times 2,000 \times 0.0262 \times 38.5 = 6,649 \\ &6\text{-primaries6} \times 1.65 \times 2,000 \times 0.0262 \times 38.5 = 8,679 \\ &1\text{-secondary: } 1.65 \times 2,000 \times 0.0262 \times 32.3 = 2,789 \\ &1\text{-CATV: } 1.65 \times 2,000 \times 0.6897 \times 28.0 = 2,418 \\ &1\text{-Fiber optic cable: } 1.65 \times 2,000 \times 0.0262 \times 27.0 = 2,332 \\ &1\text{-400 pair tel. cable: } 1.75 \times 150 \times 1.1150 \times 26.0 = 2,245 \text{ ft-lbs} \\ &\text{Total groundline moment } = 36,381 \text{ ft-lbs} \end{aligned}$
3	Calculate the pole's groundline moment due to wind load.	Use Table 4. (See foot note in table) Try Class H1 Total groundline moment = 4,820x 1.43 = 6,893 ft-lbs
4	Total applied moment at groundline (sum of steps 1-3)	106,972 + 36,381 + 6,893 = 150,246 ft-lbs
5	Find the permitted moment of pole at groundline by using Table 5.	45 foot Class H1 pole = 197,100 x 0.765 ft-lbs (Table 5 – see foot note) = 150,782 ft-lbs 150,782 > 150,246 Use 45 Foot Class H1 Pole

		POLES/HARDWARE	
ISSUE	PAGE NUMBER		SMIZZ
7/14	2-14	OVERHEAD CONSTRUCTION STANDARD	ppl

	Table 3									
	MAXIMUM ALLOWABLE WEIGHT OF EQUIPMENT									
POLE	DIST	ANCE FR	OM TOP (OF POLE	TO THE T	TOP MOUNTING BOLT OF THE EQUIPMENT				
SIZE/CLASS		INGLE MO		Ī			CLUSTER MOUNT WOOD POLES			
	24"	36"	54"	60"	84"	24"	36"	54"	60"	84"
35/H1	5822	6351	7271	7705	9246	7889	8600	9837	10413	12488
35/1	5220	5580	6165	6365	7300	6960	7440	8220	8490	9730
35/2	4250	4530	5020	5190	5975	5665	6040	6695	6920	7970
35/3	3405	3640	4025	4170	4800	4540	4850	5370	5560	6395
35/4	2675	2870	3190	3305	3805	3570	3830	4255	4410	5070
40/H1	4860	5246	5898	6141	7252	6541	7056	7926	8250	9731
40/1	4445	4705	5150	5320	6020	5925	6270	6870	7100	8030
40/2	3620	3840	4215	4345	4930	4825	5120	5620	5795	6575
40/3	2900	3085	3400	3510	3980	3870	4115	4535	4680	5310
40/4	2300	2435	2680	2770	3160	3065	3245	3575	3695	4215
45/H1	4250	4440	4933	5108	5915	5550	5934	6587	6819	7887
45/1	3920	4135	4500	4620	5180	5225	5510	6000	6165	6905
45/2	3190	3390	3685	3790	4260	4255	4520	4915	5055	5685
45/3	2560	2710	2960	3030	3410	3416	3615	3945	4040	4545
45/4	2015	2140	2335	2405	2720	2690	2855	3110	3210	3630
50/H1	3605	3834	4217	4352	4965	4791	5092	5597	5775	6581
50/1	3505	3685	3995	4100	4560	4675	4915	5325	5465	6080
50/2	2840	3010	3255	3345	3720	3790	4015	4345	4460	4960
50/3	2280	2410	2615	2690	2990	3040	3210	3485	3585	3985
50/4	1805	1900	2075	2125	2385	2410	2535	2765	2830	3180
55/H1	3175	3359	3667	3774	4252	4195	4436	4838	4978	5603
55/1	2978	3154	3442	3544	4000	3945	4176	4553	4687	5285
55/2	2785	2949	3220	3317	3774	3698	3915	4271	4398	4960
55/3	2885	2738	2991	3083	3484	3441	3644	3978	4099	4628
	SING	LE MOUN	IT FIBER	GLASS P	OLES	CLUS	TER MOU	NT FIBE	RGLASS F	POLES
35/4	2740	2760	2800	2810	2895	3653	3680	3733	3747	3860
40/3	2380	2390	2415	2420	2475	3173	3187	3220	3227	3300
45/2	2580	2585	2605	2615	2660	3440	3447	3473	3487	3547

- 1. This table can be used for both Grade B and Grade C construction.
- 2. Based on 2' lug spacing (for 3' lug spacing see note 4).
- 3. Assumed that the bottom attachment point is the critical location for eccentric loading (2% deflection).
- 4. For 167kVA (219A) regulator cluster mounts add 5% to the values shown above (or multiply by 1.05) due to 3' lug spacing.
- 5. Fiberglass pole information is from Roark, deflection for cantilever with applied moment

	POLES/HARDWARE		
CMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	2-15	7/17

	Table 4										
Distribution Pole Groundline Moments Due To Wind Load (ft-lbs)											
	(Set in Earth)										
	Class H1	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6				
35 foot	2693	2505	2330	2155	1979	1804	1643				
40 foot	3668	3399	3166	2934	2701	2468	2236				
45 foot	4820	4449	4151	3830	3532	3234	2936				
50 foot	6156	5665	5264	4864	4492	4120					
55 foot	7691	7017	6529	6040	5586						
60 foot	9372	8535	7950	7364	6778						
65 foot	11186	10225	9533	8842							
70 foot	13195	12091	11285	10479							
Multiply t	hese values	by 1.26 for	Grade C a	at-crossing	s and 1.43	for Grade I	В.				

Table 5										
	Distribution Pole Permitted Groundline Moments (ft-lbs)									
	(Set in Earth)									
	Class H1 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6									
35 foot	145800	105188	86488	70125	56100	44413	35063			
40 foot	172800	122400	100640	81600	65280	51680	40800			
45 foot	197100	139613	114793	93075	74460	58948	46538			
50 foot	221400	156825	128945	104550	83640	66215				
55 foot	245700	174038	143098	116025	92820					
60 foot	270000	191250	157250	127500	102000					
65 foot	294300	208463	171403	138975						
70 foot	318600	225675	185555	150450						

Multiply these values by 0.765 for Grade B for wood structures Multiply these values by 1.0 for fiberglass poles

7/14 2-16

OVERHEAD CONSTRUCTION STANDARD

ISSUE

7/14

	Table 6								
Transverse Equipment Loading For 4 lbs/sq. ft Wind Load									
EQUIPMENT	Effective Area (sq. ft)	Load Reduction Factor	Reduced Eff. Area (sq. ft)	Transverse Equipment Load (lbs)					
Capacitor Bank 450kVAR Sw.	3	90%	3	12					
Capacitor Bank 1200kVAR Sw.	7	85%	6	24					
Floodlight (All)	3	90%	3	12					
Gang Operated Switch	18	90%	16	65					
Primary Metering	7	85%	6	24					
Recloser three-phase	4	90%	4	16					
Regulator - 76kVA(100A) single-phase	12	85%	10	40					
Regulator - 167kVA(219A) single-phase	15	85%	13	52					
Regulator - 3-76kVA(100A) three-phase	24	85%	20	80					
Regulator - 3-167kVA(219A) three-phase	30	85%	26	104					
Streetlight (All)	4	85%	3	13					
Trans. single phase up to 75kVA	12	90%	11	44					
Trans. single phase 100kVA and up	17	90%	15	60					
Transformer 3-100kVA and up	34	90%	31	124					

	Table 7		
Common Telephone & CATV	Cables Transvei	rse Load Factor	r (Wind)
		Conductor	Transverse
Description		Diameter	Load
		(in.)	(lbs./ft.)
#22 AWG and 3/8" Messenger	200 Pair	1.815	0.938
	300 Pair	2.115	1.038
	400 Pair	2.345	1.115
#24 AWG and 3/8" Messenger	600 Pair	2.295	1.098
	900 Pair	2.685	1.228
Fiber Optic and ¼" Messenger	3-36	0.640	0.547
(non-armored)	38-72	0.739	0.580
	74-84	0.781	0.594
	86-96	0.820	0.607
	98-108	0.850	0.617
	110-120	0.889	0.630
	122-132	0.931	0.644
	134-216	0.979	0.660
	218-264	1.045	0.682
Fiber Optic and 3/8" Messenger (non-armored)	144	1.159	0.720
Fiber Optic Self Supporting	2-72 & 2-36	0.949	0.650
Figure "8" Cable (non-armored)	74-84	0.991	0.664
	86-96	1.030	0.677
	98-108	1.060	0.687
	110-120	1.099	0.700
	122-132	1.141	0.714
	134-144	1.189	0.730
1/4" Messenger (CATV)	0.750	1.069	0.690
	0.635	0.883	0.628
	0.500	0.751	0.584
	0.412	0.652	0.551

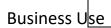
	POLES/HARDWARE	
SMIZZ		PAGE NUMBER
ppl	OVERHEAD CONSTRUCTION STANDARD	2-17

CU = PW(A)(B) Distribution Wood Pole, (A)=Pole Length, (B)=Pole Class

ANSI 05.1 POLE CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS
(see Note 2)	H1	1	2	3	4	5	6
Minimum Top Circumference	29 in.	27 in.	25 in.	23 in.	21 in.	19 in.	17 in.
Minimum Top Diameter	9.2 in.	8.6 in.	8 in.	7.3 in.	6.7 in.	6 in.	5.4 in.
Breaking load in lbs. @ 2 feet from top for unguyed poles set in earth at standard		"					
setting depth.	5400 #	4500 #	3700 #	3000 #	2400 #	1900 #	1500 #

Southerr	Yellow Pi	ne and Do	uglas Fir F	Poles (Ultii	mate Fiber	/Bending S	Stress = 80	000 psi)		
Pole Length	Setting Depth (Feet)		Minimum	Circumfere	ence in inch	nes as mea	sured 6 fee	et from the	pole butt	
Longar	(.)	, , ,	Wet		1100 111 11101	loo do mod			5010 5411	
(Feet)	In Earth	In Rock	Soil	H1	CL1	CL2	CL3	CL4	CL5	CL6
35	6	4	8	41.5	39	36.5	34	31.5	29	27
40	6	4	8	43.5	41	38.5	36	33.5	31	28.5
45	6.5	4.5	8.5	45.5	43	40.5	37.5	35	32.5	30
50	7	4.5	9	47.5	45	42	39	36.5	34	
55	7.5	5	9.5	49.5	46.5	43.5	40.5	38		
60	8	5.5	10	51	48	45	42	39		
65	8.5	6	10.5	52.5	49.5	46.5	43.5			
70	9	6.5	11	54	51	48	45			

Western	Western Red Cedar Poles (Ultimate Fiber/Bending Stress = 6000 psi)									
Pole	Setting Depth (Feet)			Minimum Circumforance in inches on measured 6 feet from the note butt						
Length			Wet	Minimum Circumference in inches as measured 6 feet from the pole butt				pole butt		
(Feet)	In Earth	In Rock	Soil	H1	CL1	CL2	CL3	CL4	CL5	CL6
35	6	4	8	45.5	42.5	40	37.5	34.5	32	30
40	6	4	8	48	45	42.5	39.5	36.5	34	31.5
45	6.5	4.5	8.5	50	47.5	44.5	41.5	38.5	36	33
50	7	4.5	9	5	49.5	46.5	43.5	40	37.5	
55	7.5	5	9.5	52.5	51.5	48.5	45	42		

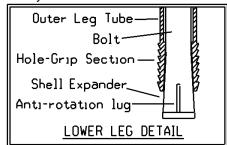

- 1. See Page 2-102 for weights for common pole sizes and wood species and Section 22.
- 2. Class and technical data taken from current ANSI specification 05.1. Poles are classed according to minimum size and minimum breaking load capacity. All poles of the same class shall have the same strength. Pole species of lower ultimate fiber (bending) strength will be larger in diameter than stronger/harder specie poles.
- 3. Basic formulas for area and diameter calculations are: $A=\pi r^2$, $C=\pi D$, and $D=C/\pi$.
- 4. Poles that are to be located in areas that are very wet or in areas that have standing water should be referred to Standards Engineering as they may require the use of multiple pole guys or foundation supports.

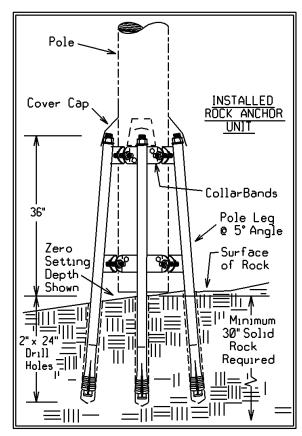
WOOD POLE SPECIFICATIONS AND SETTING DEPTHS							
ISSUE	PAGE NUMBER		WIII				
7/14	2-101	OVERHEAD CONSTRUCTION STANDARD	ppl				

POLE POLE		AVERAGE WEIGHT IN POUNDS						
LENGTH LIFTING		FULL LENGTH TREATED SOUTHERN YELLOW PINE POLES						
	SUPPORT LOCATION							
	(Measured							
	in feet from	01.400.114	CLASS	CLASS	CLASS	CLASS	CLASS	CLASS
	butt)	CLASS H1	1	2	3	4	5	6
25			777	671	582	512	442	371
30			1024	901	777	671	582	512
35	16	1572	1324	1148	985	865	742	636
40	18.5	1942	1642	1430	1236	1077	936	794
45	20.5	2278	1977	1713	1483	1289	1112	
50	22	2666	2348	2030	1766	1536	1494	
55	23	3054	2737	2384	2066	1784		
60	14 & 45	3461	3160	2720	2366	2048		
65	14 & 47.5	3902	3584	3108	2702			
70	15 & 50	4362	4044	3514	3037			
		FULL LENGTH TREATED DOUGLAS FIR POLES						
30			920	820	664	552	452	352
35	16	1342	1060	1004	804	708	608	524
40	18.5	1681	1340	1256	1016	888	776	664
45	20.5	1907	1680	1524	1228	1060	932	
50	22	2147	1936	1780	1412	1228		
55	23	2500	2160	2036	1612	1400		
60	14 & 45	3008	2372	2304	1836	1568		
65	14 & 47.5	3392	2668	2584	1836			
70	15 & 50	3812	3024	2880	2344			
		FULL	LENGTH T	TREATED	WESTERN	RED CED	AR POLES	3
30					501	428	375	328
35	16		829	728	636	549	482	426
40	17.5		1022	899	776	675	602	535
45	19.5		1224	1070	935	815	728	
50	21.5	1624	1448	1271	1098	958	871	
55	23	1884	1674	1464	1277	1128		
60	14 & 45	2156	1912	1669	1453	1278		
65	14 & 47.5	2430	2156	1882	1638			
70	15 & 50	2736	2422	2108	1842			
					LASS POL	ES.	•	
35	17.5					350		
40	20				450			
45	22.5			700				

- 1. Detailed wood pole specifications are published in ANSI 05.1 and by The American Wood Preserver's Association (AWPA).
- 2. When lifting poles, care must be taken to avoid excessive bending and the possibility of cracking. Poles shorter than 60 feet may be picked up at the center of gravity of the pole. Poles 60 feet and longer shall be picked up at two points, listed in the above Table under Center Of Gravity.
- 3. Extremely wet wood poles may exceed maximum weights by 100-300 pounds.

AVERAGE POLE WEIGHTS AND CENTER OF GRAVITY						
SMA		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	2-102	7/20			

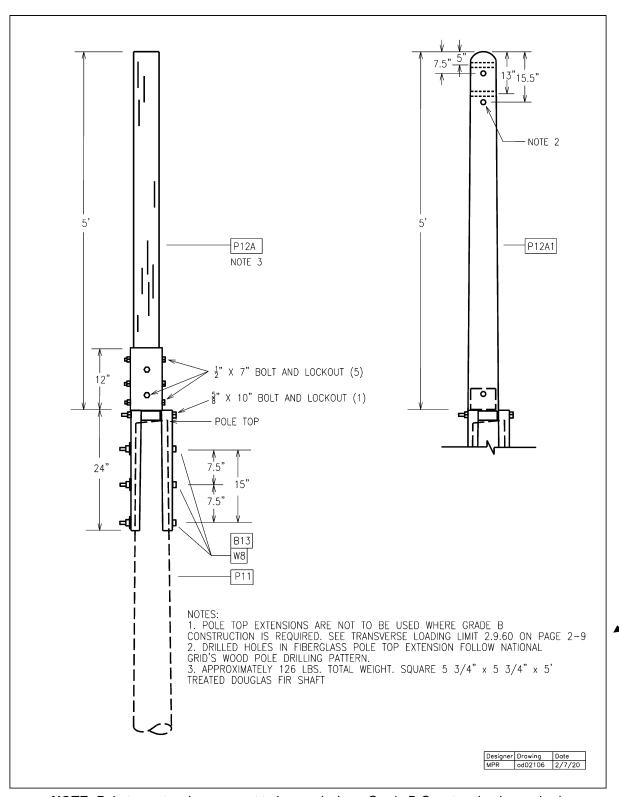

CU = PMNT3P14A	
CU = PMNT4P14A	4 Anchor Leg
CU = PMNT5P14A	5 Anchor Leg


When Distribution poles are to be set in areas where sound bedrock is at or near the surface, the pole rock anchor (Item P14A) is recommended. Rock anchors may be installed above or below grade and, when properly installed, provide anchorage equaling or exceeding standard soil installations.

Failure to use all of the packaged hardware or to adhere to the following procedure will result in an improper installation.

The anchor assembly may be bonded to grounding conductors but shall not be considered as a grounding component.

The Drilling Template (Items P14AT - P14CT) must be ordered separately and shall be retained for future re-use.

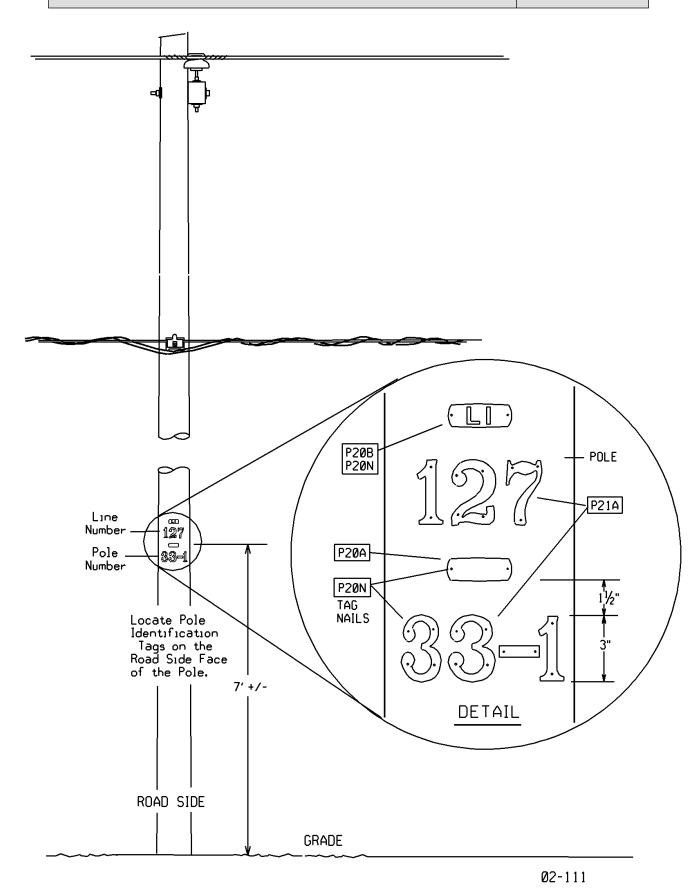


Selection and Installation

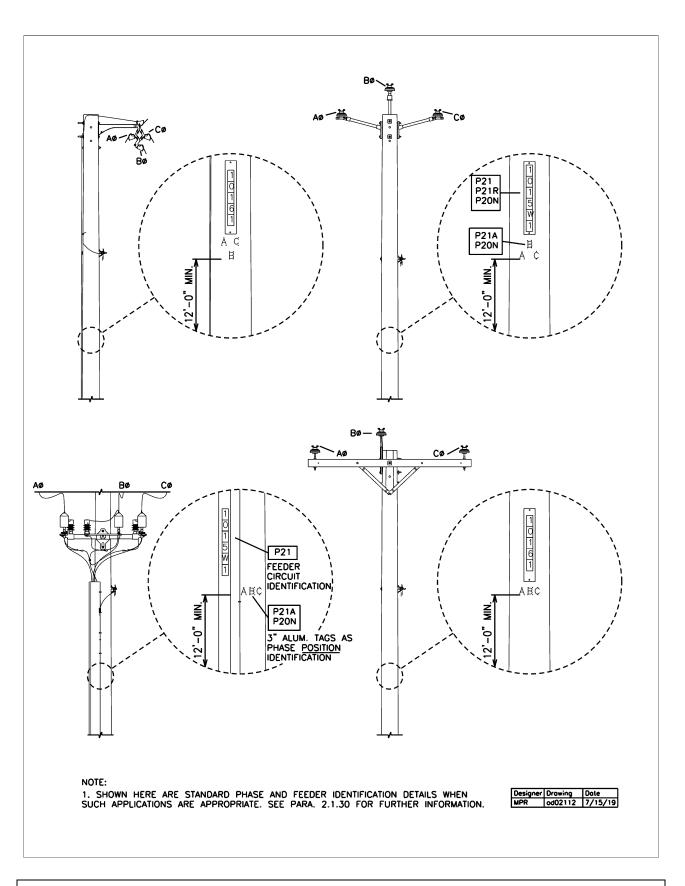
- 1. Location must allow 24" deep anchor leg holes drilled into (a 30" minimum thickness of) strong, solid rock. Pole butt must rest on rock surface at some point and rock shall slope not more than 3" across pole diameter. Non-solid rock or soil overburden must be removed to expose the solid rock. Pole anchor may be installed above or below grade but the legs shall be installed into 24" of solid rock. Reduced or zero setting depth may reduce pole length required, allowing selection of a shorter pole.
- 2. Measure pole butt diameter approximately 6" from butt end to determine the number of anchor legs required. For 8" to 12" diameter poles, use 3 anchor legs. 11" to 16" diameter poles, use 4 legs. 15" to 20" diameter poles, use 5 legs.
- 3. Adjust the Drilling Template to the pole butt diameter (as measured 6" from butt end). Place the template on the rock and adjust to level. Drill the first hole (sloping outward) at the highest hole location (if location is not level) to a 24" depth. Dill holes must be in solid, hard rock.
- 4. Place two anchor legs into drilled holes and loosely connect their collarbands.
- 5. Install pole in place, plumb, and hold in position. Install remaining anchor leg(s) and tighten interconnecting band bolts sufficiently to slightly deflect band collars.
- 6. Rigorously tighten the large nuts at the top of anchor legs to force open the expansion shields at leg bottom ends. If sufficient force (torque) is not developed, unsound rock is indicated.
- 7. Install all remaining lag bolts.
- 8. Install anchor leg top covers. Install rock anchor identification tag (Std Item P25) just below the pole number tags. The identification tag is especially important if rock anchor assembly is buried in the future and may not be visible. Anchor bolt holes may be grouted where ice may be a concern.
- 9. Guy all angles and deadends as required per Section 3.

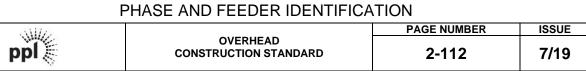
INSTALLATION OF POLE ON SOLID ROCK						
ISSUE	PAGE NUMBER		WW.			
7/11	2-105	OVERHEAD CONSTRUCTION STANDARD	ppl			

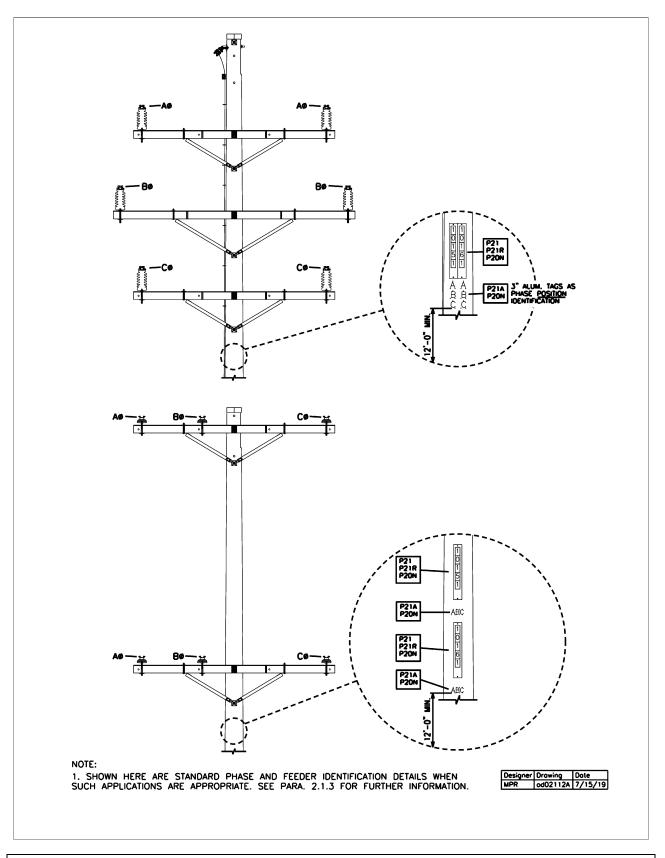
NOTE: Pole top extensions are not to be used where Grade B Construction is required.


POLE TOP EXTENSIONS

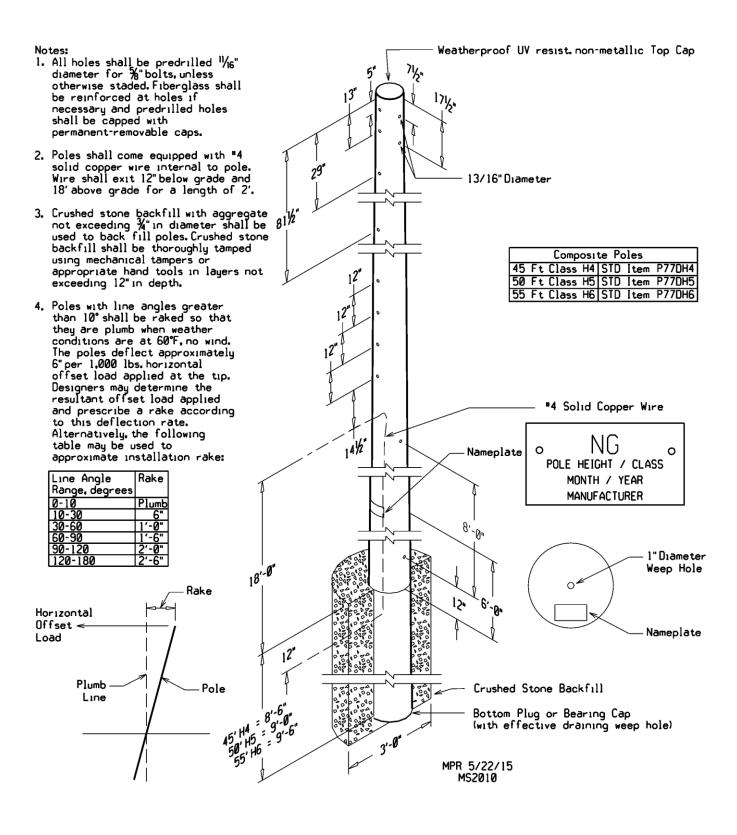
OVERHEAD CONSTRUCTION STANDARD


PAGE NUMBER ISSUE

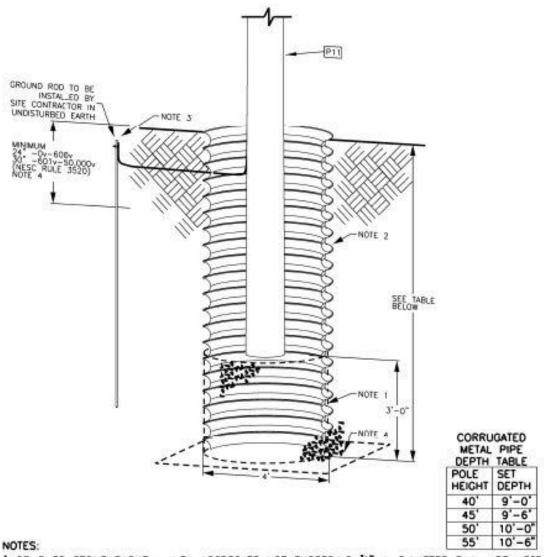

2-106


7/20

IS	SSUE	PAGE NUMBER		WHA
Busines:	7/08 s Use	2-111	OVERHEAD CONSTRUCTION STANDARD	ppl


PHASE AND FEEDER IDENTIFICATION			
ISSUE	PAGE NUMBER		SMIZZ
7/19	2-112A	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved.


Doc. # ST. 02.00.001

This page has intentionally been left blank.

POLES / HARDWARE	DACE NUMBER	ISSUE
OVERHEAD	PAGE NUMBER	ISSUE
CONSTRUCTION STANDARD	2-RI ANK	7/19

	SELF SUPPORTING FIBERGLASS POLES			
ISSUE	PAGE NUMBER		SMIN	
7/17	2-113	OVERHEAD CONSTRUCTION STANDARD	ppl	

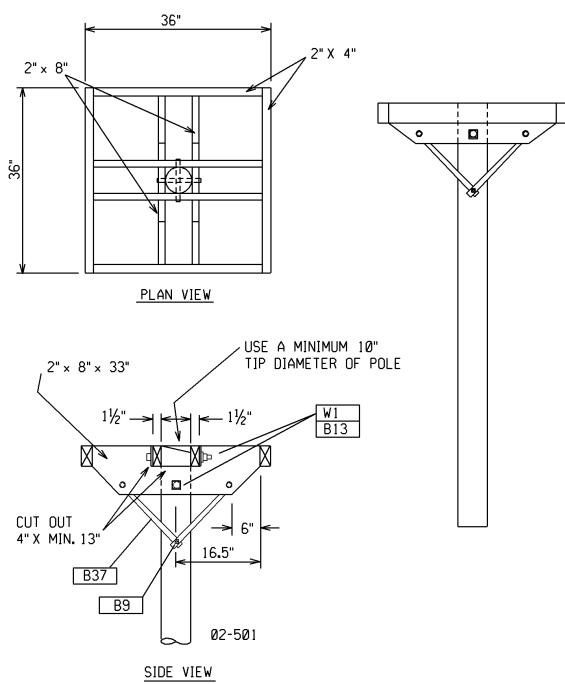
- 1. CRUSHED STONE BACKFILL WITH AGGREGATE NOT EXCEEDING & IN DIAMETER SHALL BE USED TO BACK FILL POLES, CRUSHED STONE BACKFLL SHALL BE THOROUGHLY TAMPED USING MECHANICAL TAMPERS OR APPROPRIATE HAND TOOLS IN LAYERS NOT EXCEEDING 12" IN DEPTH.

 2. CORRUGATED METAL PIPE WITH CORRUGATIONS 2- 35" X 1/2", MINIMUM 16 GUAGE.
- 3. SEE 13-114 FOR GROUND DETAILS.
- 4. INSTALL GEOTEXTILE FABRIC AS A BARRIER ON ALL CORRUGATED METAL PIPE OPENINGS.
- 5. UTILITY OREWS TO INSTALL POLE AND CONNECT TO GROUNDING ALREADY INSTALLED WITH CORREGATED PIPE, GEOTEXTILE BARRIER AND CRUSHED STONE BACKFILL.
- 6. CORRUGATED STEEL PIPE SHALL BE FREE OF ALL BURS AND JAGGED EDGES IN ORDER TO REDUCE THE RISK OF CUTTING INJURIES DURING HANDUNG. CORRUGATED PIPE SHALL BE FITTED WITH EDGE TRIM SUCH AS NEOPRENE RUBBER TO COVER BURS AND JAGGED EDGES. Designer Onowing Date MPR od02301 6/30/20

	CLEAN CORRIDOR POLE SE	Т	
NIV.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	2-301	7/20

NOTES:

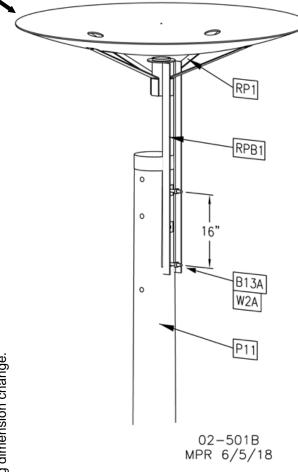
- 1- CRUSHED STONE BACKFILL WITH AGGREGATE NOT EXCEEDING %" IN DIAMETER SHALL BE USED TO BACK FILL POLES, CRUSHED STONE BACKFLL SHALL BE THOROUGHLY TAMPED USING MECHANICAL TAMPERS OR APPROPRIATE HAND TOOLS IN LAYERS NOT EXCEEDING 12" IN DEPTH.
- 2. CORRUGATED METAL PIPE WITH CORRUGATIONS 2- 35" X 1/2", MINIMUM 16 GUAGE.
- 3. SEE 13-114 FOR GROUND DETAILS.
- 4. INSTALL GEOTEXTILE FABRIC AS A BARRIER.
- 5. CORRUGATED STEEL PIPE SHALL BE FREE OF ALL BURS AND JAGGED EDGES IN ORDER TO REDUCE THE RISK OF CUTTING INJURIES DURING HANDUNG. CORRUGATED PIPE SHALL BE FITTED WITH EDGE TRIM SUCH AS NEOPRENE RUBBER TO COVER BURS AND JAGGED EDGES.


 | Designer | Drowing | Dobe | Drowing | Dobe | Drowing | Dro

3 PHASE UG PRIMARY CLEAN CORRIDOR POLE SET

ISSUE	PAGE NUMBER
7/20	2-301A

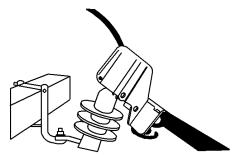
OVERHEAD CONSTRUCTION STANDARD



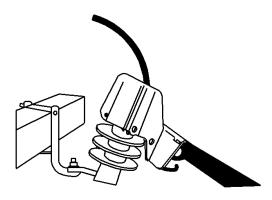
NOTES:

- 1. Platform shall be installed onto a separate pole set adjacent to line.
- 2. Platform shall utilize pressure treated lumber and all joints shall be properly fastened using $*8 \times 3"$ galvanized wood screws and glue. All screw holes shall be predrilled to prevent splitting.
- 3. Staple a $36" \times 36"$ piece of $2" \times 4"$ galvanized wire mesh over the top of the platform using 1" galvanized wire staples (fencing staples).

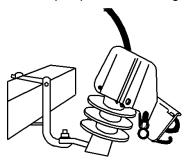
NESTING PLATFORM – WOOD FRAME			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	2-501	7/21

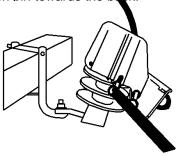


Notes:


- 1. The primary option shall be to install platform on a separate pole nearby
- 2. If an independent pole is not possible, the platform may be installed directly on pole carrying energized lines. It is recommended that work be performed with the line de-energized.
- 3. For distribution voltages up to 15kV, maintain a minimum of 12-inches clearance in any direction between a phase conductor and any part of the platform, the supporting bracket or the through bolts.
- 4. For clearances greater than 15kV, consult NESC Table 235-6.
- 5. Always consult with Environmental before planning for and handling raptor nests.

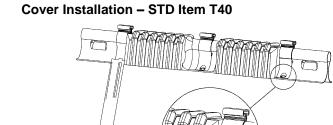
NESTING PLATFORM – FIBERGLASS WITH STEEL SUPPORT BRACKET			
ISSUE	PAGE NUMBER		WIII
7/21	2-501B	OVERHEAD CONSTRUCTION STANDARD	ppl

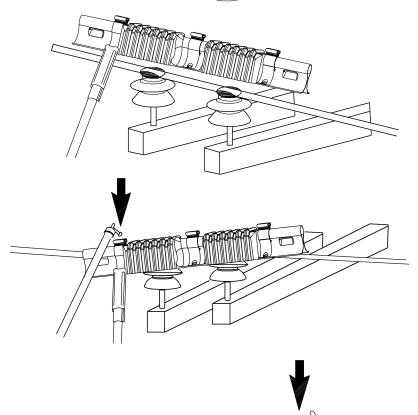

- 1. Install stinger cover onto cutout tap.
- 2. Use a shotgun hotstick the holes in the top lip are designed to fit a shotgun. From the front of the cutout, guide the cover so the tap passes through the slit in the back as shown in this picture.


3. Now set the cover down on the cutout.

4. Install snap fit pins with a shotgun stick.

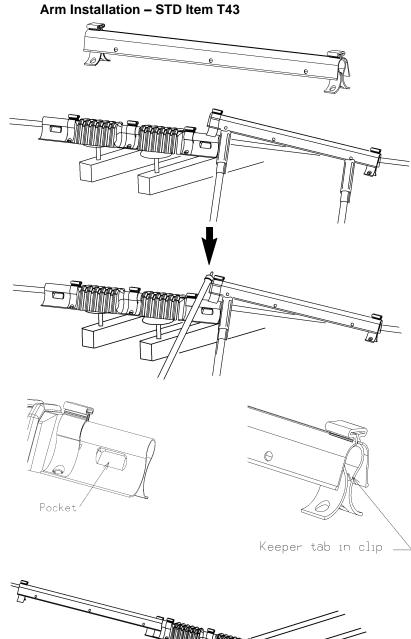
5. Finished installation. The 5.5-inch pin is installed towards the front of the cutout and the 3.5-inch pin towards the back.

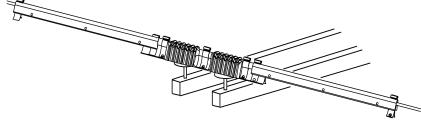

	CUTOUT COVER			
	WHA?		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	2-502	7/21


CU = CPWR32P Cover

- 1. Secure cover to shotgun type hotstick through one of the four outside holes provided in the omega clip.
- 2. Drape the cover over the insulators and straddle the conductor.

- 3. Secure cover to conductor by taking a second hotstick and pushing down at the top of the clip. Disconnect hotsticks.
- 4. Secure hotstick to omega clip at opposite end of cover. Repeat step 3.





	CONDUCTOR COVER			
ISSUE	PAGE NUMBER		MIZZ	
7/21	2-503	OVERHEAD CONSTRUCTION STANDARD	ppl	

5. Secure the hotsticks in the holes along the arm. Clip over and into the pockets on the cover by taking a second hotstick and pushing down at the top of the clip. Make sure "keeper" tab in clip sits into the pocket of the cover.

6. Installation complete.

	CONDUCTOR ARM		
AMIZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	2-504	7/21

Version	Date	Modification	Author(s)	Approval by (Name/Title)
10	7/21	 Updated 2.1.30 Phase and Feeder Numbering Revised 2.6 Pole Attachments Removed Raptor from drawings 2-501 thru 2-504 		
9	7/20	 Updated Index Added 2.4.10 Contaminated Sites Reformatted pages Added reference to 2.9.60 on Drawing 2-106 Added Drawings 2-301 & 2-301A 		
8	7/19	 Added reference to H1 poles in 2.1. Revised 2.1.30 Phase numbering. Revised Drawing 2-106. Revised Drawing 2-112. Added Drawing 2-112A 		
7	7/18	 Drawing 2-501. Corrected drawing title. Drawing 2-501B. Dimensions modified. 		
6	7/17	 Revised 2.10.10, Example 1, part 6. Overload factor of 1.26 from Table 4 incorrect. No overload factor required. Corrected title error on pp 2-113. 		
5	7/16	 Added 2.1.40 Warning Signs Correct typo error in Example 1, step 3. Added drawing 2-501B 		
4	7/15	 Added self-supporting fiberglass composite poles 2-113. Revised section 2.8.40 and table of contents. Corrected equipment weight typo for 45/H1 Cluster Mount 60". 		
3	7/14	 Expanded NESC Construction Grade definition 2.3.10 Revised Example 1 in section 2.10.10 and added Example 2 and 3. Added H1 pole class design strengths to Tables 3, 4 and 5. Added H1 pole class to the ANSI 05.1 Table. Added H1 pole class to the SYP and Douglas fir bending stress table. Added H1 pole class to the pole weight table. 		
2	7/11	 Added examples of when NESC Grade B Construction is needed. Added figure showing fiberglass pole top extension to Drawing 2-106. Minor editorial changes throughout the text portion of the section. 		
1	07/08	 Under 2.1, changed page number & added MS2010. Under 2.3 and 2.4, changed reference page number. 		

SUMMARY OF RECENT CHANGES				
ISSUE	PAGE NUMBER		SMIZZ	
7/21	2-NOTES-1	OVERHEAD CONSTRUCTION STANDARD	ppl	

	 Under 2.8.10, changed application requirement excluding spacer cable. Under 2.8.30, added centermount information for fiberglass & changed 2.9.20 title. Changed 2.9.30 title. Added information on insulator examination & use in 2.9.50. Added raptor protection paragraph (2.9.70). Added fiberglass information to Table 3. Changed Table 5 fiberglass note. Added fiberglass information to page 2-102. Updated CU numbers on page 2-105. Changed company tag name on page 2-111. Added animal guards and tag holders to drawing on page 2-112. New construction drawings - pages 2-500 through 2-504. 		
--	--	--	--

SUMMARY OF	RECENT CHANG	ES

Doc. # ST. 02.00.001

© 2022 PPL Corporation. All rights reserved.

	POLES/HARDWARE				
ISSUE	PAGE NUMBER		WIN		
7/20	2-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl		

SU	JBJE	ECT	PAGE
•		3.0 GENERAL	3 - 1
•		3.1 WHEN TO GUY	3 - 1
•		3.2 TYPES OF GUY WIRES/POLE SUPPORTS	3-2 THRU 3-5
•		3.3 GUYING MATERIALS	3-5 THRU 3-8
•		3.4 BONDING AND ISOLATION/INSULATION	3-8 THRU 3-9
•		3.5 CLEARANCES	3-9 THRU 3-12B
•		3.6 DETERMINING THE STRENGTH REQUIRED TO SUPPORT THE POLE	3-13 THRU 3-28
•		3.7 WORKSHEETS AND EXAMPLES	3-29 THRU 3-40
•		CONSTRUCTION DRAWINGS	
	0	Screw Anchors	3-102
		Rock Anchor	3-103
	0	Hand Dug Anchor	3-104
	0	Plank Anchor	3-104B
	0	Manta-Ray Anchor	3-104C
	0	12.5M Down Guy Assembly	3-105
	0	25M Down Guy Assembly	3-106
	0	Stub Pole Guy - Delta Circuits	3-107D
	0	Stub Pole Guy - Wye Circuits	3-107Y
	0	Stub Pole Guy with Secondary - Delta Circuits	3-108D
	0	Stub Pole Guy with Secondary - Wye Circuits	3-108Y
	0	Sidewalk/Strut Guy - Delta Circuits	3-109D
	0	Sidewalk/Strut Guy - Wye Circuits	3-109Y
		Push Brace	3-111
		Steel Guy Stub Pole	3-112
		Bonding Guys	3-114
		Pole to Pole Guy (Span Guy) - Delta Circuits	3-115D
		Pole to Pole Guy (Span Guy) - Wye Circuits	3-115Y
		Secondary Guy Wires - Wye System	3-118
	0	Secondary Guy Wires - Delta System	3-119
	0	Guying Open Wire Secondary Racks (Wye and Delta)	3-120
	0	Sub-Transmission Down Guy 12.5M and 16M	3-121
	0	Sub-Transmission Down Guy Single and Flared – 25M	3-122
<u> </u>	0	Sub-Transmission Stub Pole Guy – 12.5M and 16M	3-123
<u> </u>	0	Sub-Transmission Double Guy – 12.5M and 16M	3-124
<u> </u>	0	Sub-Transmission Double Guy, Single Anchor 12.5 and 16M	3-125
-	0	Sub-Transmission Double Guy, Double Anchor 25M	3-126
	0	Fiberglass Pole Guying Attachment	3-127

	GUYING INDEX		
WHZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-i	7/21

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 03.00.001

	GUYING INDEX					
	ISSUE PAGE NUMBER					
Busi	7/21 ness Use	3-ii	OVERHEAD CONSTRUCTION STANDARD	ppl		

Doc. # ST. 03.00.001

GENERAL

This section of the Standards is used to determine the appropriate guy/pole support necessary to support distribution poles and their equipment. The Standards in this section meet or exceed the requirements of the most recent publication of the National Electric Safety Code (NESC).

3.1 WHEN TO GUY

3.1.10 Deadend Poles

Poles at deadends, where an uneven number of wires terminate on each side of the pole, shall always be guyed. Where it is not practical to guy such a pole directly, the conductors may be deadended on the first or second pole from the end of that line. That pole shall be guyed and slack spans shall be strung to the terminal pole. The unbalanced force at the top of the unguyed pole shall in no case exceed 50% of the breaking strength of the pole.

3.1.20 Junction Poles

The junction pole with a lateral line deadend tap shall be guyed in the same manner as a 0deadend pole.

3.1.30 <u>Transition Poles</u>

Poles unbalanced more than 10% by a change in the number or size of conductors shall be longitudinally guyed (includes deadend in-line secondaries on tangent poles). Pole to pole guys to distribute the imbalance shall be considered. Review Section 6.5.30 if deadending with different size conductors.

3.1.40 Line Poles with Transverse (Lateral) Loading

Poles subject to excessive lateral loading shall be side guyed as required. These loadings include heavy unbalanced service pulls (e.g. when all services are taken off from one side of a line of poles); heavy transverse wind loading (e.g. long span north-south lines); and normally loaded pole lines set in soft soils. Transverse loading values for standard conductors are given in Section 6 (Primary Conductors). Transverse guying may also be required where poles are located in extremely hazardous locations.

3.1.50 <u>Line Angle Poles</u>

Poles at line angles where the steady unbalanced force due to conductor tension caused by the angle exceeds 300 lbs. (this includes 3 phase line poles at angles over 2 degrees and 1 phase line poles at angles over 4½ degrees) shall be guyed. Angles over 60 degrees require deadending the lines in both directions and guying both ways.

3.2 <u>TYPES OF GUY WIRES/POLE SUPPORTS</u>

3.2.10 Anchor/Down Guys

	GUYING			
	SMIZZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-1	7/21

This is the most common type of guy wire used on distribution circuits. The lower end of the guy is anchored in the earth. This type of guy wire shall be installed in accordance with Drawing 3-105 or 3-106.

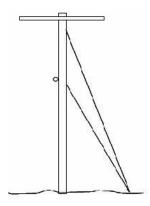


Figure 1 - Anchor/Down Guy

3.2.20 <u>Stub Guys</u>

When it is not feasible to guy directly to an anchor, a guy stub pole may be installed. When the guy stub pole is set where there is a possibility of a line being extended at a later date, the pole shall be of a length and class expected for such line extension. See Drawings 3-107D/3-107Y and 3-108D/3-108Y for installation details.

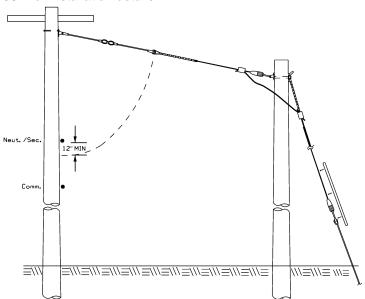


Figure 2 - Stub Guy

A. Steel Guy Stub Poles

	GUYING			
	ISSUE	PAGE NUMBER		WHZ.
Busi	7/21 ness Use	3-2	OVERHEAD CONSTRUCTION STANDARD	ppl

If additional strength is required for the stub pole, steel guy stub poles are available for use. The pole is manufactured in accordance with PPL MS2355 and is installed in accordance with Drawing 3-112.

3.2.30 Span Guys/Pole to Pole Guys

When it is not feasible to install an anchor guy directly on the pole, pole to pole guys may be installed to an adjacent pole. A minimum clearance of 15' 6" is required at the lower attachment point if the guy wire is above driveways, parking lots, alleys, and other land possibly traversed by vehicles that are more than 8' in height or by riders on horses or other large animals. If spaces and ways are subject to pedestrian or restricted traffic only (areas where riders on horses or other large animals, vehicles, or other mobile units exceeding a total height of 8' are prohibited by regulation or permanent terrain configurations), a minimum height of 9' 6" may be used (NESC Rule 232B, Table 232-1).. Refer to Drawing 3-115D/3-115Y for installation details.

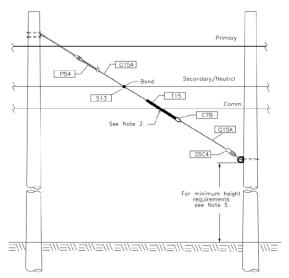


Figure 3 - Span Guy/Pole to Pole Guy

3.2.40 Sidewalk/Strut Guy

Where suitable land or access rights cannot be obtained for a sufficient guy lead length on an anchor guy, a sidewalk/strut guy shall be installed. Refer to Drawing 3-109D/3-109Y for installation details.

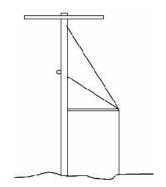


Figure 4 - Sidewalk/Strut Guy

3.2.50 Push Brace

Ī	MIZ		PAGE NUMBER	ISSUE
s Us	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-3	7/19

Where the aforementioned means of guying a pole are not feasible, a push brace may be installed as shown on Drawing 3-111. For pole loading calculators, a push brace is treated as a regular down (anchor) guy installed on the opposite side of the pole. Refer to the table below for the minimum class pole that can be used for this installation.

Equiv. Amount of Guying	35 Foot Pole	40 Foot Pole	45 Foot Pole	Line Pole Setting to Balance Up-Lift
6M	5	5	4	Normal
12M	5	4	3	Normal depth but backfill with crushed
18M	4	3	2	stone and earth well-tamped.
24M 30M	3 2	2	1 X	Set an extra foot deep; bolt with two 24" x 12" planks with two 5/8" bolts; backfill with crushed stone and earth well-tamped.
36M	1	Х	Х	Requires special considerations.

Table 1 - Minimum Class of Push Brace Pole Allowed

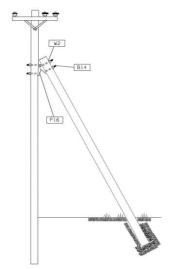


Figure 5 - Push Brace

3.2.60 Storm Guys

Pole lines located where topographical features may cause extreme winds (on ridgelines, for example) may require the installation of storm guys to offset the unbalanced condition created by these winds.

3.2.70 Unguyed Poles

Contact Distribution Standards Engineering or see Section 2 (Poles/Hardware) for requirements/alternatives for unguyed line angle poles. Slack span construction may be used where suitable land or guying rights cannot be obtained at line angle or deadend pole locations. Spans adjacent to the line angle should have approximately twice the normal sag. This added sag may limit span length in order to meet NESC midspan clearance requirements. Total pole loads shall be determined jointly with all telecommunication parties attached to the pole. Telecommunication conductors and equipment loading must also be considered when determining if guying may be omitted on angle poles.

	GUYING			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/21 ness Use	3-4	OVERHEAD CONSTRUCTION STANDARD	ppl

В

3.2.80 Steel Stub Pole

A steel guy stub pole is used when rights cannot be obtained or space is not available for conventional guying installations. The steel guy stub pole specification is in accordance with Material Specification MS 2355 and installed in accordance with Page 3-112. The maximum horizontal load per attachment point is 13,400 lbs. The maximum combined horizontal load on the pole stub on both attachment points is 24,000 lbs. (21,600 lbs with .9 overload factor per NESC). For a guy at an angle () other that horizontal (See Page 3-112), the equivalent horizontal tension per attachment point is determined by the formula T x Cosine . This value shall not be greater that 13,400 lbs. T equals the tension on the guy and equals the angle of the guy from horizontal. Example: For a guy with a design tension of 15,000 lbs. at an angle of 30 degrees, 15,000 x Cosine 30 degrees = 15,000 x .866 = 12,990 lbs. Since this load does not exceed the maximum horizontal load of 13,400 lbs for an attachment point, this load is acceptable. Note: Two guys with this load would exceed the maximum allowable horizontal load on this stub (13,400 lbs x 2 = 26,800 lbs., which is greater than the allowed maximum combined horizontal load of 21,600 lbs).

3.3 **GUYING MATERIALS**

3.3.10 **Guy Wire**

There are currently two sizes of guy wire available for new construction, but the table below also includes some of the common sizes that were previously used on the system in case there is equipment being added to an existing guyed pole.

Std Item #	Size	RBS (Rated Breaking Strength)	Use Strength (90% of the RBS)
G11 (old)	1/4" galvanized steel (3M)	3150 lbs	2800 lbs
G13A (old)	5/16" galvanized steel (6M)	6000 lbs	5400 lbs
G15A (old)	3/8" galvanized steel (10M)	11500 lbs	10350 lbs
G15A	3/8" alumoweld (12.5M)	12630 lbs	11367 lbs
(old)	11/32" (13M)	12630 lbs	11367 lbs
G17A	7/16" galvanized steel (16M)	18000 lbs	16200 lbs
G17B	7/16" copperweld (16M)	16890 lbs	15200 lbs

Table 2 - Guy Wire Sizes and Strengths

Items G15A and G17A are the two sizes of guy wire currently used for new construction on distribution circuits. Item G17B is commonly used for guy wire on sub-transmission/distribution supply circuits or it is used as a messenger wire in some situations. The other sizes listed are not available but are listed for reference purposes.

3.3.20 Anchor Rod and Helix

Anchor selection is based primarily upon actual field soil conditions. A standard 10 inch screw anchor (Std Item A16A) shall be used unless soil conditions are known to be unsuitable for the required holding capacity or the anchor location is inaccessible to a digger truck. Installation of or failure to install the standard 10 inch screw anchor will provide the best basis for determining whether a different anchor is needed. A 14 inch screw anchor (Std Item A16B) shall be used in lower class soil conditions (see the following table and Drawing 3-102). Maximum soil/anchor holding strength should be sought since this will likely be the weakest link of the guy-anchor assembly. If a screw anchor cannot be installed because it is inaccessible to a digger truck, a hand dug anchor can be used. See Drawing 3-104.

Usually knowledge of the soil types encountered on site will help promote proper anchor selection. Observation of the soil removed from the pole bore hole is the best practical methods for judging the site soil type. The following table should be used as a general guide for determining soil type and anchor selection.

	GUYING				
	SMIZZ		PAGE NUMBER	ISSUE	
Business U <u>s</u>	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-5	7/13	

Soil Class	Soil Description	Recommended Anchor
0	Sound unweathered rock	A13A - Rock Anchor
1	Very dense and/or cemented sands, coarse gravel and cobbles	A16C - Twin 4" Helix
2	Dense sand, very hard silts & clay, coarse gravel	A16A - 10" Helix
3	Dense sands & clay, hard silts & clay, gravel, shale, hardpan, broken rock	
4	Compacted sands, gravel, claypan, hard silts & clays	
5	Compacted coarse sand, sandy gravels, still silts & clay	
6	Loose coarse sand, firm clay loam, damp clay	A16B - 14" Helix
7*	Loose fine sand, varied clays, silt loam, fill	
8*	Swamp, saturated loam, marshland, peat	

Table 3 - Soil Classes and Recommended Anchors

Notes:

- * Anchor should penetrate through saturated strata to class 5, 6, or 7 substrata for best results.
- Anchor selection as shown is for general use. Best judgement may be used to decide between Class 1 and 2 (twin 4" or single 10"), and Class 5 and 6 (single 10" or single 14").
- Actual anchor holding capacity will depend on the real holding capacity of the soil. General soil holding capacities, provided by the anchor manufacturers, are reduced to NESC required 90% and are shown in the following table.

STANDARD SCREW			D SCREW		INSTALLE	CITY – IN L ED IN THES	BS X 90% E SOIL
ANCHOR	DENSE/	ROCKY S	OILS			_OOSE/SO	FT SOILS
	CLASS 1	CLASS 2	CLASS 3	CLASS 4	CLASS 5	CLASS 6	CLASS 7
Twin 4" HELIX (for Hard Soils) (A16C)	32,000	27,000	16,000				
Single 10" HELIX (all Normal Soils) (A16A)	32,000	25,200	21,600	18,000	14,000	10,000	8,000
Single 14" HELIX (for Soft Soils) (A16B)				28,000	22,000	19,000	15,000

Table 4 - Approximate Holding Capacity for Anchors

Note: Soil holding strength is an important component of the guy-anchor system. These holding capacity values were derived from field testing results obtained by the manufacturers. The installing torque required during installation is proportional to the resulting holding strength of the system. The skill and experience of the operator is generally the best or only indicator of a sound anchor installation.

		GUYING	
ISSUE	PAGE NUMBER		WHZ
7/10	3-6	OVERHEAD CONSTRUCTION STANDARD	ppl

3.3.30 Bolts

Two bolts sizes are used for guying - a 5/8" and a 3/4". The lengths will vary depending on the diameter of the pole, what all it is holding, etc. Refer to the table below for rated strength and use strength for each type of bolt used for guying.

Std Item	Description	Minimum Tensile Strength	Use Strength (90% of Min Tensile Strength) per NESC
B13_	5/8" square head machine bolt	12,400 lbs	11,000 lbs
B14_	3/4" square head machine bolt	18,350 lbs	16,500 lbs

Table 5 - Thru-Bolt Strengths

3.3.40 Guy Hooks

Guy hooks are selected based on strength needed and angle at which the guy will be installed. The B20A or B20B items are used for span, pole or the seldom used arm guys where the pull is very close to horizontal. TG17 is used on fiberglass poles. A detailed installation drawing can be found in Section 9 for TG17.

	Guy Hooks				
ltem	Bolt Size	Use Strength	Remarks		
B20A	1-5/8"	11,000 lbs			
B20B	1-3/4"	16,500 lbs			
G33A	1-5/8"	11,000 lbs			
G33B ^Y	2-3/4"	16,500 lbs			
G33C ^E	1-3/4"	25,000 lbs	Meets/ exceeds use rating of bolts		
G33D ^E	1-3/4"	25,000 lbs]		
TG13*	2-3/4"	20,000 lbs	1		
TG14**	2-3/4"	28,000 lbs	1		
TG15 ^E	2-3/4"	30,000 lbs			
TG17	3-5/8"		Use with 12.5M guy wire only		

Table 6 - Guy Hooks and Rated Strengths

*TG13: For a single 16M down guy wire, use with one 3/4" thru-bolt, a 3" square curved washer, and two lag screws.

For 12.5M pole to pole/span guys and stub pole guys, use with two ¾" thru-bolts and two 3" square curved washers.

****TG14**: For a dual 12.5M down guy wire, use with one ³/₄" thru-bolt, one 3" square curved washer, and two lag screws.

For dual 12.5M pole to pole/span guys and stub pole guys, use with two 3/4" thru-bolts and two 3" square curved washers.

3.3.50 Guy Grips

Guy grips/connectors, both preformed (Std Item P54) and automatic (Std Item G5C), are full-tension devices, based on the heaviest strand for which they were designed and rated for over 95% of the conductor rated breaking strength. The preforms can be located at any attachment point – at the top by the guy hook, at the bottom by the anchor, or in the middle at insulators. The automatic guy grip is used at the anchor only (shall not be used at the top of the guy). For areas where automatics rust and break due to salt or other contaminants, refer to Section 8 - Coastline Construction.

3.3.60 Fiberglass Guy Strain Insulators

Guy strain insulators are to be installed in distribution guys to maintain the basic insulation impulse level (BIL) of the pole top, to provide and maintain the required clearances from equipment as specified by the NESC, and to provide additional worker safety. Refer to the following table for installation guidelines.

	GUYING				
	SMIZZ		PAGE NUMBER	ISSUE	
Use	ppl	OVERHEAD CONSTRUCTION STANDARD	3-7	7/15	

Std Item #	Size	Rated Breaking Strength	Use Strength (90% of the RBS) per NESC
I24	12" fiberglass rod	15,000 lbs	13,500 lbs
TI95B	54" fiberglass rod	15,000 lbs	13,500 lbs
TI95C	54" fiberglass rod	30,000 lbs	27,000 lbs
TI95D	72" fiberglass rod	30,000 lbs	27,000 lbs
TI95E	120" fiberglass rod	30,000 lbs	27,000 lbs

Table 7 - Fiberglass Guy Strain Insulators

For more information on placement of fiberglass insulators in the guy wires, refer to Section 3.4 below.

Note: Ceramic guy insulators ("Johnny Balls") are no longer approved for use on new guy wire construction.

3.4 BONDING AND ISOLATION/INSULATION

The NESC requires that all guy wire shall be effectively grounded or insulated.

3.4.10 Effectively Grounded or Multi-Grounded Wye Circuits

A. Primary Guy Wires

All primary guy wires shall have a fiberglass insulating rod (54" minimum length) at the top (pole end) of the guy. The guy wire shall also be bonded to the system neutral using a compression connector **except** where the bond wire will create a work method problem. If the exception is taken, the guy wire shall be insulated/isolated as described below for guy wires on delta circuits. See Drawings 3-105 and 3-106 for more details.

B. Secondary Guy Wires

All secondary guy wires shall be attached at the lowest secondary attachment point (usually the secondary cable). All secondary guy wires on an effectively grounded or multi-grounded wye circuit shall be bonded to the system neutral using a compression connector. See Drawing 3-118 for more details.

3.4.20 Delta or Uni-Grounded Circuits

A. Primary Guy Wires

All primary guy wires shall have a minimum of two 54" fiberglass insulating rods at the top (pole end) of the guy. There shall be a minimum of 12" of fiberglass from the bottom insulator that extends past the secondary connection to prevent the transfer of energy from electric conductors to any third party attachments if the guy were slack against the pole. It is acceptable to use a combination of fiberglass rods to obtain the 12" of fiberglass below the secondary connection. See Drawing 3-105 and 3-106 for more details.

B. Secondary Guy Wires

All secondary guy wires shall be attached at the lowest secondary attachment point (usually the secondary cable). All secondary guy wires on delta or uni-grounded circuits shall be insulated with a minimum of one fiberglass insulating rod (12" minimum length). See Drawing 3-119 for more details.

		GUYING	
ISSUE	PAGE NUMBER		SMIZZ
7/15	3-8	OVERHEAD CONSTRUCTION STANDARD	ppl

3.4.30 Stub Guy Poles

Refer to Drawings 3-107W and 3-107D for construction details when there is no secondary on the stub pole. Refer to Drawings 3-108W and 3-108D when there is secondary on the stub pole.

3.4.40 Ceramic/Porcelain Insulators (Johnny Balls)

This type of guy insulator is no longer accepted for use on new construction. Ceramic/porcelain insulators can either be removed from the guy wire or a jumper wire can be placed across the insulator when the guy wire is being brought up to current Standards (i.e. during a conversion, structure replacement, or when reconductoring a line).

3.4.50 Voltage Conversions

When performing circuit voltage conversions, if the guy wires are properly built to current Standards for the existing type of circuit (delta or wye), there is no requirement to change the guy wires after the conversion is complete.

A. EXAMPLES

- 1. Converting a 5kV class delta circuit to a 15kV class wye circuit:
 - Build guy wires to current Standards for guy wires on a 15kV class delta circuit.
 - This includes removing existing ceramic/porcelain guy insulators (commonly referred to as "Johnny balls") or installing a jumper wire across it as these are no longer used for guy wire insulation and installing required fiberglass guy insulators.
 - It is not necessary to go back and bond the guy wires or jumper out the guy insulators as part of the conversion project.
- 2. Converting a 5kV class wye circuit to a 15kV class wye circuit:
 - Build guy wires to current Standards for guy wires on a 15kV class wye circuit.
 - This includes installing the 54" fiberglass at the top of primary guy wires where not already installed and/or removing existing ceramic/porcelain guy insulators (commonly referred to as "Johnny balls") or installing a jumper wire across it as these are no longer used for guy wire insulation and installing required fiberglass guy insulators.
 - This includes bonding all guy wires to the system neutral where not already bonded.

3.4.60 Guying on Multi-Circuit Structures

On structures where at least one ungrounded/delta circuit is present, the guying standards in Section 3.4.20 (Delta or Uni-Grounded Circuits) shall be followed.

On structures where all circuits are multi-grounded wye, the guying standards in Section 3.4.10 (Effectively Grounded or Multi-Grounded Wye Circuits) shall be followed since all neutrals on these structures will be bonded together.

3.5 **CLEARANCES**

When installing guy wires, adequate clearance shall be maintained between all conductors and guy wires and guy strain insulators per NESC Table 235-6 and Note 11. Minimum clearance depends upon the type of guy

	GUYING			
	WWZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-9	7/11

Supersedes 7/10 Issue - Text shifted

wire installed and the normal operating voltage. Additional clearance may be required due to conductor movement as a result of wind. Refer to the following tables for required clearances.

Clearance between the primary conductor and fiberglass guy strain insulator may be reduced by no more than 25% of the clearance between the primary conductor and guy wire. This reduced clearance is shown in the following tables.

3.5.10 Down/Sidewalk Guys

Primary Voltage (Phase to Phase)	Clearance - Primary to Guy Wire	Clearance - Primary to Guy Insulator
Up to 8.7kV	6"	5"
>8.7kV to 15kV	8"	6"
>15kV to 25kV	11"	9"
>25kV to 35kV	13"	10"
>35kV to 50kV	17"	13"

Table 8 - Down/Sidewalk Guy Clearances

3.5.20 Span Guys

Primary Voltage (Phase to Phase)	Clearance - Primary to Guy Wire	Clearance - Primary to Guy Insulator
Up to 8.7kV	12"	9"
>8.7kV to 15kV	15"	11"
>15kV to 25kV	19"	15"
>25kV to 35kV	23"	17"
>35kV to 50kV	29"	22"

Table 9 - Span Guy Clearances

3.5.30 Other Guys

These guy wires are defined as a guy wire that is neither a down guy nor a span guy, but a guy wire that is attached to two distribution poles that do not have conductors parallel to the guy wire (a stub pole guy, for example).

Primary Voltage (Phase to Phase)	Clearance - Primary to Guy Wire	Clearance - Primary to Guy Insulator
Up to 8.7kV	6"	5"
>8.7kV to 15kV	7"	6"
>15kV to 25kV	13"	10"
>25kV to 35kV	17"	13"
>35kV to 50kV	23"	18"

Table 10 - Other Guy Wire Clearances

3.5.40 Other Clearance Considerations

The same clearances apply for double circuit construction; however additional fiberglass rods may be needed to prevent contact with the lower primary if the guy wire were to break (see <u>Figure 6</u> below).

GUYING			
ISSUE	PAGE NUMBER		SMIZZ
7/11	3-10	OVERHEAD CONSTRUCTION STANDARD	ppl

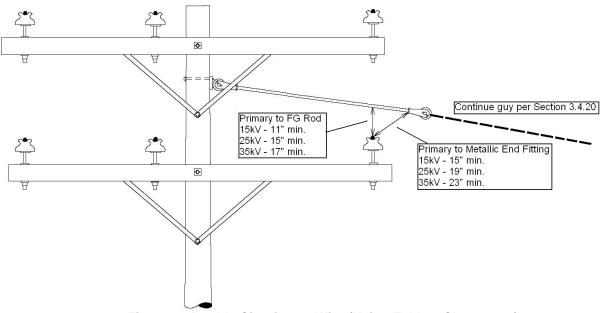


Figure 6 - Double Circuit Guy Wire (Using Table 9 Clearances)

For poles that also have a transformer on it, clearance needs to be maintained between the guy wire and bushings (see <u>Figure 7</u> below).

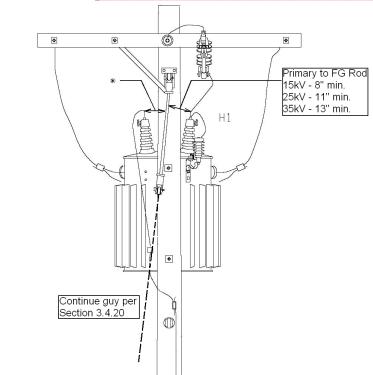


Figure 7 - Guy Wire Clearances (Using Table 8 Clearances)

If a pole-to-pole guy (span guy) is attached above the primary conductors, additional clearance may be needed towards the middle of the span where there can be conductor movement due to wind. In the example below in <u>Figure 8 Figure 8</u>, spacer cable messenger is deadended on one side of the pole at the top of the figure, and there is a guy wire attached on the other side of the pole above the primary conductors.

GUYING			
WWZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-11	7/11

Where the guy wire passes by a conductor, adequate clearance must be maintained between the conductor and guy wire and/or guy insulator. If the conductor to guy wire/insulator clearance point is near the pole attachment, the clearances from <u>Table 9Table</u> are required. If the clearance to the guy/insulator clearance point is further than a few feet from the guy attachment point to the pole, additional clearance is required to take into account conductor movement due to wind. Refer to Section 6 to calculate the maximum conductor horizontal movement using the conductor swing angle.

For this type of installation, do not install the middle phase of the primary conductors directly above the guy wire (do not use a pole top pin). Install the middle phase on the crossarms, as shown.

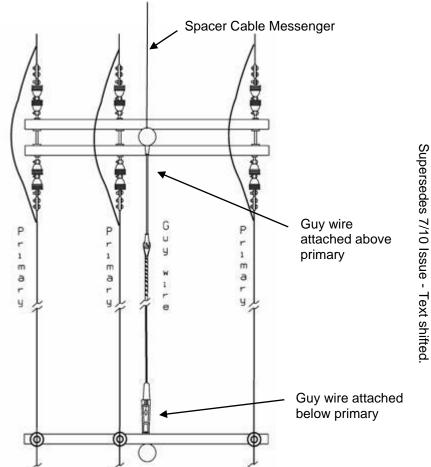


Figure 8 - Span Guy Clearance Considerations - Top View

3.5.50 Guy Wire Clearance to Neutrals

The NESC requires 6" of clearance between the guy wire and the neutral. By using a fiberglass rod the distance between the conductor (neutral) and the fiberglass rod can be reduced by 25%. Therefore, the clearance between the fiberglass rod and the neutral shall be no less than 5".

3.5.60 Guy Wire Clearance to Third Party Conductors

Per NESC, 6" of clearance is required between the guy wire and communication cables. This clearance may be reduced to no less than 3" if abrasion protection (Std Item T15) is added to the guy wire. See Drawing 3-115D/3-115Y for installation details.

GUYING			
ISSUE	PAGE NUMBER		SMIZZ
7/10	3-12	OVERHEAD CONSTRUCTION STANDARD	ppl

3.5.70 Existing Insulated Guy Wire Configuration Guide

The following Figure 8A provides a quick reference design guidance when additional communication or electric facilities (such as conductors, wires, cables, cabinets, or active devices) are being added on an existing pole. The latest edition (2017) of the National Electric Safety Code (NESC) requires that anchor guy wires be grounded (effectively grounded wye systems) or properly insulated to limit the likelihood of any portion of an anchor guy becoming energized within 8 feet of the ground level in the event that the anchor guy becomes slack or broken. Though no longer required by the NESC, PPL continues to require that new installations of insulated anchor guys limit the likelihood of an anchor guy becoming a conductive path between an energized conductor or part and a conductor of another circuit in the event that the anchor guy becomes slack or broken.

New poles and any associated guy wires shall be built to current PPL construction standards.

Definitions

Anchor guy meets NESC – The guy wire is grounded (effectively grounded wye systems) or insulated to limit the likelihood of any portion of an anchor guy becoming energized within 8 feet of the ground level in the event that the anchor guy becomes slack or broken.1

Anchor guy meets PPL standards – The guy wire is grounded (effectively grounded wye systems) or insulated to limit the likelihood of an anchor guy becoming a conductive path between an energized conductor or part and a conductor of another circuit in the event that the anchor guy becomes slack or broken.1

Requirements for Adding Facilities to Existing Poles with Anchor Guy Wires

When additional communication or electric facilities (such as conductors, wires, cables, cabinets, or active devices) are being added on an existing pole, the actions required specific to anchor guy wires based on existing conditions are identified below:

Field Condition prior to adding facilities:

Existing anchor guy meets PPL standards -

- \Box If the existing anchor guy is properly grounded or insulated per PPL standards after the addition of new facilities on the pole, no modifications to the anchor guy is required to allow the new facilities on the pole.
- ☐ If the existing anchor guy will not meet PPL standards after the addition of new facilities on the pole, the anchor guy must be modified or replaced per PPL standards before the new facilities are added on the pole.

Existing anchor guy does not meet PPL standards -

- ☐ If the existing anchor guy is properly grounded or insulated per NESC requirements after the addition of new facilities on the pole, no modifications to the anchor guy is required to allow the new facilities on the pole.
- ☐ If the existing anchor guy will not meet the NESC requirements after the addition of new facilities on the pole, the anchor guy must be modified to meet the NESC or may need to be replaced per PPL standards before the new facilities are added on the pole.

Note - Fiberglass guy strain insulators or porcelain ("johnny ball") guy insulators are acceptable insulating materials for existing guy wires. In effectively grounded wye systems exceeding 12kV phase-to-ground or in non-effectively grounded or delta systems exceeding 12kV phase-to-phase voltage, a single johnny ball insulator in guys may not be adequate. Contact Standards Engineering for additional information about the use of johnny ball insulators in guys for these systems.

		GUYING		
	SMD		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-12A	7/18

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 03.00.001

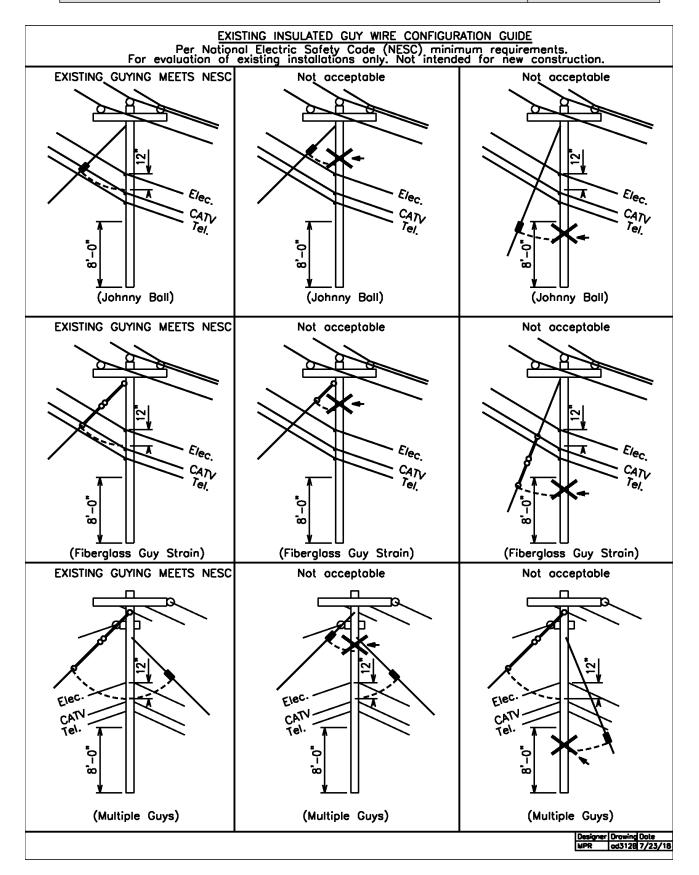


Figure 8A – Existing Insulated Guy Wire Configuration Guide

GUYING			
ISSUE	PAGE NUMBER		5NH77
7/18	3-12B	OVERHEAD CONSTRUCTION STANDARD	ppl

3.6 <u>DETERMINING THE STRENGTH REQUIRED TO SUPPORT THE POLE</u>

3.6.10 **General**

The amount of guy strength required to prevent a pole from leaning or falling over depends on the storm loaded tension of the conductors, the line angle (pull or corner) on the pole, and the length of the lead away from the pole (lead/height ratio).

Wherever possible, guying layout should be preformed in the field before construction begins so that obstacles to the desired guying can be taken into consideration. All pole and guy locations should be staked or otherwise marked to assure adequate lead lengths and proper locations.

Guys should be installed as close to the unbalanced load as possible. Guy anchor assemblies shall be designed for the sum of all loads placed upon them. The unbalanced force above the top guy shall be less than 50% of the resisting moment of the pole at the point of guy attachment.

If there are other loads of similar magnitude below the top guy, they should be balanced with a second guy. Deadended secondaries limited to a 2,000 lb design may be installed without an additional guy unless the magnitude of the total loading (primary and secondary) dictates the use of more than one guy. All communication conductors and messengers shall be guyed by the Owner of the telecommunication facilities against their unbalanced loads where required.

Design of the guy assembly shall include the following NESC overload factors for Grade C and B construction.

	NESC TABLE 253-1 OVERLOAD CAPACITY FACTOR	
TYPE OF LOAD	Grade C	Grade B
Vertical Loads	1.90	1.50
Transverse Loads: Wind	1.75	2.50
Transverse Loads: Wire Tension	1.10	1.65
Longitudinal Loads: In General	None	1.10
Longitudinal Loads: At Deadends	1.10	1.65

Table 11 - NESC Overload Factors for Guy Wires

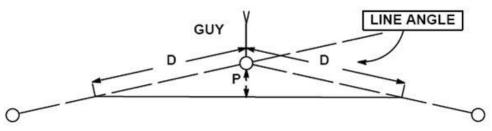

Construction Component	Grade C	Grade B
Poles	0.85	0.65
Guy Wire	0.9	0.9
Anchors and Foundations	1.0	1.0

Table 12 - Strength Factors for Poles, Guys and Anchors (per NESC)

3.6.20 Procedure

Determine the pull or corner on the pole if applicable. The following diagrams illustrate methods of determining pull on the pole (in feet) by direct measurement. When measuring pull, if D is 100 feet, then P is the pull (also in feet). If D is other than 100 feet, the pull would be (100/D)*P

GUYING				
SMIZZ.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	3-13	7/10	

Figure 9 - Preferred Method of Finding Pull

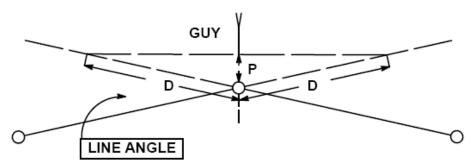
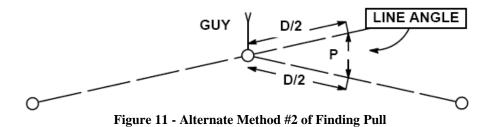



Figure 10 - Alternate Method #1 of Finding Pull

GUYING

ISSUE PAGE NUMBER

7/10 3-14 OVERHEAD CONSTRUCTION STANDARD

Ppl

Line	Pull	Line	Line	Pull	Line
Angle	(feet)	Angle	Angle	(feet)	Angle
(degrees)	, ,	Factor	(degrees)	, ,	Factor
1	0.9	0.0175	31	26.7	0.5150
2	1.7	0.0349	32	27.6	0.5299
3	2.6	0.0524	33	28.4	0.5446
4	3.5	0.0698	34	29.2	0.5592
5	4.4	0.0872	35	30.1	0.5736
6	5.2	0.1045	36	30.9	0.5878
7	6.1	0.1219	37	31.7	0.6018
8	7.0	0.1392	38	32.6	0.6157
9	7.8	0.1564	39	33.4	0.6293
10	8.7	0.1736	40	34.2	0.6428
11	9.6	0.1908	41	35.0	0.6561
12	10.5	0.2079	42	35.8	0.6691
13	11.3	0.2250	43	36.7	0.6820
14	12.2	0.2419	44	37.5	0.6947
15	13.1	0.2588	45	38.3	0.7071
16	13.9	0.2756	46	39.1	0.7193
17	14.8	0.2924	47	39.9	0.7314
18	15.6	0.3090	48	40.7	0.7431
19	16.5	0.3256	49	41.5	0.7547
20	17.4	0.3420	50	42.3	0.7660
21	18.2	0.3584	51	43.1	0.7771
22	19.1	0.3746	52	43.8	0.7880
23	19.9	0.3907	53	44.6	0.7986
24	20.8	0.4067	54	45.4	0.8090
25	21.6	0.4226	55	46.2	0.8192
26	22.5	0.4384	56	46.9	0.8290
27	23.3	0.4540	57	47.7	0.8387
28	24.2	0.4695	58	48.5	0.8480
29	25.0	0.4848	59	49.2	0.8572
30	25.9	0.5000	60	50.0	0.8660

Line Angle Factor = Sine (Line Angle in Degrees) **Table 13 - Line Angle Factors**

GUYING				
MIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	3-15	7/10	

Refer to the following figure when measuring the lead to height ratio of a guy.

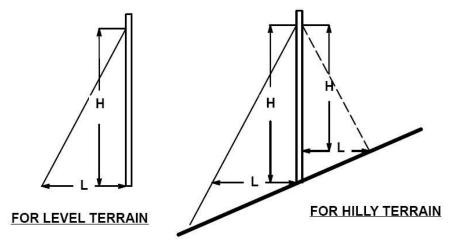


Figure 12 - Measuring Lead and Height

When the terrain slopes and the guy will be installed higher or lower than the base of the pole, adjustments must be made to the lead and height measurements. **Note: The Lead/Height ratio shall never be less than 0.3 because guy loading on the pole becomes excessive.**

The following "Quick Calculations" can be used for most guying calculations. For more detailed calculations and examples, refer to Section 3.7 (Worksheets and Examples).

A. Quick Calculation - Line Angles

- 1. Find the total conductor and equipment (if applicable) tension by multiplying the number of wires by the storm loaded tension of each wire and adding equipment loading information found in Table 15. Storm loaded tensions can be found in Section 6.
- 2. Multiply the total loaded tension by the NESC safety factor required (see <u>Table 11 Table 11</u>).
- 3. Using Figure 13 Figure 13 on the following page, locate this total loaded tension on the "A" scale.
- 4. Follow the line diagonally up to where it intersects Line Angle.
- 5. Follow this point horizontally to the right of the "B" scale, which gives you the resultant horizontal loading.
- 6. Continue that point horizontally to the right where it intersects the L/H ratio line.
- 7. Follow the arc down from this point to the "C" scale which is the guy tension.
- 8. Use the result to determine the proper materials needed.

B. Quick Calculation - Deadends

- 1. Find the total conductor and equipment (if applicable) tension by multiplying the number of wires by the storm loaded tension of each wire and adding equipment loading information found in Table 15. Storm loaded tensions can be found in Section 6.
- Multiply the total loaded tension by the NESC safety factor required (see <u>Table 11 Table 11</u>).
- 3. Using Figure 13 Figure 13 on the following page, locate this tension on the "B" scale.
- 4. Follow this point to the right where it intersects with the L/H ratio line.
- 5. Follow the arc down from this point to the "C" scale which is the guy tension.
- 6. Use the result to determine the proper materials needed.

GUYING				
ISSUE	PAGE NUMBER		WHZ.	
7/10	3-16	OVERHEAD CONSTRUCTION STANDARD	ppl	

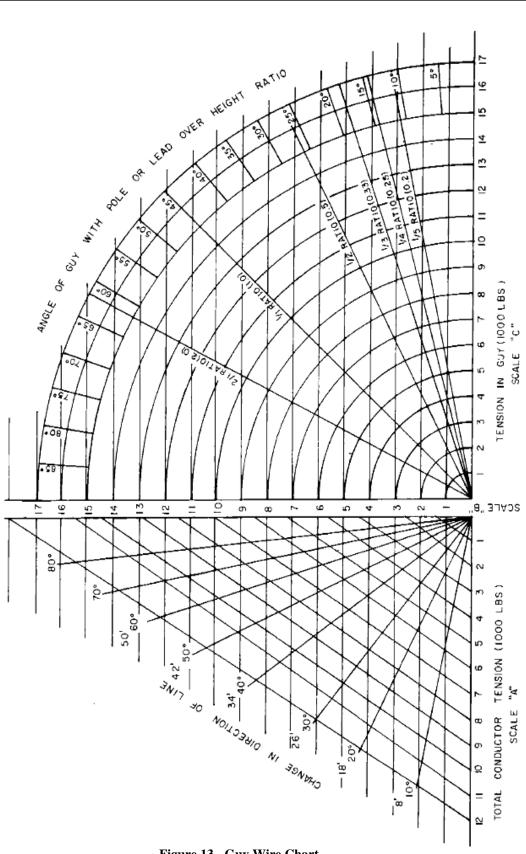


Figure 13 - Guy Wire Chart

	GUYING					
	SMIZZ		PAGE NUMBER	ISSUE		
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-17	7/10		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 03.00.001

3.6.30 <u>Tables Needed for Calculations</u>

Refer to the following tables for calculating guy wire loading.

Description		Conductor Size Diameter (in.)	Conductor Tension (lbs.)	Transverse Load Factor (lbs./ft.)
#22 AWG and 3/8" Messenger	25 Pair	1.000	6,600	0.667
	50 Pair	1.175	6,600	0.725
	100 Pair	1.445	6,600	0.815
	200 Pair	1.815	6,600	0.938
	300 Pair	2.115	6,600	1.038
	400 Pair	2.345	6,600	1.115
#24 AWG and 3/8" Messenger	600 Pair	2.295	6,600	1.098
	900 Pair	2.685	6,600	1.228
Fiber Optic and ¼" Messenger	3-36	.0640	2,850	0.547
(non-armored)	38-72	0.739	2,850	0.580
	74-84	0.781	2,850	0.594
	86-96	0.820	2,850	0.607
	98-108	0.850	2,850	0.617
	110-120	0.889	2,850	0.630
	122-132	0.931	2,850	0.644
	134-216	0.979	2,850	0.660
	218-264	1.045	2,850	0.682
Fiber Optic and 3/8" Messenger (non-armored)	144	1.159	6,000	0.720
Fiber Optic Self Supporting	2-72 & 2-36	0.949	2,850	0.650
Figure "8" Cable (non-armored)	74-84	0.991	2,850	0.664
	86-96	1.030	2,850	0.677
	98-108	1.060	2,850	0.687
	110-120	1.099	2,850	0.700
	122-132	1.141	2,850	0.714
	134-144	1.189	2,850	0.730
1/4" Messenger (CATV)	0.750	1.069	2,850	0.690
	0.635	0.883	2,850	0.628
	0.500	0.751	2,850	0.584
	0.412	0.652	2,850	0.551

Table 14 - Common Telephone & CATV Cables - Maximum Allowed Conductor Tensions and Transverse Load Factor (Wind)

GUYING							
ISSUE	PAGE NUMBER		WHZ.				
7/10	3-18	OVERHEAD CONSTRUCTION STANDARD	ppl				

New page. Info on this page was previously found on Page 3-72.

EQUIPMENT	SQ. FT EPA	DISTANCE BELOW POLE TOP	LOAD REDUCTION FACTOR	SQ. FT. REDUCED EPA	4 LBS./ SQ. FT WIND LOAD
Capacitor Bank 9 x 50 kVAR	3	5'	90%	3	12 lbs
Capacitor Bank 6 x 200kVAR	7	5'	85%	6	24 lbs
Conductor – Primary	See Sect. 6	2'	100%		Lbs/ft x Span ft
Conductor - Secondary	See Sect. 6	8'	100%		Lbs/ft x Span ft
Conductor Comm. Allowance		11'	70%		75 lbs
Floodlight (All)	3	9'	90%	2	8 lbs
Gang Operated Switch	18	4'	90%	16	65 lbs
Primary Metering	7	6'	85%	6	24 lbs
Recloser 1-3Ø	4	5'	90%	4	16 lbs
Regulators 3 X 100a	22	7'	85%	19	76 lbs
Regulators 3 x 219A	30	7'	85%	26	104 lbs
Streetlight (All)	4	10'	85%	3	13 lbs
Trans. 1Ø up to 75kVA	12	5'	90%	10	42 lbs
Trans. 1Ø 100kVA and up	17	5'	90%	15	61 lbs
Trans. 3 x 100 kVA	14	5'	90%	19	52 lbs
Trans. 2 x 250 kVA	21	5'	90%	19	76 lbs

Table 15 - Transverse Load Factors (Wind) for Overhead Equipment

Poles	Class 1 Factor (lbs.)	Class 2 Factor (lbs.)	Class 3 Factor (lbs.)	Class 4 Factor (lbs.)	Class 5 Factor (lbs.)
25 foot	66	62	58	53	49
30 foot	85	79	73	67	62
35 foot	104	97	90	82	75
40 foot	123	115	106	98	90
45 foot	143	133	123	114	100
50 foot	163	152	141	130	120
55 foot	184	171	159	147	
60 foot	205	191	177	164	

Table 16 - Transverse Load Factors (Wind) for Wood Poles

All loads that are applied to poles that are guyed are transferred into vertical or axial loads. Therefore the limiting factor of the pole is at what point a pole will fail due to buckling.

The following tables list these maximum loading points (lbs) based on pole class and where the guy wire is attached to the pole.

		GUYING		
	WHZ.		PAGE NUMBER	ISSUE
į	ppl	OVERHEAD CONSTRUCTION STANDARD	3-19	7/10

Guy Attachment		30 FOOT POLE							
from top of pole (ft)	Class 1	Class 2	Class 3	Class 4	Class 5				
1	102,090	75,852	56,512	38,820	27,870				
2	117,289	84,971	63,433	43,549	31,374				
3	131,792	95,546	71,470	49,037	35,451				
4	148,707	107,885	80,859	55,447	40,222				
5	172,864	122,379	91,900	62,982	45,842				
6	196,923	139,529	104,979	71,905	52,511				
7	225,611	159,990	120,601	82,559	60,489				
8	266,602	184,625	139,431	95,397	70,120				

Table 17 - Buckling Limits for 30ft Poles (lbs)

Guy Attachment			35	FOOT PO	LE		
from top of pole (ft)	Class H2	Class H1	Class 1	Class 2	Class 3	Class 4	Class 5
1	131,492	104,138	79,516	59,541	43,590	31,081	21,480
2	148,445	117,905	90,152	67,613	49,590	35,436	24,552
3	163,980	130,429	99,795	74,903	54,987	39,334	27,288
4	181,651	144,688	110,779	83,211	61,140	43,781	30,411
5	206,669	165,068	126,548	95,199	70,070	50,279	35,009
6	230,377	184,254	141,348	106,411	78,389	56,304	39,252
7	257,744	206,417	158,450	119,373	88,012	63,279	44,166
8	296,277	237,901	182,845	137,948	101,876	73,388	51,339

Table 18 - Buckling Limits for 35ft Poles (lbs)

Guy Attachment	40 FOOT POLE										
from top of pole (ft)	Class H4	Class H3	Class H2	Class H1	Class 1	Class 2	Class 3	Class 4	Class 5		
1	166,225	133,382	105,664	82,508	63,385	47,796	35,276	25,393	17,749		
2	180,906	145,240	115,128	89,960	69,163	52,199	38,566	27,795	19,456		
3	197,242	158,440	125,667	98,261	75,603	57,110	42,237	30,477	21,363		
4	220,419	177,245	140,747	110,199	84,916	64,256	47,617	34,440	24,207		
5	241,266	194,109	154,228	120,833	93,179	70,568	52,346	37,903	26,678		
6	264,680	213,056	169,379	132,789	102,474	77,672	57,671	41,806	29,464		
7	297,604	239,799	190,855	149,815	115,779	87,901	65,389	47,506	33,569		
8	328,098	264,502	210,631	165,442	127,946	97,217	72,386	52,647	37,249		
9	362,746	292,576	233,116	183,215	141,790	107,821	80,356	58,505	41,447		
10	411,120	331,912	264,742	208,323	161,441	122,956	91,801	66,978	47,566		
11	457,418	369,465	294,851	232,153	180,029	137,219	102,539	74,890	53,250		
12	510,799	412,776	329,587	259,655	201,491	153,693	114,950	84,039	59,826		
13	585,009	473,180	378,207	298,303	231,783	177,063	132,656	97,177	69,341		

Table 19 - Buckling Limits for 40ft Poles (lbs)

	GUYING								
ISSUE	PAGE NUMBER		WIII						
7/10	3-20	OVERHEAD CONSTRUCTION STANDARD	ppl						

Guy				45	FOOT PO	LE			
Attachment from top of pole (ft)	Class H4	Class H3	Class H2	Class H1	Class 1	Class 2	Class 3	Class 4	Class 5
1	129,446	104,125	82,714	63,617	48,984	37,033	26,802	19,325	13,753
2	139,856	112,569	89,485	68,834	53,047	40,145	29,064	20,982	14,964
3	151,309	121,863	96,940	74,580	57,524	43,575	31,558	22,812	16,301
4	167,734	135,257	107,741	82,914	64,058	48,617	35,234	25,532	18,317
5	181,992	146,843	117,049	90,090	69,659	52,917	38,364	27,832	20,007
6	197,789	159,683	127,368	98,046	75,872	57,690	41,838	30,389	21,886
7	220,210	177,992	142,157	109,461	84,840	64,626	46,898	34,144	24,683
8	240,172	194,239	155,232	119,545	92,727	70,697	51,320	37,406	27,090
9	262,475	212,396	169,850	130,820	101,551	77,492	56,271	41,061	29,791
10	293,836	238,039	190,593	146,835	114,156	87,261	63,403	46,367	33,761
11	322,539	261,435	209,454	161,386	125,562	96,061	69,818	51,114	37,281
12	354,942	287,855	230,760	177,826	138,454	106,012	77,074	56,487	41,270
13	400,149	324,864	260,738	200,978	156,705	120,184	87,429	64,210	47,071
14	471,721	383,762	308,719	238,078	186,151	143,220	104,305	76,915	56,750
15	523,529	426,124	342,988	264,538	206,979	159,368	116,096	85,694	63,326
16	595,235	484,969	390,783	301,470	236,191	182,135	132,753	98,178	72,774
17	665,420	542,416	437,310	337,403	264,516	204,129	148,824	110,167	81,784
18	747,031	609,236	491,444	379,213	297,486	229,741	167,541	124,138	92,293
19	859,784	701,857	566,756	437,423	343,589	265,729	193,885	143,922	107,314

Table 20 - Buckling Limits for 45ft Poles (lbs)

GUYING

OVERHEAD
CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
7/10

	_	
	Ō.	
	≤	
	_	
-	\overline{c}	
	age	
	ш	
C	Ω	
	一	
	٠.	
	₹	
	Πfo	
	ె	
	O	
	$\overline{}$	
	9	
	⊐	
	_	
	∹	
	۲.	
	fo on this	
-	\circ	
	ñ	
	page	
ļ	Ω	
	Œ	
	was	
	<u></u>	
	മ	
	ഗ	
-	O	
	껕	
	p e	
	pre/	
	previ	
	previo	
	previou	
	previous	
	previous	
	previous!\	
	revious	
	previously f	
	previously fo	
	previously for	
	previously four	
	previously found	
	previously found	
	previously found	
	previously found o	
	previously found on	
	previously found on	
	found on	
	found on	
	found on	
	found on	
	found on	
(found on Page	
(found on	
(found on Page	

Guy				50 FOO	T POLE			
Attachment from top of pole (ft)	Class H4	Class H3	Class H2	Class H1	Class 1	Class 2	Class 3	Class 4
1	111,481	90,157	72,049	55,732	43,241	32,257	23,511	17,118
2	122,126	98,890	79,140	61,251	47,604	35,540	25,928	18,924
3	130,992	106,136	84,997	65,801	51,184	38,228	27,902	20,389
4	140,652	114,033	91,384	70,764	55,091	41,161	30,056	21,989
5	154,487	125,401	100,630	77,964	60,796	45,458	33,223	24,363
6	166,248	135,028	108,427	84,026	65,576	49,050	35,864	26,330
7	179,132	145,578	116,975	90,673	70,821	52,992	38,763	28,490
8	197,393	160,604	129,215	100,210	78,393	58,701	42,974	31,656
9	213,259	173,612	139,769	108,422	84,882	63,582	46,567	34,340
10	230,752	187,959	151,414	117,483	92,047	68,973	50,536	37,307
11	255,303	208,188	167,916	130,349	102,280	76,694	56,238	41,604
12	277,143	226,121	182,490	141,696	111,266	83,460	61,223	45,339
13	301,408	246,052	198,695	154,313	121,262	90,988	66,772	49,499
14	335,159	273,895	221,441	172,056	135,399	101,663	74,662	55,459
15	365,964	299,226	242,061	188,119	148,145	111,268	81,747	60,783
16	400,511	327,643	265,202	206,149	162,457	122,057	89,706	66,766
17	448,196	367,027	297,417	231,290	182,521	137,217	100,921	75,258
18	492,966	403,893	327,473	254,718	201,145	151,265	111,293	83,071
19	543,763	445,734	361,597	281,320	222,300	167,226	123,080	91,955
20	613,473	503,370	408,798	318,175	251,754	189,496	139,568	104,466

Table 21 - Buckling Limits for 50ft Poles (lbs)

	GUYING							
ISSUE	PAGE NUMBER		WW.					
7/10	3-22	OVERHEAD CONSTRUCTION STANDARD	ppl					

Guy				55 FOO	T POLE			
Attachment from top of pole (ft)	Class H4	Class H3	Class H2	Class H1	Class 1	Class 2	Class 3	Class 4
1	98,214	78,456	61,841	48,949	37,412	28,045	20,559	15,066
2	104,694	83,654	65,956	52,247	39,949	29,961	21,974	16,123
3	111,689	89,266	70,401	55,811	42,690	32,032	23,506	17,268
4	121,834	97,422	76,877	61,037	46,724	35,089	25,776	18,980
5	130,181	104,122	82,186	65,301	50,007	37,571	27,613	20,357
6	139,227	111,385	87,943	69,926	53,569	40,265	29,608	21,853
7	152,208	121,827	96,239	76,634	58,752	44,198	32,532	24,065
8	163,092	130,570	103,172	82,213	63,052	47,453	34,945	25,878
9	174,944	140,091	110,724	88,293	67,739	51,002	37,576	27,857
10	191,773	153,637	121,493	97,015	74,483	56,125	41,390	30,750
11	206,172	165,210	130,678	104,420	80,197	60,454	44,603	33,173
12	221,936	177,881	140,736	112,533	86,458	65,200	48,126	35,830
13	244,096	195,729	154,933	124,050	95,370	71,977	53,177	39,671
14	263,471	211,310	167,307	134,045	103,089	77,832	57,528	42,961
15	284,819	228,481	180,945	145,066	111,602	84,291	62,329	46,593
16	314,549	252,436	200,011	160,556	123,599	93,422	69,141	51,786
17	341,151	273,842	217,022	174,320	134,238	101,501	75,152	56,342
18	370,692	297,616	235,917	189,615	146,062	110,482	81,835	61,411
19	411,480	330,498	262,101	210,918	162,574	123,059	91,227	68,587
20	448,913	360,635	286,066	230,341	177,600	134,480	99,734	75,052
		Table 22		Limita far		<i></i> `		

Table 22 - Buckling Limits for 55ft Poles (lbs)

GUYING

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

7/10

Strut Length (feet)	Strut Height Below Guy Attachment Height (feet)	Strut Factor	Strut Length (feet)	Strut Height Below Guy Attachment Height (feet)	Strut Factor
8	6	1.250	10	6	1.166
8	7	1.329	10	7	1.221
8	8	1.414	10	8	1.281
8	9	1.505	10	9	1.345
8	10	1.601	10	10	1.414
8	11	1.700	10	11	1.487
8	12	1.803	10	12	1.562
8	13	1.908	10	13	1.640
8	14	2.016	10	14	1.720
8	15	2.125	10	15	1.803
8	16	2.236	10	16	1.887
8	17	2.349	10	17	1.972
8	18	2.462	10	18	2.059
8	19	2.577	10	19	2.147
8	20	2.693	10	20	2.236
8	21	2.809	10	21	2.326
8	22	2.926	10	22	2.417
8	23	3.044	10	23	2.508
8	24	3.162	10	24	2.600

Table 23 - Strut Factors

	GUYING			
ISSUE	PAGE NUMBER		WILL	
7/10	3-24	OVERHEAD CONSTRUCTION STANDARD	ppl	

Sidewalk/Strut Guy Pole Loading Factors Allowable Pole Design Compression at Guy Attachment Point (Ca)

Guy	35 Foot Pole			
attachment from top of pole	Class 1	Class 2	Class 3	Class 4
2'	71,089	53,351	39,161	28,009
3'	77,851	58,500	43,002	30,809
4'	85,495	64,323	47,350	33,981
5'	94,172	70,938	52,294	37,591
6'	104,068	78,488	57,941	41,720

Guy	40 Foot Pole			
attachment from top of pole	Class 1	Class 2	Class 3	Class 4
2'	56,623	42,749	31,595	22,782
3'	61,337	46,364	34,315	24,782
4'	66,578	50,385	37,342	27,012
5'	72,423	54,873	40,723	29,505
6'	78,964	59,898	44,513	32,301

Guy	45 Foot Pole			
attachment from top of pole	Class 1	Class 2	Class 3	Class 4
2'	46,876	35,590	25,864	18,755
3'	50,363	38,281	27,860	20,233
4'	54,191	41,238	30,054	21,861
5'	58,404	44,495	32,473	23,657
6'	63,053	48,090	53,147	50,965

Guy	50 Foot Pole		
attachment from top of pole	Class 1	Class 2	Class 3
2'	39,963	29,868	21,818
3'	42,658	31,920	23,350
4'	45,589	34,154	25,433
5'	48,783	36,590	26,839
6'	52,270	39,251	28,830

Table 24 - Sidewalk/Strut Guy Pole Loading Factors (Ca)

These tables are for Grade C Construction. For Grade B Construction, multiply each value by .76.

GUYING

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

7/10

Sidewalk/Strut Guy Pole Loading Factors Allowable Pole Design Moment at the Strut location on the pole (Ma)

Strut	35 Foot Pole				
attachment from top of pole	Class 1	Class 2	Class 3	Class 4	
20'	92,710	75,424	60,433	47,572	
18'	86,337	70,105	56,046	44,006	
16'	80,263	65,042	51,878	40,622	
14'	74,480	60,228	47,921	37,417	
12'	68,983	55,659	44,171	34,384	
10'	63,762	51,326	40,622	31,521	
6'	58,812	47,224	37,268	28,820	

Strut	40 Foot Pole			
attachment from top of pole	Class 1	Class 2	Class 3	Class 4
24'	105,962	86,948	70,357	56,024
22'	99,021	81,086	65,459	51,981
20'	92,391	75,494	60,794	48,138
18'	86,063	70,165	56,356	44,489
16'	80,030	65,092	52,139	41,029
14'	74,287	60,270	48,138	37,754
12'	68,825	55,693	44,347	34,658

Strut		45 Fc	ot Pole	
attachment from top of pole	Class 1	Class 2	Class 3	Class 4
30'	128,270	106,313	84,142	67,720
28'	120,404	99,594	78,765	63,231
26'	112,867	93,164	73,622	58,946
24'	105,650	87,017	68,708	54,859
22'	98,748	81,146	64,018	50,965
20'	92,153	75,546	59,546	47,260
18'	85,859	70,209	55,287	43,739

Strut	50 Foot Pole			
attachment from top of pole	Class 1	Class 2	Class 3	Class 4
34'	144,595	117,142	93,404	75,742
32'	136,092	110,164	87,759	70,991
30'	127,928	103,470	82,346	66,442
28'	120,098	97,052	77,160	62,092
26'	112,594	90,905	72,197	57,936
24'	105,410	85,024	67,452	53,970
22'	98,537	79,401	62,919	50,189

Table 25 - Sidewalk/Strut Guy Pole Loading Factors (Ma)

GUYING				
ISSUE	PAGE NUMBER		SMIZ.	
7/10	3-26	OVERHEAD CONSTRUCTION STANDARD	ppl	

Strut Length	Standard Weight Galvanized Pipe		
(Ft.)	2 Inches	2 1/2 Inches	
6	21,175	38,386	
7	17,922	34,289	
8	14,959	30,890	
9	12,166	26,248	
10	9,876	22,253	
11	8,089	18,760	
12	6,816	15,691	

Table 26 - Pipe Strut Compression Capacity (lbs)

	GUYING		
WIII		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-27	7/10

18 19 20 1.495 1.452 1.414 1.537 1.491 1.450 1.579 1.530 1.487 1.623 1.570 1.524 1.667 1.611 1.562 1.711 1.663 1.601 1.757 1.695 1.640 1.757 1.695 1.640 1.803 1.738 1.680 1.849 1.781 1.720 1.896 1.887 2.040 1.991 1.914 1.845 2.040 1.959 1.887 2.048 2.004 1.929 2.048 2.041 1.929 2.137 2.050 1.972 2.187 2.050 2.047 2.286 2.142 2.059 2.286 2.236 2.447 2.336 2.242 2.326 2.488 2.378 2.281 2.590 2.474 2.371 2.641 <th>Guy Attachment</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>3uy Lea</th> <th>d Lengt</th> <th>h from (</th> <th>Guy Lead Length from Center of Pole to Anchor (feet)</th> <th>of Pole t</th> <th>o Ancho</th> <th>or (feet)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Guy Attachment							3uy Lea	d Lengt	h from (Guy Lead Length from Center of Pole to Anchor (feet)	of Pole t	o Ancho	or (feet)						
3.027 2.689 2.437 2.296 2.076 1.944 1.856 1.744 1.667 1.601 1.584 1.480 1.460 1.803 1.770 1.660 1.589 1.537 1.491 1.460 1.480 1.770 1.660 1.589 1.537 1.491 1.480 1.770 1.660 1.690 1.803 1.770 1.660 1.690 1.803 1.770 1.660 1.601 1.481 1.480 1.780 1.690 1.690 1.803 1.770 1.660 1.601 <td< th=""><th>Height on Pole Above Ground (feet)</th><th></th><th>∞</th><th>6</th><th>10</th><th>11</th><th>12</th><th>13</th><th>41</th><th>15</th><th>91</th><th>17</th><th>18</th><th>19</th><th>20</th><th>21</th><th>22</th><th>23</th><th>24</th><th>25</th></td<>	Height on Pole Above Ground (feet)		∞	6	10	11	12	13	41	15	91	17	18	19	20	21	22	23	24	25
3.162 2.809 2.639 2.326 2.165 2.008 1.809 1.809 1.653 1.579 1.645 1.650 <td< th=""><th>20</th><th>3.027</th><th>2.693</th><th>2.437</th><th>2.236</th><th>2.075</th><th>1.944</th><th>1.835</th><th>1.744</th><th>1.667</th><th>1.601</th><th>1.544</th><th>1.495</th><th>1.452</th><th></th><th>1.381</th><th>1.351</th><th>1.325</th><th>1.302</th><th>1.281</th></td<>	20	3.027	2.693	2.437	2.236	2.075	1.944	1.835	1.744	1.667	1.601	1.544	1.495	1.452		1.381	1.351	1.325	1.302	1.281
2.926 2.641 2.417 2.236 2.086 1.986 1.861 1.767 1.682 1.554 1.574 2.508 2.348 2.102 1.985 1.813 1.751 1.682 1.551 1.554 1.560 2.348 2.002 2.100 1.985 1.813 1.730 1.667 1.611 1.562 1.661 1.562 1.661 1.562 1.661 1.562 1.661 1.562 1.661 1.562 1.661 1.662 1.661 1.661 1.661 1.661 1.661 1.662 1.661 1.661 1.662 1.661 <td< td=""><td>21</td><td>3.162</td><td>2.809</td><td>2.539</td><td>2.326</td><td>2.155</td><td>2.016</td><td>1.900</td><td>1.803</td><td>1.720</td><td>1.650</td><td>1.589</td><td>1.537</td><td>1.491</td><td>1.450</td><td>1.414</td><td>1.382</td><td>1.354</td><td>1.329</td><td>1.306</td></td<>	21	3.162	2.809	2.539	2.326	2.155	2.016	1.900	1.803	1.720	1.650	1.589	1.537	1.491	1.450	1.414	1.382	1.354	1.329	1.306
3.044 2.744 2.508 2.318 2.162 2.032 1.923 1.831 1.751 1.682 1.657 1.65	22		2.926	2.641	2.417	2.236	2.088	1.966	1.863	1.775	1.700	1.635	1.579	1.530	1.487	1.448	1.414	1.384	1.357	1.332
3.162 2.848 2.600 2.400 2.236 2.100 1.985 1.887 1.801 1.601 1.562 1.601 1.602 1.2052 2.683 2.483 2.311 2.168 2.047 1.944 1.855 1.778 1.711 1.653 1.601 1.601 1.601 1.602 1.601 1.602 1.601 1.602 1.802 1.802 1.601 1.601 1.602 1.601 1.602 1.802 1.802 1.601 1.602 1.802 1.802 1.803 1.788 1.8802 1.803 1.788 1.803 1.803 1.803 1.788 1.803 1.	23		3.044	2.744	2.508	2.318	2.162	2.032	_	1.831	1.751	1.682	1.623	1.570	1.524	1.483	1.447	1.414	1.385	1.359
2.952 2.693 2.483 2.311 2.166 2.004 1.904 1.856 1.776 1.717 1.605 1.600 <td< td=""><td>24</td><td></td><td>3.162</td><td>2.848</td><td>2.600</td><td>2.400</td><td>2.236</td><td>2.100</td><td></td><td>1.887</td><td>1.803</td><td>1.730</td><td>1.667</td><td>1.611</td><td>1.562</td><td>1.519</td><td>1.480</td><td>1.445</td><td>1.414</td><td>1.386</td></td<>	24		3.162	2.848	2.600	2.400	2.236	2.100		1.887	1.803	1.730	1.667	1.611	1.562	1.519	1.480	1.445	1.414	1.386
3.067 2.786 2.286 2.236 2.109 1.008 1.827 1.757 1.698 1.640 1.609 1.609 1.827 1.757 1.699 1.640 <td< td=""><td>25</td><td></td><td></td><td>2.952</td><td>2.693</td><td>2.483</td><td>2.311</td><td>2.168</td><td></td><td>1.944</td><td>1.855</td><td>1.778</td><td>1.711</td><td>1.653</td><td></td><td>1.555</td><td>1.514</td><td>1.477</td><td>1.444</td><td>1.414</td></td<>	25			2.952	2.693	2.483	2.311	2.168		1.944	1.855	1.778	1.711	1.653		1.555	1.514	1.477	1.444	1.414
3.162 2.879 2.650 2.462 2.305 2.172 2.059 1.962 1.877 1.803 1.738 1.680 3.162 2.873 2.735 2.355 2.136 2.177 2.050 1.977 1.805 1.781 1.720 3.162 2.905 2.615 2.445 2.305 2.177 2.020 1.947 1.805 1.805 3.162 2.905 2.770 2.865 2.436 2.236 2.131 2.040 1.991 1.845 3.107 2.845 2.356 2.435 2.236 2.131 2.040 1.991 1.845 3.107 2.845 2.356 2.435 2.236 2.131 2.040 1.991 1.845 3.107 2.845 2.805 2.435 2.236 2.131 2.040 1.959 1.887 3.108 2.840 2.860 2.477 2.349 2.236 2.147 2.050 2.016 3.108 2.840 2.850 2.477 2.349 2.236 2.147 2.050 3.108 2.840 2.850 2.455 2.465 2.345 2.147 2.050 3.108 2.840 2.850 2.455 2.465 2.345 2.147 2.050 3.108 3.102 2.944 2.759 2.603 2.456 2.345 2.147 2.050 3.108 3.102 2.944 2.759 2.603 2.455 2.266 2.147 3.108 3.102 2.944 2.759 2.603 2.455 2.236 2.147 3.108 3.108 2.893 2.455 2.549 2.345 2.345 2.345 3.108 3.108 2.893 2.457 2.449 2.336 2.345 2.341 3.108 3.108 2.894 2.693 2.657 2.447 2.341 3.108 3.108 2.895 2.917 2.447 2.341 3.108 3.108 2.895 2.917 2.447 2.341 3.108 3.108 2.895 2.917 2.641 2.641 2.641 3.108 3.108 2.917 2.945 2.945 2.945 2.945 3.108 3.108 2.917 2.945 2.945 2.945 3.108 3.108 2.945 2.945 2.945 2.945 2.945 3.108 3.108 2.945 2.945 2.945 2.945 2.945 3.108 3.108 3.108 2.945 2.945 2.945 2.945 3.108 3.108 3.108 3.108 2.945 2.945 2.945 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.108 3.	26			3.057	2.786	2.566	2.386	2.236		2.001	1.908	1.827	1.757	1.695	1.640	1.592	1.548	1.509	1.474	1.443
2.973 2.736 2.639 2.376 2.118 2.016 1.927 1.849 1.781 1.720 1.306 1.3206 1.261 1.261 1.207 1.937 1.896 1.825 1.761 1.720 1.937 1.896 1.825 1.761 1.845 1.8	27			3.162	2.879	2.650	2.462	2.305	2.172	2.059		1.877	1.803	1.738	1.680	1.629	1.583	1.542	1.505	1.472
3.068 2.820 2.615 2.445 2.306 2.177 2.070 1.977 1.869 1.825 1.761 1.869 1.861 <td< td=""><td>28</td><td></td><td></td><td></td><td>2.973</td><td>2.735</td><td>2.539</td><td>2.375</td><td>2.236</td><td>2.118</td><td>2.016</td><td>1.927</td><td>1.849</td><td>1.781</td><td>-</td><td>1.667</td><td>1.619</td><td>1.575</td><td>1.537</td><td>1.501</td></td<>	28				2.973	2.735	2.539	2.375	2.236	2.118	2.016	1.927	1.849	1.781	-	1.667	1.619	1.575	1.537	1.501
3.162 2.905 2.643 2.545 2.236 2.125 2.028 1.944 1.869 1.807 2.990 2.770 2.586 2.430 2.296 2.180 2.080 1.914 1.845 3.076 2.848 2.657 2.495 2.180 2.080 1.991 1.914 1.845 3.076 2.848 2.657 2.495 2.180 2.030 1.959 1.887 3.076 2.848 2.657 2.497 2.349 2.236 2.187 2.090 2.016 3.089 2.890 2.405 2.862 2.405 2.342 2.236 2.187 2.050 2.016 3.089 2.891 2.762 2.462 2.842 2.662 2.462 2.345 2.746 2.386 2.147 2.050 2.016 3.080 2.892 2.862 2.613 2.632 2.142 2.086 2.142 2.142 2.086 2.147 2.086 2.147 2.086 2.14	29				3.068	2.820	2.615	2.445	2.300	2.177	2.070	1.977	1.896	1.825	-	1.705	1.655	1.609	1.568	1.532
2.990 2.770 2.586 2.430 2.236 2.131 2.040 1.991 1.945 1.845 2.657 2.495 2.365 2.236 2.131 2.040 1.959 1.887 2.040 2.920 2.495 2.495 2.495 2.495 2.495 2.495 2.184 2.088 2.004 1.959 1.887 2.040 2.920 2.495 2.495 2.495 2.495 2.495 2.495 2.495 2.236 2.147 2.050 2.405 2.004 1.929 2.004 2.004 2.005 2.004 2.005 2.004 2.005 2.004 2.005 2.004 2.005 2.004 2.005 2.004 2.005 2.00	30				3.162	2.905	2.693	2.515	2.365	2.236	2.125	2.028	1.944	1.869	_	1.744	1.691	1.644	1.601	1.562
3.076 2.848 2.657 2.496 2.356 2.131 2.040 1.959 1.887 3.162 2.926 2.728 2.560 2.417 2.292 2.184 2.088 2.004 1.959 1.887 3.06 2.806 2.807 2.626 2.477 2.236 2.137 2.060 1.972 3.08 3.083 2.872 2.693 2.602 2.449 2.289 2.187 2.096 2.016 3.08 3.083 2.872 2.602 2.612 2.342 2.236 2.142 2.056 3.08 2.893 2.724 2.577 2.449 2.386 2.182 2.182 2.147 3.08 2.893 2.724 2.577 2.449 2.386 2.182 2.142 2.056 4 <	31					2.990	2.770	2.586		2.296	2.180	2.080	1.991	1.914	_	1.783	1.728	1.678	1.634	1.593
3.162 2.926 2.728 2.560 2.417 2.292 2.184 2.088 2.004 1.929 3.006 2.800 2.829 2.477 2.349 2.236 2.137 2.050 1.972 3.007 3.083 2.872 2.693 2.539 2.405 2.187 2.096 2.016 3.083 2.872 2.693 2.539 2.405 2.382 2.142 2.056 2.016 3.017 2.826 2.662 2.519 2.382 2.142 2.056 2.016 3.017 2.826 2.662 2.519 2.386 2.386 2.189 2.142 2.056 3.018 3.017 2.826 2.627 2.491 2.336 2.142 2.056 3.018 3.018 2.862 2.519 2.386 2.283 2.141 2.069 3.018 3.018 2.862 2.510 2.386 2.832 2.142 2.142 2.142 2.142 2.142 2.142 <td>32</td> <td></td> <td></td> <td></td> <td></td> <td>3.076</td> <td>2.848</td> <td>2.657</td> <td></td> <td>2.356</td> <td></td> <td>2.131</td> <td>2.040</td> <td>1.959</td> <td></td> <td>1.823</td> <td>1.765</td> <td>1.713</td> <td>1.667</td> <td>1.624</td>	32					3.076	2.848	2.657		2.356		2.131	2.040	1.959		1.823	1.765	1.713	1.667	1.624
3.005 2.800 2.626 2.477 2.349 2.236 2.137 2.050 1.972 3.083 2.872 2.693 2.539 2.405 2.289 2.187 2.096 2.016 3.081 2.844 2.759 2.600 2.462 2.342 2.236 2.142 2.059 3.082 2.842 2.662 2.519 2.395 2.286 2.189 2.102 2.059 3.083 2.862 2.662 2.519 2.336 2.236 2.147 2.059 3.084 2.893 2.724 2.577 2.449 2.336 2.147 3.089 2.896 2.786 2.665 2.503 2.386 2.236 2.147 3.089 2.896 2.784 2.693 2.567 2.341 2.336 2.147 3.089 2.896 2.984 2.693 2.548 2.693 2.426 2.346 3.089 2.896 2.994 2.696 2.744 2.746	33					3.162	2.926	2.728		2.417	-	2.184	-	2.004		1.863	1.803	1.749	1.700	1.656
3.083 2.872 2.693 2.539 2.405 2.289 2.187 2.096 2.016 2.462 2.342 2.342 2.042 2.059 2.017 2.826 2.602 2.462 2.342 2.366 2.142 2.059 2.069 2.462 2.519 2.396 2.142 2.059 2.102 2.147 2.059 2.147 2.149 2.103 2.147 2.059 2.147 2.149 2.147 2.059 2.147 2.149 2.147 2.141 <td< td=""><td>34</td><td></td><td></td><td></td><td></td><td></td><td>3.005</td><td>2.800</td><td>_</td><td>2.477</td><td></td><td>2.236</td><td>2.137</td><td>2.050</td><td>-</td><td>1.903</td><td>1.841</td><td>1.785</td><td>1.734</td><td>1.688</td></td<>	34						3.005	2.800	_	2.477		2.236	2.137	2.050	-	1.903	1.841	1.785	1.734	1.688
3.162 2.944 2.759 2.600 2.462 2.342 2.342 2.142 2.059 3.017 2.826 2.662 2.519 2.395 2.286 2.189 2.103 3.018 3.017 2.826 2.519 2.395 2.286 2.147 2.101 3.018 2.893 2.724 2.577 2.449 2.336 2.147 3.018 2.893 2.724 2.577 2.449 2.336 2.147 3.018 2.804 2.684 2.693 2.567 2.437 2.316 3.018 3.027 2.848 2.693 2.476 2.326 2.326 3.018 3.018 2.973 2.809 2.652 2.417 2.316 3.018 3.028 2.976 2.596 2.744 2.617 2.462 3.018 3.018 2.940 2.668 2.777 2.619 2.668 2.671 2.668 2.671 2.668 2.671 2.668 2.671	35						3.083	2.872		2.539		2.289	100.00	2.096	_	1.944	1.879	1.821	1.768	1.720
3.017 2.826 2.662 2.519 2.395 2.286 2.189 2.103 3.089 2.893 2.724 2.577 2.499 2.336 2.236 2.147 3.080 2.893 2.724 2.577 2.499 2.336 2.236 2.147 3.080 2.893 2.786 2.635 2.536 2.283 2.191 3.081 2.984 2.693 2.557 2.437 2.331 2.236 3.092 2.911 2.751 2.611 2.488 2.378 2.281 3.093 2.926 2.793 2.665 2.539 2.426 2.326 3.094 2.965 2.776 2.691 2.677 2.462 2.474 2.477 3.094 2.966 2.776 2.985 2.744 2.619 2.564 2.541 2.562 4 2.986 2.776 2.985 2.744 2.619 2.564 2.542 2.542 2.542 2.542 2.542 2.542 2.542 2.542 2.542 2.542 2.542 2.542	36						3.162	2.944		2.600		2.342		2.142	-	1.985	1.918	1.857	1.803	1.753
3.089 2.893 2.724 2.577 2.449 2.336 2.236 2.147 3.162 2.960 2.786 2.635 2.563 2.386 2.283 2.191 3.027 2.848 2.693 2.557 2.437 2.331 2.236 3.095 2.911 2.751 2.611 2.488 2.378 2.281 3.096 2.973 2.809 2.665 2.539 2.426 2.326 3.096 2.973 2.868 2.720 2.590 2.474 2.371 3.096 2.986 2.720 2.590 2.474 2.371 3.096 2.986 2.775 2.641 2.522 2.417 3.097 2.986 2.830 2.641 2.522 2.417 3.098 2.926 2.830 2.641 2.562 2.541 3.099 2.926 2.886 2.774 2.619 2.564 3.099 2.940 2.744 2.619 2.641 2.641 2.641 3.099 2.940 2.744 2.619 2.	37							3.017		2.662		2.395		2.189	-	2.026	1.957	1.894	1.838	1.786
3.162 2.960 2.786 2.635 2.503 2.284 2.191 3.027 2.848 2.693 2.557 2.437 2.331 2.236 3.095 2.911 2.751 2.611 2.488 2.378 2.281 3.096 2.973 2.809 2.665 2.539 2.474 2.371 3.096 2.986 2.720 2.590 2.474 2.371 3.096 2.986 2.776 2.591 2.474 2.371 3.096 2.926 2.775 2.641 2.522 2.417 3.097 2.986 2.830 2.641 2.522 2.417 3.098 2.926 2.775 2.641 2.522 2.417 3.099 2.926 2.830 2.641 2.668 2.554 3.099 2.940 2.766 2.668 2.554 3.099 2.940 2.766 2.646 2.646 3.099 2.950 2.848 2.777 2.609 3.099 2.960 2.966 2.776 2.646 2.77	38							3.089		2.724		2.449		2.236		2.067	1.996	1.931	1.873	1.819
3.027 2.848 2.693 2.557 2.437 2.336 2.286 3.095 2.911 2.751 2.611 2.488 2.378 2.281 3.096 2.973 2.809 2.665 2.539 2.476 2.376 3.086 2.780 2.688 2.770 2.590 2.474 2.371 3.096 2.806 2.775 2.641 2.522 2.417 3.096 2.926 2.775 2.641 2.522 2.417 3.097 3.162 2.985 2.830 2.571 2.462 3.044 2.885 2.744 2.508 2.544 2.508 3.044 2.885 2.744 2.619 2.568 3.040 3.040 2.796 2.688 2.747 2.609 3.040 3.051 2.995 2.848 2.717 2.608 3.040 3.061 2.995 2.848 2.717 2.608 3.040 3.061 2.995 2.848 2.717 2.608 3.040 3.061 2.995 2.84	39							3.162		2.786		2.503		2.283		2.109	2.035	1.969	1.908	1.853
3.095 2.911 2.751 2.611 2.488 2.378 2.281 3.162 2.973 2.809 2.665 2.539 2.426 2.326 3.036 2.868 2.770 2.590 2.474 2.371 3.099 2.926 2.775 2.641 2.522 2.417 3.040 2.926 2.775 2.641 2.522 2.417 3.040 2.926 2.830 2.693 2.571 2.462 3.041 2.885 2.744 2.619 2.508 3.041 2.885 2.744 2.619 2.564 3.041 2.885 2.744 2.619 2.608 3.041 2.986 2.882 2.744 2.619 2.608 3.041 3.041 2.995 2.848 2.777 2.609 3.041 2.995 2.848 2.777 2.606 3.041 2.995 2.848 2.777 2.606 3.041 2.995 2.848 2.777 2.695 3.041 2.995 2.848 2.777<	40									2.848		2.557		2.331	-	2.151	2.075	2.006	1.944	1.887
3.162 2.973 2.809 2.665 2.539 2.426 2.326 3.036 2.868 2.77 2.590 2.474 2.371 3.099 2.926 2.775 2.641 2.522 2.417 3.099 2.926 2.775 2.641 2.522 2.417 3.162 2.985 2.830 2.693 2.571 2.462 3.044 2.885 2.744 2.619 2.568 3.103 3.940 2.796 2.688 2.554 3.103 3.940 2.796 2.682 2.544 3.103 3.940 2.796 2.682 2.546 3.041 3.051 2.995 2.848 2.717 2.609 3.051 3.051 2.995 2.848 2.717 2.603	41									2.911		2.611		2.378	-	2.194	2.115	2.044	1.979	1.921
3.036 2.868 2.720 2.547 2.371 3.099 2.926 2.775 2.641 2.522 2.417 3.162 2.985 2.885 2.893 2.571 2.462 3.040 2.985 2.885 2.744 2.609 2.508 3.041 2.885 2.744 2.619 2.508 3.040 2.940 2.796 2.688 2.554 3.040 2.995 2.848 2.717 2.600 3.040 2.995 2.848 2.717 2.609 3.051 2.990 2.766 2.646 3.040 2.995 2.848 2.717 2.603 3.051 2.990 2.766 2.646 3.051 2.990 2.781 2.693	42									2.973		2.665		2.426		2.236	2.155	2.082	2.016	1.955
3.099 2.926 2.775 2.641 2.522 2.417 3.162 2.985 2.885 2.830 2.693 2.571 2.462 3.044 2.885 2.744 2.619 2.508 3.103 2.940 2.796 2.668 2.554 3.162 2.995 2.848 2.717 2.600 3.162 2.995 2.848 2.717 2.600 3.162 2.995 2.848 2.717 2.606 3.162 2.995 2.848 2.717 2.606 3.163 3.051 2.995 2.848 2.717 2.606 3.163 3.051 2.995 2.848 2.717 2.608	43									-		2.720		2.474	-	2.279	2.196	2.120	2.052	1.990
3.162 2.985 2.880 2.693 2.571 2.462 3.044 2.885 2.744 2.619 2.508 3.103 2.940 2.796 2.668 2.554 3.162 2.995 2.848 2.717 2.600 3.162 2.995 2.848 2.717 2.600 3.162 2.995 2.848 2.717 2.600 3.162 2.995 2.848 2.717 2.600 3.163 2.905 2.766 2.646 3.163 2.995 2.815 2.815 2.895	44											2.775		2.522	- 2	2.322	2.236	2.159	2.088	2.024
3.044 2.885 2.744 2.619 2.508 3.103 2.940 2.796 2.668 2.554 3.103 2.940 2.796 2.668 2.554 3.102 3.162 2.995 2.848 2.717 2.600 3.051 3.051 2.905 2.766 2.646 3.051 2.905 2.848 2.717 2.600	45										2.985	2.830		2.571		2.365	2.277	2.197	2.125	2.059
3.103 2.940 2.796 2.668 2.554 3.162 2.995 2.848 2.717 2.600 3.162 3.051 2.900 2.717 2.600 3.051 2.900 2.706 2.646 3.051 2.902 2.786 2.646	46									1		2.885	-	2.619		2.408	2.318	2.236	2.162	2.094
3.162 2.995 2.848 2.717 2.600 3.051 2.900 2.766 2.646 3.162 2.900 2.766 2.646 3.051 2.952 2.815 2.693	47									0		2.940		2.668		2.451	2.359	2.275	2.199	2.129
3.051 2.900 2.766 2.646 3.107 2.952 2.815 2.693	48											2.995		2.717	-	2.495	2.400	2.314	2.236	2.165
3.107 2.952 2.815 2.693	49											-	-			2.539	2.441	2.353	2.273	2.200
	20											3.107	2.952	2.815	2.693	2.582	2.483	2.393	2.311	2.236

Table 27 - Guy Factors

		GUYING	
ISSUE	PAGE NUMBER		SMIZZ
7/10	3-28	OVERHEAD CONSTRUCTION STANDARD	ppl

3.7 Worksheets and Examples

The following worksheets are provided to assist in determining the appropriate pole class for tangent distribution pole structures. The method followed by the worksheet is valid for span lengths with a ratio less than 3:1. For span lengths that have a ration of 3:1 or greater, apply the wind load perpendicular on the longest span. The wind applied to the shorter span shall be multiplied by the cosine of the line angle.

The worksheets are divided into three sections:

- 1. Axial load due to wind on conductors and equipment.
- 2. Weight of conductors and equipment on the pole.
- 3. Axial load due to conductor tension.

Step	Action
1	Fill in the appropriate information on the worksheet.
2	Subtotal the separate sections of the worksheet.
3	Calculate the total axial load that will be applied to the pole.
4	 Select the appropriate pole. 3.4 Select the Axial Loading table for the pole height used. 3.5 Determine the lowest guy attachment point on the pole 3.6 Choose the lowest pole class that will support the axial load imposed upon the pole. Note: There are circumstances where if the communications utilities were to be removed that a greater pole class would be required to support the electric utilities facilities. Therefore, always select the highest pole class determined from the worksheet.

Table 28 - Worksheet Instructions

	GUYING		
WIN		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-29	7/10

New page. Info on this page was previously found on Page 3-65.

3.7.10 Angle Pole Worksheet - 0° to 60°

Transverse Load Due to Wind

Conductor Name/Size	Number of Cond.		Ave. Span Length of Conductor (ft)		Transverse Load of Conductor or Equipment (lbs)		Cosine of 1/2 the line angle		H/L of the guy supporting the conductors		Total Axial Load on the pole (lbs)
Primary Dist		:on	. ,		Equipment (ibs)		angle		conductors		(aai)
Trimary Dio		X	iduotoi (c)	Х		Х		Χ		_	
		Х		X		X		Х		=	
		X		X		Х		Х		_	
Neutral Con	ductors										
		Χ		Χ		Χ		Х		=	
Secondary (Conductor	s									
		Χ		Χ		Χ		Χ		=	
		Χ		Χ		Χ		Χ		=	
Communica	tions Con	du	ctor(s)								
		Χ		Χ		Χ		Χ		=	
		Χ		Χ		Χ		Χ		=	
		Χ		Χ		Χ		Χ		=	
		Χ		Χ		Χ		Χ		=	
Service Con	ductor(s)										
		Χ		Χ		Х		Χ		_=	
		Χ		X		Χ		Χ		=	
Equipment								1			
								X		=	
								Х		=	
								Χ		=	
_			D (11/2								
Transverse A	Axial Load	nık	g Due to Wi	nd						=	

Weight of Conductors and Equipment

Conductor Name/Size	Number of Conductors or Equipment		Average Span of Conductor		Wt. per ft w/ice of Cond. Or Wt of Equip. (Ibs)		Total
		Χ		Χ		=	
		Χ		Χ		=	
		Χ		Χ		=	
		Χ		Χ		=	
		Χ		Χ		=	
		Χ		Χ		=	
		Χ		Χ		=	
		Χ		Χ		=	
	•			•			
Weight of Conductors	and Equipment					=	

		GUYING	
ISSUE	PAGE NUMBER		SMIZZ
7/10	3-30	OVERHEAD CONSTRUCTION STANDARD	ppl

7/18 – Revised footnote to refer to correct tables.

Transverse Load Due to Conductor Tension

Conductor Name/Size	Number of Cond.		Max. Cond. Tension (See Section 6)		Sine of 1/2 the line angle		H/L of the guy supporting the conductors		Axial Load on the pole (lbs)
Primary Distribut	ion Condu	ctor(s)						
		Χ		Χ		Χ		=	
		Χ		Χ		Χ		=	
		Х		Χ		Χ		=	
Neutral Conducte	or								
		Χ		Χ		Χ		=	
Secondary Cond	uctor(s)								
		Χ		Χ		Χ		=	
		Χ		Χ		Χ		=	
Communications	Conductor	r(s)							
		Х		Χ		Χ		=	
		Χ		Χ		Χ		=	
		Х		Χ		Χ		=	
		Χ		Χ		Χ		=	
Transverse Axial	Loading D	ue to	Conducto	r Te	nsion			=	

Transverse Axial Loading Due to Service Conductor Tension

Conductor Name/Size	Number of Cond.		Max. Cond. Tension (See Section 6)		Sine of 1/2 the line angle		H/L of the guy supporting the conductors		Axial Load on the pole (lbs)
Service Conductors	•				•	•			, ,
		Χ		Χ		Χ		=	
		Χ		Χ		Χ		=	
Transverse Axial Loadi	ng Due to	Ser	vice Conducto	r Tei	nsion			=	

	Transverse Axial Loading Due to Wind (lbs)		Wt of Cond. And Equipment (lbs)		Transverse Axial Loading Due to Cond. Tension (lbs)		Transverse Axial Loading Due to Service Cond. Tension (lbs)		Grade C & B Overload Capacity Factor	
Total Axial Load Applied to Pole =	(+		+		+)	Х	2.20	

Refer to the appropriate pole buckling limit table (Tables 17-22) based on pole height to determine the correct class of pole to install.

	GUYING		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-31	7/18

New page. Info on this page was previously found on Page 3-67.

3.7.20 <u>Deadend Pole Worksheet</u>

Transverse Load Due to Wind

			1/2 of				H/L of the				
			the		_		guy				
			span		Transverse		supporting		Axial Load		
Conductor	Number		length		Load of		the		on the pole		
Name/Size	of Cond.		(ft)		Cond. (lbs)		conductors		(lbs)		
Primary Distribution Conductor(s)											
		Χ		Χ		Χ		=			
		Χ		Χ		Χ		=			
		Χ		Χ		Χ		=			
Neutral Co	nductor										
		Χ		Х		Χ		=			
Secondary	Secondary Conductor										
		Χ		Х		Х		=			
Communic	ations Co	ndı	uctor(s)								
		Χ		Х		Χ		=			
		Χ		Х		Χ		=			
		Χ		Χ		Χ		=			
		Χ		Χ		Χ		=			
Equipment											
					•	Χ		=			
						Χ		=			
Transverse	Transverse Axial Loading Due to Wind =										

Transverse Load Due to Wind on Service Conductors

Conductor Name/Size Service	Number of Cond.		Avg. span length of Cond. (ft)		Transverse load of Cond. (lbs)		Cosine of the line Angle		H/L of the guy supporting the conductors		Total Axial Load on Pole (lbs)
		Х		Χ		Χ		Χ		=	
		Х		Χ		Χ		Χ		=	
Transverse A	Transverse Axial Loading Due to Wind on Service Conductors =										

\sim 1	11/1	N 1	\sim
(- 1	IVI	N	

ISSUE	PAGE NUMBER
7/10	3-32

OVERHEAD CONSTRUCTION STANDARD

New page. Info on this page was previously found on Page 3-68.

Weight of Conductors and Equipment

Conductor or Equipment Name/Size	Number of Conductors or Equipment		Average Span of Conductors		Wt per ft w/ice of Cond. Or Wt of Equipment (lbs)		Total			
		Χ		Х		=				
		Χ		Х		=				
		Χ		Χ		=				
		Χ		Χ		=				
		Χ		Х		=				
		Χ		Χ		=				
		Χ		Х		=				
Transverse Load Due to C	Transverse Load Due to Conductor Tension									

Transverse Load Due to Conductor Tension

Conductor or Equipment Name/Size	Number of Conductors or Equipment		Average Span of Conductors		Wt per ft w/ice of Cond. Or Wt of Equipment (lbs)		Total
Primary Distribution Con	ductor(s)						
		Χ		Χ		=	
		Χ		Х		=	
		Χ		Х		=	
Neutral Conductor							
		Χ		Х		=	
Secondary Conductors							
		Χ		Х		=	
		Χ		Χ		=	
Communications Conduc	tor(s)						
		Χ		Χ		=	
		Χ		Χ		=	
		Χ		Χ		=	
		Χ		Χ		=	
				•			
Transverse Axial Loading	Due to Condu	ctor ⁻	Tension			=	

	GUYING		
WIN		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-33	7/10

7/18 – Revsied footnote below second table to refer to correct tables

Transverse Loading Due to Service Conductor Tension

Conductor Name/Size	Number of Cond.		Max. cond. Tension (See Section 6)		Sine of 1/2 of the line angle		H/L of the guy supporting the conductors		Axial Load on Pole (lbs)	
Service Conductor(s)										
		Χ		Χ		Х		=		
		Χ		Χ		Х		=		
Transverse Axial Loading Due to Service Conductor Tension =										

	Trans. Axial Loading Due to Wind (lbs)		Trans. Axial Loading Due to Wind on Serv. Cond.		Wt of Equipment		Trans. Axial Loading Due to Cond. Tension (lbs)		Trans. Axial Loading Due to Serv. Cond. Tension (lbs)		Grade C & B Overload Capacity Factor		
Total Axial Load Applied to Pole =	(+		+		+		+)	X	2.20	II	

Refer to the appropriate pole buckling limit table (Tables 17-22) based on pole height to determine the correct class of pole to install.

RESULTS

Enter information below. Select the highest pole class from the results.

Participants of Pole	Guy Lead (ft)	Lowest Guy Attachment from top of pole (ft)	Pole Class
Electric and Communications Conductors			
Electric (one guy)			
Electric (two guys)			

EXAMPLE: Line design requires a 45 ft. pole with a calculated Total Axial Load of 19,000 lbs. determined by using the worksheet above. Look up 19,000 lbs in <u>Table 19 Table 19</u> for a 45 ft pole and start with the lowest guy attachment. For this example, assume a 15 ft. guy attachment (Communications guy), 1 ft. guy attachment (Electric primary guy) and 8 ft. guy attachment (Electric secondary guy if used) and record results in the table below. Select the highest class pole so if communications are removed from a pole, the pole is still strong enough for the remaining electric facilities.

Participants of Pole	Guy Lead	Lowest Guy Attachment from top of pole	Pole Class
Electric and Communications Conductors	15 ft	15 ft	5
Electric (one guy)	15 ft	1 ft	4
Electric (two guys)	15 ft	8 ft	5

	GUYING									
ISSUE	PAGE NUMBER		SMD							
7/18	3-34	OVERHEAD CONSTRUCTION STANDARD	ppl							

In this example, the highest class pole is a Class 4 pole which would be the correct selection.

3.7.30 EXAMPLE #1: ANGLE GUYING

Given:

15 kV class construction

150 ft. ruling span

175 ft. actual front span

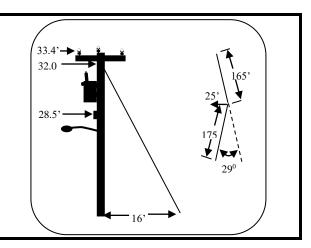
165 ft. actual back span

1 - 40 ft., class 3 wood pole

3 – 477 kcmil Al AAC bare conductors (W21BA)

1 – 3/c – 1/0 Al triplex secondary cable (W15C)

1 street light (attachment height = 27 ft.)


1 – 50 kVA transformer

(attachment height = 30 ft.)

Corner Pull – 25 ft. or 29 degrees

Grade B construction

Soil Classification = 4

Transverse Wind Loading: Steps 1-6

Step	Action	Use	
1	Determine Conductor Wind Load Tensions (WLT) from Sections 6 and 11.	3 - 477 kcmil Al bare (W21BA) = 0.598 lbs./ft. 1 - 3/c 1/0 Al triplex secondary cable (W15C) = 0.666 lbs./ft.	
2	Calculate Total Conductor Wind Load Tension.	Total Conductor Wind Load Tension (WLT) = (No. of Conductors) x (Conductor WLT) x (Back Span + Front Span) 2 x (Conductor/Equipment Height /Guy Height) Total Conductor Wind Load Tension = ($3 \times 0.598 \ lbs. / ft.$) x (($175 \ ft. + 165 \ ft.$)/2) x ($33.4/32$) + ($1 \times 0.666 \ lbs. / ft.$) x (($175 \ ft. + 165 \ ft.$)/2) x ($28.5/32$) = $419.16 \ lbs.$	
3	Determine and calculate Total Equipment Wind Load Tension from <u>Table 15Table 15</u> and <u>Table 16Table 16</u> .	Equipment Wind Load = Wind load x (Attachment height/Guy height) 1 – 40 ft. Class 3 wood pole (<u>Table 16Table 16</u>) = 106 lbs x (17 ft./32 ft.) = 57 Ibs. 1 – 50 kVA transformer (<u>Table 15Table 15</u>) = 42 lbs x (30 ft./32 ft.) = 40 lbs. 1 – streetlight (<u>Table 15Table 15</u>) = 13 lbs x (27 ft./32 ft.) = 11 lbs. Total Equipment Transverse Wind Load = 108 lbs.	
4	Calculate Transverse Wind Loading.	Transverse Wind Loading = (Total Conductor Transverse Wind Loading) + (Total Equipment Transverse Wind Loading) Transverse Wind Loading – 419.16 lbs. + 108 lbs. = 527.16 lbs.	
5	Determine Construction Grade Overload Factor from Table 11Table 11.	Grade B, Transverse Loads: Wind, Overload Factor = 2.50	
6	Calculate Total Transverse Wind Loading.	Total Transverse Wind Loading = (Transverse Wind Loading) x (Overload Factor) Total Transverse Wind Loading = 527.16 lbs. x 2.50 = 1,317.9 lbs .	

	GUYING		
MIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-35	7/19

EXAMPLE #1: ANGLE GUYING (continued)

Transverse Wire Tension Steps 7-11

Step	Action	Use
7	Determine Conductor Tensions from Section 6 and Section 10	3 - 477 kcmil Al AAC bare (W21BA) = 2,000 lbs. 1 - 3/c 1/0 Al triplex secondary cable (W15C) = 1,925 lbs.
8	Calculate Total Tension at the guy attachment height.	Total Conductor Tension = $ (No.ofConductors)x \left(\frac{ConductorHeight}{GuyHeight} \right) x (ConductorTension) $ Total Conductor Tension = $ \left(3x \frac{33.4 ft.}{32.0 ft} x2,000 lbs. \right) + \left(1x \frac{28.5 ft.}{32.0 ft} x1,925 lbs. \right) = 7,977 lbs. $
9	Determine Line Angle Factor from <u>Table</u> <u>13Table 13</u> .	Pull = 25 ft.; Line Angle = 29 degrees; Line Angle Factor = 0.5008
10	Determine Construction Grade Overload Factor from Table 11 Table 11.	Grade B, Transverse loads: Wire Tension, Overload Factor = 1.65
11	Calculate Transverse Wire Tension.	Transverse Wire Tension = (Total Conductor Tension) x (Line Angle Factor) x (Overload Factor) Transverse Wire Tension = 7,977 lbs. x 0.5008 x 1.65 = 6,592 lbs.

Anchor Guy Requirements Steps 12-17

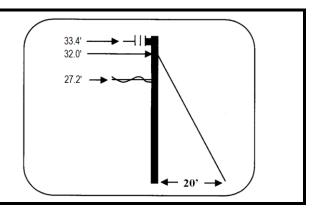
Step	Action	Use	
12	Calculate Total Transverse Tension.	Total Transverse Tension = (Transverse Wind Loading) + (Transverse Wire Tension) Total Transverse Tension = 1,317.9 lbs. + 6,592 lbs. = 7,09.9 lbs.	
13	Determine Guy Factor from Table 27 Table 27	Guy Height = 32.0 ft.; Guy Lead = 16 ft.; Guy factor = 2.236	
14	Calculate Total Tension in guy wire and anchor.	Tension (guy wire) = (Total Transverse Tension) x (Guy Factor) Tension (guy wire) = 7,909.9 lbs. x 2.236 = 17,686.5 lbs. Tension in guy wire = tension in anchor (except sidewalk guys)	
15	Determine guy wire Strength Factor from <u>Table 12</u> -	Grade B, guy wire, Strength Factor = 0.9 Grade B, anchor, Strength Factor = 1.0	
16	Determine Guy Wire and Anchor Requirements.	Guy Wire Req. = $\frac{Tension(GuyWire)}{StrengthFactor} = \frac{17,686.5}{.9} = 19,651.7lbs.$ Anchor Req. = $\frac{Tension(Anchor)}{StrengthFactor} = \frac{17,686.5}{1.0} = 17686.5lbs.$	
17	Determine Guy Components from <u>Table</u> 2 Table 2, <u>Table 4 Table 4</u> , <u>Table 7 Table</u> 7, etc.	Guy Wire Required = 19,651.7 lbs. Use a 25M guy (looped 12.5M guy wire) (G15A) with one 54 in. strain insulator (30,000 lbs.) (TI95C) Anchor Required = 17,686.5 lbs Soil Class = 4 Use one 14 in. Helix (A16B) with one 1in. x 7 ft. rod (A18K)	

Note: Refer to Section 3.7.10 Angle Pole Worksheet - 0° to 60° to ensure pole meets buckling requirements.

	GUYING			
ISSUE	PAGE NUMBER		SMIZZ	
7/19	3-36	OVERHEAD CONSTRUCTION STANDARD	ppl	

3.7.40 **EXAMPLE #2: DEADEND GUYING**

Given:


15 kV class construction

150 ft. ruling span 1 – 40 ft., class 3 wood pole

3 – 1/0, Al AAAC, bare conductors (W14B)

1 – 3/c – 1/0 Al. triplex secondary cable ((W15C) Grade C construction

Soil Classification = 4

Transverse Wire Tension: Steps 1-8

Step	Action	Use	
1	Determine Conductor Tensions from Section 6 and Section 10	1 - 1/0 Al AAAC, bare (W14B) = 2,000 lbs. 1 - 3/c 1/0 Al secondary cable (W15C) = 1,925 lbs.	
2	Calculate Total Conductor Tension at the guy attachment height	Total Conductor Tension = $ (No.ofConductors)x \left(\frac{ConductorHeight}{GuyHeight} \right) x (ConductorTension) $ Total Conductor Wind Load Tension = $ \left(3x \frac{33.4 ft.}{32.0 ft.} x2,000 lbs. \right) + \left(1x \frac{27.2 ft.}{32.0 ft.} x1,925 lbs. \right) = 7,899 lbs. $	
3	Determine Guy Factor from <u>Table</u> <u>27 Table 27</u>	Guy Height = 32.0 ft.; Guy Lead = 20 ft.; Guy Factor = 1.887	
4	Determine Construction grade Overload Factor from Table 11 Table 11.	Grade C, Longitudinal loads: Deadends, Overload Factor = 1.10	
5	Calculate Tension in guy wire and anchor	Tension (guy wire) = (Total Conductor Tension) x (Guy Factor) x (Overload Factor) Tension (guy wire) = 7,899 lbs. x 1.887 x 1.10 = 14,906 lbs. Tension in guy wire – tension in anchor (except sidewalk guys).	
6	Determine guy wire and anchor Strength Factor from Table 12 Table 12.	Grade C, guy wire, Strength Factor = 0.9 Grade C, anchor, Strength Factor = 1.0	
7	Determine guy wire and anchor requirements	$GuyWire \text{Re } q. = \frac{Tension(GuyWire)}{(StrengthFxtor)} = \frac{14,906lbs.}{0.9} = 16,562lbs.$ $Anchor \text{Re } q. = \frac{Tension(anchor)}{(StrengthFxtor)} = \frac{14,906lbs.}{1.0} = 14,906lbs.$	
8	Determine Guy Components from Table 2Table 2, Table 4Table 4, Table 7Table 7, etc.	Guy wire required = 16,562 lbs. Use a 25M guy (looped 12.5M guy wire) (G15A) with one 54 in. strain insulator (30,000 lbs.) (TI-95B) Anchor required = 14,906 lbs Soil class = 4	
		Use one 10 in. Helix (A16A) with one 1 in. x 7 ft. rod (A18K)	

	GUYING		
WIN		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-37	7/17

Note: Anchors and anchor rods installed for joint company use must be sized to hold both electric and telephone company conductors and equipment.

	GUYING			
ISSUE	PAGE NUMBER		Wille	
7/19	3-36	OVERHEAD CONSTRUCTION STANDARD	ppl	

3.7.50 **EXAMPLE #3: SIDEWALK/STRUT GUYING**

Given:

15 kV class construction

150 ft. ruling span

175 ft. actual front span

165 ft. actual back span

1 - 40 ft., class 3 wood pole

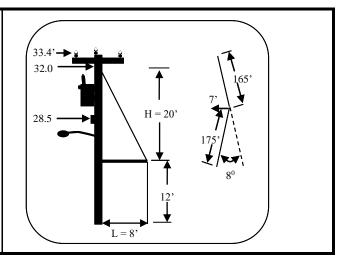
3 – 1/0 AAAC, bare conductors (W14B)

1 – 3/c 1/0 Al triplex secondary cable (W15C)

1 – streetlight (attachment height = 27 ft.)

1 – 50 kVA transformer

(attachment height = 30 ft.)


Corner Pull – 7 ft. or 8 degrees

Grade B construction

Pole height above ground – 34 ft.

Soil Classification = 4

Strut attachment from top of pole = 22 ft.

Transverse Wind Loading: Steps 1-6

Step	Action	Use
1	Determine Conductor Wind Load Tensions from Sections 6 and 10.	31/0 Al AAAC, bare (W14B) bare = 0.4656 lbs./ft. 1- 3/c 1/0 Al. triplex secondary cable (W15C) = 0.652 lbs./ft.
2	Calculate Total Conductor Wind Load Tension	Total Conductor Wind Load Tension = (No. of Conductors) x (Conductor WLT) x (Back Span + Front Span) 2 x (Conductor/Equipment Height /Guy Height) Total Conductor Wind Load Tension = $(3x0.4656bs./ft.)x \left(\frac{175ft. + 165ft.}{2}\right)x \frac{33.4}{32} + $ $(1x0.652bs./ft.)x \left(\frac{175ft. + 165ft.}{2}\right)x \frac{28.5}{32} = 347bs.$
3	Determine and calculate Total Equipment Wind Load Tension from Table 15Table 15 and Table 16Table 16.	Equipment Wind Load = Wind load x (Attachment height/Guy height) 1 – 40 ft. Class 3 wood pole (Table 16Table 16) = 125 lbs. x (17 ft./32 ft.) = 66 lbs. 1 – 50 kVA transformer (Table 15Table 15) = 42 lbs. x (30 ft./32 ft.) = 38 lbs. 1 – streetlight (Table 15Table 15) = 13 lbs. x (27 ft./32 ft. = 11 lbs. Total Equipment Transverse Wind Load = 115 lbs.
4	Calculate Transverse Wind Loading	Transverse Wind Loading = (Total Conductor Transverse Wind Loading) + (Total Equipment Transverse Wind Loading) Transverse Wind Loading – 347 lbs. + 115 lbs. = 462 lbs
5	Determine Construction Grade Overload Factor from Table 11 Table 11.	Grade B, Transverse Loads: Wind, Overload Factor = 2.50
6	Calculate Total Transverse Wind Loading	Total Transverse Wind Loading = (Transverse Wind Loading) x (Overload Factor) Total Transverse Wind Loading = 462 lbs. x 2.50 = 1,155 lbs .

	GUYING		
SMIZE		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-37	7/17

EXAMPLE #3: SIDEWALK GUYING (continued)

Transverse Wire Tension Steps 7-18

Step	Action	Use	
7	Determine Conductor Tensions from Section 6.	3 - 1/0 Al AAAC, bare (W14B) bare = 2,000 lbs. 1 - 3/c 1/0 Al triplex secondary cable (W15C) = 1,925 lbs.	
8	Calculate Total Tension at the guy attachment height.	Total Conductor Tension = $ (No.ofConductors)x \left(\frac{ConductorHeight}{GuyHeight} \right) x (ConductorTension) $ Total Conductor Tension = $ \left(3x \frac{33.4 ft.}{32.0 ft} x2,000 lbs. \right) + \left(1x \frac{28.5 ft.}{32.0 ft.} x1,925 lbs. \right) = 7,977 lbs. $	
9	Determine Line Angle Factor from Table 13 Table 13.	Pull = 7 ft.; Line Angle = 8 degrees; Line Angle Factor = 0.1395	
10	Determine Construction Grade Overload Factor from Table 11 Table 11.	Grade B, Transverse loads: Wire Tension, Overload Factor = 1.65	
11	Calculate Transverse Wire Tension	Transverse Wire Tension = (Total Conductor Tension) x (Line Angle Factor) x (Overload Factor) Transverse Wire Tension = 7,977 lbs. x 0.1395 x 1.65 = 1,836 lbs.	
12	Calculate Total Transverse Tension	Total Transverse Tension = (Transverse Wind Loading) +	
13	Calculate Tension on the anchor	Tension (anchor) = (Total Transverse Tension) x (Pole height above ground) (Strut Length) $Tension(anchor) = 2,991lbs.x \frac{34ft.}{8ft.} = 12,712lbs.$	
14	Calculate Compression on the strut	Compression (Strut) = Total Transverse Tension) x (Pole height above ground) (Guy attach height – strut attach height) $Compression(Strut) = 2,99 llbs.x \frac{(34 ft.)}{(32 ft 12 ft.)} = 5,085 lbs.$	
15	Determine the Strut Factor from Table 23 Table 23.	Strut length = 8 ft., Guy attachment height less Strut attachment height = 20 ft. Strut Factor = 2.693	
16	Calculate tension in guy wire	Tension (guy wire) = (Compression (strut) x Strut Factor) Tension (guy wire) = 5,085 lbs. x 2.693 = 13,694 lbs.	
17	Determine guy wire and anchor Strength Factor from Table 12Table 12.	Grade C, guy wire, Strength Factor = 0.9 Grade C, anchor, Strength Factor = 1.0	
18	Determine guy wire and anchor requirements	$GuyWire \text{Re } q. = \frac{Tension(GuyWire)}{StrengthF\alpha tor} = \frac{13,694lbs.}{0.9} = 15,216lbs.$ $Anchor \text{Re } q. = \frac{Tension(Anchor)}{StrengthF\alpha tor} = \frac{12,712lbs.}{1.0} = 12,712lbs.$ Tension (guy wire) will always be greater than tension (anchor) on all	

	GUYING			
ISSUE	PAGE NUMBER		WWZ	
7/10	3-38	OVERHEAD CONSTRUCTION STANDARD	ppl	

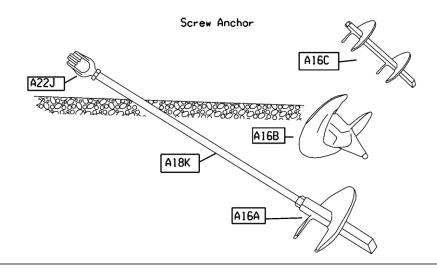
sidewalk guying installations.

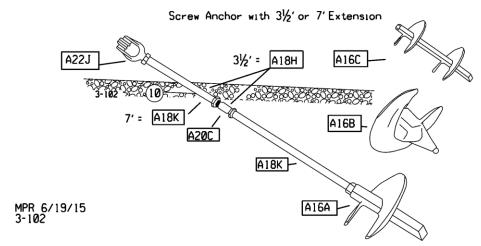
GUYING			
SMZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-39	7/10

EXAMPLE #3: SIDEWALK GUYING (continued)

Transverse Wire Tension (continued) Step 19

Step	Action	Use
19	Determine Guy Components from Table 2Table 2, Table 4Table 4,	Guy required = 15,443 lbs. Use a 25M guy (looped 12.5M guy wire) (G15A) with one 54 in. strain
	Table 7Table 7, etc.	insulator (30,000 lbs.)(TI-95B)
		Anchor required = 12,903 lbs. Soil class = 4 Use one 10 in. Helix (A16A) with one 1 in. x 7 ft. rod (A18K)


Pole Moment & Compression Strength Steps 20-26


Step	Action	Use
20	Determine Pole Moment (M) and Compression (CC)	M equals (Pole height above ground minus distance between guy attachment and strut attachment (H) times horizontal load). CC equals anchor tension determined from Step 13.
21	Calculate Pole Moment (M)	M = (34 ft. – 20 ft.) x 2,991lbs. = 41,874 ft-lbs .
22	Calculate Compression (CC)	From Step 13, CC = 12,712 lbs .
23	Determine lowest guy attachment from top of pole	Lowest guy attachment is 2 ft. from top of pole
24	Determine allowable Pole Moment (Ma) and Compression (Ca) from Table 25 Table 25 and Table 24 Table 24.	A safely loaded pole is determined by the equation CC/Ca + M/Ma<1
25	Calculate if Pole Size and Class are adequate for attached load.	From Sidewalk/Strut guy Pole Loading Factor Tables for a 40 ft., Class 3 pole Calculate if CC/Ca + M/Ma<1 Lowest guy attachment is 2 ft. from top of pole: Ca = 31,595 from Table 24Table 24 Strut attachment 22 ft. from top of pole:
		Ma = 65,459 from <u>Table 25</u> Table 25
		CC = 12,712 from Step 13 M = 41,874 from Step 21 Therefore, (12,712/31,595) + (41,874/65,459) = 1.04
26	Determine if pole is adequate	Since 1.04 is more than 1, a 40 ft. Class 3 pole is not adequate so a 40 ft. Class 2 pole is required.

New page. Info on this page was previously found on Page 3-56.

	GUYING		
ISSUE	PAGE NUMBER		SMI22
7/10	3-40	OVERHEAD CONSTRUCTION STANDARD	ppl

NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission, and Sub-transmission with distribution accounting.

To achieve maximum holding capacity, the torque applied should approach 5,500 foot-pounds and the upper-most anchor flight shall be a minimum of 5 times the largest flight diameter below grade. This can be translated to hydraulic auger gauge pressure (psi) per the following table.

Hydraulic Auger Applied Torque Gauge Pressure Low Speed	Predicted Holding Capacity (lbs.)		
(psi)	(ftlbs.)	10"Screw Anchor Helix	14"Screw Anchor Helix
750	1,600	11,200	16,000
1,000	3,250	22,750	25,000
1,250	5,000	34,000	37 , 000

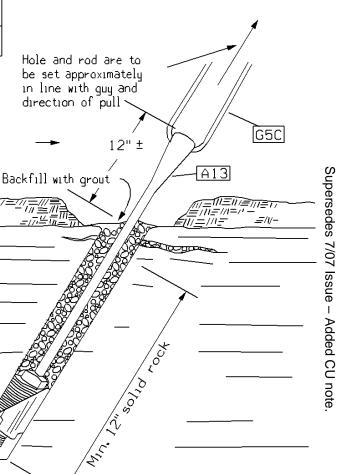
Notes:

- 1. To assure an adequate screw anchor installation, use these values if the digger has a hydraulic auger pressure gauge. Contact Standards to confirm that your digger has the gauges necessary to utilize this information. The digger operator should notify the designer / engineer what anchor holding strength was achieved based on applied auger gauge pressure. If the desired holding strength is not achieved, continue installing the anchor rod deeper with a 3.5 ft. or 7 ft. extension rod. If the desired holding strength is still not achieved, consider installing a second anchor rod with additional guys.
- 2. Disturb the soil as little as possible.
- 3. Maintain alignment during installation.
- 4. Do not use more than one (1) extension rod per installation.

SCREW ANCHOR			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	3-102	7/16

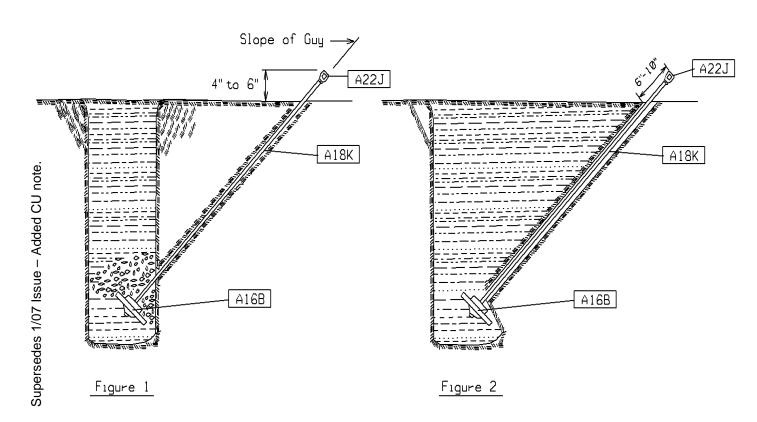
NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission, and Sub-transmission with distribution accounting.

<u>Guidelines for Installation</u> of the expanding rock anchor are as follows:


- 1. Remove the soil to the top of the rock layer.
- 2. Drill the properly sized hole, in line with the final installed guy angle, into the solid rock. The drill hole must be clean and smooth and sized per the chart below.

Anchor Rod	Anchor	Required	Holding Strength
Diameter	Size	Hole Size	(lbs)
1"	21/4"	2%"	36,000

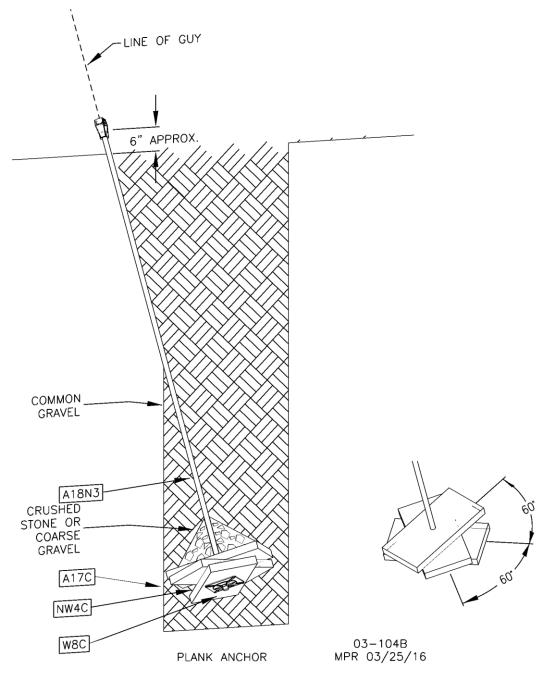
Minimum depth for the hole should be 12" into the solid rock.


- Insert the unexpanded anchor into the hole and insert a bar through the eye of the anchor rod.
- 4. Turn the bar clockwise until the anchor is firmly expanded against the sides of the hole.
- 5. Test pull the anchor before backfilling by applying a load in the direction of the final guy angle. If the anchor is properly set, there should be no movement or creep of the anchor while applying the test load. If creep does occur (under load) corrective action is required, since this movement would indicate that the anchor is set in soft, weathered rock or possibly in a rock joint or fracture zone in the rock.
- 6. Where corrective action is necessary, additional drilling into sound rock and resetting of the anchor should be attempted. Where the rock is indicated to be soft or weathered, the installation of a twin 4" screw anchor should be attempted.
- 7. Rock anchors shall be backfilled with a sand-cement grout to keep out surface water that could result in deterioration of the rock through freezing and thawing.

ROCK ANCHOR			
ISSUE	PAGE NUMBER		WIN
7/16	3-103	OVERHEAD CONSTRUCTION STANDARD	ppl

NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission, and Sub-transmission with distribution accounting.

Use this hand-dug anchor when a screw anchor cannot be installed due to surrounding obsticles such as cable or pipes.



<u>Installation Procedure</u>

- A. Dig hole a minimum $5\frac{1}{2}$ feet deep.
- B. Cut channel for rod to line up with quy.
- C. Scrape loose earth to far corner of bottom of hole to square with bottom of anchor.
- D. Attach 14"Helix (A16B) to $1" \times 7' \text{ Rod } (A18K)$.
- E. Fit anchor assembly in hole.
- F. Line up anchor rod with slope of guy (upper guy when two guys are attached).
- G. Tamp crushed stone or coarse gravel between face of anchor and undisturbed earth. Fill void completely.
- H. Backfill all earth removed thoroughly tamping by layers.

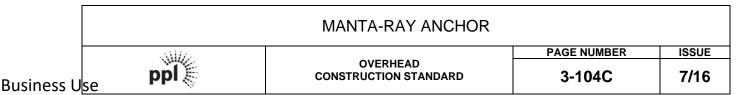
		HAND DUG ANCHOR		
	SMIZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-104	7/16

NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission, and Sub-transmission with distribution accounting.

Notes:

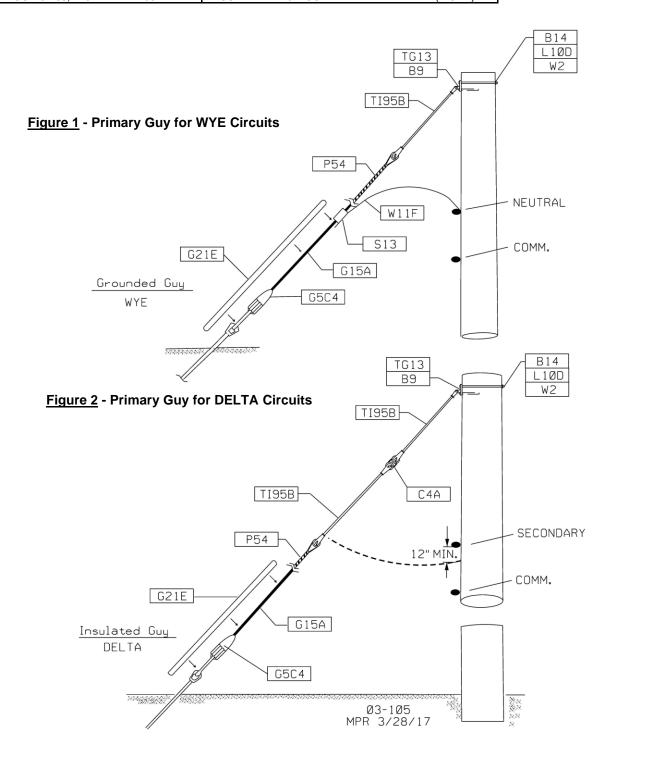
- 1. Anchors shall be installed so that the anchor rod aligns with the guy wire with a tolerance of +/- 5-degrees. Where multiple guy wires use the same anchor, the rod shall align with the highest guy wire.
- 2. Individual anchors shall be separated by a minimum of 4-feet.
- 3. Anchors shall be installed by first excavating a hole to the required depth. A rod trench shall then be dug which allows the anchor rod to rest in alignment with the guy wire. The trench shall be as narrow as possible.
- 4. The rod and anchor assembly shall be placed in the trench and adjusted to align with the guy wire. The hole shall then be back filled and machine tamped in 6-inch layers to final grade.

			PLANK ANCHOR	
	ISSUE	PAGE NUMBER		WHZ
Busi	7/16 ness Use	3-104B	OVERHEAD CONSTRUCTION STANDARD	ppl


Doc. # ST. 03.00.002

NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission, and Sub-transmission with distribution accounting.

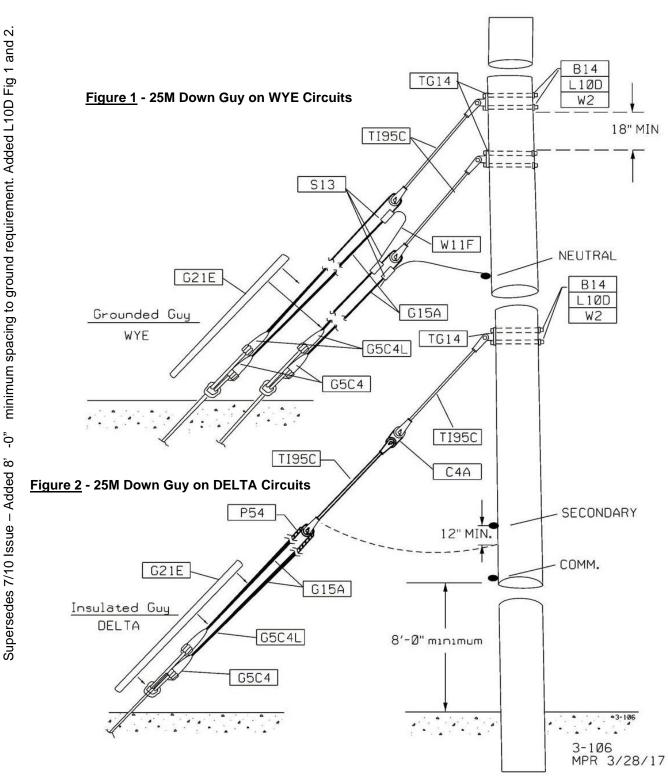
LINE OF GUY A22J 03-104C MPR 03/25/16 3'-6" ROD WITH COUPLING(AS NEEDED TO **EXTEND** ANCHOR TO FIRM MATERIAL) SANDY MARSH AND/OR FILL A18H 7' MINIMUM AFTER LOAD LOCK PULL TEST 4 MINIMUM IN FIRM MATEIAL A18K FIRM MATERIAL A10A/B/C MANTA RAY ANCHOR


Notes:

- Use anchor A10A for soft soil conditions, A10B for medium density soil and A10C for high density soil. See table 3, pp 3-6.
- Anchors shall be installed so that the anchor rod aligns with the guy wire with a tolerance of +/- 5-degrees. Where multiple guy wires use the same anchor, the rod shall align with the highest guy wire.
- Individual anchors shall be separated from each other by a minimum of 4-feet.
- The assembled anchor head and rod shall be driven suing the drive steel in alignment with the guy wire.
- 5. The anchor shall be driven to a minimum initial embedment of 10-feet. If soft material is encountered, driving shall continue until the anchor has achieved a minimum of 4-feet into firm material. Additional rods shall be coupled to the driven rod as needed to achieve the required embedment depth.
- 6. The anchor shall be load locked and proof tested using the load locker LL-1. Anchors shall be proof tested to 90% of the specified load.
- 7. The anchor shall be rejected if it fails the proof test or if the final embedment after proof testing is less than 7-feet measure along the length of the rod.

7/16 - New Issue.

CU = GUY-3-105,12.5MDWNG/TI95B	GROUNDED 12.5M GUY - WYE PRIMARY (FIG #1)
CU = GUY-3-105.12.5MDWN2-TI95B	INSULATED 12.5M GUY - DELTA PRIMARY (FIG #2)

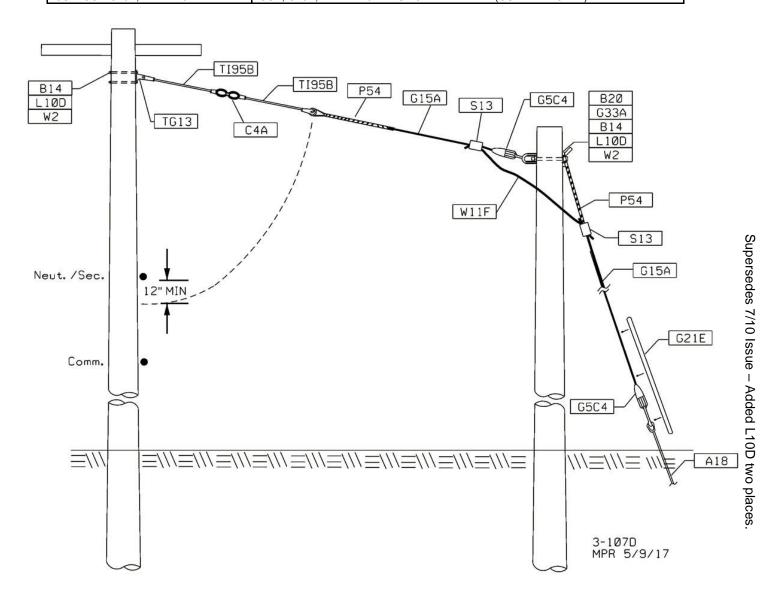

Supersedes 7/6 Issue - Change W1 to W2, add L10D-Fig 1, Fig2

NOTE: If the lower fiberglass rod does not extend a minimum of 12" below the secondary attachment if the guy were slack against the pole, additional fiberglass rods shall be used (applies to delta circuits).

Guy hook TG13 requires 1, $\frac{3}{4}$ " diameter through bolt (upper hole position) and 2, 4" x $\frac{1}{2}$ " diameter lag screws (lower hole positions).

12.5M DOWN GUY ASSEMBLY			
ISSUE	PAGE NUMBER		SMA
7/17	3-105	OVERHEAD CONSTRUCTION STANDARD	ppl

CU = GUY-3-106,25MDOWN	GROUNDED 25M GUY - WYE PRIMARY (FIG #1)
CU = GUY-3-106,25MDWN2-TI95C	INSULATED 25M GUY - DELTA PRIMARY (FIG #2)

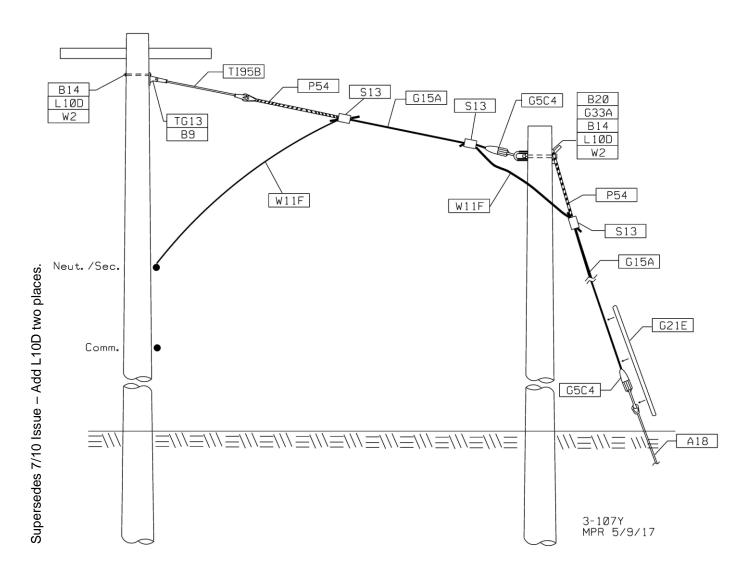

NOTE 1: If the lower fiberglass rod does not extend a minimum of 12" below the secondary attachment if the guy were slack against the pole, additional fiberglass rods shall be used (applies to delta circuits).

NOTE 2: Adjacent anchors to have a 4 foot minimum separation (for both wye and delta circuits).

	25M DOWN GUY ASSEMBLY			
	sal//>		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-106	7/17

CU = GUY-3-107D,12.5MSPANPRIDP	GUY,12.5M SPAN GUY- DELTA PRIMARY	(SPAN GUY COMPONENTS ONLY)
CU = GUY-3-107D,12.5MDWNNOINS	GUY,12.5M DOWN NO INSUL- STUB POLE	(ANCHORED DOWN GUY WIRE)

CU = GUY-G15A.WIRE12.5M	GUY, G15A, WIRE 12.5M ALUMO-WELD	(GUY WIRE ONLY)	

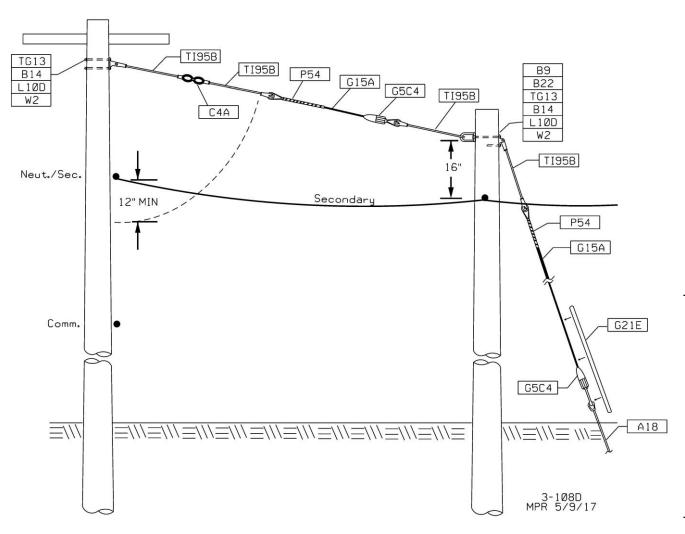


NOTE 1: If the lower fiberglass rod does not extend a minimum of 12" below the secondary attachment if the guy were slack against the pole, additional fiberglass rods shall be used.

<u>NOTE 2:</u> It is acceptable to use the tail of the stub pole guy wire as a bond to the pole-to-pole guy wire, or vice versa. Otherwise, a piece of #4 solid copper wire should be used as a bond wire as shown in the drawing above. DO NOT bond to the preform or the bail of the automatic. These connections must be wire to wire and a compression connector must be used.

	STUB POLE GUY - DELTA CIRCUIT			
ISSUE	PAGE NUMBER		SMIZZ	
7/17	3-107D	OVERHEAD CONSTRUCTION STANDARD	ppl	

CU = GUY-3-107Y,12.5MSPANPRIYP	GUY,12.5M SPAN GUY- WYE PRIMARY	(SPAN GUY COMPONENTS ONLY)
CU = GUY-3-107Y,12.5MDWNGNOINS	GUY,12.5M DOWN GROUNDED NO INSUL- STUB POLE	(ANCHORED DOWN GUY WIRE)
CU = GUY-G15A,WIRE12.5M	GUY, G15A, WIRE 12.5M ALUMO-WELD	(GUY WIRE ONLY)

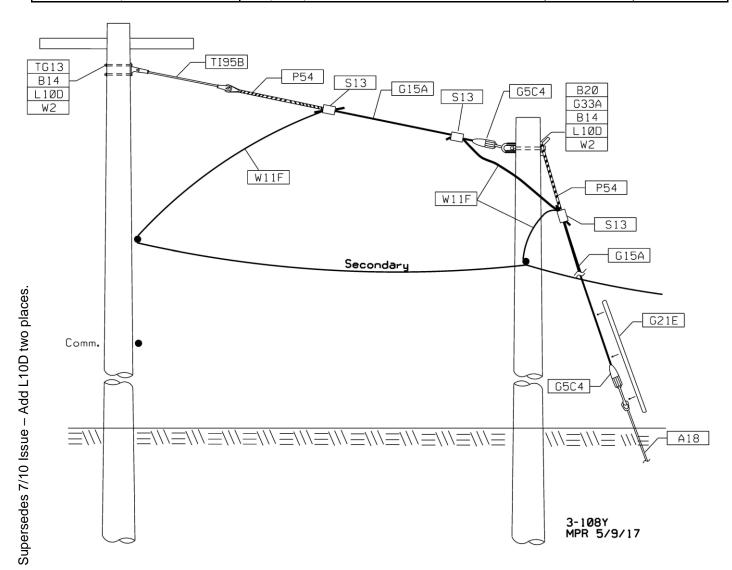


NOTE: It is acceptable to use the tail of the stub pole guy wire as a bond to the pole-to-pole guy wire, or vice versa. Otherwise, a piece of #4 solid copper wire should be used as a bond wire as shown in the drawing above. DO NOT bond to the preform or the bail of the automatic. These connections must be wire to wire and a compression connector must be used.

	STUB POLE GUY - WYE CIRCUIT			
	WIIV.		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-107Y	7/17

CU = GUY-3-108D,12.5MSPANSECDP	GUY,12.5M SPAN GUY, W/SEC - DELTA PRIMARY	(SPAN GUY COMPONENTS ONLY)
CU = GUY-3-108D,12.5MDWNW/INS	GUY,12.5M DOWN W /INSUL - STUB POLE	(ANCHORED DOWN GUY WIRE)

CU = GUY-G15A,WIRE12.5M	GUY, G15A, WIRE 12.5M ALUMO-WELD	(GUY WIRE ONLY)

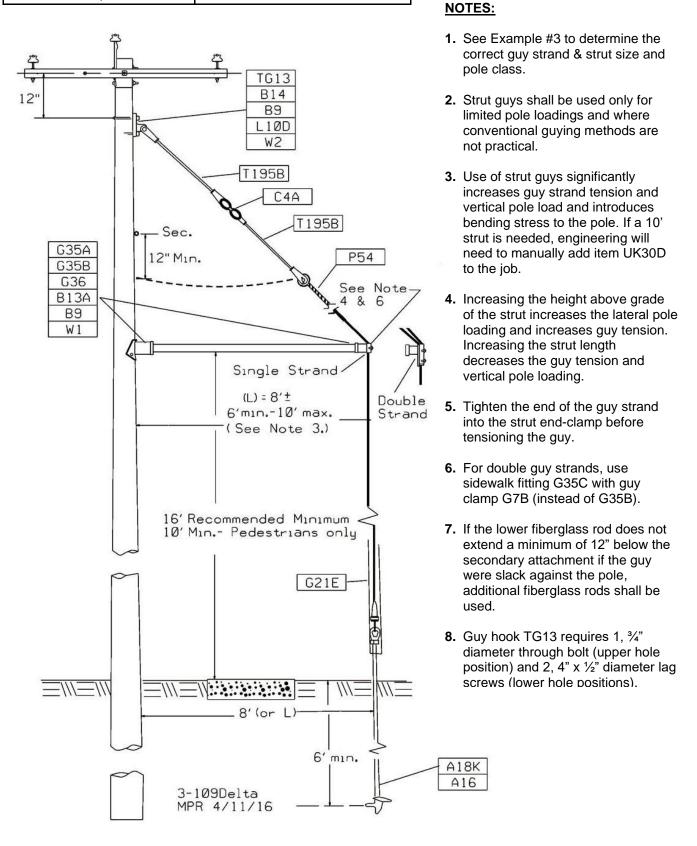

NOTE: If the lower fiberglass rod does not extend a minimum of 12" below the secondary attachment if the guy were slack against the pole, additional fiberglass rods shall be used.

Guy hook TG13 on the pole side requires 2, $\frac{3}{4}$ " diameter through bolts. Guy hook TG13 on the stub pole requires 1, $\frac{3}{4}$ " diameter through bolt (upper hole position) and 2, 4" x $\frac{1}{2}$ " diameter lag screws (lower hole positions).

	STUB GUY WITH SECONDARY - DELTA CIRCUIT			
ISSUE	PAGE NUMBER		SMIZE	
7/17	3-108D	OVERHEAD CONSTRUCTION STANDARD	ppl	

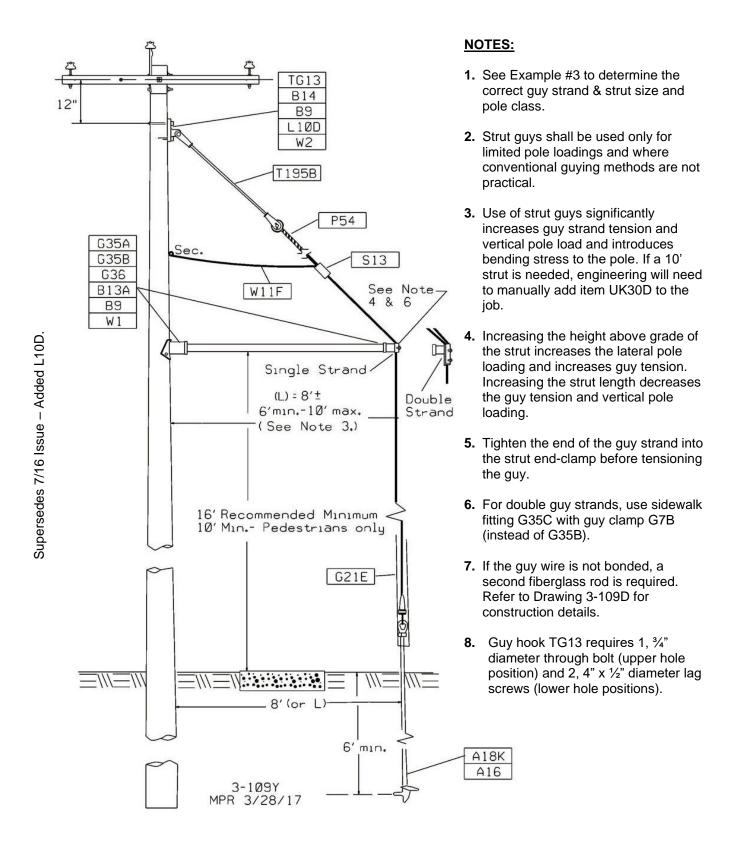
CU = GUY-3-108Y,12.5MSPANSECYP	GUY, 12.5M SPAN GUY, W/SEC - WYE PRIMARY	(SPAN GUY COMPONENTS ONLY)
CU = GUY-3-108Y,12.5MDWNGNOINS	GUY, 12.5M DOWN GROUNDED NO INSUL- STUB POLE	(ANCHORED DOWN GUY WIRE)

CU = GUY-G15A, WIRE 12.5M GUY, G15A, WIRE 12.5M ALUMO-WELD (GUY WIRE ONLY)



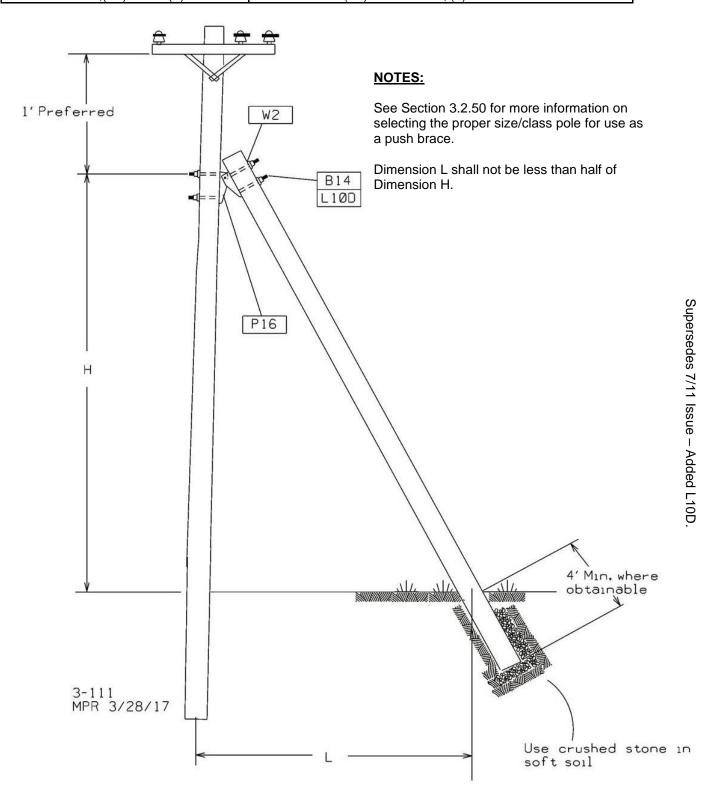
NOTE: It is acceptable to use the tail of the stub pole guy wire as a bond to the pole-to-pole guy wire, or vice versa. Otherwise, a piece of #4 solid copper wire should be used as a bond wire as shown in the drawing above. DO NOT bond to the preform or the bail of the automatic. These connections must be wire to wire and a compression connector must be used.

STUB POLE GUY WITH SECONDARY - WYE CIRCUIT			
17.		PAGE NUMBER	ISSUE
OVERHEAD CONSTRUCTION STANDARD		3-108Y	7/17

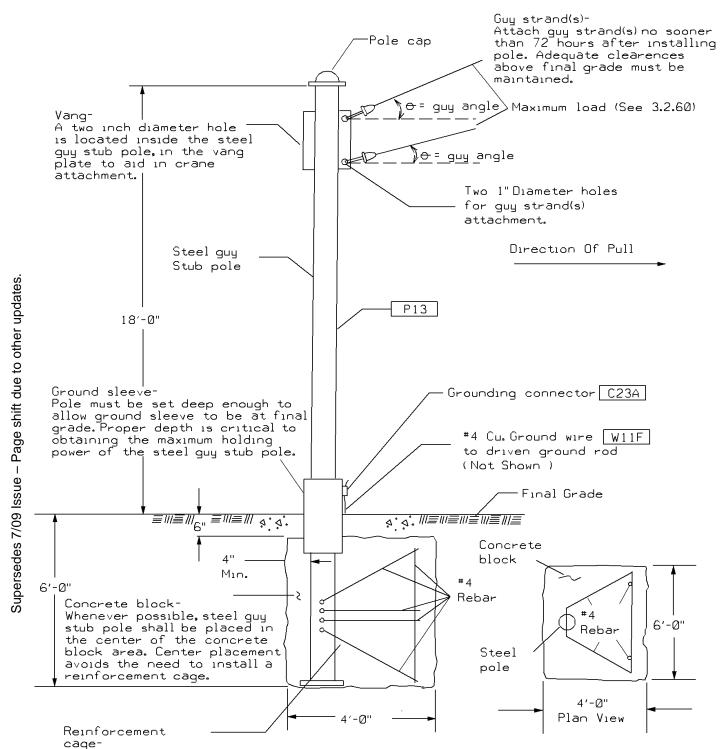

ppl

CU = GUY-3-109D,12.5MSTRUT	12.5M STRUT GUY - DELTA PRIMARY
CLL = GLIY-3-109D 25MSTRUT	25M STRUT GUY - DELTA PRIMARY

SIDEWALK/STRUT GUY - DELTA CIRCUIT			
ISSUE	PAGE NUMBER		WWZ
7/17	3-109D	OVERHEAD CONSTRUCTION STANDARD	ppl


CU = GUY-3-109Y,12.5MSTRUT	12.5M STRUT GUY- WYE PRIMARY
CU = GUY-3-109Y,25MSTRUT	25M STRUT GUY - WYE PRIMARY

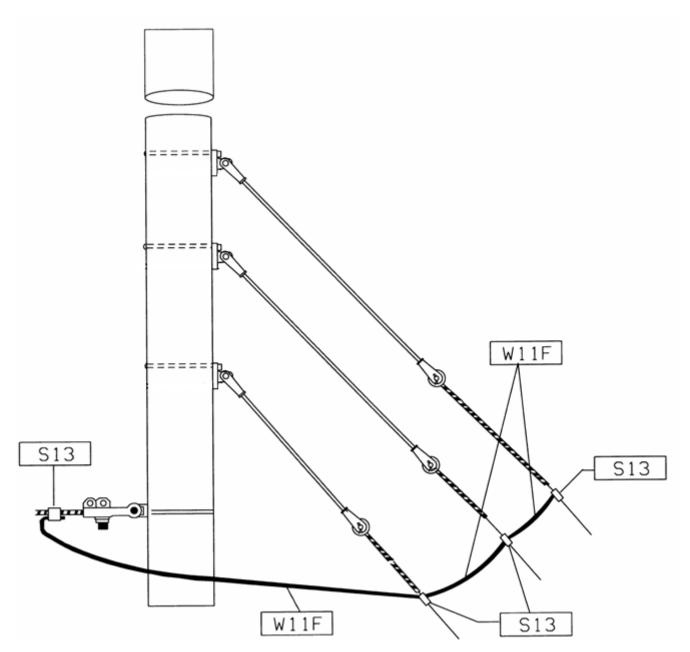
Business Use


S	SIDEWALK/STRUT GUY - WYE CIRCUIT		
		PAGE NUMBER	ISSUE
	OVERHEAD CONSTRUCTION STANDARD	3-109Y	7/17

CU = PBR-3-111,(XX)'CLASS(Y)	PUSH BRACE – (XX) = POLE SIZE, (Y) = POLE CLASS
CU = PBR-3-111,(XX)'CLASS(Y)JO	PUSH BRACE -(XX) = POLE SIZE, (Y) = POLE CLASS - TEL SET

PUSH BRACE			
ISSUE	PAGE NUMBER		SMIZZ
7/17	3-111	OVERHEAD CONSTRUCTION STANDARD	ppl

CU = ANC-3-112,STLGUYSTUBPOLE STEEL GUY STUB


In cases where center placement is not practical, the steel guy stub pole may be placed anywhere within the concrete block, but in no case closer than 4 inches from an outside edge. Off center placement requires the installation of a reinforcement cage, as shown Figure 1, in order to engage the mass of concrete in holding the steel guy stub pole. Reinforcement cage shall consist of four horizontal members, each one, #4 rebar formed into a triangle, held in place vertically by two # 4 rebars.

	STEEL GUY STUB POLE			
	WW.		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-112	7/10

© 2022 PPL Corporation. All rights reserved.

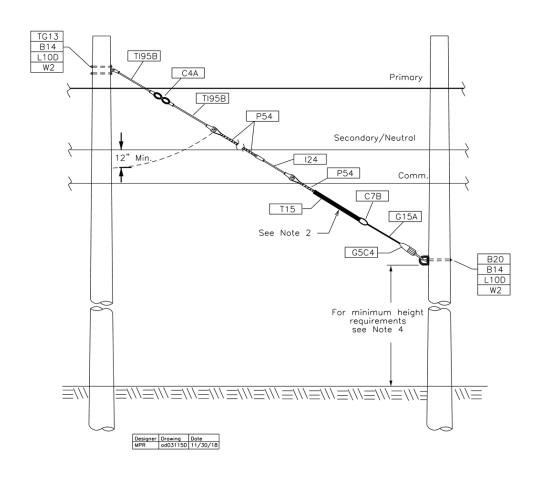
Doc. # ST. 03.00.002

CU = GUY-3-114,BONDGUY BONDING GUY

Supersedes
1/06
1/06 Issue
Updated
5

BONDING GUYS			
ISSUE	PAGE NUMBER		SMIZZ
7/09	3-114	OVERHEAD CONSTRUCTION STANDARD	ppl

CU = GUY-G15A,WIRE12.5M

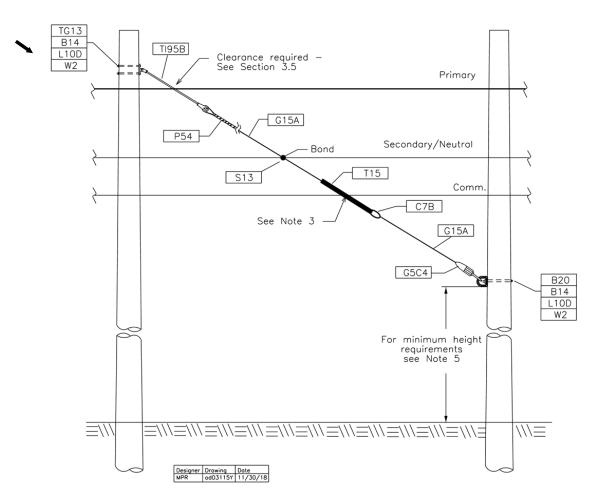

CU = GUY-3-115D,12.5MPOLE-POLE

(SPAN GUY COMPONENTS ONLY)

GUY, G15A, WIRE 12.5M ALUMO-WELD

GUY,12.5M POLE TO POLE - DELTA PRIMARY

(GUY WIRE ONLY)

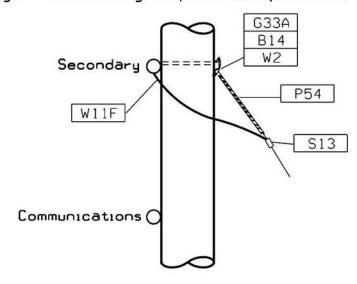

NOTES:

- 1. Always use a minimum of two fiberglass rods (54" minimum length) at the top of the guy where it is attached near the primary wires. If the lower fiberglass rod does not extend a minimum of 12" past the secondary if the guy were slack against the pole, additional fiberglass rods shall be installed. Install one fiberglass rod (12" minimum length) placed in the guy wire so that it sits between the secondary and communication cables.
- 2. Per the NESC, 6" of clearance is required between the guy wire and any communication cables. This clearance may be reduced to no less than 3" if abrasion protection (Std Item T15) is added to the guy wire.
- 3. The pole to pole guy wire must be installed with the minimum clearances to primary conductors shown in the table in Section 3.5. For most installations, this will require off-setting the center phase from a pole top pin to a crossarm, even if the guy wire is attached to the pole below the primary conductor. Refer to Figure 8 in Section 3.5 for more information.
- 4. A minimum clearance of 15' 6" is required if the guy wire is above driveways, parking lots, alleys, and other land possibly traversed by vehicles that are more than 8' in height or by riders on horses or other large animals. If spaces and ways are subject to pedestrian or restricted traffic only (areas where riders on horses or other large animals, vehicles, or other mobile units exceeding a total height of 8' are prohibited by regulation or permanent terrain configurations), a minimum height of 9' 6" may be used (NESC Rule 232B, Table 232-1).
- 5. If the lower end of the guy wire is attached above all communication attachments, the 12" fiberglass rod (I24) is not needed.
- 6. If installing a span guy on pole with no primary wires, all secondary and communication clearances, assembly hardware, and bonding shown in the figure above are required.

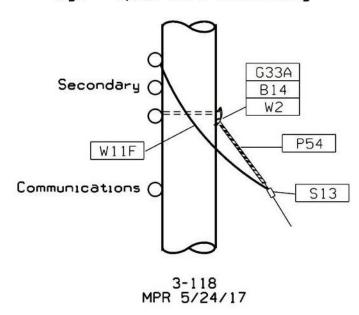
	POLE TO POLE GUY (SPAN GUY) - DELTA CIRCUIT			
	SMI/Zz		PAGE NUMBER I	ISSUE
Use	ppl	OVERHEAD CONSTRUCTION STANDARD	3-115D	7/21

CU = GUY-3-115Y,12.5MPOLE-POLE | GUY,12.5M POLE TO POLE - WYE PRIMARY (SPAN GUY COMPONENTS ONLY)

CU = GUY-G15A,WIRE,12.5M GUY, G15A, WIRE 12.5M ALUMO-WELD (GUY WIRE ONLY)

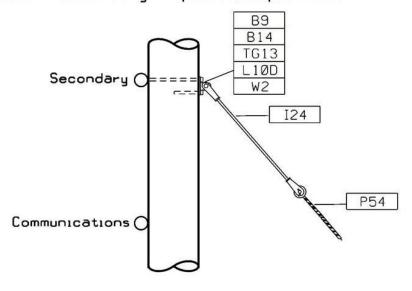


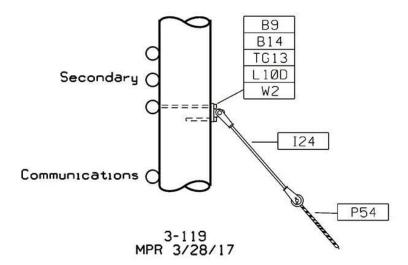
NOTES:


- 1. Always use a minimum of one fiberglass rod (54" length minimum) at the top of the guy where it is attached near the primary wires.
- 2. Bond the guy wire to the neutral as the guy wire passes the secondary cable using a compression connector.
- 3. Per the NESC, 6" of clearance is required between the guy wire and any communication cables. This clearance may be reduced to no less than 3" if abrasion protection (Std Item T15) is added to the guy wire.
- 4. The pole to pole guy wire must be installed with the minimum clearances to primary conductors shown in the table in Section 3.5. For most installations, this will require off-setting the center phase from a pole top pin to a crossarm, even if the guy wire is attached to the pole below the primary conductor. Refer to Figure 8 in Section 3.5 for more information.
- 5. A minimum clearance of 15' 6" is required if the guy wire is above driveways, parking lots, alleys, and other land possibly traversed by vehicles that are more than 8' in height or by riders on horses or other large animals. If spaces and ways are subject to pedestrian or restricted traffic only (areas where riders on horses or other large animals, vehicles, or other mobile units exceeding a total height of 8' are prohibited by regulation or permanent terrain configurations), a minimum height of 9' 6" may be used (NESC Rule 232B, Table 232-1).
- 6. If installing a span guy on pole with no primary wires, all secondary and communication clearances, assembly hardware, and bonding shown in the figure above are required.

POLE TO POLE GUY (SPAN GUY) - WYE CIRCUIT			
ISSUE	PAGE NUMBER	AMI/	
7/21	3-115Y	OVERHEAD CONSTRUCTION STANDARD	ppl

Wye - Secondary Triplex/Quadplex/Etc


Wye - Open Wire Secondary

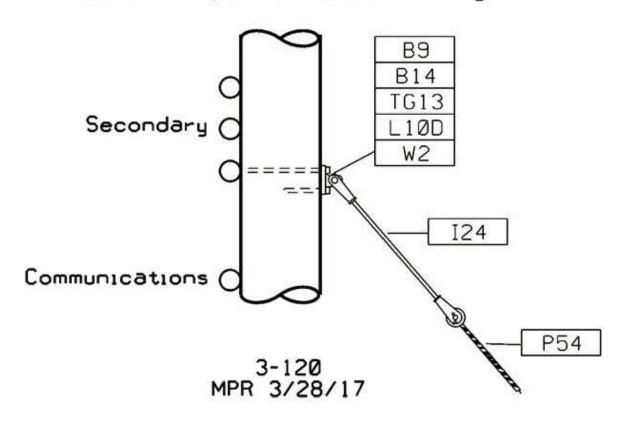

NOTE: For guy wire placement related to other secondary configurations on the pole, see Pages 10-100 and 10-101.

	SECONDARY GUY WIRES - WYE CIRCUIT				
	SMIZZ		PAGE NUMBER	ISSUE	
: U	se ppl	OVERHEAD CONSTRUCTION STANDARD	3-118	7/17	

Delta - Secondary Triplex/Quadplex/Etc

Delta - Open Wire Secondary

<u>NOTE</u>: For guy wire placement related to other secondary configurations on the pole, see Pages 10-100 and 10-101.

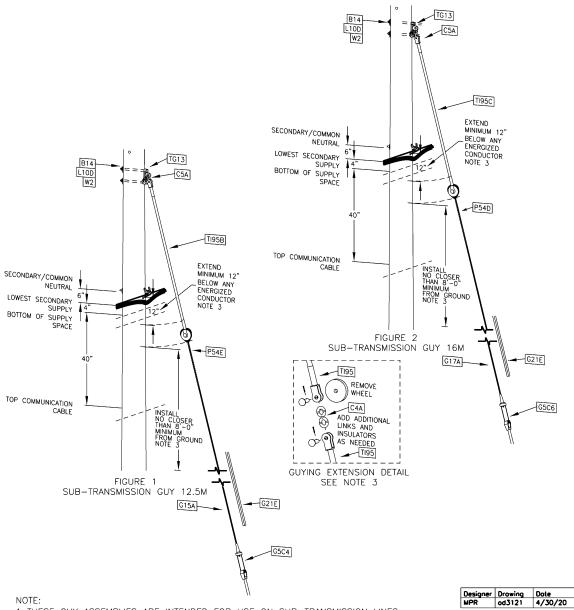

Guy hook TG13 requires 1, $\frac{3}{4}$ " diameter through bolt (upper hole position) and 2, 4" x $\frac{1}{2}$ " diameter lag screws (lower hole positions).

SECONDARY GUY WIRES - DELTA CIRCUIT				
ISSUE	PAGE NUMBER	WHILE		
7/17	3-119	OVERHEAD CONSTRUCTION STANDARD	ppl	

CU = GUY-3-120,12.5MDWNGSECOW

GUY, 12.5M DOWN GUY SECONDARY OPEN WIRE

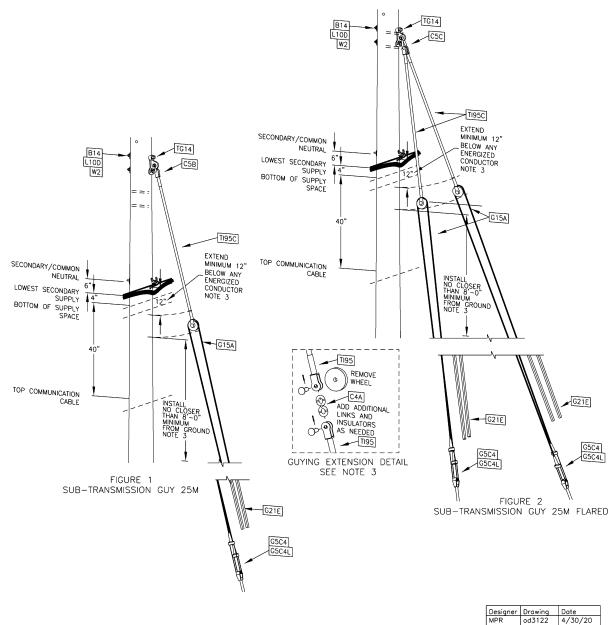
Delta - Open Wire Secondary



Note: Guy hook TG13 requires 1, $\frac{3}{4}$ " diameter through bolt (upper hole position) and 2, 4" x $\frac{1}{2}$ " diameter lag screws (lower hole positions).

GUYING OPEN WIRE SECONDARY RACKS (WYE AND DELTA)			
W	OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER 3-120	ISSUE	
ppl		3-120	7/17

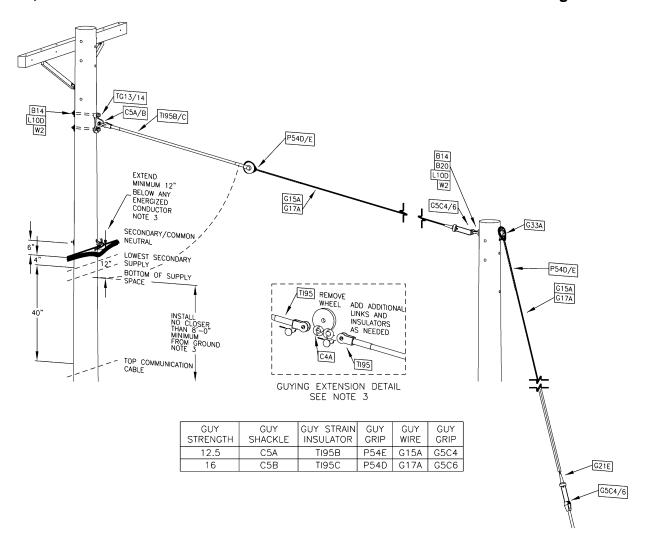
Supersedes 7/16 Issue – Add W2, add L10D.


NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission and Sub-transmission with distribution accounting.

- 1. THESE GUY ASSEMBLIES ARE INTENDED FOR USE ON SUB-TRANSMISSION LINES.
- 2. GUY PLATE TG13 REQUIRES ONE, 3" DIAMETER BOLT (B14) IN THE UPPER HOLE POSITION AND 2, 12" LAG BOLTS (B9) IN THE TWO LOWER HOLE POSITIONS FOR GUY LEADS AT 1:1 OR LESS (SHORTER). FOR GUY LEADS GREATER THAN 1:1 (LONGER), USE TWO, 34" (B14) BOLTS IN THE TOP AND BOTTOM.
- 3. FIELD SHALL INSTALL ADDITIONAL GUY STRAIN INSULATORS (TI-95C) OR POSITION THE GUY STRAIN INSULATORS SUCH THAT IF THE GUY WIRE/SPAN GUY BECOMES BROKEN OR SLACK OR IF AN ENERGIZED CONDUCTOR BECOMES SLACK THE FOLLOWING SAFETY CONDITIONS MUST BE MET:
 A) ANY PART OF THE GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED DUE TO CONTACT WITH AN ENERGIZED
 - CONDUCTOR SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
 - B) THE ENTIRE GUY STRAIN INSULATOR ATTACHED TO A GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
 - C) THE GUY STRAIN INSULATORS SHALL BE INSTALLED TO LIMIT THE LIKELIHOOD OF AN ANCHOR GUY BECOMING A CONDUCTIVE PATH BETWEEN AN ENERGIZED CONDUCTOR OR PART AND A CONDUCTOR OF ANOTHER CIRCUIT

SUB-TRANSMISSION DOWN GUY 12.5M AND 16M ISSUE **PAGE NUMBER OVERHEAD** Business Use 3-121 **CONSTRUCTION STANDARD**

NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission and Sub-transmission with distribution accounting.



NOTE:

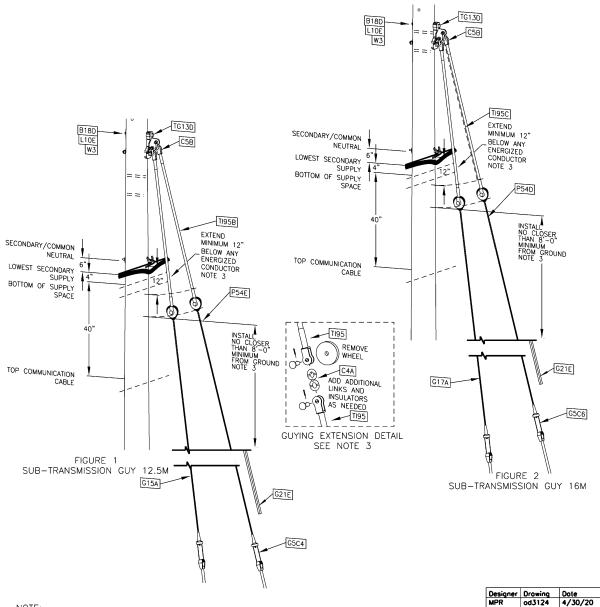
- 1. THESE GUY ASSEMBLIES ARE INTENDED FOR USE ON SUB-TRANSMISSION LINES.
- 2. GUY PLATE TG14 REQUIRES TWO, $\frac{\pi}{4}$ DIAMETER BOLT (B14) IN BOTH THE UPPER AND LOWER HOLE POSITIONS FOR ALL INSTALLATIONS.
- 3. FIELD SHALL INSTALL ADDITIONAL GUY STRAIN INSULATORS (TI-95C) OR POSITION THE GUY STRAIN INSULATORS SUCH THAT IF THE GUY WIRE/SPAN GUY BECOMES BROKEN OR SLACK OR IF AN ENERGIZED CONDUCTOR BECOMES SLACK THE FOLLOWING SAFETY CONDITIONS MUST BE MET:
 - A) ANY PART OF THE GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED DUE TO CONTACT WITH AN ENERGIZED CONDUCTOR SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
 - B) THE ENTIRE GUY STRAIN INSULATOR ATTACHED TO A GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
 - C) THE GUY STRAIN INSULATORS SHALL BE INSTALLED TO LIMIT THE LIKELIHOOD OF AN ANCHOR GUY BECOMING A CONDUCTIVE PATH BETWEEN AN ENERGIZED CONDUCTOR OR PART AND A CONDUCTOR OF ANOTHER CIRCUIT

SUB-TRANSMISSION DOWN GUY SINGLE AND FLARED – 25M OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 3-122 7/20

NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission and Sub-transmission with distribution accounting.

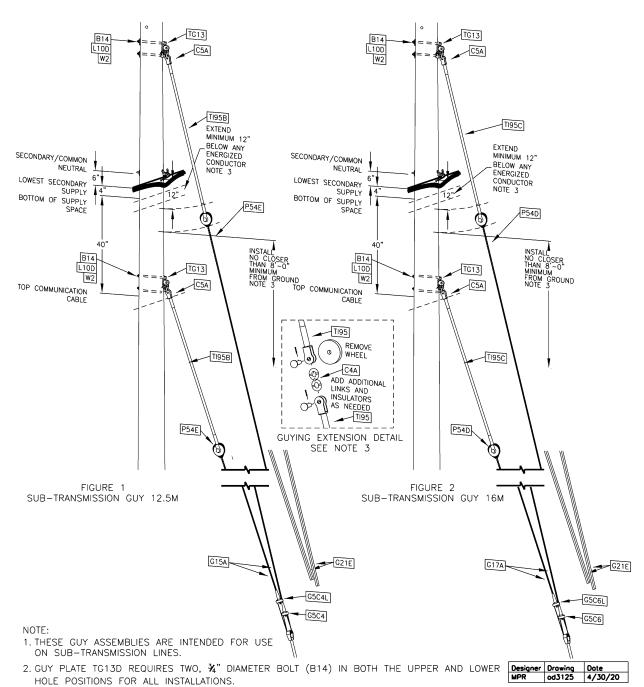
Desig	ner Dro	wing	Date
MPR	od3	123	4/30/20

NOTE:


- 1. THESE GUY ASSEMBLIES ARE INTENDED FOR USE ON SUB-TRANSMISSION LINES.
- 2. GUY PLATE TG13 AND TG14 REQUIRE TWO, 1/4" DIAMETER BOLT (B14) IN BOTH THE UPPER LOWER HOLE POSITIONS FOR ALL INSTALLATIONS.
- 3. FIELD SHALL INSTALL ADDITIONAL GUY STRAIN INSULATORS (TI-95C) OR POSITION THE GUY STRAIN INSULATORS SUCH THAT IF THE GUY WIRE/SPAN GUY BECOMES BROKEN OR SLACK OR IF AN ENERGIZED CONDUCTOR BECOMES SLACK THE FOLLOWING SAFETY CONDUCTORS MUST BE MET.
- THE FOLLOWING SAFETY CONDITIONS MUST BE MET:

 A) ANY PART OF THE GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED DUE TO CONTACT WITH AN ENERGIZED CONDUCTOR SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
- B) THE ENTIRE GUY STRAIN INSULATOR ATTACHED TO A GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
- C) THE GUY STRAIN INSULATORS SHALL BE INSTALLED TO LIMIT THE LIKELIHOOD OF AN ANCHOR GUY BECOMING A CONDUCTIVE PATH BETWEEN AN ENERGIZED CONDUCTOR OR PART AND A CONDUCTOR OF ANOTHER CIRCUIT

		SUB-TRANSM	ISSION STUB POLE GUY – 12.5M	AND 16M
	ISSUE	PAGE NUMBER		WHA
Busi	7/20 ness Use	3-123	OVERHEAD CONSTRUCTION STANDARD	ppl

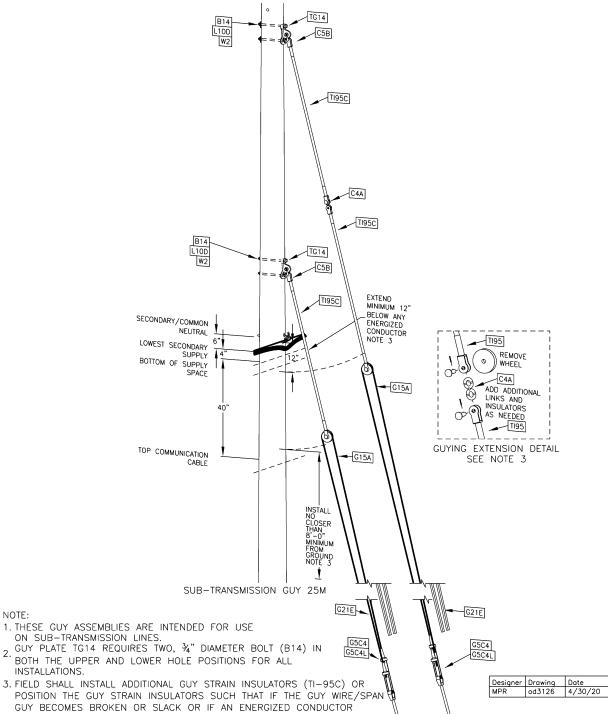

Doc. # ST. 03.00.002

NOTE: Refer to NG's MU/CU Construction Manual for appropriate CUs to use for Distribution, Sub-transmission and Sub-transmission with distribution accounting.

- NOTE:
- 1. THESE GUY ASSEMBLIES ARE INTENDED FOR USE ON SUB-TRANSMISSION LINES.
- 2. GUY PLATE TG13D REQUIRES TWO, 1/8" DIAMETER BOLT (B18) IN BOTH THE UPPER LOWER HOLE POSITIONS FOR ALL INSTALLATIONS.
- 3. FIELD SHALL INSTALL ADDITIONAL GUY STRAIN INSULATORS (TI-95C) OR POSITION THE GUY STRAIN INSULATORS SUCH THAT IF THE GUY WIRE/SPAN GUY BECOMES BROKEN OR SLACK OR IF AN ENERGIZED CONDUCTOR BECOMES SLACK THE FOLLOWING SAFETY CONDITIONS MUST BE MET:
 - A) ANY PART OF THE GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED DUE TO CONTACT WITH AN ENERGIZED CONDUCTOR SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
 - B) THE ENTIRE GUY STRAIN INSULATOR ATTACHED TO A GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
 - C) THE GUY STRAIN INSULATORS SHALL BE INSTALLED TO LIMIT THE LIKELIHOOD OF AN ANCHOR GUY BECOMING A CONDUCTIVE PATH BETWEEN AN ENERGIZED CONDUCTOR OR PART AND A CONDUCTOR OF ANOTHER CIRCUIT

SUB-TRANSMISSION DOUBLE GUY – 12.5M AND 16M OVERHEAD CONSTRUCTION STANDARD OVERHEAD 3-124 7/20

- 3. FIELD SHALL INSTALL ADDITIONAL GUY STRAIN INSULATORS (TI-95C) OR POSITION THE GUY STRAIN INSULATORS SUCH THAT IF THE GUY WIRE/SPAN GUY BECOMES BROKEN OR SLACK OR IF AN ENERGIZED CONDUCTOR BECOMES SLACK THE FOLLOWING SAFETY CONDITIONS MUST BE MET:
 - A) ANY PART OF THE GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED DUE TO CONTACT WITH AN ENERGIZED CONDUCTOR SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
 - B) THE ENTIRE GUY STRAIN INSULATOR ATTACHED TO A GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
 - C) THE GUY STRAIN INSULATORS SHALL BE INSTALLED TO LIMIT THE LIKELIHOOD OF AN ANCHOR GUY BECOMING A CONDUCTIVE PATH BETWEEN AN ENERGIZED CONDUCTOR OR PART AND A CONDUCTOR OF ANOTHER CIRCUIT


SUB-TRANSMISSION DOUBLE GUY SINGLE ANCHOR – 12.5M AND 16M

Business Use PAGE NUMBER

7/20
3-125

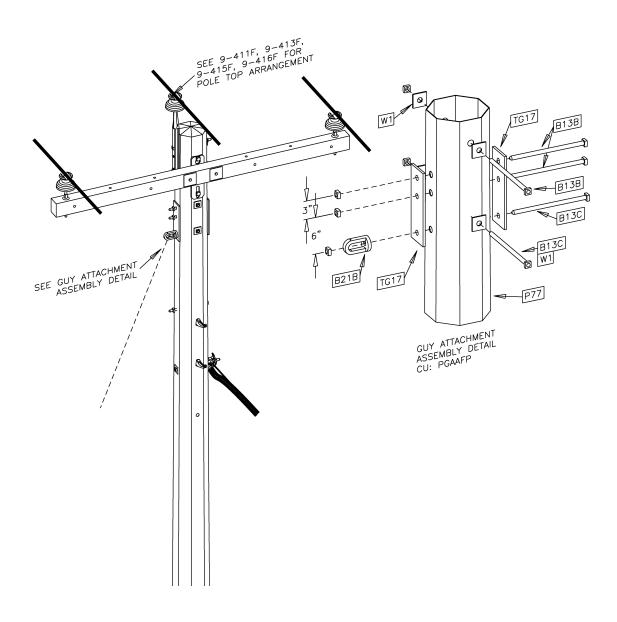
OVERHEAD CONSTRUCTION STANDARD

NOTE: 1. THESE GUY ASSEMBLIES ARE INTENDED FOR USE

BOTH THE UPPER AND LOWER HOLE POSITIONS FOR ALL INSTALLATIONS.

3. FIELD SHALL INSTALL ADDITIONAL GUY STRAIN INSULATORS (TI-95C) OR POSITION THE GUY STRAIN INSULATORS SUCH THAT IF THE GUY WIRE/SPAN GUY BECOMES BROKEN OR SLACK OR IF AN ENERGIZED CONDUCTOR BECOMES SLACK THE FOLLOWING SAFETY CONDITIONS MUST BE MET:

A) ANY PART OF THE GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED DUE TO CONTACT WITH AN ENERGIZED CONDUCTOR SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.


- B) THE ENTIRE GUY STRAIN INSULATOR ATTACHED TO A GUY WIRE/SPAN GUY THAT MAY BECOME ENERGIZED SHALL NOT BE LESS THAN 8' ABOVE GROUND LEVEL.
- C) THE GUY STRAIN INSULATORS SHALL BE INSTALLED TO LIMIT THE LIKELIHOOD OF AN ANCHOR GUY BECOMING A CONDUCTIVE PATH BETWEEN AN ENERGIZED CONDUCTOR OR PART AND A CONDUCTOR OF ANOTHER CIRCUIT

SUB-TRANSMISSION DOWN GUY DOUBLE ANCHOR - 25M

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER ISSUE**

3-126 7/20 © 2022 PPL Corporation. All rights reserved.

Designer	Drawing	Date
MPR	od03127	5/15/20

FIBERGLASS POLE GUYING ATTACHMENT			
ISSUE	PAGE NUMBER		SMIZZ
7/20	3-127	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 03.00.002

		GUYING		
	W	OVERHEAR	PAGE NUMBER	ISSUE
Business U	ppl (se	OVERHEAD CONSTRUCTION STANDARD	3-BLANK	7/20

Version	Date	Modification	Author(s)	Approval by (Name/Title)
13	7/21	Update note 6 on pp 3-115D and 3-115YAdded dialogue in Section 3.1.30		
12	7/20	 Correct drawings on pp3-121, 3-123, 3-124, 3-125, and 3-126 Added drawing 3-127 		
11	7/19	 Corrected drawing on pp 3-115D, 3-115Y, and 3-125 Corrected calculation on example 3-35 Corrected title to 3-126. 		
10	7/18	 Corrected footnotes no pp 3-31 and 3-34. Added Existing Insulated Guy Wire Configuration Guide pp 3-12A and 3-12B. 		
9	7/17	 Corrected example #1 Sec 3.7.30 and example #2, Sec 37.40. Revised drawings 3-105, 106, 107D, 107Y, 108D, 108Y, 109D, 109Y, 111, 115D, 115Y, 118 thru 124. Added new drawings 3-125 and 3-126 		
8	7/16	 Added Sub-Transmission guy drawing 3-121, 3-122, 3- 123 and 3-124. 		
7	7/15	 Revised drawing 3-102 to eliminate anchor rod stick-up requirement of 6"-10" and added screw anchor embedment requirement. Eliminated guy hook TG10. Added additional bolt information about guy hook TG13 and TG14. Revised drawings 3-105, 3-108D, 3-109D, 3-109Y, 3-119 and 3-120 		
6	7/13	Added steel stub pole design guide		
5	7/12	Added provisions for span guys with no primary wires (drawings 3-115D and 3-115Y).		
4	7/11	 Removed open wire secondary information from 3-118 and 3-119 and created new drawing 3-120 with the information. Revised material used for abrasion protection on span guys (drawings 3-115D and 3-115Y). Added Section 3.4.60 - Guying on multi-circuit structures. 		

	S	SUMMARY OF RECENT CHANGES	
ISSUE	PAGE NUMBER		SMA
7/21	3-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 03.00.002

	7/40		
3	7/10	Revisions made to entire section - rearranged information in order to make information assign to	
		information in order to make information easier to	
		 locate and understand. Removed Drawings 3-99, 3-101, 3-113, 3-116, and 3- 	
		• Removed Drawings 3-99, 3-101, 3-113, 3-116, and 3-117. All information from these pages is now in the text	
		portion of the section.	
		Revised Drawings 3-105 and 3-106 - Updated Primary	
		Guy Wires on Delta Systems.	
		 Revised 3-107 - now split into two drawings to show 	
		differences between stub pole guys on delta and wye	
		systems.	
		 Revised 3-108 - now split into two drawings to show 	
		differences between sidewalk guys on delta and wye	
		systems.	
		Revised 3-115 - now split into two drawings to show	
		differences between pole to pole guys on delta and	
		wye systems.	
		 Added Drawing 3-118 to show secondary guy wires on a wye system. 	
		 Revised Drawing 3-119 to show only secondary wires 	
		on a delta system.	
2	7/09	Revised wording on pages 3-10 & 3-79	
		 Updated CUs on drawings 3-102, 3-103, 3-104, 3- 	
		105, 3-106, 3-107, 3-108, 3-109, 3-111, 3-112, 3-114,	
		3-115.	
		Added Page 3-117, 3-118 & 3-119	
1	7/08	Section 3.0 modified to clarify bonding and insulation	
		requirements.	
		Section 3.2.10 – Corrected solid rock soil	
		classification to Class 0.	
		Corrected section numbering (3.5.10 and 3.5.20). Stop 1. Action Added reference to Section 10 and 1.5.20.	
		 Step 1, Action – Added reference to Section 10 on page 3-51. 	
		 Step 1, Action – Added reference to Section 10 on 	
		page 3-54	
		 Modified note 4 and drawing on page 3-115. 	
		Added column on right hand side of table on page 3-	
		116.	
		 Added pages 3-117, 3-118 & 3-119 	

SUMMARY OF RECENT CHANGES			
SW/A	OVERHEAD		ISSUE
ppl	CONSTRUCTION STANDARD	3-NOTES	7/20

SECTION	PAGE
4.0 GENERAL	4-1
o 4.0.10 Storm Hardening	4-1
o 4.0.20 Objectives	4-1 THRU 4-2
 4.0.30 Implementation Through Standards 	4-2 THRU 4-3
4.1 APPLICATION TO NEW CONSTRUCTION	4-4
o 4.1.10 Critical Structures	4-4 THRU 4-6
 4.1.20 Preventing Cascading 	4-6 THRU 4-7
o 4.1.30 Coastal Areas	4-7
4.2 STORM HARDENING EXISTING LINES	4-8
 4.2.10 Critical Structures 	4-8 THRU 4-9
 4.2.20 Preventing Cascading 	4-9
o 4.2.30 Coastal Areas	4-9 THRU 4-10
o 4.2.40 Other Items	4-10
4.3 FUTURE UPDATES	4-11

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 04.00.001

This page left intentionally blank.

STORM HARDENING INDEX			
ISSUE	PAGE NUMBER		WHZ
7/18	4-ii	OVERHEAD CONSTRUCTION STANDARD	ppl

Business Use

4.0 GENERAL

Electric utilities have been experiencing more frequent and severe storms over the past several years. At the same time, customer expectations for electric power have changed and interruptions lasting days are no longer acceptable.

Distribution grid resilience may be defined as: "the ability to withstand and reduce the magnitude and/or duration of disruptive events, which includes the capability to anticipate, absorb, adapt to, and/or rapidly recover from such an event." IEEE Technical Report PES-TR65, The Definition and Quantification of Resilience, Page 2, April 2018. In looking at resilience, we look at two time horizons – near-term and long-term. Near-term considerations for resilience focus on operation and restoration after a major event. Long-term considerations focus on infrastructure improvements that must be done before a major event – including aspects of grid operation, vegetation management, and electrical and structural strength and robustness of distribution system components. Resilience considers all hazards and events, including high-impact low-probability events that are commonly excluded from reliability reporting. Often for distribution systems, it is more effective to make the network smarter and more responsive to extreme weather events rather than making the network more redundant. The storm hardening standards discussed in this section focus on one aspect of resilience – making distribution system components more resilient electrically and structurally.

Design, construction and operational changes can approach improved distribution performance during extreme weather events in a number of distinct ways by: (i) reducing the number of customers experiencing outages, (ii) reducing the duration of outages when they are experienced by customers and (iii) mitigating the impact to customers during outages in the distribution system. Distribution resiliency improvements can be achieved through changes in design standards, construction practices, material specifications, and maintenance, inspection and restoration practices. Standards revisions discussed in this section are centered on design standards, construction practices, material specifications. Maintenance, inspection and restoration practices are not addressed in these standards and are being addressed in appropriate operating practices.

PPL is supporting a Grid Resiliency Research Program at the Electric Power Research Institute (EPRI) through funding and participation in the research program's steering committee. This continuing work includes reviewing a number of alternatives: reinforcing overhead distribution structures, adding breakaway devices in overhead conductor supports to reduce overhead structure damage, undergrounding all or portions of the distribution system, and smart grid and distribution automation options to reduce the number of customers affected by distribution system problems. As additional information becomes available from EPRI, its recommendations will be evaluated for inclusion in these standards as appropriate.

4.0.10 Storm Hardening

Our experience is that during extreme weather events, most of the damage to our overhead distribution system is caused by falling limbs and trees. The approaches discussed here attempt to reduce electrical outages caused by trees and limbs or reduce structural damage caused by trees and limbs that cause electrical outages. In particular, the standards discussed here are aimed at limiting the numbers of customers affected by tree and limb related outages and limiting the duration of those outages by allowing partial restoration of feeders and allowing quicker restoration of damaged lines.

4.0.20 Objectives

The standards discussed here are aimed at hardening critical structures and preventing damage to large numbers of structures through cascading failures from a single tree or limb.

Where an individual structure failure would cause outages on multiple feeders or would prevent or slow the restoration of service to customers, such structures are considered critical structures. Tie point structures are considered critical structures because two separate feeders are attached to these structures and failure of a single tie point structure would affect customers on both feeders and the ability to restore service to our customers by transferring loads. Double circuit

STORM HARDENING OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 7/18

structures are considered critical structures because two separate feeders are attached to these structures and failure of a double circuit structure would affect customers on both feeders. Recloser structures are considered critical structures because we use reclosers to automatically isolate damaged potions of feeders from undamaged portions and a failure of a recloser structure would mean that customers on both sides of the recloser would remain out of service until the recloser structure could be repaired or replaced. Loadbreak switch structures are considered critical structures because crews use loadbreak switches to isolate damaged potions of feeders from undamaged portions and a failure of a loadbreak switch structure would mean that customers on both sides of the loadbreak switch would remain out of service until the loadbreak switch structure could be repaired or replaced. New and revised standards for hardening critical structures are discussed below.

A single tree or limb can cause the failure of a large number of structures through cascading. Stronger deadend crossarms and the insertion of periodic deadend structures in lines have been adopted as new standards to prevent the failure of large numbers of structures through cascading. The objective of these new standards is to provide faster restoration of service to our customers by preventing the failure of large numbers of structures caused by a single tree or limb.

4.0.30 <u>Implementation Through Standards</u>

While this section of the standards book describes and explains the changes that have been made to our standards for storm hardening, most of the actual changes to our standards are located in other sections of our standards. This is because many of these changes to our standards are intended to be part of our routine construction going forward, not just for use in strom hardening particular feeders.

A. Drawings in Other Sections

This is a list of standard drawings that have been modified to reflect the policies outlined in this section:

1.	9-415	1Φ (Delta) and 3Φ Crossarm Pole Top $-$ 0-15 kV $-$ 46° $-$ 60° Angles / Back-To-Back Deadends (Tangent)
2.	9-416	1Ф (Delta) and 3Ф Double Crossarm Pole Top – 0-15 kV – Angles -61° – 90° and Deadends
3.	9-417	1Ф (Delta) and 3Ф Double Crossarm Pole Top – 0-15 kV Deadends
4.	9-422	1Φ (Delta) and 3Φ (Wye) Crossarm Pole Top – 0-15 kV – To 1Φ (Delta) and 2Φ (Wye) 11° – 20° Tap
5.	9-424	1Φ (Delta) and 3Φ Double Crossarm Pole Top $-$ 0-15 kV Crossings 11°–45° / Angles 21°–45° $-$ Tao To 1Φ (Delta) and 2Φ (Wye)
6.	9-435	1Ф (Delta) and 3Ф Crossarm Pole Top – 0-15 kV – 0° – 10° Тар То 1Ф (Delta) or 3Ф Crossarm
7.	9-835	1Ф (Delta) and 3Ф Armless Pole Top – 0-15 kV – 0° – 20° – Тар To 3Ф Crossarm
8.	12-141	3Ф Primary Sectionalizing - Loadbreak Switch Below Crossarm Installation 15-35 kV
9.	12-142	3Ф Primary Sectionalizing – Conductor Deadend On Loadbreak Switch Installation 15-35 kV
10.	12-143	3Ф Primary Sectionalizing – Loadbreak Switch With Shunt Cutouts Installation 15-35 kV

		STORM HARDENING	
ISSUE	PAGE NUMBER		SMIZZ
7/18 Business	4-2 Use	OVERHEAD CONSTRUCTION STANDARD	ppl

11.	12-144	3Φ Primary Sectionalizing – Hook Stick Loadbreak Switch Below Crossarm Installation 15kV
12.	12-145	3Ф Primary Sectionalizing – Hook Stick Loadbreak Conductor Deadend On Switch Installation 15kV
13.	12-335	3Φ Electronic Recloser Effectively Grounded Installation 15-35kV
14.	12-338	3Φ Electronic Recloser Effectively Grounded Installation 12.47 kV, 13.2 kV, 13.8 kV Applications with Frame Mounted PTs

B. <u>Design Criteria Adopted in This Section</u>

The following items are design criteria are adopted in this section and are not otherwise found in the standards:

- 1. Section 4.1.10 D Multiple Circuit Structures
- 2. Section 4.1.20 B Periodic Deadends
- 3. Section 4.2 Storm Hardening Existing Lines

C. <u>Design Criteria in Other Sections</u>

A description of NESC Grade B design requirements has been added to the standards in Section 2 – Poles & Hardware.

	STORM HARDENING				
	SMIZZ		PAGE NUMBER	ISSUE	
se	ppl	OVERHEAD CONSTRUCTION STANDARD	4-3	7/18	

4.1 APPLICATION TO NEW CONSTRUCTION

Storm hardening standards are now part of our standards for all new construction. In the locations discussed in this section, storm hardened structures will be used for all new or replaced structures. The intent is that the storm hardening provisions discussed in this section become a routine part of all future construction at PPL.

There is no standards requirement to modify existing lines to meet these new standards. However, when a particular feeder or line segment is targeted for storm hardening based on its performance, follow the provisions of Section 4.2 – Storm Hardening Existing Lines, below.

4.1.10 <u>Critical Structures</u>

A. Tie Points

At the ends of feeders, tie points allow the transfer of customer load from one distribution circuit (feeder) to another. The structure at this tie point becomes critical to system performance during extreme weather events because a structure failure will take both circuits out of service (affecting customers on both circuits) and prevent the transfer of load from one circuit to the other where one of the circuits is still in service. These structures can be strengthened by deadending conductors at the structure and strengthening the structure in the directions of the conductors on both sides of the tie point structure.

New Requirements: Our standards now require that all new or replaced structures at tie points be strong enough to remain standing if all of the wires in one direction are broken by falling trees and tree limbs. To meet this requirement, standards now require the following:

 When a new loadbreak switch or recloser is installed at a tie point structure, including replacements, meet the tie point strength requirements by following current standards for the new loadbreak switch or recloser. These standards can be found at 12-141, 12-142, 12-143, 12-144, 12-145, 12-335 and 12-338.

Note: Standards 12-141, 12-144, 12-335 and 12-338 require class H1 minimum poles for the pole supporting the loadbreak switch or recloser. Standards 12-142, 12-143 and 12-145 require both poles adjacent to the loadbreak switch pole to be class H1 minimum poles.

When a new tie point is established without a loadbreak switch or recloser or a tie point structure without a loadbreak switch or recloser is replaced, (i) conductors at the tie point structure shall be deadended in both directions and (ii) the structure shall use a class H1 minimum pole. See standard 9-415 for an appropriate deadend structure.

B. Reclosers / Automatic Switches

Throughout our distribution system, we have a large number of switching points that are used to isolate customers on one part of a feeder from problems on another part of the feeder. Some of these switching points, reclosers, sectionalizers, Scadamate switches and remote controlled loadbreak switches, are parts of automated switching schemes. Failures of these structures affect our ability to quickly restore service to customers on unaffected parts of feeders. As with switching devices at tie points between feeders, these structures can be strengthened by deadending conductors at the structure and strengthening the structure in the directions of the conductors on both sides of the tie point structure.

		STORM HARDENING	
ISSUE	PAGE NUMBER		WIVE
7/18 Business	4-4 Use	OVERHEAD CONSTRUCTION STANDARD	ppl

Our standards now require that all new or replaced structures with reclosers or other automatic switches be strong enough to remain standing if all of the wires in one direction are broken by falling trees and tree limbs. To meet this requirement, standards now require the following:

- 1. When a new three phase recloser is installed, including replacements, meet the strength requirements for the recloser by following the current standards for the new recloser. These standards can be found at 12-335 and 12-338. EXCEPTION: When replacing a G&W Viper recloser installed before July 1, 2015, if the existing pole is a class 2 minimum, the pole does not need to be replaced with a class H1 minimum pole.
- a. <u>Note</u>: Standards 12-335 and 12-338 require class H1 minimum poles for the pole supporting the loadbreak switch or recloser.

C. <u>Manually Operated Loadbreak S</u>witches

Throughout our distribution system, we have a large number of switching points that are used to isolate customers on one part of a feeder from problems on another part of the feeder. Manually operated loadbreak switches are parts of switching schemes used to restore customers during storm events. Failures of these structures affect our ability to quickly restore service to customers on unaffected parts of feeders. As with switching devices at tie points between feeders, these structures can be strengthened by deadending conductors at the structure and strengthening the structure in the directions of the conductors on both sides of the tie point structure.

New Requirements: Our standards now require that structures supporting or surrounding all new or replaced manually operated loadbreak switches be strong enough to remain standing if all of the wires in one direction are broken by falling trees and tree limbs. This requirement does not apply to structures supporting disconnect switches. To meet this requirement, standards now require the following:

- 1. When a new loadbreak switch is installed with conductors on a separate crossarm above the loadbreak switch (preferred standards 12-141 and 12-144), including replacements, (i) conductors at the loadbreak structure shall be deadended in both directions and (ii) the structure shall use a class H1 minimum pole. EXCEPTION: When replacing a set of underslung disconnect switches with a hookstick operated loadbreak switch (standard 12-144), if the existing pole is a class 3 minimum, the pole does not need to be replaced with a class H1 minimum pole.
- When a new loadbreak switch is installed with conductors deadended on the loadbreak switch frame (non-preferred standards 12-142 and 12-145), including replacements, strengthen the adjacent structures on both sides of the loadbreak switch structure by: (i) deadending conductors in both directions and (ii) use a class H1 minimum pole. See standard 9-415 for an appropriate deadend structure.

D. Multiple Circuit Structures

Where a single line of poles supports multiple circuits, each of the structures in this line becomes critical to system performance during extreme weather events because a structure failure will take both circuits out service (affecting customers on both circuits). Multiple circuit lines are typically the first part of the feeders near the source substations and extend until the feeders can be separated to go off in different directions to supply customers in different areas. This practice allows all of the circuits coming out of a substation to leave the substation on the public way in front of the substation or on private

		OTODALIADDENINO				
	STORM HARDENING					
	SMIZZ		PAGE NUMBER	ISSUE		
ness Use	ppl	OVERHEAD CONSTRUCTION STANDARD	4-5	7/18		

rights-of way. An outage in this portion of line will interrupt service to all or most of the customers on each feeder.

As discussed above, ongoing EPRI research is investigating the level of strengthening required to prevent lines from falling down when struck by trees and tree limbs.

New Requirements: Until the EPRI results are available, new multiple three-phase circuit lines shall be designed to NESC Grade B requirements. This new design requirement will require stronger conductors, attachments and structures. While implementation of new standard requirement will help reduce mechanical damage caused by trees and limbs, it will not reduce electrical contacts caused by trees and tree limbs and will not eliminate the outages associated with those electrical contacts. Guidance for applying NESC Grade B requirements has been added to Section 2 – Poles and Hardware of our standards. This requirement applies only where there is more than one three-phase circuit line on the structure.

Another option for addressing some of the issues with multiple circuit lines is to eliminate multiple circuit structures by installing the circuits, or all but one of the circuits, underground rather than on a common line of poles. This option would help reduce electrical contacts, as well as mechanical damage, caused by trees and tree limbs and the associated outages. While often not practical, consideration should be given to this option, particularly where additional future circuits along the same route are expected.

4.1.20 <u>Preventing Cascading</u>

A. Periodic Deadends

Portions of overhead distribution lines with a large number of tangent (straight line) pole structures between deadend or other stronger structures may experience cascading failures of poles. When all or most of the wires on one side of a pole are broken, the tension of the wires on the other side of the pole will break poles designed for tangent loads. These failures will cascade down a line of poles until the failures reach a pole with enough strength to withstand the unbalanced loads. Poles with deadends, such as junction poles, and poles with higher strength for other reasons, such as equipment poles and poles with line angles, will often provide adequate strength to stop cascading failures. This strategy will reduce the duration of outages experienced by our customers by limiting cascading failures will limit the number of poles that will have to be replaced at any one location and help reduce the duration of outages experienced by our customers during major storm events.

New Requirements: For new lines in new locations and when major work is performed on a line segment, the design should allow a maximum of 20 spans (19 structures) between structures adequate to stop cascading failures. Deadend structures, junction structures, structures with a line angle over 15 degrees, or storm hardened tie point, recloser or loadbreak structures described above are considered adequate to stop cascading failures. See standard 9-415, 9-715 and 16-115 for examples of appropriate deadend structures. In spacer cable construction, only the messenger must be deadended.

When the EPRI research described above is complete, this alternative will be reevaluated and compared to new alternatives developed in the EPRI research for costs and effectiveness in reducing cascading failures.

B. Deadend Crossarms

Because we are counting on structures with deadends to stop cascading failures, we have reviewed the strength of deadend crossarm alternatives. The fiberglass deadend crossarms that we already use in some special applications are stronger and may give us

STORM HARDENING					
ISSUE	PAGE NUMBER		SMIZZ		
7/19	4-6	OVERHEAD CONSTRUCTION STANDARD	ppl		

Business Use

a longer service life than our standard double wood crossarms for deadend installations. and may give us a longer service.

New Requirements: For most structures with deadend crossarms, we have replaced double wood deadend crossarms with fiberglass deadend crossarms in most of our standard deadend and junction pole structures. These new updated standards can be found at 9-415, 9-416, 9-417, 9-422, 9-424, 9-435 and 9-835 and are intended for use for all new and replacement structures of these types.

While we have incorporated fiberglass crossarms in most of our common structures with deadend crossarms, a number of double wood crossarm applications remain in our standards. These are structures where the double wood crossarms are used in non-deadend applications, such as large running angles, or where the double crossarms are used for mounting special equipment.

4.1.30 Coastline Areas

A. Coastline Areas

For purposes of this section, a "Coastline Area" is any area within 1/2 mile of a saltwater coastline. This definition is different than the "Coastline Area" definition used in Section 8 – Coastline Construction of these standards. As used here, the term "Coastline Area" does not include areas known to experience with heavy road salt contamination that are not within 1/2 mile of a saltwater coastline.

B. Pole Strength Requirements

When new poles are installed in Coastline Areas, install poles that are one pole strength class higher than would otherwise be required by other parts of these standards. Exception: This one pole strength class higher requirement does not apply to poles installed to meet requirements for critical structures in Section 4.1.10 above.

In Coastline Areas, poles will generally be exposed to higher direct wind loads than poles further inland. Distribution poles within 1/2 mile of a saltwater coastline may be directly exposed to severe winds during major storm events. Our historic experience indicates that inland pole failures during these events are the result of damage from trees and flying debris rather than from direct wind loading on poles and wires.

STORM HARDENING				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	4-7	7/19	

4.2 STORM HARDENING EXISTING LINES

Storm hardening standards are now part of our standards for all new or replaced structures. There is no standards requirement to modify existing lines to meet these new standards. However, when a particular feeder or line segment is targeted for storm hardening based on its performance, follow the provisions should be followed:

4.2.10 <u>Critical Structures</u>

A. Tie Points

Our standards now require that all new or replaced structures at tie points be strong enough to remain standing if all of the wires in one direction are broken by falling trees and tree limbs. When storm hardening an existing line, we recommend the following for tie point structures:

- Where an existing tie point structure has a loadbreak switch or recloser, the tie point strength requirements may be met by (i) meeting the strength requirements for a new loadbreak switch or recloser at a tie point (see Section 4.1.10(A)(1) above) or (ii) strengthening adjacent structures on both sides of the tie point structure. When strengthening adjacent structures, (i) deadend conductors in both directions and (ii) use a class H1 minimum pole. See standard 9-415 for an appropriate deadend structure.
- Where an existing tie point structure does <u>not</u> have a loadbreak switch or recloser, (i) conductors at the tie point structure shall be deadended in both directions and (ii) the structure shall use a class H1 minimum pole. See standard 9-415 for an appropriate structure.

B. Reclosers / Automatic Switches

Our standards now require that all new or replaced structures with reclosers or other automatic switches be strong enough to remain standing if all of the wires in one direction are broken by falling trees and tree limbs. When storm hardening an existing line, we recommend the following for structures supporting reclosers or other automatic switches:

1. Where an existing structure has a three phase recloser, the recloser structure strength requirements may be met by (i) following the current standards for reclosers or (ii) strengthening adjacent structures on both sides of the recloser structure. Standards for recloser structures can be found at 12-335 and 12-338. Adjacent structures may be strengthened by (i) deadending conductors in both directions and (ii) using a class H1 minimum pole. See standard 9-415 for an appropriate deadend structure.

C. Manually Operated Loadbreak Switches

Our standards now require that structures supporting or surrounding all new or replaced manually operated loadbreak switches be strong enough to remain standing if all of the wires in one direction are broken by falling trees and tree limbs. This requirement does not apply to structures supporting disconnect switches. When storm hardening an existing line, we recommend the following for manually operated loadbreak switch structures:

 Where an existing loadbreak switch has conductors on a separate crossarm above the loadbreak switch, the loadbreak switch strength requirements may be met by (i) following the current standards for new loadbreak switches or (ii) strengthening adjacent structures on both sides

STORM HARDENING					
ISSUE	PAGE NUMBER		WIVE		
7/18	4-8	OVERHEAD CONSTRUCTION STANDARD	ppl		

of the loadbreak switch structure. The standards for these loadbreak switch structures can be found at 12-141 and 12-145. When strengthening adjacent structures, (i) deadend conductors in both directions and (ii) use a class H1 minimum pole. See standard 9-415 for an appropriate deadend structure.

2. Where an existing loadbreak switch structure has conductors deadended on the fiberglass switch arm, strengthen adjacent structures on both sides of the loadbreak switch structure by: (i) deadending conductors in both directions and (ii) using a class H1 minimum pole. See standard 9-415 for an appropriate deadend structure.

D. Multiple Circuit Structures

Our standards now require new multiple circuit lines to be designed to NESC Grade B requirements. Application of this new design requirement to multiple circuit portions of feeders to be storm hardened is recommended. This new design requirement will require stronger conductors, attachments and structures. While implementation of new standard requirement will help reduce mechanical damage caused by trees and limbs, it will not reduce electrical contacts caused by trees and tree limbs and will not eliminate the outages associated with those electrical contacts. Guidance for applying NESC Grade B requirements has been added to Section 2 – Poles and Hardware of our standards.

4.2.20 <u>Preventing Cascading</u>

A. Periodic Deadends

For new lines in new locations and when major work is performed on a line segment, our standards now recommend that the design should allow a maximum of 20 spans (19 structures) between structures adequate to stop cascading failures. Deadend structures, junction structures, structures with a line angle over 15 degrees, or storm hardened tie point, recloser or loadbreak structures described above are considered adequate to stop cascading failures. Application of this new design requirement to multiple circuit portions of feeders to be storm hardened is recommended

B. Deadend Crossarms

New Requirements: For most structures with deadend crossarms, we have replaced double wood deadend crossarms with fiberglass deadend crossarms in most of our standard deadend and junction pole structures. These new updated standards can be found at 9-415, 9-416, 9-417, 9-422, 9-424, 9-435 and 9-835 and are intended for use for all new and replacement structures of these types. When storm hardening an existing line, we recommend that double wood deadend crossarms be visually inspected and that crossarms showing signs of decay, splitting or other defects be replaced. The new replacement crossarms should be installed to current standards for new or replaced crossarms.

4.2.30 Coastline Areas

A. <u>Coastline Areas</u>

For purposes of this section, a "Coastline Area" is any area within 1/2 mile of a saltwater coastline. This definition is different than the "Coastline Area" definition used in Section 8 – Coastline Construction of these standards. As used here, the term "Coastline Area" does not include areas known to experience with heavy road salt contamination that are not within 1/2 mile of a saltwater coastline.

B. Pole Strength Requirements

STORM HARDENING				
SMZ.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	4-9	7/18	

Our standards now require that all new or replaced poles in Coastline Areas, be installed with poles that are one pole strength class higher than would otherwise be required by other parts of these standards. Exception: This one pole strength class higher requirement does not apply to poles installed to meet requirements for critical structures in Section 4.2.10 above.

4.2.40 Other Items

A. <u>Lightning Arresters</u>

When storm hardening an existing line, we recommend reviewing the application of lightning arresters on the line for compliance with current standard practices. In particular, where a feeder has a history of poor performance during lightning events, compliance with the reliability based practices in Section 13.6.40 of these standards is recommended.

B. Crossarms

When storm hardening an existing line, we recommend that double wood crossarms be visually inspected and that crossarms showing signs of decay, splitting or other defects be replaced. The new replacement crossarms should be installed to current standards for new or replaced crossarms.

C. Coastal Construction

When storm hardening an existing line in areas covered by our coastal construction standards, we recommend reviewing the existing line against our coastal construction standards (see Section 8 – Coastal Construction) and visually inspecting the line for signs of tracking or corrosion. Such areas are areas within 1/2 mile of a saltwater coastline, areas beyond 1/2 mile from a saltwater coastline where experience shows that the area experiences heavy salt spray and areas where experience shows that the area experiences heavy road salt contamination. Insulators showing visible signs of tracking and electrical connectors showing visible signs of corrosion should be replaced.

	STORM HARDENING					
ISSUE	PAGE NUMBER		AMIZZ			
7/18 Business	Use 4-10	OVERHEAD CONSTRUCTION STANDARD	ppl			

4.3 **FUTURE UPDATES**

This standard and the practices described in it continue to be works in progress. As results become available from the ongoing EPRI work, the practices outlined in this standard will be reviewed to implement best practices based on the available information.

Business Use

STORM HARDENING

OVERHEAD PAGE NUMBER ISSUE
CONSTRUCTION STANDARD

4-11

7/18

Version	Date	Modification	Author(s)	Approval by (Name/Title)
5	7/19	Updated 4.1.10(D) to indicate that Grade B construction is only required for lines with multiple three-phase circuit lines		
4	7/18	 Updated Section 4.0 information about EPRI research programs. Added an exception in Section 4.1.10(B)(1) to the requirement to use a class H1 pole for new reclosers. 		
3	7/17	 Added an exception in 4.1.10(C) (1) to the requirement to use a class H1 pole for all hookstick loadbreak switches. Added additional examples of drawings for deadending conductors to prevent cascading failures and clarified that only the messenger must be deadended in spacer cable construction – Section 4.1.20(A). 		
2	7/16	 Corrected References to Section 3 – Poles & Hardware. Clarified application of requirements for applying new standards in Sections 4.1.10 and 4.2.10. Added new requirements for Coastal Areas – Sections 4.1.30 and 4.2.30. Copyright notice headers and repaging revisions throughout the section. 		
1	7/15	Limited H1 pole requirement for reclosers to three phase reclosers at 4.1.10(B) and 4.2.10(B).		

	SUMMARY OF RECENT CHANGES				
ISSUE	PAGE NUMBER		WIII		
7/19	4-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl		

		CONNECTORS INDEX					
Γ	MIZ		PAGE NUMBER	ISSUE			
Se	ppl	OVERHEAD CONSTRUCTION STANDARD	5-i	7/20			

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 05.00.001

CONNECTORS INDEX						
ISSUE	PAGE NUMBER		MIZ			
7/08	5-ii	OVERHEAD CONSTRUCTION STANDARD	ppl			

© 2022 PPL Corporation. All rights reserved.

5.0 GENERAL

Automatic, bolted, and compression type connectors are used for all work on the overhead distribution system. All connectors shall be installed using the correct tools, dies, and connectors. Each connector has a specific location to be used (See Page 5-111). Some exceptions may be made for temporary work or for connections that may have to be removed. **Note:** <u>All</u> conductors shall be thoroughly cleaned (wire brushed) prior to connector installation.

5.1 <u>SELECTION OF CONNECTORS</u>

Connector items shall be selected from Pages 5-111 and 5-112. Details of the size range and die index numbers are shown on the material list. Corresponding conductor range and die information, the number of crimps required, and the crimp-limit lines are printed or embossed on the connectors as well. Unless a compression connector, or its packaging, is properly marked for the wire size and die information, a bolted connector shall be employed.

5.2 LOCATION OF CONNECTORS

Splices shall be located where they are needed, but they will not be used on conductors crossing over railroads or limited access highways, or in spans on either side of those crossings.

Automatic tension splices shall not be used on services or slack spans conductors.

When aluminum cables are joined to copper, efforts should be made to keep the aluminum above the copper, and oxide-inhibiting compound/grease (G9B) should be applied between the surfaces.

When installing taps, allow sufficient slack and properly train the tap conductor to avoid putting stress on the connection or conductors.

5.3 CONDUCTOR PREPARATION

Conductor surface preparation is essential to ensure proper contact between conductors and the connector. Surface oxidation and contaminants will greatly interfere with the establishment of a sound electrical connection. An insulating oxide naturally forms on all conductor surfaces exposed to air. The oxide formation is relatively quick and transparent to the eye. <u>Always</u> thoroughly wire brush the conductors (both new conductors and conductors in service) before making connections. <u>Never</u> use the same wire brush to clean both an aluminum and copper conductor. Copper contaminants transferred to the aluminum conductor will cause the aluminum conductor to corrode. The Standard Item for a wire brush is NTE1 in Section 22-Material Catalog.

5.4 INSULATION OF CONNECTORS

Splices and tap connectors on service/secondary conductors up to 600 V shall be covered with snap-on covers (C60). Bare messenger/neutral connectors shall not be covered.

Splices and tap connectors on bare primary conductors shall not be covered or taped.

Splices on tree wire/spacer cable conductors shall be covered or taped. Tree wire/spacer cable is considered a "covered" rather than "insulated" conductor. **Note**: **Always cover any unused, exposed bare conductor.** Splices on these conductors shall be taped or covered using one of the following methods:

- Gelwrap Cover (C62 & C63) Use on all 15 kV splices for 1/0 thru 795kcmil. Installation instructions
 are included in the cover package.
- Cold Shrink Cover (S16) This Cover is no longer available from the Manufacturer.
- Taped Cover Use on all 15 kV and 35 kV splices. See Section 16 for installation instructions.

	CONNECTORS				
	SWW.		PAGE NUMBER	ISSUE	
Business Us	nnl 🗏	OVERHEAD CONSTRUCTION STANDARD	5-1	7/17	

5.5 TYPES OF CONNECTORS

5.5.10 **Splices**

There are two types of Line splices: Automatic and Compression. Applications should be as specified in A and B below.

All splices must be located a minimum distance of 30 inches from pin insulators for all installations.

For tree wire and covered conductor splicing, remove covering with approved stripper for given conductor size and covering thickness. Always cover any unused, exposed bare conductor per section 5.4.

For Spacer Cable splicing, follow procedures outlined in Section 16. Stagger splices 30" inches from other phases. **Do not** use automatic line splices on spacer conductors.

A. Automatic Line Splices

An automatic line splice is a full tension splice for aluminum and copper conductors (Std. Items S19A thru S19V). They are to be used on full tension conductors only. They are not designed to be used on spacer cable phase conductors, slack spans, or secondary/service cable phase conductor. **Note:** Because service cable is a low tension conductor, an automatic splice shall <u>not</u> be used on a service cable messenger/neutral. See Page 5-141 for installation instructions.

B. <u>Compression Line Splices</u>

A compression splice can be a full tension, partial tension or non-tension splice for aluminum and copper conductors. Full tension splices are used on overhead bare wire and tree wire primary aluminum conductors (Std. Items S20B thru S20G and S20R1 thru S20R4) and copper conductors (Std. Items S23A thru S23N). **Note:** Although spacer cable phase conductors are a partial tension conductor, full tension compression splices shall be used. A partial tension splice is used for secondary/service messengers/neutrals (S22E thru S22H). A non-tension splice is used for non-tension conductors such as secondary/service phase conductors (Std. Items S26C and S26D). See Page 5-144 for installation instructions.

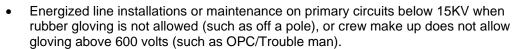
5.5.20 Taps

A. Bolted Connectors

There are several different types of bolted connectors presently used throughout the Company.

1. Parallel Groove Connector

The tap connector is the extruded aluminum parallel groove connector (Std. Items C7A thru C7J). This connector is used for overhead primary aluminum to aluminum or aluminum to copper tap connections. See Page 5-131 for connector sizes and range taking information. **Note:** Cast aluminum parallel groove connectors are not an approved connector and shall not be used for overhead tap connections.


2. Hot Line Clamp/Vice Connectors

NOT be used for temporary jumpers as noted in Standards Bulletin 05-05. The limited applications for hotline clamps/vice connectors are as follows:

Energized line installations on distribution class primary circuits above 15kV.

	CONNECTORS				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/12 ness Use	5-2	OVERHEAD CONSTRUCTION STANDARD	ppl	

Business U

- Energized line installations of equipment (such as sectionalizers and reclosers) on primary circuits.
- Energized line installations of a line regulator.
- Energized line installation of a lightning arrester. (**Note:** Non-energized arrester connections **MUST** be done with parallel groove or fired on wedge).
- Installation and removal of Current Limiting Fuses used for Capacitor Banks on energized line installations.

There are both clamp and vice type hot line connectors and they are applied as follows:

- Aluminum clamp type hot line connectors (Std. Items C24A thru C24C) are used
 to tap aluminum primary conductors with an aluminum or copper tap for
 transformers, capacitors, and primary taps. Bronze clamp type hot line
 connector (Std. Item C24D) is used to tap copper primary conductors with a
 copper tap for transformers, capacitors, and primary taps.
- Aluminum vice type hot line connectors (Std. Items C16C thru C16G) are used for mainline connections such as switches, reclosers, and regulators.

Note: Stirrups shall <u>not</u> be used for future installations. See Page 5-147 for installation instructions

3. Split Bolt Connector: Nantucket Use Only

The split bolt connector is a bronze connector for primary and service/secondary copper conductors only (Std. Items C27A thru C27E). This connector is used in Nantucket on overhead primary and service/secondary that is exclusively copper.

4. Vice Connector

The vice connector is a single bolt bronze connector for copper conductors only (Std. Items C6N1 thru C6N7). This connector is used for overhead primary copper conductors, streetlighting, and some grounding applications.

B. Compression Connectors

1. Secondary/Services Connections up to 600 Volts

The H-Tap compression connector is used for secondary/service connections up to 4/0 AWG aluminum to aluminum or aluminum to copper and 600 V maximum (Std. Items S13B thru S13LI). See Page 5-121 for installation information. For secondary/service connections above 600 V, bolted or fired-on wedge connectors shall be used.

2. Primary Connections

Primary compression tap connectors are not a standard connection and therefore shall not be used.

3. Grounding Connections

A C-type compression connector shall be used for bonding copper grounding conductors (Std. Items S14A thru S14L). This connector can be installed with a hand or battery operated tool.

CONNECTORS					
Wille	PAGE NUMBER	ISSUE			
seppl	OVERHEAD CONSTRUCTION STANDARD	5-3	7/12		

C. <u>Fired-on Wedge Connectors</u>

The fired-on wedge connector is used by the Company for overhead primary aluminum to aluminum, or aluminum to copper tap connections (Std. Items S15G thru S15R7). See Page 5-133 for installation information.

5.5.30 Deadends

Deadend connectors are a mechanical connection. They are designed to have a holding strength greater than the maximum tension of the conductor attached to it. They are not designed to be electrical connectors.

A. Bolted Deadends – Strain Clamps (Straight and Quadrant)

Used on distribution primary and larger secondary and service cables for deadening AAC, AAAC, and ASCR conductors. Remove covering on covered conductor before installing the clamps. To select the correct deadend for the conductor desired, See Section 22-Material Catalog Standard Items C13A1 thru C13Q.

B. Formed Deadends

Used for deadending primary and secondary and service cable messengers – AAC, AAAC, AWAC and CW. Also, may be used to deadend primary spacer cable phase conductors. Do not remove covering for latter application. Use with proper thimble clevis or thimble eye. **WARNING:** Do not use with tree wire construction. See Section 22-Material Catalog Standard Items P52A1 thru P52P, and P54A thru P54J.

5.5.40 <u>Terminations</u>

Terminal connectors are used on airbreak/loadbreak switches, transformers, disconnect switches, or any application from aluminum cable to flat aluminum or copper pad or bus bar. **Note:** For applications where taps from copper flat pads to aluminum cables are made, preferred practice is to install copper taps with copper terminal connectors at the copper pads and aluminum tap connectors at the aluminum cables. See Section 22-Material Catalog Std. Item C9.

5.6 COMPRESSION TOOLS AND DIES

Burndy tools and dies, to compress connectors on standard conductors from #6 AWG through 500kcmil, are available. The battery-operated tool can be used for work on services and secondaries up to 4/0 AWG. The hand-operated tool is also available for conductors up to 4/0 AWG.

The HYPRESS Y35 hand-operated hydraulic tool is used primarily for work with larger connectors on conductors through 500kcmil. Although the Y35 will accommodate the same conductor range as the hand-operated tool, it is not generally used on the smaller range conductors (4/0 or less) unless a great number of crimps are required or connectors are used that do not easily yield to compression.

When new tools are to be selected, the Kearny hand-operated tool and the HYPRESS Y35 and dies are suggested. See illustrated tools and a list of standard dies on Page 5-121.

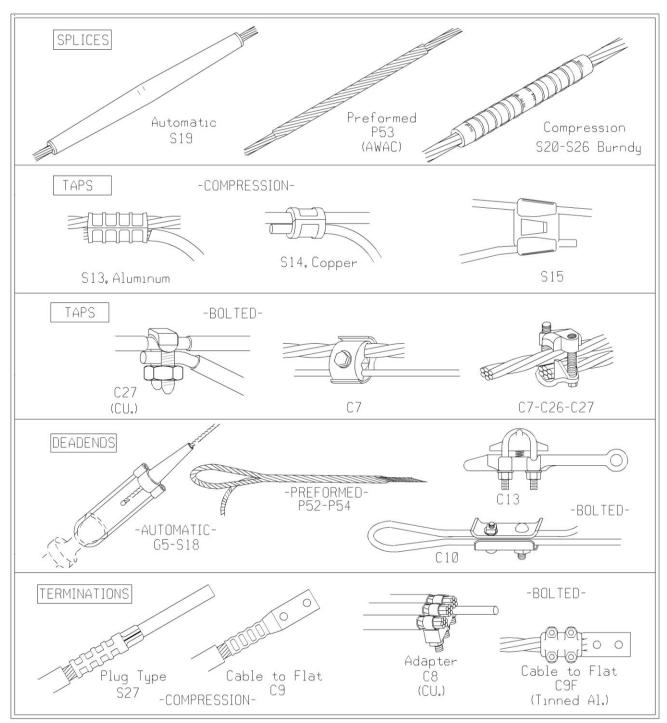
All compression tools shall be tested frequently to see that they are in adjustment. It is desirable that the test be made by the worker who will use the tool. See instructions furnished with the tool.

CONNECTORS					
ISSUE	PAGE NUMBER	MIN			
7/08	5-4	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 05.00.003

5.7 <u>SELECTION OF CONNECTORS</u>

The following table identifies the different types of connectors used for overhead distribution conductors. The connectors listed below are electrical connectors except for the deadend connectors, which are strictly a mechanical connection


APPLICATION	CONDUCTOR	RECOMMENDATED CONNECTOR (IDENTIFIED BY STD ITEM)				ITEM)
		AUTOMATIC	PREFORMED	COMPRESSION	WEDGE	BOLTED
SPLICES	AL. ACSR	S19 S19		S21 S20		
Full Tension	AWAC	040	P53	S20		
	STEEL CU & CCW	S19 S19		S23		
Partial Tension	AL & ACSR	S19		S22		
	AL.			S13, S26		C7,C26
	ACSR	DO NOT		S13		
Non-Tension	AL. & CU	USE		S13		C7,C26
	CU. CCW	002		S14,S24		C27 C27
TAPS	AL. & ACSR AL. & CU CU. & CCW			S13 S13 S14	S15 S15	C7,C16, C26 C7,C26,
IAFS	CU. & G.S.			S14		S16 C27,S17 C27
DEADENDS	AL. & ACSR AWAC	S18	P52 P54			C10,C13
Full Tension	STEEL CU. & CCW	G5	P54			C10,C13
TERMINATIONS Non-tension	AL. CU.			C9,S27 C9,S27		C9 C8,C9
HOT LINE TAPS	AL. & ACSR CU.					C16,C24 C24
GROUNDING & BONDING	CU.			S14		C23,G2, G4

Notes:

- 1. See Section 22-Material Catalog for Item ID's of each connector using the Standard Items shown above.
- 2. Full Tension (Class 1) Splice shall hold at least 95% of the strongest conductor's rated breaking strength.
- 3. Partial Tension (Class 2) Splice shall hold a minimum 40% of the strongest conductor's rated breaking strength.
- 4. Non-Tension (Class 3) Splice shall hold a minimum 5% of the strongest conductor's rated breaking strength and shall be used for applications such as loops, taps, multiplex cable phase conductors, etc.

		RS		
	SMIZZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	5-111	1/06

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 05.00.003

Notes:

- 1. Remove PE or other covering. Avoid nicking conductor.
- 2. Clean all AL and CU. conductors of oxide scale by wire brushing and oxide inhibitor (G9) on conductor if the connector is not inhibitor loaded.
- 3. For compression connections, follow package instructions. Check wire size, insert conductor fully and start indents at the center for splices and taps and near the closed end on termination type connectors. On covered service and secondary conductors and primary spacer cable, re-cover connections as shown on Pages 5-151 and 5-152 or use PE covers (C60) where applicable.
- 4. For installation of automatic splices and deadends, refer to Pages 5141 and 5-142.

	SELECTION OF CONNECTORS					
	ISSUE	PAGE NUMBER		AMIZZ		
Busine	ss 1/96	5-112	OVERHEAD CONSTRUCTION STANDARD PPI			

5.8 H-TAP CONNECTORS

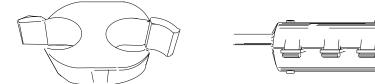


Figure 1

Figure 2

Table 1

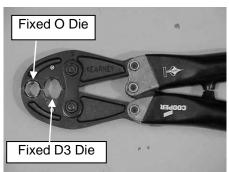
CONNECTOR SERIES ON BOX	H-TAP CONNECTOR (FIGURE 1) STD ITEM	600 V INSULATED COVER (FIGURE 2) STD ITEM
1	S13B	CCOF
2	S13H	C60E
4	S13J	
5	S13LI	C60G
6	S13L	Coog
7	S13KI	

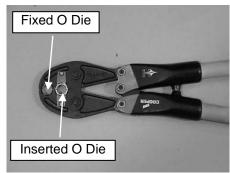
Table 2

CONNECTOR SERIES ON BOX	AL. to	RUN RANGE RUN R AL. to AL AL. t Or O AL. to CU AL. t		AL	DIE	# OF MECHANICAL OR BATTERY OPERATED	# OF HYDRAULIC TOOL
	Solid	Strand	Solid Strand		SIZE	TOOL CRIMPS	CRIMPS
1	#6 to #1	#6 to #1	#6 to #1	#6 to #1	0	4	2
2	#1 to 2/0	#3 to 2/0	#6 to 1/0	#6 to #1	0	5	2
4	2/0 to 4/0	#1 to 3/0	2/0 to 3/0	#1 to 2/0	D	5	2
5	250 to 300	4/0	#6 to 1/0	#6 to #1	D	5	2
6	250 to 300	3/0 to 4/0	2/0 to 3/0	#1 to 2/0	D	7	3
7	250 to 300	3/0 to 4/0	250 to 300	3/0 to 4/0	D	7	3

Installation Notes:

- For services and secondary connections up to 600 V, H-Tap compression connectors (Figure 1) and insulated covers (Figure 2) shall be used. The H-Tap connectors are for connections of 4/0 aluminum to aluminum or aluminum to copper conductors. Each connector is pre-filled with an oxide inhibitor to maintain a reliable electrical connection. Use insulated covers to insulate the live leg connectors up to 600 V. See Table 1 above for the correct cover to use with a given connector.
- 2. Each H-Tap connector is shipped in its own box. Each box contains information about the range taking and die size to use. These connectors also have a <u>Connector Series Number</u> that identifies their size. All suppliers use this numbering series. The numbers range from 1 to 7 as indicated on Table 1 and 2. These numbers are also on each connector box to help in selecting the correct connector. Note: The number 3 connector is missing from Table 1 and 2 above because its conductor range is not required in PPL territory.
- 3. Cables conductors where connections are required, use the Conductor Spreader Tool.
- 4. All conductors shall be cleaned (wire brushed) prior to connector installation.


	SELECTION AND INSTALLATION OF H-TAP CONNECTORS						
PAGE NUMBER							
se	ppl	OVERHEAD CONSTRUCTION STANDARD	5-121	7/13			

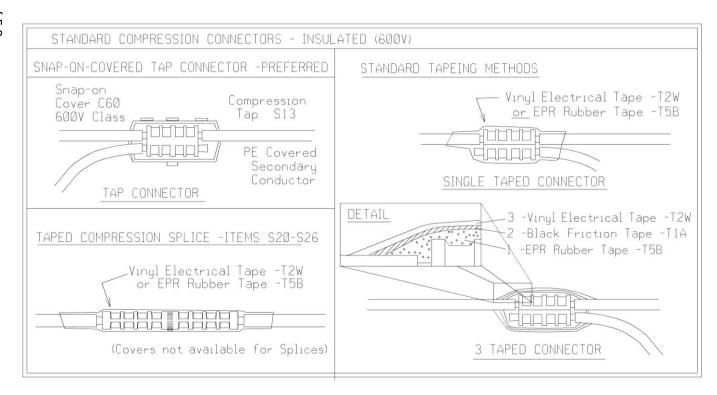

© 2022 PPL Corporation. All rights reserved.

- 5. For aluminum to copper connections, be sure the copper conductor is installed under the aluminum conductor.
- 6. For a temporary service, bolted connectors may be used if the company's service drop conductors will be remaining at the location (temporary to permanent). If all the conductors are to be removed, use the H-Tap connectors.
- 7. H-Tap connectors are non-removable. When replacing an existing conductor, remove the insulating cover from the connector, if one is installed, and cut the conductor as close as possible from the connector and recover the connector with a new plastic cover to re-insulate. Then, install a new connector with the new or existing conductor and cover the connector with the plastic insulating cover. Note: There is no need to insulate a neutral connection. Leaving the old H-Tap connectors on the conductor creates no electrical problem with the installation. If available space on the secondary conductor becomes a problem, cut out a section of old secondary conductor and splice in a new piece of conductor.
- 8. Warning: Do not use these connectors for copper to copper conductor connections.
- 9. H-Tap compression connectors can be installed with a mechanical, hydraulic or battery operated compression tool using an "O" or "D" die as indicated on Table 1. The tools have a build in "D" die. The "O" die is installed into the "D" die of the tool. To simplify the separation of multiplex

MECHANICAL COMPRESSION TOOL

HYDRAULIC COMPRESSION TOOL BATTERY OPERATED COMPRESSION TOOL

		SELECTION AND INSTALLATION OF H-TAP CONNECTORS					
	ISSUE	PAGE NUMBER					
Busi	1/06 ness Use	5-122	OVERHEAD CONSTRUCTION STANDARD	ppl			


5.9 INSULATING CONNECTIONS (600 VOLTS)

Connections on insulated <u>Secondary/Service conductors</u> shall be covered with snap on covers. Taping should be avoided unless there are no other options.

Use snap-on covers (C60) to provide low-voltage protection over compression connectors on covered secondary and service wires. Two or more half-lapped layers of vinyl electrical tape (T2W) or rubber insulating tape (T5B) may be substituted if the proper cover is not available. Do not overstretch the tape and the last two turns should be applied without tension. For nominal 600V insulation class, Polyethylene (or PVC) material provides approximately 200-300V per mil thickness. Unstretched Vinyl tape (T2W) is 8.2 mils thickness and rubber insulating tape (T5B) is 30 mils ("ordinary writing paper is 4 mils thick"). 1 mil = .001 "

Installation Notes:

- Always clean conductors, wire brushing, (including newly stripped covered conductors) before connector installations. General notes for connector installation can be found on 5-112.
- 2. Train the conductors so that connections will not be subjected to unnecessary tensions. For large irregular connections or connectors depressions, fill the space with plastic sealer (T5D4).
- 3. If better insulation or mechanical protection is needed or to buffer sharp edges (i.e. around crimps, etc.) use first a few half-lapped layers of rubber insulating tape (T5B). Apply the rubber insulating tape (as recommended by the manufacturer) so that the sticky side (toward the spool) faces outward as it is applied. This rubber insulating tape is self amalgamating, U.V. and weather resistant but is usually covered using a couple of layers of black friction tape (T1A) and a few outside layers of vinyl tape (T2W). Always use the friction tape between the rubber and vinyl tapes to prevent possible adverse interreaction of the materials.

5.10 PARALLEL GROOVE CONNECTORS

Figure 1

Figure 2

Figure 3

	GROOVE /	4		GROOVE E	3			
AAC AL or CU	ACSR, AWAC, AAAC	WIRE DIA. RANGE (INCHES)	AAC AL or CU	ACSR, AWAC, AAAC	WIRE DIA. RANGE (INCHES	STD ITEM	FIGURE NUMBER	BOLT SIZE (INCH)
8 – 2	6 – 2	0.128 – 0.325	8 – 2	6 – 2	0.128 – 0.325	C7A	1	5/16
1/0	1/0	0.338 – 0.398	Str. 12	N/A	0.080 - 0.092	9320571 (SAP ID)	1	3/8
6 – 3/0	6 – 2/0	0.162 – 0.464	6 – 3/0	6 – 2/0	0.162 – 0.464	С7В	1	3/8
2 – 3/0	2 – 3/0	0.292 – 0.502	2 – 3/0	2 – 3/0	0.292 – 0.502	C7E	2	3/8
4/0 – 400.0	3/0 – 336.4	0.464 – 0.743	6 – 2/0	6 – 2/0	0.162 – 0.464	C7D	1	1/2
4/0 – 400.0	3/0 – 336.4	0.464 – 0.743	1/0 – 3/0	2 – 3/0	0.292 – 0.502	C7G	2	1/2
4/0 – 400.0	3/0 – 336.4	0.464 – 0.743	4/0 – 400.0	3/0 – 336.4	0.464 – 0.743	C7I	3	1/2
450.0 – 1000.0 AL & 450.0 – 500.0 CU	477.0 – 795.0	0.743 – 1.152	6 – 3/0	6 – 2/0	0.162 – 0.464	C7DA	1	5/8
450.0 – 1000.0 AL & 450.0 – 500.0 CU	477.0 – 795.0	0.743 – 1.152	4/0 – 400.0	3/0 – 336.4	0.464 – 0.743	С7Н	2	5/8
450.0 – 1000.0 AL & 450.0 – 500.0 CU	477.0 – 795.0	0.743 – 1.152	450.0 – 1000.0 AL & 450.0 – 500.0 CU	477.0 – 795.0	0.743 – 1.152	С7Ј	3	5/8

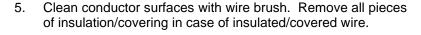
600 Volt Insulated Covers for these parallel groove connectors only				
Connector – Std Cover – Std Item				
C7B	C60R			
C7E	C60S			
C7D	C005			

SELECTION AND INSTALLATION OF PARALLEL GROOVE CONNECTORS

Business Use PAGE NUMBER

7/15
5-131

OVERHEAD CONSTRUCTION STANDARD



Supersedes 7/13 – Corrected Conductor sizes in table

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 05.00.005

Installation Notes:

- Locate larger parallel plate above when possible.
 This provides an "Umbrella Effect" (see Figure 4 on right)
- Position so rain will not wash from copper wire onto aluminum wire. Use lower position only when necessary.
- 3. Locate connector in jumper section when possible and not on span wire.
- 4. The connection is "non-tension" so there should be no pull or tension on the wires in the connector.

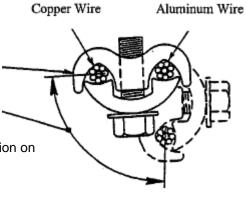


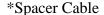
Figure 4

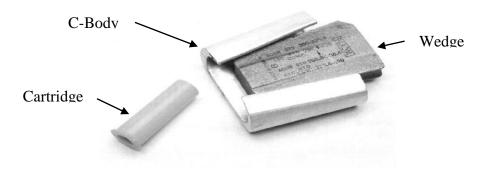
- 6. Connector groove must be clean. Approved connectors are individually packaged in plastic and protected by a covering of inhibitor compound. Wire brushing a new connector is not necessary.
- 7. In all cases, apply an inhibitor compound (NG9) on the entire aluminum and copper conductor surfaces that will be located within the connector. All voids shall be filled.
- 8. Free ends shall extend 1/2 inch beyond end of connector.
- 9. Tighten bolts properly. It is important to use care to tighten bolts uniformly and to recommended torques (see Table 1 below), particularly since aluminum bolts are covered with a grease. Note: without a torque wrench, bolts should be tightened approximately 3/4 to 1-1/2 turns beyond the point where the bolt is snug in place. WARNING: Do not over-tighten and deform the connector.

Table 1

REQURIED BOLT TORQUE				
5/16" – 8 lb. ft.	3/8" – 15 lb. ft.	1/2" - 25 lb. ft	5/8" – 40 lb. ft.	

10. <u>Do Not Reuse Connectors</u> – Body and bolts may be distorted; also, it is difficult to clean properly and cover all surfaces with compound.


SELECTION AND	NSTALLATION OF PARALLEL G	ROOVE CONNECTO	RS
WILL		PAGE NUMBER	ISSUE
The state of the s	OVERHEAD		


5.11 FIRED-ON WEDGE CONNECTORS

Installation Notes:

- 1. For complete information about fired-on wedge connector installation/removal and tool use/maintenance, refer to the manufacturer's "Customer Manual".
- 2. Position so rain will not wash from copper wire onto aluminum wire.
- Locate connector in jumper section when possible and not on span wire.
- 4. The connection is "non-tension", and there should be "no-pull" on wires in the connector.
- 5. Clean conductor surfaces with wire brush. Remove all pieces of insulation/covering in case of insulated/covered wire.
- 6. Free ends shall extend 1/2 inch beyond end of connector.
- 7. Select the connector and charge Table 1 below.
- 8. **WARNING:** Do not reuse connectors as the body and wedge may be distorted; also, it is difficult to clean properly and cover all surfaces with compound.

SELECTION CHART					
RUN	TAP	STD ITEM	CHARGE COLOR		
1/0 AL. & ACSR	1/0 AL & ACSR	S15G	Blue		
1/0 AL. & ACSR	#2 AL	S15H	White		
1/0 AL. & ACSR	#4 AL & ACSR	S15J	Red		
336.4 AL. & ACSR	336.4 AL. & ACSR	S15L	Blue		
336.4 AL. & ACSR	4/0 CU.	S15M	Blue		
336.4 AL. & ACSR	2/0 AWAC	S15N	Blue		
336.4 AL. & ACSR	1/0 AL. & ACSR	S15N1	Blue		
336.4 AL. & ACSR	#2 AL., ACSR, & CU	S15P	Blue		
336.4 AL. & ACSR	500 AL. & CU.	S15R5	Yellow		
336.4 AL. & ACSR	750 AL. & CU.	S15R7	Yellow		
477 AL AAC or 477 (Compact)*	#2 CU	S15S	Yellow		
477 (Compact)*	#4/0 CU	S15T	Yellow		
477 AL AAC	#4/0 CU	S15U	Yellow		
477 (Compact)*	477 (Compact)*	S15V	Yellow		
477 AL AAC	477 AL AAC	S15W	Yellow		
477 AL AAC	477 (Compact)*	S15X	Yellow		
500 CU	#4/0 CU	S17R	Blue		
#4/0 CU	#4/0 CU	S17S	Blue		
#2/0 CU	#2/0 CU	S17T	Blue		

SELECTION AND INSTALLATION OF PARALLEL	. GROOVE CONNECTORS
--	---------------------

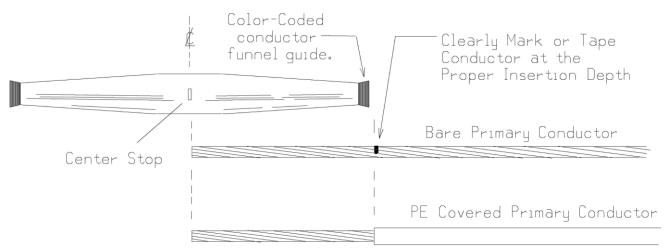
ISSUE	PAGE NUMBER
se 7/16	5-133

Business Us

OVERHEAD CONSTRUCTION STANDARD

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 05.00.006


5.12 **AUTOMATIC SPLICES**

Automatic splices are stamped with the intended conductor range and are color identified at the ends with a band colored pilot-cup.

Approved automatic splices are full-tension, full-current rated devices for application on primary distribution lines.

Installation Notes:

- 1. Mark the full insertion depth on the conductor by placing the cut-end of the conductor to the connector center-line. See Figure 1 below.
- 2. Make sure the conductor is cut squarely, cleanly, straight, and free of burrs before insertion. Improper installation is the cause of most premature failures. Separated strands may not enter the internal pilotcup and become wedged between the gripping jaws, preventing function of these essential components. A temporary tape wrap at the cut location will help reduce strand unwrapping during cutting.
- 3. Important Note: All conductors must be cleaned (wire-brushed) immediately prior to making the connection. A non-conductive, thin, and invisible oxide layer begins formation within one minute on aluminum conductors and copper conductors. After wire brushing, immediately add corrosion inhibitor to the cleaned surfaces (Corrosive inhibitor Item ID 8010034)
- 4. Insert the conductor fully into the connector in one complete motion. Do not pull back on the conductor or twist the conductor before insertion is complete. Conductor will move out slightly during final pull-set as the internal jaws "set". Internal pilot-cup must reach full insertion to clear jaws.
- 5. Automatic full-tension splices are not to be used on spans other that full-tension (i.e. slack spans and services). Wind-caused negative-tension episodes may release the holding jaws.
- 6. In repairing a burndown, the conductor should be cut back sufficiently to remove stretched, burned, or annealed strands.
- 7. The following Standard "Automatic" splices and Deadend Connectors can be found in Section 22-Materials Catalog:
- Standard Item G5C Strand-vice Guy Grips (See Section 3 for application)
- Standard Item S18K & M Aluminum Conductor Deadends
- Standard Item S19A-I Copper & Copperweld Conductor Splices
- Standard Item S19J-M Aluminum Conductor Splices
- Standard Item S19P-R Steel Strand Splices

INSTALLATION AND SELECTION OF AUTOMATIC SPLICES PAGE NUMBER ppl

ISSUE

Table 1 Automatic Splices for Bare Aluminum Conductors

SPLICE	CONDUCTOR						
STD ITEM	SIZE AWG- KCMIL	CODE NAME	STRANDS	O.D. IN INCHES	CONDUCTOR STD ITEM		
S19K	1/0, AAAC	AZUSA	7	0.398	W20A		
S19M	336.4 AAC	TULIP	19	0.666	W20B		
S19T	477 AAC	COSMOS	19	0.793	W21BA		

Table 2 - Automatic Splices for Tree Wire Aluminum Conductors

(**Note:** All other sizes of tree wire/spacer cable shall be spliced with a compression splice. See Section 16 – Aerial/Spacer Cable for splicing details)

SPLICE	CONDUCTOR				
STD				O.D. IN	CONDUCTOR
ITEM	KV	SIZE AWG-KCMIL	STRANDS	INCHES	STD ITEM
S19K	15	1/0 6201	7	0.728	W20CA
S19K	35	1/0 6201	7	1.028	W21NA

Table 3 - Automatic Splices for Non-Standard Bare Aluminum Conductors

SPLICE		CONDUCTOR					
STD ITEM	SIZE AWG- KCMIL	CODE NAME	STRANDS	O.D. IN INCHES	CONDUCTOR STD ITEM		
S19J	#4 ACSR						
S19N	2/0 – 3/0						
S19M	394.5 AAC	CANTON	19	0.721	NONE		
	636 AAC	ORCHID	37		NONE		

Table 4 - Automatic Splices for Non-Standard Covered Aluminum Conductors

		CONDUCTOR					
SPLICE STD ITEM	SIZE AWG- KCMIL	CODE NAME	STRANDS	BARE COND O.D. INCHES	TOTAL O.D. INCHES	CONDUCTOR STD ITEM	
S19K	1/0 ACSR	ALMOND	6/1	0.398	0.313	NONE	
S19K	1/0 AAAC	OILNUT	7	0.398	0.523	NONE	
S19M	336.4 AAC	ANONA	19	0.666	0.791	NONE	

Table 5 - Automatic Splice for AWAC Messenger for Spacer Cable

SPLICE	CONDUCTOR					
STD	SIZE AWG-	SIZE AWG- O.D. IN CONDUCTOR				
ITEM	KCMIL	STRANDS	INCHES	STD ITEM		
S19L	1/0 – 3/4 AWAC	7	0.487	W21NE		

Table 6 - Automatic Reducing Splice for Aluminum Conductor

SPLICE	CONDUCTOR					
STD	SIZE AWG-		CONDUCTOR	SIZE AWG-		CONDUCTOR
ITEM	KCMIL	STRANDS	ITEM ID	KCMIL	STRANDS	STD ITEM
S19T	477 AAC	19	W21BA	336.4 AAC	19	W20B

	SELECTION AND INSTALLATION OF AUTOMATIC SPLICES				
	ISSUE	PAGE NUMBER		WIN	
Busi	7/13 ness Use	5-142	OVERHEAD CONSTRUCTION STANDARD	ppl	

Table 7 - Automatic Splice for Non-Standard Bare Copper Conductor

SPLICE	CONDUCTOR						
STD			O.D. IN	CONDUCTOR			
ITEM	SIZE AWG-KCMIL	STRANDS	INCHES	STD ITEM			
S19A	#6 SOL						
S19G	#6A CW & CCW, #4 STR						
S19BB	#3 HD	7	0.260	W11G			
S19BB	#3A CW	3	0.326	NONE			
S19C	#2 HD	7	0.292	W13B			
S19BB	#1 HD	7	0.328	W13I			
S19I	#1 HD	3	0.360	W13J			
S19I	1/0 HD	7	0.368	W13K			
S19B	2/0 HD	7	0.414	NONE			
S19D	2/0 CW & CCW	7					
S19E	4/0 HD	7	0.522	W19B			

Table 8 - Automatic Splice for Non-Standard Covered Copper Conductor

	CONDUCTOR							
SPLICE STD ITEM	SIZE AWG- KCMIL	STRANDS	BARE COND O.D. INCHES	TOTAL O.D. INCHES	CONDUCTOR STD ITEM			
S19BB	#3 HD	7	0.260	0.354	W11H			
S19I	1/0 HD	7	0.369	0.494	W13L			
S19E	4/0 SD	19	0.528	0.690	W19C			

Table 9 - Automatic Splice for Non-Standard Copper Messenger for Spacer Cable

SPLICE	CONDUCTOR					
STD	SIZE AWG-	CONDUCTOR				
ITEM	KCMIL	STRANDS	INCHES	STD ITEM		
S19U	3/8 CW	7	0.385	NONE		

Table 10 - Automatic Reducing Splice for Copper Conductor

SPLICE	CONDUCTOR				
ITEM ID	LARGE END	SMALL END			
S28A	4 SOL, 6 STR	6 SOL, 8 STR			
S28C1	1 SOL, 2 STR	2 SOL, 3 STR			
S28B	2-3SOL, 3 STR	6 SOL, 8 STR			
S28C	2-3 SOL, 3 STR	4 SOL, 6 STR			
S28D	1/0 SOL, 1 STR	2-3 SOL, 3 STR			
S28E	2/0 SOL, 1/0 STR	1/0 SOL, 1 STR			
S28F	3/0 SOL, 2/0 STR	2 SOL, 3 STR			
S28G	3/0 SOL, 2/0 STR	1/0 SOL, 1 STR			
S28H	3/0 SOL, 2/0 STR	2/0 SOL, 1/0 STR			
S28J	4/0 STR	3/0 SOL, 2/0 STR			

INSTALLATION OF AUTOMATIC SPLICES

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 5-143 7/13

5.13 COMPRESSION SPLICES

Installation Notes:

- A compression splice installation shall confirm to specific manufacturer's instructions supplied with the splice and as noted below. Note importance of installation details such as wire brushing and cleaning conductors, measurements and marking, adding oxidizing inhibitor compound when not already included in the connector, conductor straightening, cutting of aluminum strands, installation of steel splice, use of proper die, location of compression, etc.
- 2. Compression splices are stamped with the intended conductor range, manufacturer's name, die information, and crimp indicator markings. Crimping inline splice connectors should begin near the center (to allow for connector growth) and successive crimps should be rotated to reduce a "banana" effect.
- 3. To locate a compression splice, find the type conductor in Table 1 (Aluminum) or Table 2 (Copper) below and look under the associated Standard Item in Section 22-Material Catalog. **Note:** For spacer cable and messenger splice selection and installation information; see Section 16-Aerial/Spacer Cable.

Table 1

CONDUCTOR TYPE - ALUMINUM	STD ITEM				
Non-Tension One Piece – Service/Secondary Phase Conductors					
#2 and 1/0 AAC Aluminum S26C & S26D					
Partial Tension One-Piece - Service Phase Conductor	rs & Messenger				
#4 AL - 336.4kcmil AL	S22E THRU S22H				
Full Tension One-Piece – Primary Conductors					
ACSR Aluminum Conductor	S20B THRU S20G				
AAC AND AAAC Aluminum Conductor	S21C1 THRU S21L				
Full Tension Two-Piece – Primary Conductors					
ACSR Aluminum Conductor	S20R1 THRU S20R4				

Table 2

CONDUCTOR TYPE - COPPER STD ITEM					
Non-Tension One-Piece -					
2/0 & 4/0 CU STR	S24E & S24G				
Full Tension One-Piece – Primary Conductors					
CU, CW & CCW	S23A THRU S23N				
ACSR Aluminum Conductor					

	SELECTION AND INSTALLATION OF COMPRESSION SPLICES				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/08 ness Use	5-144	OVERHEAD CONSTRUCTION STANDARD	ppl	

5.14 HOT LINE CONNECTORS

Hot line clamp/vice type connectors shall be used **only** when Hot Stick work is required. **Note:** Clean conductor surfaces by wire brushing until conductor surface is bright and shiny. **Warning:** Do not damage conductor. New connectors are packaged in plastic and pre-filled with oxidizing inhibitor. **Note:** Do not use stirrups or bails. Do not reuse connectors after use.

Bronze hot line clamp connectors shall be used for copper mainline to copper taps (See Table 1 below).

Aluminum hot line clamp connectors shall be used to connect aluminum mainline to aluminum or copper taps (See Table 2 below).

Aluminum hot line vice connectors shall be used to connect aluminum mainline to aluminum or copper mainline. (See Table 3 below).

Table 1

BRONZE CLAMP TYPE (Figure 1)				
RUN SIZ	E RANGE	TAP SIZE	STD ITEM	
#6 Solid	400kcmil	4/0	#6 Solid	C24D

Table 2

	ALUMINUM CLAMP TYPE (Figure 1)							
R	RUN SIZE RANGE TAP SIZE RANGE							
M.A	AX.	MIN.		M.A	۱X.	М	IN.	
ACSR	AL	ACSR	AL	ACSR	AL & CU	ACS	AL &	
ACSK	AL	ACSK	AL	ACSK	AL & CU	R	CU	STD ITEM
1/0	1/0	#8	#8	1/0	1/0	#8	#8	C24A
336kcmil	394kcmil	#6	#6	3/0	4/0	#6	#6 Sol	C24B
336kcmil	394kcmil	#4	#4	336kcmil	394kcmil	#4	#4	C24C
336kcmil	477kcmil	#6	#6	336kcmil	477kcmil	#6	#6	C24A1

Table 3

1 5.10.10					
ALUMINUM VICE TYPE (Figure 2)					
RUN SIZ	E RANGE	TAP SIZE			
MAX.	MIN.	MAX.	MIN.		
AL &	AL &	CU & AL &	CU & AL & CU & AL &		
ACSR	ACSR	ACSR	ACSR	STD ITEM	
336.4kcmil	4/0	336.4kcmil	4/0	C16C	
795kcmil	336.4kcmil	1/0	#4	C16D	
477kcmil	336.4kcmil	336.4kcmil	#3	C16E	
477kcmil	4/0	477kcmil	4/0	C16F	
795kcmil	336.4kcmil	795kcmil	336.4kcmil	C16G	

Figure 1

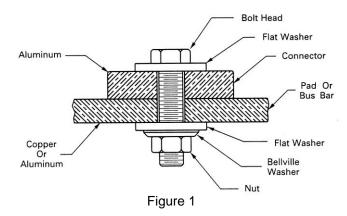
Figure 2

SELECTION AND INSTALLATION OF HOT LINE CONNECTORS

OVERHEAD CONSTRUCTION STANDARD

 PAGE NUMBER
 ISSUE

 5-147
 7/13


© 2022 PPL Corporation. All rights reserved. Doc. # ST. 05.00.007

5.15 TERMINAL CONNECTORS

Installation Notes:

1. Install terminal connectors so that water drains from the aluminum to the copper surfaces, i.e., aluminum over copper connection.

- 2. Clean conductor surfaces thoroughly with wire brush and apply connector inhibiting compound (NG9D) liberally on the conductor and the surface of the terminal.
- 3. Bolted terminal to conductor using alloy bolts and nuts furnished with connector.
- 4. Clean pad on equipment with wire brush and apply connector compound (NG9D) on entire contact surface. Bolt surfaces together, using stainless steel bolts (B8B15 thru B8C30), nuts (B8C40) flat washers (B8W3) and Belleville washers (B8W10). See Figure 1.below.

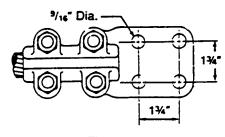


Figure 2

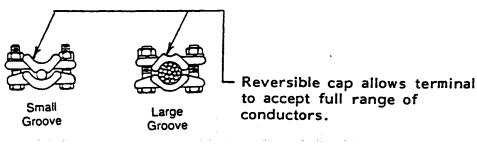


Figure 3

	SELECTION AND INSTALLATION OF TERMINAL CONNECTORS			
	ISSUE	PAGE NUMBER		1007 Na 100 Na
Busine	ss 1/06	5-148	OVERHEAD CONSTRUCTION STANDARD	national grid

5.16 REPAIR SLEEVES

Table 1 below shows material to repair damaged bare overhead aluminum conductors. The materials include line guard, armor rod and compression sleeves. The repair material to choose depends upon the number of broken conductor strands as shown in Table 1. Table 2 shows tools and dies for installing compression sleeves.

		T	able 1					
		Line Guard		Armor Rod			Compression Sleeve	
Wire Size All Aluminum AAC, All Aluminum Alloy (AAAC) and	Cond. Dia.	Max. Broken	Std Item /	Max. Broken	Std Item /		Max. Broken	Std Item /
Spacer Cable (Compact)	in.	Strands	SAP ID	Strands	SAP ID		Strands	SAP ID
1/0 AAAC 7 str. concentric	0.396	1	P51C	2	9319672			
4/0 AAC 7 str. concentric	0.522	1	9313104				3	9313353
4/0 AAAC 7 str. concentric	0.563	1	9313104				3	9313333
336.4 AAC 19 str concentric	0.666	3	9315738	5	9319674		9	9312431
477 AAC 19 str concentric	0.793	3	9313126					
636 AAC 37 str concentric	0.918	4	9313187					
795 AAC 37 str concentric	1.026	4	9313184					
ACSR Conductors								
1/0 ACSR 6/1	0.398	1	P51C				3	9315764
3/0 ACSR 6/1	0.502	1	9314042					_
336.4 ACSR 18/1	0.684	4	P51G					
477 ACSR 18/1 Pelican	0.814						9	9313355

_	Table 2							
Compression Sleeve Tools and Dies					Dies			
Wire Size	Cond. Dia. in.	Std Item / SAP ID	Splice Cat.#	Tool 6 Ton MD6 BCT500 PATMD6	Tool 12 Ton Y35 Y750 PAT5018V	Tool 15 Ton Y46 PAT4618V	Tool 60 Ton Y60BHU	
4/0 AAC 7 strand	0.522	9313353	YCU28A	W249 (28)	U249 (14)			
4/0 AAAC 7 strand	0.563	9313333	10026A	VV249 (20)	0249 (14)			
336.4 AAC 19 strand	0.666	9312431	YCU301A		U321 (20)			
1/0 ACSR 6/1	0.398	9315764	YCU25R	W243 (20)	U243 (10)			
477 ACSR 18/1	0.814	9313355	YOU321R		U327 (21)	U327 (21) with PT- 6515 adapter	L327 (7)	

SELECTION OF REPAIR SLEEVES						
lv.		PAGE NUMBER	ISSUE			
	OVERHEAD CONSTRUCTION STANDARD	5-149	7/13			

ppl

Version	Date	Modification	Author(s)	Approval by (Name/Title)
7.0	7/20	Corrected index numbering error.		
6.0	7/17	 Added note to 5-1 regarding coldshrink discontinuation Removed taping reference on 5-1 		
5.0	7/16	 Added slacking of taps in Section 5.2 Added use snap on covers on services and secondary to 5.9. Added Copper fired on wedges to 5.11 		
4.0	7/15	• Corrected table in section 5.10 Pg. 5-131		
3.0	7/14	Added fired on wedge connectors for 477 conductor.		
2.0	7/13	Removed PS Item ID's through out entire section. Added SAP ID's		
1.1	7/12	 Added use of hot line clamps for CLF's on capacitors in section 5.5.20 Added Min dist to insulator and TW/Spacer requirements in Section 5.5.10. Added note to 5.4 		
1	07/08	 Revised hot line clamp usage rewording, added note of lightning arresters in 5.5.20. Revised Std. Item reference to C9 in 5.5.40. Corrected connector cover Item ID in 5-10. Changed charge color for Item ID 3507246 from red to white in 5.11. Added Note 3 in 5.12. Changed Item ID 0806400 to 0806404 and added reducing splice Item ID 9201781 on page 5-143. Highlighted Importance of installation details in Note 1 in section 5.13. Deleted reference to 25kV and 35kV and added Item IDs to Tables 1, 2, and 3 in section 5.14. 		

SUMMARY OF RECENT CHANGES							
ISSUE	PAGE NUMBER		AMA				
7/20	5-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl				

6.0 GENERAL

6.1 BASIC DATA

6.2 SAGS AND TENSIONS

6.3 MAXIMUM SPANS

SECTION

PAGE

6-1 THRU 6-2

6-2 THRU 6-5

6-1

6-5

4/0, 7 Strand, Bare AAAC, "ALLIANCE"

4/0, 7 Strand, AAC, 60 Mil PE Covering, "OLIVE"

4/0, 7 Strand, AAAC, 60 Mil PE Covering, "PLANETREE"

4/0, 7 Strand, Bare AAC, "OXLIP"

0

9
Planetree"
3
ō
escription
$\boldsymbol{\sigma}$
Corrected
1
Issue
_
7/17
Supersedes 7

PRIMARY CONDUCTORS INDEX PAGE NUMBER ISSUE OVERHEAD **CONSTRUCTION STANDARD** 6-i 7/18

6-207

6-208

6-209

6-210

© 2022 PPL Corporation. All rights reserved.

SECTION		PAGE
0	4/0, 19 Strand, AAC, 60 Mil PE Covering, "POMENGRANITE"	6-211
0	1/0, 6/1 Stranding, Bare ACSR, "RAVEN"	6-212
0	1/0, 6/1 Stranding, ACSR, 110 Mil PE Covering, "ALMOND"	6-213
0	1/0, 6/1 Stranding, ACSR, 60 Mil PE Covering, "ALMOND"	6-214
0	1/0, 7 Strand, AAAC, 60 Mil XLPE Covering, "OILNUT" – 15kV	6-215
0	#2, 6/1 Stranding, Bare ACSR, "SPARROW"	6-216
0	#2, 6/1 Stranding, ACSR, 45 Mil PE Covering, "PIGNUT"	6-217
0	#4, 7/1 Stranding, Bare ACSR, "SWANATE"	6-218
0	#4, 7/1 Stranding, ACSR, 30 Mil PE Covering, "HICKORY"	6-219
0	#4, 6/1 Stranding, ACSR, 30 Mil PE Covering, "BUTTERNUT"	6-220
• NC	N-STANDARD COPPER CONDUCTORS	6-300
0	4/0, 7 Strand, Hard Drawn Copper, Bare	6-301
0	1/0, 7 Strand, Hard Drawn Copper, Bare	6-302
0	1/0, 7 Strand, Hard Drawn Copper, 60 Mil PE Covering	6-303
0	#2, 3 Strand, Type A Copper - Copperweld, Bare	6-304
0	#2, 7 Strand, Hard Drawn Copper, Bare	6-305
0	#2, 7 Strand, Soft Drawn Copper, 45 Mil PE Covering	6-306
0	#3, 7 Strand, Hard Drawn Copper, Bare	6-307
0	#3, 7 Strand, Hard Drawn Copper, 45 Mil PE Covering	6-308
0	#4, 3 Strand, Type A Copper - Copperweld, Bare	6-309
0	#4, Solid, Hard Drawn Copper, Bare	6-310
0	#4, Solid, Hard Drawn Copper, 30 Mil PE Covering	6-311
0	#6, 3 Strand, Type A Copper - Copperweld, Bare	6-312
0	#6, Solid, Hard Drawn Copper, Bare	6-313
0	#6, Solid, Hard Drawn Copper, 30 mil PE Covering	6-314

	PRIMARY CONDUCTORS INDEX						
	ISSUE	PAGE NUMBER		SMIZE			
Busi	7/21 ness Use	6-ii	OVERHEAD CONSTRUCTION STANDARD	ppl			

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 06.00.002

6.0 GENERAL

This Section covers the physical and electrical data on standard primary conductors and those that have been commonly used on overhead distribution systems.

Detailed design data for primaries, aerial and spacer cable, street lighting, and other specific conductor applications are covered in their respective sections of the text.

6.1 BASIC DATA

Basic conductor data is shown on drawings and tables indicated in the index. This data may differ in minor detail from those shown in other handbooks. The information shown here, however, should be used for all Company records and correspondence unless otherwise approved. If there are any questions concerning accuracy, please consult Standards Engineering.

6.1.10 Definitions & Notes:

PE = Regular Polyethylene Covering

AAC = All Aluminum Conductor (Type ECA or EC)

AAAC = All Aluminum Alloy Conductor, 5005 or 6201 aluminum alloy

1/0 AAAC (123.3 kcmil) is the electrical equivalent of 1/0 ECA 4/0 AAAC (246.9 kcmil) is the electrical equivalent of 4/0 ECA

394.5 kcmil AAAC is the electrical equivalent of 336.4 kcmil ECA

XLPE = Cross-Link Polyethylene Covering HDPE = High Density Polyethylene Covering ACSR = Aluminum Cable Steel Reinforced

CCW = Copper - Copperweld

ECA = Electrical Conductivity Aluminum, also known as "All Aluminum" or "AAC"

HD = Hard Drawn Copper SD = Soft Drawn Copper

Note 1 – The outer layer on aluminum cable shall be right-hand twist (on copper, left-hand twist).

Note 2 – A Mylar separator shall <u>not</u> be included between the conductor and the insulation.

Note 3 – Manufacturer's identification shall be printed on the outside of the covered conductor covering.

Note 4 – Although tree wire /spacer cable and other covered line conductors offer some electrical protection, it is **NOT INSULATED CONDUCTOR** and shall not be depended upon in this respect.

Loading Definitions

Deadend - Maximum tensions that will exist under conditions of "Heavy Loading" in conductors strung to standard sags. Values for NESC Grades B & C are based on 60% rated breaking strength; however, a 50% rated breaking strength value shall be employed for all new work. Values for Grade N are based on 70% rated breaking strength. These are furnished for use when maintaining existing Grade N lines. Use these values for guy and pole strength calculations and for calculation of crossarm strength at deadends.

Transverse - Loads resulting from a 4 lb./sq.foot wind blowing at right angles to the line with conductors covered by ½ inch ice (Heavy Loading). Use these values for transverse guy and pole strength calculations.

Vertical - Weight of conductors plus $\frac{1}{2}$ inch radial ice. Use these values for calculations of vertical crossarm strength.

PRIMARY CONDUCTORS OVERHEAD OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 6-1 1/07

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 06.00.002

Total - Total resultant of vertical and transverse loads on conductors under "Heavy Loading" plus an adder of 0.30 lbs./foot (Total Load = $\sqrt{(T^2 + V^2)} + 0.3$ lbs./foot). Use for slack span calculations and for other sag and tension problems.

Swing Angle - Angle at which the conductor will be displaced from the vertical by a 6 lbs./sq. foot wind blowing at right angles to the line at $60^{\circ}F/15^{\circ}C$. Use these values for horizontal clearance calculations. Calculate horizontal displacement by R sine α where R = max. sag and α = swing angle.

Swing Angle =
$$\alpha = \tan^{-1} \left(\frac{W_h}{W_v} \right)$$

$$W_h = \frac{P}{12} \times d$$
 $P = 6$ (6 lbs./sq. foot), 12 Inch Conductor Length

d = Conductor Diameter

 W_{v} = Unloaded Weight of Conductor (lbs./foot)

6.2 SAGS AND TENSIONS

All overhead lines must meet minimum clearance requirements of the NESC in force at the time the line is constructed. Prior to the 1977 issue of the NESC, minimum basic clearances allowed for increased sag due to ice loading or operation at a 120°F/50°C maximum conductor temperature.

The 1977 revision to the NESC, under Rule 232B2, permits the owner to establish a conductor maximum operating temperature while maintaining minimum clearance requirements. The Company has established a 176°F/80°C maximum allowable conductor operating temperature under normal conditions and a 194°F/90°C maximum allowable conductor operating temperature under emergency conditions for a specific period of time.

6.2.10 <u>Limiting Tensions</u>

In the design of overhead lines, three limiting values of tension shall be observed:

- A. <u>Initial Unloaded or Stringing Tension</u> is that which will exist before the application of any external load or immediately after new conductors have been installed. The initial unloaded tension at 0°F/-18°C shall not exceed 35% of rated breaking strength. The temperature of 0°F/-18°C is used instead of 60°F/15°C required by the NESC because the aluminum manufacturers have indicated that 0°F/-18°C is more critical for aluminum than 60°F/15°C. Although it is not necessary, the 0°F/-18°C tension is used for conductors other than aluminum to be consistent.
- B. Maximum Design Tension is that to which the conductor is subjected upon occurrence of the maximum climatic loading specified for design work in the NESC Heavy Loading area. The maximum conductor tension, either initial or final, shall not exceed 50% of rated breaking strength. This limit is less than the 60% required by the NESC to allow for higher tensions due to spans longer than the ruling span and to allow for slight tolerances in sagging. A 2,000 lb. tension limitation is common for most distribution conductors, especially those that deadend on crossarms. All conductors except spacer cable messengers and specially noted conductors shall be limited to an approximate maximum tension of 2000 lbs. A 3,000 lb. tension limitation is acceptable, with appropriate hardware, in situations where the resulting line has a clear advantage over standard 2,000 lb. design because of lower costs due to longer spans or improved appearance of the line.
- C. <u>Final Unloaded Tension</u> is that which the conductor assumes under no external loading but after the maximum design tension has been sustained for sufficient time to permit stretching to cease. The final unloaded tension at 0°F/-18°C shall not exceed 25% of

	PRIMARY CONDUCTORS						
	ISSUE	PAGE NUMBER		SMI			
Busi	1/07 ness Use	6-2	OVERHEAD CONSTRUCTION STANDARD	ppl			

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 06.00.002

rated breaking strength. The 0°F/18°C tension is used for the same reason as in the above criteria A.

The sag tables demonstrate sags under various temperatures and loading conditions. New conductors strung to "Stringing" (Initial) values will have initial, maximum and final tensions as specified. The sag will increase under design loading, then change as shown in "Final" sags depending on temperature and loading.

The Initial Sag tables are based on the Ruling Span Method of calculation and the Final Sag tables are based on the Deadend Method, as discussed below. In the event that Initial or Final Sags that are not shown are required, contact Standards Engineering.

6.2.20 Deadend or Uniform Spans

Sag tables based on deadend span methods assume that there is only one span or that all spans are the same length. This method is useful for short spans in urban areas where the spacing is reasonably uniform. If long spans in a section of line are sagged according to a deadend table, short spans in the same section will have a sag value that may or may not correspond with the table. For this reason, it is customary to sag a span of average length near the center of the line and to recognize that there may be slightly more or less sag in the longer and shorter spans than is indicated by the tables.

In order to determine the sag value for a specific span length, multiply the ruling span sag value by the ratio provided in Table 1 for the corresponding actual span length. In the event that the needed actual span length is not provided in this table, a method for determining the resultant ratio value is provided below.

Table 1
Ratio of Deadend Span Sag to Sags at Other Span Lengths with Same Tension

ACTUAL		DEADEND SPAN									
SPAN	50'	75'	100'	125'	150'	175'	200'	225'	250'	275'	300'
100'	4.00	1.78	1.00	0.64	0.44	0.33	0.25	0.20	0.16	0.13	0.11
110'	4.84	2.15	1.21	0.77	0.54	0.40	0.30	0.24	0.19	0.16	0.13
120'	5.76	2.56	1.44	0.92	0.64	0.47	0.36	0.28	0.23	0.19	0.16
130'	6.76	3.00	1.69	1.08	0.75	0.55	0.42	0.33	0.27	0.22	0.19
140'	7.84	3.48	1.96	1.25	0.87	0.64	0.49	0.39	0.31	0.26	0.22
150'	9.00	4.00	2.25	1.44	1.00	0.73	0.56	0.44	0.36	0.30	0.25
160'	10.24	4.55	2.56	1.64	1.14	0.84	0.64	0.51	0.41	0.34	0.28
170'	11.56	5.13	2.89	1.85	1.28	0.94	0.72	0.57	0.46	0.38	0.32
180'	12.96	5.76	3.24	2.07	1.44	1.06	0.81	0.64	0.52	0.43	0.36
190'	14.44	6.42	3.61	2.31	1.60	1.18	0.90	0.71	0.58	0.48	0.40
200'	16.00	7.11	4.00	2.56	1.78	1.31	1.00	0.79	0.64	0.53	0.44
210'	17.64	7.84	4.41	2.82	1.96	1.44	1.10	0.87	0.71	0.58	0.49
220'	19.36	8.60	4.84	3.10	2.15	1.58	1.21	0.96	0.77	0.64	0.54
230'	21.16	9.40	5.29	3.39	2.35	1.73	1.32	1.04	0.85	0.70	0.59
240'	23.04	10.24	5.76	3.69	2.56	1.88	1.44	1.14	0.92	0.76	0.64
250'	25.00	11.11	6.25	4.00	2.78	2.04	1.56	1.23	1.00	0.83	0.69

Method for Determining Ratio:

- 1. Choose Deadend Span.
- 2. Find deadend span sag from sag table for temperature and deadend span desired.
- 3. Multiply deadend span sag by above ratio for actual spans as line is laid out to obtain actual span.
- 4. For deadend span to actual span ratio other than those listed above:

PRIMARY CONDUCTORS						
SMIZZ		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	6-3	1/07			

$$RATIO = \frac{\left(ACTUAL\ SPAN\right)^2}{\left(DEADEND\ SPAN\right)^2}$$

6.2.30 Ruling Spans

This is a calculated span length for which the conductor tension, under changes in temperature and loading, best represents the average tension in the conductor in a particular series of spans between deadends. Ideally, a line should be installed in such a way that all spans of the line have equal horizontal line tension. If this is done, longitudinal forces on pole tops between spans are theoretically zero. Deadend poles and poles located at bends in the line will typically require guying in order to counteract the line tension.

Sag tables based on the ruling span method recognize variations in span length. This method assumes that the line will be strung to uniform tension. If this is done, all spans will have initial sags that are very near the values in the table. After the conductors are tied into place, however, and after ice and wind loads stretch the wires, the tension may not be uniform and the sags may vary from the calculated values. If the actual spans are much longer or shorter than the ruling span, the tension and sags may be different than the calculations.

The ruling span can most accurately be determined through the following equation:

Ruling Span =
$$\sqrt{\frac{\left(L_1^3 + L_2^3 + L_3^3 + ... L_N^3\right)}{\left(L_1 + L_2 + L_3 + ... L_N\right)}}$$

Where L_1 , L_2 , L_3 , etc. are the lengths of the first, second, third, etc., spans between deadends.

Spans that are longer than 150% of the average should be avoided or should be sagged independently and guyed to hold the unbalanced tension. All new standard construction for tension should conform to the Company's design which limits tension to 50% of the conductor rated breaking strength by following the above mentioned ruling span calculation.

6.2.40 Slack Spans

When guys cannot be installed on the end pole of a line, they may be placed on an adjacent pole. A slack span should then be installed to the end pole. Slack spans may also be necessary for other applications. They are not recommended if there is any way of avoiding them, but when used, calculations should be made as follows:

String Sag in Feet =
$$\frac{W \times L^2}{8 \times T}$$

W = Total loaded weight lbs./ft.

L = Total length of span in ft.

T = Tension in pounds. See Section 2-Poles / Hardware for strength required in poles.

Example:

50 foot span, 3-336.4 kcmil bare AAC to be deadended on an un-guyed Class 5 pole. Use T = 200 lb. per conductor.

W = 1.48 lbs./foot (from Page 6-121)

L = 50 feet (span length)

T = 200 lbs.

			PRIMARY CONDUCTORS	
	ISSUE	PAGE NUMBER		WIN
Busi	7/17 ness Use	6-4	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 06.00.002

$$S = \frac{W \times L^2}{8 \times T} = \frac{1.48 \times 50^2}{8 \times 200} = \frac{3700}{1600} = 2.3125 Feet$$

Sag the conductor at 2.31 feet, at normal temperature. This approximation assumes that the conductors will have 2.31 feet of sag at 0°F/18°C when subject to ice and wind.

6.3 MAXIMUM SPANS

Maximum spans, as shown in the table or on the pole top drawings, are based on many factors including: sag vs. pole height, transverse load vs. pole strength, vertical weight vs. strength of crossarms, and ratio of sag to separation of conductors. Spans are limited so that standard poles of reasonable height and class may be used for most work. They also are limited to reduce probability of wires coming together due to wind effects.

Span length should be limited to recommended values for all normal work. Longer spans may be used, except at railroad or major crossings, if clearances are adjusted accordingly. If longer spans are still essential, separate deadend spans should be designed by Standards Engineering to meet the field conditions.

6.4 AMPACITY

Business Use

Current in overhead line conductors should be limited so that voltage drops will be held to reasonable values; so that conductors will not be severely annealed or damaged; so that switches, connectors, etc. will not be overloaded and that clearances are not exceeded. Any feeder that is desired to be operated at the elevated operating temperature permitted for emergency conditions should be assessed to verify that available clearances are present to account for the resulting additional sag as outlined in each respective conductor data table. Minimum clearances, outlined in Section 7 – Clearances, should not be compromised.

Table 2
Ampacity Design Parameters

22-21-21	BARE CONDUCTOR	TREE WIRE
SPECIFICATION	SUMMER / WINTER	SUMMER / WINTER
Maximum Allowable Steady State Conductor Temperature (°C) For Normal Operating Conditions	176°F/80°C	167°F/75°C
Maximum Allowable Steady State Conductor Temperature (°C) For Emergency Contingencies	194°F/90°C	194°F/90°C
Ambient Air Temperature (°C)	100°F/37.7°C / 50°F/10°C	100°F/37.7°C / 50°F/10°C
Wind Speed (FT. / SEC.)	3 FEET/SEC.	3 FEET/SEC.
Angle between Wind and Conductor	90°	90°
Coefficient of Emissivity	0.75	0.91
Coefficient of Absorption	0.75	0.91
Climatic Data Record (CDR) elevation above sea level (FT.)	914.2125 FEET	914.2125 FEET
Conductor Direction (North - South, East - West)	North – South	North – South
CDR Latitude in Degrees	42°	42°
Solar Heating	12:00 PM (noon)/NONE	12:00 PM (noon)/NONE
Atmosphere	CLEAR	CLEAR
Conductor Resistance in Ohm/mi. for the Low Temperature @ 77°F/25°C	Conductor Specific – In Accordance with Low Conductor Temperature	Conductor Specific – In Accordance with Low Conductor Temperature
Conductor Resistance in Ohm/mi. for the High Temperature @ 167°F/75°C	Conductor Specific – In Accordance with High Conductor Temperature	Conductor Specific – In Accordance with High Conductor Temperature

		PRIMARY CONDUCTORS		
	SMIZZ		PAGE NUMBER	ISSUE
e	ppl	OVERHEAD CONSTRUCTION STANDARD	6-5	1/07

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 06.00.002

The "Normal" rating is the maximum rating for daily operation without encountering excessive loss of life, etc. and accounting for load cycles as well as ambient temperature cycles. Limits are based on allowable sags, clearance issues, and avoiding damage. The "Emergency" rating is the ultimate or maximum rating for a specific period of time, accounting for peak load cycle and ambient temperature cycles, without enduring excessive loss of life. Emergency ratings are applicable to short-term relief and should not exceed a 24 hour load cycle. For design purposes, emergency ratings exceeding a full load cycle were assumed resulting in a conductor rating that does not promote excessive loss of conductor life during such contingencies. This more conservative view was used for overhead conductors because of the concern for a permanent annealing of the conductor. For overhead conductors, such annealing could result in excess sag, and ultimately create clearance issues. In any case, the "Emergency" ampacity rating should not be exceeded nor allowed for prolonged duration in excess of 24 hours.

Primary overhead conductors have two (2) ampacity ratings for summer conditions and two (2) ampacity ratings for winter conditions as defined below:

Normal: The Normal rating shall be interpreted as the maximum value for normal peak

loads on all new and rebuilt feeders. This is done to accommodate emergency conditions where ampacity may be increased for a period of time no greater than 24 hours. Existing feeders may be loaded to these levels if a review indicates that appropriate clearances can be maintained. (100% ampacity for normal operating conductor temperature limit; 176°F/80°C for bare conductors,

167°F/75°C for spacer cable / tree wire / covered conductors)

Emergency: The Emergency rating shall be interpreted as the absolute maximum ampacity

allowed for a given conductor. This ampacity should not be exceeded under any condition unless an appropriate engineering review has been conducted. (100% ampacity for operating conductor at an elevated temperature during emergency conditions limited to a 24 hour period; 194°F/90°C for both bare and

spacer cable / tree wire / covered conductors)

6.5 PLANNING CONDUCTOR INSTALLATIONS

6.5.10 <u>General</u>

Background knowledge of conductor sag and tensions, and ampacity are essential for all phases of planning, as well as determining the appropriate conductor, pole class and height, guy designs, etc. Designs will also be influenced by features that are discussed in specific Sections of these standards, including: Primaries, Street Lighting, and Secondaries.

The size for conductor should follow planning criteria or reviewed by a distribution system planning engineer. The distribution designer who selects the materials should furnish guidance to the field whenever it is required. For example, the distribution designer should furnish stringing sags at 32°F/0°C, 60°F/15°C, and 90°F/32°C and should indicate the spans that should be checked for sag whenever ruling span or slack span sag is needed.

For normal urban work refer to the standard tables, or curves, with variations discussed in Section 22-Materials Catalog.

6.5.20 Employment of 3,000 lb. Maximum Design Tension

Advantages of using design tensions greater than 2,000 lbs. may be substantial under certain circumstances. The advantages include reduced costs, avoiding need for intermediate poles when converting from single phase to three phase, and improved appearance resulting from fewer poles. If advantages like this are clearly evident, 3,000 lb. span construction may be used

			PRIMARY CONDUCTORS	
	ISSUE	PAGE NUMBER		WHA
Busi	1/07 ness Use	6-6	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved.

for three phase lines in rural areas where the presence of secondaries and telephone is minimal and future urbanization is not anticipated. Isolated situations where conventional construction results in excessive sag may also be justification for 3,000 lb. construction. Crossarm tangents, vertical construction, deadends, and 336.4 kcmil or 477 kcmil 18/1 bare ACSR conductors should be employed for 3000 lb construction. Heavy duty arms with gain plates should be used where vertical construction for line angle poles and double deadends are not practical. The 3,000 lb. section of line shall be isolated from 2,000 lb. line sections by proper longitudinal guys at each end.

6.5.30 Deadending Different Conductors

When different conductors are deadended from the opposite directions on the same pole, the load may be balanced under heavy load conditions but not under normal temperatures. Normal conditions must exist when the foreman installs the cable. Three 336.4 kcmil and one 1/0 ACSR conductors, for example, create an unbalanced load of about 8,000 lbs. under heavy loading conditions. One spacer cable messenger will almost balance this with a tension of 7,700 lbs. Under pre-stressed conditions, the spacer cable will be stressed to 5,000 lbs. The open wires, however, will have tensions not over 400 or 500 lbs. each or less than 2,000 lbs. total. For this reason, the spacer cable must be deadended and guyed against the stress. Similar conditions will be met when two small conductors are balanced against one large one. A head guy to the next pole will often be sufficient to take up small unbalanced loads.

6.6 INSTALLING CONDUCTORS

6.6.10 General

In order to obtain the desired tensions it is essential that the conductor be sagged correctly. This Standard has been prepared to guide the installation of conductors.

6.6.20 Sagging Open Wire Primaries – Long Span

For long span work or for special construction, the planner will usually select a ruling span, pick the span that should be sagged, choose the stringing sags, and show them on the construction drawing. If conditions in the field make it impractical to sag this span, the planner should be consulted and the new stringing sags provided.

6.6.30 Sagging Other Open Conductors

Where special conditions warrant, the planner may select the span to be sagged and choose the stringing sags. In many cases, however, the sags will not be specified. In these cases proceed as follows:

- A. Choose a span of average length near the center of the section to be pulled.
- B. Check the stringing sag tables for a span of that length at the temperature that can be expected during the sagging operations. If the exact span is not shown on the table, use the corresponding ratio multiplier found in Table 1 on Page 6-3 to determine the required value.

If the actual ruling span is not specified, choose a ruling span that is equal to, or slightly more than, the actual span.

If existing conductors are to be re-sagged or re-strung, see Part E below.

	PRIMARY CONDUCTORS		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	6-7	7/21

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 06.00.002

C. Pull up the entire section, equalizing tension in each span. Check the sag in the key span using a sagging stick or scale. Spans of other lengths will not necessarily have sags that match the stringing tables.

- D. When different conductors are strung in parallel (e.g. on the same arm) string them to the value of the conductor with the greatest sag. It may be necessary to provide extra clearance for the wires so sagged.
- E. When re-sagging or re-stringing old conductors, they should first be pulled tightly to sags somewhat less than final values, and then backed off to meet the final sag curves.

6.6.40 <u>Line of Sight Method of Sagging Conductors</u>

Select the longest span near the center of the line being sagged. Determine the proper stringing sag from the appropriate sag table. Measure down this distance "X" on both poles of the span from the height of the conductor attachment to the pole (see Figure 1 on Page 6-8). Attach a marker at this point that can be seen from the other pole. The conductor should be sagged to the line of sight between the two markers. The sag should be as close as practical to the stringing sag shown in the sag tables. Decreased sags cause tensions greater than design tensions and may overstress conductors, poles, crossarms and guys. Increased sags cause clearances smaller than design clearance.

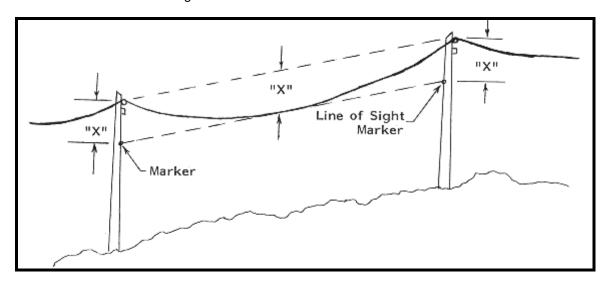


Figure 1 – Line of Sight Method of Sagging Conductors

			PRIMARY CONDUCTORS	
	ISSUE	PAGE NUMBER		SMIZE
Busi	7/21 ness Use	6-8	OVERHEAD CONSTRUCTION STANDARD	ppl

Standard Overhead Distribution Conductors

STANDARD OVERHEAD DISTRIBUTION CONDUCTORS								
SMIZZ		PAGE NUMBER	ISSUE					
ppl	OVERHEAD CONSTRUCTION STANDARD	6-100	1/07					

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	39,100 lbs.	TRANSVERSE	0.7634 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.9854 sq. in.	VERTICAL	2.546 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0161 Ω / 1000'	TOTAL	TOTAL 0.050 Lb/F4		NORMAL	1614	
R. (@ 75°C)	0.0191 Ω / 1000'	IOIAL	2.958 Lb/Ft	1262	EMERGENCY	1709	
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	24.33°				
CONDUCTOR DIAMETER	1.293"			•			
WEIGHT	1430 lbs / 1000'						

	INITIAL SAG TABLE															
	RULING SPAN (FEET)															
	125 150 175											200				
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2672	1772	1394	1162	2461	1810	1499	1287	2318	1837	1578	1389	2208	1857	1639	1471
ACTUAL SPAN (FEET)																
50 60	2	3 4	4 6	5 7	2	3 4	4 5	4 6	2	3 4	3 5	4 6	2	3 4	3 5	4 5
70	4	6	8	9	4	6	7	8	5	6	7	8	5	6	6	7
80	5	8	10	12	6	8	9	11	6	7	9	10	6	7	8	9
90	7	10	12	15	7	10	12	14	8	9	11	13	8	9	11	12
100	8	12	15	18	9	12	14	17	9	12	14	15	10	12	13	15
110	10	15	19	22	11	14	17	20	11	14	16	19	12	14	16	18
120	12	17	22	27	13	17	21	24	13	17	20	22	14	17	19	21
130	14	20	26	31	15	20	24	28	16	20	23	26	16	20	22	25
140	16	24	30	36	17	23	28	33	18	23	27	30	19	23	26	29
150	18	27	35	42	20	27	32	38	21	26	31	35	22	26	29	33
160	21	31	39	47	22	30	37	43	24	30	35	40	25	30	34	37
170	23	35	45	53	25	34	41	48	27	34	39	45	28	33	38	42
180	26	39	50	60	28	38	46	54	30	38	44	50	32	37	42	47
190	29	44	56	67	31	43	52	60	33	42	49	56	35	42	47	53
200	32	48	62	74	35	47	57	67	37	47	54	62	39	46	52	58
210	35	53	68	82	38	52	63	74	41	52	60	68	43	51	58	64
220	39	59	75	90	42	57	69	81	45	57	66	75	47	56	63	71
230	43	64	82	98	46	63	76	88	49	62	72 70	82	51	61 67	69 75	77 04
240	46	70	89	107	50	68	83	96	53	67	78	89	56	67	75	84
250	50	76	96	116	55	74	90	104	58	73	85	97	61	72	82	91
260 270	54 59	82	104 112	125 135	59 64	80 87	97 105	113 122	63 68	79 85	92 99	105 113	66 71	78 84	89 96	99 107
		88					105		73				71	91		_
280 290	63 68	95 102	121 130	145 156	68 73	93 100	112 121	131 141	73 78	92 98	107 115	121 130	76 82	91 97	103 110	115 123
290 300	72	102	130	167	73 79	100	121	150	78 83	98 105	115	130	88	97 104	110	132
300	12	103	103	101	13	107	123	100	υJ	100	123	108	00	104	110	IJZ

*** Simulated with a maximum tension of 4000 lbs. ***

	1113.0 KCMIL, 54/19 STRANDING, BARE ACSR, "FINCH" – 35 kV									
	ISSUE	PAGE NUMBER		SMIZZ						
Busi	7/15 ness Use	6-101	OVERHEAD CONSTRUCTION STANDARD	ppl						

Std. Item:	W21NG
Item ID:	9302828 ^E
CU:	C1113ASSTBRNE

	FINAL SAG TABLE											
		LOADING (UNLOADED CONDITIONS)										
TEMP. °F	0	32	60	90	120	158	176	194				
TEMP. °C	-18	0	15	32	50	70	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	1.44	4.20	7.20	8.64	9.84	11.28	11.88	12.48				
75	3.84	8.28	12.12	14.40	16.08	18.00	18.84	19.68				
100	7.68	13.44	18.00	21.36	23.40	25.68	26.76	27.84				
125	13.32	20.04	25.08	29.28	31.68	34.44	35.64	36.84				
150	20.64	27.84	33.24	38.40	41.16	44.16	45.60	46.92				
175	29.40	36.96	42.72	48.36	51.72	55.08	56.64	58.08				
200	39.72	47.40	53.52	59.52	63.48	67.08	68.76	70.32				
225	51.48	59.28	65.64	71.76	76.44	80.28	81.96	83.76				
250	64.56	72.60	79.08	85.44	90.48	94.68	96.48	98.28				
275	79.08	87.24	93.84	100.44	105.60	110.28	112.20	114.12				
300	95.04	103.20	109.92	116.64	122.04	127.08	129.12	131.16				

	FINAL SAG TABLE										
	LOADING	TENSION (LBS.)									
TEMP. °F	0	32	60	0							
TEMP. °C	-18	0	15	-18							
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE							
DEAD END SPAN (FEET)											
50	2.76	5.16	7.32	*4000							
75	6.24	9.60	12.24	*4000							
100	11.04	15.24	18.12	*4000							
125	17.28	22.08	25.20	*4000							
150	24.96	30.12	33.48	*4000							
175	33.96	39.48	43.08	*4000							
200	44.40	50.16	53.88	*4000							
225	56.16	62.16	65.88	*4000							
250	69.36	75.60	79.32	*4000							
275	84.00	90.24	94.08	*4000							
300	99.96	106.32	110.28	*4000							
	* Note	e: Design Specificat	ion Constraint								

*** Simulated with a maximum tension of 4000 lbs. ***

1113.0 KCMIL, 54/19 STRANDING, BARE ACSR, "FINCH" - 35 kV

PHYSICAL	PROPERTIES	LOADING PF	ROPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	28,200 lbs.	TRANSVERSE	0.6966 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.7049 sq. in.	VERTICAL	2.015 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0222 Ω / 1000'	TOTAL	2.432 Lb/Ft	902	NORMAL	1299	
R. (@ 75°C)	0.0265 Ω / 1000'	IOIAL	2.432 LD/Ft	1021	EMERGENCY	1375	
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	28.14°				
CONDUCTOR DIAMETER	1.093"			-			
WEIGHT	1022 lbs / 1000'						

						INIT	IAL SA	C TAI	DIE							
						IIVII		NG SF		FFT)						
		1:	25			1	50	110 01	/ / / / / / / / / / / / / / / / / / / 		75			2(00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2446	1557	1165	938	2192	1537	1228	1028	2004	1523	1274	1100	1874	1513	1310	1157
ACTUAL SPAN (FEET)																
50 60	2	2 4	3 5	4 6	2	2 4	3 5	4 5	2	3 4	3 4	3 5	2	3 4	3 4	3 5
70	3	5	6	8	3	5	6	7	4	5	6	7	4	5	6	7
80	4	6	8	10	4	6	8	10	5	6	8	9	5	6	8	8
90	5	8	11	13	6	8	10	12	6	8	10	11	7	8	10	11
100	6	10	13	16	7	10	13	15	8	10	12	14	8	10	12	13
110	8	12	16	20	8	12	15	18	9	12	15	17	10	12	14	16
120	9	14	19	24	10	14	18	22	11	15	17	20	12	15	17	19
130	11	17	22	28	12	17	21	25	13	17	20	24	14	17	20	22
140	12	19	26	32	14	20	25	29	15	20	24	27	16	20	23	26
150	14	22	30	37	16	22	28	34	17	23	27	31	18	23	26	30
160	16	25	34	42	18	26	32	38	20	26	31	36	21	26	30	34
170	18	29	38	47	20	29	36	43	22	29	35	40	24	29	34	38
180	20	32	43	53	23	32	41	48	25	333	39	45	27	33	38	43
190	23	36	48	59	25	36	45	54	28	36	44	50	30	37	42	48
200	25	39	53	66	28	40	50	60	31	40	48	56	33	41	47	53
210	28	44	58	72	31	44	55	66	34	45	53	62	36	45	52	59
220	30	48	64	79	34	48	61	72	37	49	58	68	40	49	57	64
230	33	52	70	87	37	53	66	79	41	53	64	74	43	54	62	70
240	36	57	76	94	40	58	72	86	44	58	69	81	47	59	68	77
250	39	62	82	103	44	62	78	94	48	63	75	87	51	63	73	83
260	42	67	89	111	47	68	85	101	52	68	82	95	55	69	79	90
270	46	71	96	120	51	73	91	109	56	74	88	102	60	74	59	97
280	49	77	103	129	55	78	98	117	60	79	95	110	64	80	92	104
290	53	83	111	138	59	84	105	126	64	85	101	118	69	85	99	112
300	57	89	119	148	63	90	113	135	69	91	109	126	74	91	106	120

*** Simulated with a maximum tension of 3500 lbs. ***

	795.0 KCMIL, 54/7 STRANDING, BARE ACSR, "CONDOR" – 35 kV						
ISSUE	PAGE NUMBER	SMID					
7/15	6-103	OVERHEAD CONSTRUCTION STANDARD PPI					

Std. Item:	W21NF
Item ID:	9306375 ^E
CU:	C795ASSTBRNE

			FINAL	SAG TABL	.E				
		LOADING (UNLOADED CONDITIONS)							
TEMP. °F	0	32	60	90	120	158	176	194	
TEMP. °C	-18	0	15	32	50	70	80	90	
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	
DEAD END SPAN (FEET)									
50	1.20	3.00	6.00	7.68	9.00	10.44	11.16	11.76	
75	3.00	6.36	10.44	13.20	14.88	16.92	17.76	18.72	
100	5.88	11.16	15.84	19.68	21.72	24.24	25.32	26.40	
125	10.56	17.04	22.44	27.12	29.52	32.40	33.72	35.04	
150	16.92	24.36	30.12	35.52	38.40	41.64	43.08	44.52	
175	24.96	32.88	39.00	44.88	48.36	51.84	53.40	55.08	
200	34.44	42.60	49.08	55.20	59.28	63.12	64.92	66.60	
225	45.36	53.76	60.36	66.84	71.40	75.48	77.40	79.20	
250	57.72	66.12	72.96	79.68	84.72	89.04	90.96	93.00	
275	71.28	79.92	86.76	93.72	99.24	103.80	105.84	107.76	
300	86.28	94.92	101.88	109.08	114.84	119.64	121.80	123.84	

	FINAL SAG TABLE					
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0		
TEMP. °C	-18	0	15	-18		
	4 LB. WIND, ½" ICE	1⁄₂" ICE	6 LB. WIND	4 LB. WIND, ½" ICE		
DEAD END SPAN (FEET)						
50	2.64	4.32	6.12	*3500		
75	5.88	8.40	10.68	*3500		
100	10.44	13.80	16.20	*3500		
125	16.32	20.16	22.80	*3500		
150	23.40	27.84	30.48	*3500		
175	31.92	36.72	39.36	*3500		
200	41.76	46.80	49.56	*3500		
225	52.80	58.08	60.84	*3500		
250	65.16	70.68	73.56	*3500		
275	78.84	84.48	87.36	*3500		
300	93.84	99.60	102.48	*3500		
	* Note	: Design Specificati	ion Constraint			

^{***} Simulated with a maximum tension of 3500 lbs. ***

795.0 KCMIL, 54/7 STRANDING, BARE ACSR, "CONDOR" - 35 kV

Std. Item:	W21BF
Item ID:	9302781 ^E
CU:	C795ALSTBRNE

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	13,900 lbs.	TRANSVERSE	0.675 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.6245 sq. in.	VERTICAL	1.694 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0227 Ω / 1000'	TOTAL	2.124 Lb/Ft	880	NORMAL	1265	
R. (@ 75°C)	0.0269 Ω / 1000'	IOTAL	2.124 LD/Ft	997	EMERGENCY	1339	
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	34.54°				
CONDUCTOR DIAMETER	1.026"			•			
WEIGHT	745 lbs / 1000'						

						INITI	AL SA	G TA	BLE							
							RULII	NG SF	PAN (F	EET)						
		12	25			15	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	868	657	554	484	811	669	588	527	779	676	612	560	760	682	629	585
ACTUAL SPAN (FEET)																
50 60	3 5	4 6	5 7	6 8	3 5	4 6	5 7	5 8	4 5	4 6	5 7	5 7	4 5	4 6	4 6	5 7
70	6	8	10	11	7	8	9	10	7	8	9	10	7	8	9	9
80	8	11	13	15	9	11	12	14	9	11	12	13	9	11	11	12
90	10	14	16	19	11	14	15	17	12	13	15	16	12	13	14	16
100	13	17	20	23	14	17	19	21	14	17	18	20	15	16	18	19
110	16	21	24	28	17	20	23	26	17	20	22	24	18	20	22	23
120	19	25	29	33	20	24	27	31	21	24	26	29	21	24	26	28
130	22	29	34	39	23	28	32	36 42	24	28	31	34	25	28	30	32
140 150	25 29	33 38	40 45	45 52	27 31	33 38	37 43	42 48	28 32	33 37	36 41	39 45	29 33	32 37	35 40	38 43
160	33	44	52	52	35	43	49	54	37	42	47	4 5	38	42	46	49
170	37	44 49	52 58	67	40	43 48	49 55	61	42	42 48	53	51 58	43	42 48	40 51	49 55
180	42	55	65	75	45	54	62	69	47	54	59	65	48	53	58	62
190	47	62	73	83	50	60	69	77	52	60	66	72	53	59	64	69
200	52	68	81	92	55	67	76	85	58	66	73	80	59	66	71	77
210	57	75	89	102	61	74	84	94	63	73	81	88	65	73	79	85
220	62	82	98	112	67	81	92	103	70	80	89	97	71	80	86	93
230	68	90	107	122	73	89	101	113	76	88	97	106	78	87	94	102
240	74	98	116	133	80	96	110	123	83	96	106	115	85	95	103	111
250	81	107	126	144	86	105	119	133	90	104	115	125	92	103	111	120
260	87	115	137	156	93	113	129	144	97	112	124	135	100	111	120	130
270	94	124	147	169	101	122	139	155	105	121	134	146	108	120	130	140
280	101	134	158	181	108	131	149	167	113	130	144	157	116	129	140	151
290	109	143	170	194	116	141	160	179	121	139	154	168	124	138	150	161
300	116	153	182	208	124	151	171	192	129	149	165	180	133	148	160	173

795 0 KCMII	37 STRAND	BARE AAC	. "ARBUTUS" -	_ 15 k\/

ISSUE	PAGE NUMBER
7/17	6-105

OVERHEAD CONSTRUCTION STANDARD

Supersedes 7/15 Issue - Updated RBS, loading properties, sags, and tensions.

Std. Item:	W21BF
Item ID:	9302781 ^E
CU:	C795ALSTBRNE

			FINAL	SAG TABI	.E						
		LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	158	176	194			
TEMP. °C	-18	0	15	32	50	70	80	90			
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded			
DEAD END SPAN (FEET)											
50	1.92	5.64	5.86	8.88	11.28	13.44	15.60	16.56			
75	6.00	11.16	11.43	15.24	18.60	21.48	24.60	26.04			
100	12.84	18.60	18.91	23.28	27.24	30.72	34.68	36.48			
125	21.96	27.84	28.18	33.00	37.44	41.40	46.08	48.12			
150	33.00	39.12	39.48	44.52	49.32	53.76	58.92	61.20			
175	46.08	52.20	52.58	57.84	63.00	67.80	73.44	75.96			
200	61.08	67.32	67.71	73.20	78.48	83.52	89.64	92.28			
225	78.24	84.48	84.87	90.36	96.00	101.28	107.52	110.40			
250	97.32	103.68	104.08	109.68	115.32	120.72	127.32	130.32			
275	118.44	124.80	125.21	130.92	136.68	142.32	149.04	152.16			
300	141.60	147.96	148.38	154.20	160.08	165.72	172.80	175.92			

	FINAL SAG TABLE									
	LOADIN	IG (LOADED COND	ITIONS)	TENSION (LBS.)						
TEMP. °F	0	32	60	0						
TEMP. °C	-18	0	15	-18						
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE						
DEAD END SPAN (FEET)										
50	4.08	6.84	9.00	*1948						
75	9.36	12.84	15.48	*1921						
100	16.56	20.64	23.52	*1924						
125	25.80	30.12	33.24	*1935						
150	36.96	41.64	44.76	*1945						
175	50.04	54.84	58.20	*1954						
200	65.16	70.20	73.56	*1962						
225	82.20	87.36	90.72	*1968						
250	101.40	106.56	110.04	*1973						
275	122.52	127.80	131.28	*1977						
300	145.68	151.08	154.56	*1980						
	* No	ote: Design Specificati	on Constraint							

795.0 KCMIL, 37 STRAND, BARE AAC, "ARBUTUS" - 15 kV

Doc. # ST.06.00.003

Supersedes 7/15 Issue - Updated RBS, loading properties, sags, and tensions.

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	13,480 lbs.	TRANSVERSE	0.857 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.6245 sq. in.	VERTICAL	2.603 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0227 Ω / 1000'	TOTAL	3.041 Lb/Ft	669	NORMAL	952	
R. (@ 75°C)	0.0271 Ω / 1000'	IOIAL	J.U41 LD/Fl	828	EMERGENCY	1058	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	30.87°				
CONDUCTOR DIAMETER	0.932"			•			
COMPLETE DIAMETER	1.572" (Nominal)						
WEIGHT	1,315 lbs / 1000'						

	INITIAL SAG TABLE															
							RULII	NG SF	PAN (F	FEET)						
		12	25			15	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	942	827	752	691	917	837	781	732	903	844	801	761	894	849	814	782
ACTUAL SPAN (FEET)																
50 60	5 8	6 9	7 9	7 10	5 8	6 9	6 9	7 10	5 8	6 8	6 9	7 9	6 8	6 8	6 9	6 9
70 80	10 13	12 15	13 17	14 18	11 14	12 15	12 16	13 17	11 14	12 15	12 16	13 17	11 14	11 15	12 16	12 16
90 100	17 21	19 24	21 26	23 29	17 22	19 24	21 25	22 27	18 22	19 23	20 25	21 26	18 22	19 23	20 24	21 25
110 120	25 30	29 34	32 38	35 41	26 31	29 34	31 36	33 39	27 32	28 34	30 36	32 38	27 32	28 34	30 35	31 37
130	35	40	44	48	36	40	43	46	37	40	42	44	38	40	41	43
140	41	47	51	56	42	46	50	53	43	46	49	51	44	46	48	50
150	47	54	59	64	48	53	57	61	49	53	56	59	50	53	55	57
160	54	61	67	73	55	61	65	69	56	60	63	67	57	60	62	65
170	61	69	76	83	62	68	73	78	63	68	72	75	64	68	70	73
180	68	77	85	93	70	77	82	88	71	76	80	84	72	76	79	82
190	76	86	95	103	78	85	91	98	79	85	89	94	80	84	88	92
200	84	96	105	115	86	95	101	108	88	94	99	104	89	94	98	102
210	92	105	116	126	95	104	112	119	97	104	109	115	98	103	108	112
220	101	116	127	139	104	114	123	131	106	114	120	126	107	113	118	123
230 240	111 121	126 138	139 151	152 165	114 124	125 136	134 146	143 156	116 126	124 135	131 143	138 150	117 128	124 135	129 140	134 146
250	131	149	164	179	135	148	158	169	137	147	155	163	139	146	152	159
250 260	142	162	178	179	146	160	171	183	148	159	167	176	150	158	165	172
270	153	174	191	209	157	172	185	198	160	171	181	190	162	170	178	185
280	164	187	206	225	169	185	199	212	172	184	194	204	174	183	191	199
290	176	201	221	241	181	199	213	228	185	198	208	219	187	197	205	214
300	189	215	236	258	194	213	228	244	197	211	223	235	200	210	220	229

795.0 KCMIL, 19 STRANI), COMPACT AAC	5, 320 MIL COVERED	TREE WIRE – 35 kV
------------------------	----------------	--------------------	-------------------

ISSUE	PAGE NUMBER
7/17	6-107

Std. Item:	W21ND
Item ID:	9313225
CU:	C795ALTWHMP35KNE
CU:	C795ALSCHMP35KNF

	FINAL SAG TABLE										
		LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	158	176	194			
TEMP. °C	-18	0	15	32	50	70	80	90			
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded			
DEAD END SPAN (FEET)											
50	3.84	7.20	7.38	9.96	12.24	14.16	16.32	17.16			
75	10.56	14.64	14.86	18.00	20.88	23.40	26.40	27.60			
100	20.88	25.08	25.33	28.80	32.04	35.04	38.64	40.20			
125	34.08	38.28	38.54	42.24	45.84	49.20	53.16	54.84			
150	50.04	54.36	54.62	58.32	62.16	65.76	70.08	72.00			
175	68.76	73.20	73.47	77.28	81.24	85.08	89.64	91.68			
200	90.48	94.92	95.20	99.12	103.20	107.16	111.84	114.12			
225	115.08	119.52	119.81	123.84	128.04	132.00	136.92	139.20			
250	142.68	147.12	147.41	151.44	155.76	159.84	164.88	167.28			
275	173.28	177.72	178.02	182.16	186.36	190.56	195.72	198.12			
300	206.88	211.44	211.73	215.76	220.08	224.28	229.56	232.08			

FINAL SAG TABLE									
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)					
TEMP. °F	0	32	60	0					
TEMP. °C	-18	0	15	-18					
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE					
DEAD END SPAN (FEET)									
50	5.76	8.28	10.08	*2000					
75	12.84	15.96	18.12	*2000					
100	23.16	26.64	28.92	*1973					
125	36.36	39.96	42.36	*1967					
150	52.32	56.16	58.56	*1969					
175	71.16	75.00	77.52	*1973					
200	92.88	96.84	99.36	*1977					
225	117.48	121.44	124.08	*1981					
250	145.08	149.16	151.80	*1984					
275	175.68	179.76	182.40	*1986					
300	209.28	213.36	216.12	*1988					
	* Note	e: Design Specificati	ion Constraint						

795.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE - 35 kV

Doc. # ST.06.00.003

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	13,480 lbs.	TRANSVERSE	0.764 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.6245 sq. in.	VERTICAL	2.163 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0227 Ω / 1000'	TOTAL	2.594 Lb/Ft	714	NORMAL	1005	
R. (@ 75°C)	0.0271 Ω / 1000'	IOIAL	2.594 LD/Ft	881	EMERGENCY	1118	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	31.63°				
CONDUCTOR DIAMETER	0.932"			•			
COMPLETE DIAMETER	1.292" (Nominal)						
WEIGHT	1,049 lbs / 1000'						

	INITIAL SAG TABLE															
	RULING SPAN (FEET)															
		12	25		150 175					200						
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	916	766	677	609	881	777	709	653	861	785	731	685	848	790	747	708
ACTUAL SPAN (FEET)																
50 60	4 6	5 7	6 8	6 9	4 6	5 7	6 8	6 9	5 7	5 7	5 8	6 8	5 7	5 7	5 8	6 8
70 80 90	8 11 14	10 13 17	11 15 19	13 17 21	9 11 14	10 13 16	11 14 18	12 15 20	9 12 15	10 13 16	11 14 17	11 15 19	9 12 15	10 13 16	10 14 17	11 14 18
100 110	17 21	21 25	23 28	26 31	18 22	20 25	22 27	24 29	18 22	20 24	22 26	23 28	19 23	20 24	21 26	22 27
120	25	30	34	37	26	29	32	35	26	29	31	33	27	29	30	32
130 140	29 34	35 40	39 46	44 51	30 35	34 40	38 44	41 47	31 36	34 39	36 42	39 45	31 37	34 39	36 41	38 44
150	39	46	52	58	40	46	50	54	41	45	49	52	42	45	48	50
160 170	44 50	53 60	60 67	66 75	46 52	52 59	57 64	62 70	47 53	52 58	55 62	59 67	48 54	51 58	54 61	57 65
180	56	67	75	84	58	66	72	78	59	65	70	75	60	65	69	72
190 200	62 69	74 82	84 93	93 104	64 71	73 81	80 89	87 97	66 73	73 81	78 86	83 92	67 75	72 80	76 85	81 89
210	76	91	103	114	79	90	98	107	81	89	95	102	82	88	93	98
220 230	83 91	100 109	113 123	125 137	86 95	98 107	108 118	117 128	89 97	97 106	104 114	112 122	90 99	97 106	102 112	108 118
240	99	119	134	149	103	117	128	139	106	116	124	133	107	115	122	129
250 260	108 116	129 139	145 157	162 175	112 121	127 137	139 150	151 164	115 124	126 136	135 146	144 156	116 126	125 135	132 143	140 151
270	125	150	170	189	130	148	162	177	134	147	157	168	136	146	154	163
280 290	135 145	162 173	182 196	203 218	140 150	159 171	174 187	190 204	144 154	158 169	169 182	181 194	146 157	157 168	166 178	175 188
300	155	186	209	233	161	183	200	218	165	181	194	208	168	180	190	201

Supersedes 7/15 Issue - Updated RBS, loading properties, sags, and tensions.

795.0 KCMIL,19 STRAND	, COMPACT AAC,	, 180 MIL COVERED	TREE WIRE – 15 kV
-----------------------	----------------	-------------------	-------------------

ISSUE	PAGE NUMBER
7/17	6-109

Std. Item:	W21BG
Item ID:	9313226
CU:	C795ALTWHMPNE
CU:	C795ALSCHMPNE

	FINAL SAG TABLE										
		LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	158	176	194			
TEMP. °C	-18	0	15	32	50	70	80	90			
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded			
DEAD END SPAN (FEET)											
50	2.88	6.48	6.68	9.48	11.76	13.80	15.96	16.92			
75	8.28	12.84	13.09	16.56	19.68	22.32	25.44	26.76			
100	16.68	21.48	21.76	25.68	29.28	32.64	36.36	38.04			
125	27.72	32.76	33.06	37.20	41.28	44.88	49.20	51.12			
150	41.40	46.56	46.86	51.12	55.44	59.40	64.20	66.24			
175	57.48	62.64	62.96	67.44	71.88	76.20	81.24	83.52			
200	76.08	81.24	81.56	86.04	90.72	95.16	100.44	102.96			
225	96.96	102.24	102.57	107.16	111.96	116.52	122.04	124.56			
250	120.48	125.64	125.98	130.68	135.48	140.16	145.92	148.56			
275	146.40	151.68	152.02	156.72	161.64	166.44	172.32	174.96			
300	174.96	180.24	180.58	185.28	190.32	195.12	201.12	203.88			

		FINAL SAG TA	BLE	
	LOADIN	TENSION (LBS.)		
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	4.92	7.56	9.48	*2000
75	10.92	14.28	16.68	*2000
100	19.44	23.28	25.92	*2000
125	30.60	34.68	37.44	*1987
150	44.28	48.60	51.48	*1980
175	60.36	64.80	67.68	*1979
200	78.96	83.40	86.40	*1981
225	99.96	104.40	107.40	*1983
250	123.36	127.92	131.04	*1985
275	149.40	153.96	157.08	*1987
300	177.84	182.52	185.64	*1988
	* No	te: Design Specificat	ion Constraint	

795.0 KCMIL, 19 STRAND, COMPACT AAC, 180 MIL COVERED TREE WIRE - 15 kV

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	19,500 lbs.	TRANSVERSE	0.6174 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.4353 sq. in.	VERTICAL	1.501 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0366 Ω / 1000'	TOTAL	1.923 Lb/Ft	658	NORMAL	938		
R. (@ 75°C)	0.0438 Ω / 1000'	IOIAL	1.923 LD/Ft	742	EMERGENCY	991		
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	33.18°					
CONDUCTOR DIAMETER	0.858" (Nominal)			•				
WEIGHT	656 lbs / 1000'							

	INITIAL SAG TABLE															
								NG SF		FEET)						
		12	25			1:	50		•	17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2200	1333	913	691	1936	1255	937	750	1707	1200	954	796	1533	1161	967	832
ACTUAL SPAN (FEET)																
50 60	1 2	2 3	3 4	4 5	1 2	2 3	3 4	3 5	1 2	2	3 4	3 4	2 2	2	3 4	3 4
70	2	4							.					4		-
70 80	3	4 5	5 7	7 9	2	4 5	5 7	6 8	3 4	4 5	5 7	6 8	3 4	4 5	5 7	6 8
90	4	6	9	12	4	6	9	11	5	7	8	10	5	7	8	10
100	4	7	11	14	5	8	11	13	6	8	10	12	6	8	10	12
110	5	9	13	17	6	9	13	16	7	10	12	15	8	10	12	14
120	6	11	16	21	7	11	15	19	8	12	15	18	9	12	15	17
130	8	12	18	24	9	13	18	22	10	14	17	21	11	14	17	20
140	9	14	21	28	10	15	21	26	11	16	20	24	13	17	20	23
150	10	17	24	32	11	18	24	30	13	18	23	28	14	19	23	27
160	11	19	28	36	13	20	27	34	15	21	26	32	16	22	26	30
170	13	21	31	41	15	23	30	38	17	24	30	36	19	25	29	34
180	14	24	35	46	16	25	34	43	19	27	33	40	21	27	33	38
190	16	27	39	51	18	28	38	47	21	30	37	45	23	31	37	43
200	18	30	43	57	20	31	42	53	23	33	41	50	26	34	41	47
210	20	33	48 52	63	22	35 38	46 51	58	25 28	36	45	55	28 31	37 41	45 49	52
220 230	22 24	36 39	52 57	69 75	25 27			64	28 31	40 43	50 55	60 65	34	41 45	49 54	57 63
230 240	26	39 43	62	75 82	29	41 45	56 61	69 76	33	43 47	59	65 71	37	45 49	54 59	68
250	28	46	67	89	32	49	66	82	36	51	64	77	40	53	64	74
260 260	30	50	73	96	34	53	71	89	39	55	70	84	43	57	69	80
270	33	54	79	104	37	57	77	96	42	60	75	90	47	62	74	86
280	35	58	85	112	40	61	82	103	45	64	81	97	50	66	80	93
290	38	62	91	120	43	66	88	111	48	69	87	104	54	71	86	100
300	40	66	97	128	46	71	95	118	52	74	93	111	58	76	92	107

*** Simulated with a maximum tension of 3000 lbs. ***

	477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK" – 15 kV								
ISSUE	PAGE NUMBER		WHA						
7/17	6-111	OVERHEAD CONSTRUCTION STANDARD	ppl						

Supersedes 7/15 Issue – Corrected normal temperature limit.

Std. Item:	
Item ID:	9302780
CU:	C477BACSR

	FINAL SAG TABLE											
			LOADIN	G (UNLOA	DED CONE	DITIONS)						
TEMP. °F	0	32	60	90	120	158	176	194				
TEMP. °C	-18	0	15	32	50	70	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	0.84	1.8	4.44	6.12	7.68	9.36	10.08	10.68				
75	2.16	4.32	8.28	10.92	12.84	15.12	16.08	17.04				
100	4.2	8.16	13.2	16.68	19.08	21.72	23.04	24.12				
125	7.44	13.32	19.08	23.4	26.16	29.28	30.72	32.04				
150	12.36	19.68	26.04	31.20	34.20	37.68	39.24	40.92				
175	19.08	27.48	34.08	39.96	43.20	47.04	48.84	50.52				
200	27.48	36.36	43.32	49.80	53.28	57.36	59.28	61.20				
225	37.44	46.56	53.64	60.72	64.32	68.76	70.80	72.84				
250	48.72	57.96	65.28	72.48	76.56	81.24	83.40	85.44				
275	61.20	70.56	78.00	85.44	89.76	94.68	96.96	99.12				
300	75.00	84.36	91.92	99.48	104.28	109.32	111.60	113.88				

		FINAL SAG TA	BLE	
	LOADING	TENSION (LBS.)		
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	2.40	3.48	4.68	3000*
75	5.40	7.20	8.64	3000*
100	9.60	12.00	13.68	3000*
125	15.00	18.00	19.68	3000*
150	21.60	24.96	26.64	3000*
175	29.52	33.12	34.80	3000*
200	38.52	42.48	44.16	3000*
225	48.72	52.92	54.60	3000*
250	60.12	64.44	66.12	3000*
275	72.72	77.28	78.96	3000*
300	86.64	91.20	92.88	3000*
	* Note	e: Design Specificati	ion Constraint	

^{***} Simulated with a maximum tension of 3000 lbs. ***

477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK" - 15 kV

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	8,360 lbs.	TRANSVERSE	0.598 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.3744 sq. in.	VERTICAL	1.251 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	1.686 Lb/Ft	640	NORMAL	908		
R. (@ 75°C)	0.0445 Ω / 1000'	IOTAL	1.000 LD/Ft	721	EMERGENCY	960		
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	41.59°					
CONDUCTOR DIAMETER	0.792"			•				
WEIGHT	447 lbs / 1000'							

						INITI	AL SA	AG TA	BLE							
							RULII	NG SF	PAN (F	EET)						
		12	25			15	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1087	622	451	363	886	593	469	394	766	576	483	419	696	566	492	438
ACTUAL SPAN (FEET)																
50	2	3	4	5	2	3	4	4	2	3	3	4	2	3	3	4
60	2	4	5	7	3	4	5	6	3	4	5	6	3	4	5	6
70	3	5	7	9	4	6	7	8	4	6	7	8	5	6	7	8
80 90	4 5	7 9	10 12	12 15	5 6	7 9	9 12	11 14	6 7	7 9	9 11	10 13	6 8	8 10	9 11	10 12
100	6	11	15	19	8	11	14	17	9	12	14	16	10	12	14	15
110	7	13	18	22	9	14	17	21	11	14	17	19	12	14	17	19
120	9	16	21	27	11	16	21	24	13	17	20	23	14	17	20	22
130	10	18	25	31	13	19	24	29	15	20	24	27	16	20	23	26
140	12	21	29	36	15	22	28	33	17	23	27	31	19	23	27	30
150	14	24	34	42	17	26	32	38	20	26	31	36	22	27	31	35
160	16	28	38	47	19	29	37	44	22	30	36	41	25	30	35	39
170	18	31	43	53	22	33	41	49	25	34	40	46	28	34	39	44
180	20	35	48	60	25	37	46	55	28	38	45	52	31	39	44	50
190	22	39	54	67	27	41	52	61	32	42	50	58	35	43	49	55
200	25	44	60	74	30	45	57	68	35	47	56	64	39	48	55	61
210	27	48	66	82	33	50	63	75	39	52	61	71	42	52	60	68
220	30	53	72	90	37	55	69	82	42	57	67	78	47	58	66	74
230	33	58	79	98	40	60	76	90	46	62	74	85	51	63	72	81
240	35	63	86	107	44	65	82	98	51	67	80	92	55	68	79	88
250	38	68	93	116	47	71	89	106	55	73	87	100	60	74	85	96
260	42 45	74 79	101 109	125 135	51 55	77 83	97 104	115 124	59 64	79 85	94 101	108 117	65 70	80 87	92 100	104 112
270	45	85	117	145	59	89	112	133	69	92	101	126	70 75	93	107	120
280 290	48 52	85 92	117	145	64	89 96	120	143	74	92 98	109	135	75 81	93 100	107	120
300	55	98	134	167	68	102	129	153	79	105	125	144	87	107	123	138
300	55	98	134	167	ρg	102	129	153	79	105	125	144	87	107	123	138

477 0 1/01/11	40 OTD AND		"~~~	4-11/
477.0 KCMII.	19 STRAND	BARE AAC	"COSMOS" -	- 15 kV

ISSUE	PAGE NUMBER
7/17	6-113

OVERHEAD CONSTRUCTION STANDARD

Supersedes 7/15 Issue - Updated RBS, loading properties, sags, and tensions.

Std. Item:	W21BA
Item ID:	9314655
CU:	C477ALSTBR

			FINAL	SAG TABL	.E					
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	0 32 60 90 120 158 176								
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	0.96	2.64	2.90	6.60	9.60	11.88	14.40	15.48		
75	2.52	6.24	6.59	11.52	15.48	18.84	22.32	23.88		
100	5.52	11.64	12.04	17.64	22.56	26.64	31.08	33.00		
125	11.16	18.72	19.15	25.20	30.72	35.40	40.68	42.96		
150	19.20	27.36	27.82	34.32	40.20	45.48	51.48	54.12		
175	29.40	37.68	38.16	44.88	51.24	56.88	63.48	66.36		
200	41.52	49.80	50.29	57.12	63.84	69.84	76.92	80.04		
225	55.20	63.48	63.98	70.92	77.76	84.12	91.56	94.92		
250	70.44	78.72	79.22	86.28	93.36	99.96	107.64	111.24		
275	87.24	95.52	96.03	103.20	110.40	117.12	125.28	128.88		
300	105.60	113.88	114.40	121.68	129.00	135.96	144.24	148.08		

		FINAL SAG TA	BLE	
	LOADIN	IG (LOADED COND	ITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	3.12	4.80	6.84	*2000
75	7.08	9.60	11.88	*2000
100	12.60	15.84	18.24	*2000
125	19.80	23.40	25.92	*2000
150	28.44	32.52	35.04	*2000
175	38.88	43.08	45.72	*1996
200	50.88	55.44	57.96	*1989
225	64.56	69.24	71.88	*1987
250	79.80	84.60	87.24	*1986
275	96.60	101.52	104.16	*1986
300	114.96	120.00	122.64	*1987
	* No	ote: Design Specificati	ion Constraint	

477.0 KCMIL, 19 STRAND, BARE AAC, "COSMOS" - 15 kV

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	8,360 lbs.	TRANSVERSE	0.787 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.3746 sq. in.	VERTICAL	2.061 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	2.506 Lb/Ft	489	NORMAL	692		
R. (@ 75°C)	0.0447 Ω / 1000'	IOIAL	2.500 Lb/Ft	603	EMERGENCY	768		
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	37.02°					
CONDUCTOR DIAMETER	0.722"			•				
COMPLETE DIAMETER	1.362" (Nominal)							
WEIGHT	903 lbs / 1000'							

	rsed
	es 7
	~
	_
	S
	rsedes 7/15 Issue –
	_
-	Jpdated
	_
	台
	čň
	٠.
(loading
-	Updated RBS, loading properties, sags, and tensions.
(sags,
	an
	Q
	tensions.

	INITIAL SAG TABLE															
	RULING SPAN (FEET)															
		12	25			1:	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	931	749	646	572	859	740	665	605	818	735	678	630	793	732	687	647
ACTUAL SPAN (FEET)																
50 60	4 5	5 7	5 8	6 9	4 6	5 7	5 7	6 8	4 6	5 7	5 7	5 8	4 6	5 7	5 7	5 8
70 80 90	7 9 12	9 12 15	10 13 17	12 15 19	8 10 13	9 12 15	10 13 17	11 14 18	8 11 13	9 12 15	10 13 16	11 14 17	8 11 14	9 12 15	10 13 16	10 13 17
100 110	15 18	18 22	21 25	24 29	16 19	18 22	20 25	22 27	17 20	18 22	20 24	22 26	17 21	19 23	20 24	21 25
120 130	21 25	26 31	30 35	34 40	23 27	26 31	29 35	32 38	24 28	27 31	29 34	31 36	25 29	27 31	29 33	30 36
140 150	29 33	36 41	41 47	47 53	31 36	36 41	40 46	44 51	32 37	36 42	39 45	42 49	34 39	36 42	39 45	41 47
160 170	37 42	47 53	54 61	61 69	40 46	47 53	52 59	57 65	42 48	47 53	51 58	55 62	44 50	48 54	51 57	54 61
180 190 200	47 53 58	59 66 73	68 76 84	77 86 95	51 57 63	59 66 73	66 74 82	73 81 90	54 60 66	60 67 74	65 72 80	70 78 86	56 62 69	60 67 74	64 71 79	68 76 84
210	64	80	92	105	70	81	90	99	73	82	88	95	76	82	87	93
220 230	71 77 84	88 96	101 111	115 126	76 84 91	89 97	99 108	109 119	80 88	89 98	97 106	104 114	83 91	90 98	96 105	102 111
240 250	91	105 114	121 131	137 148	99	106 115	118 128	129 140	95 104	106 116	116 125	124 135	99 107	107 116	114 124	121 131
260 270	99 106	123 132	142 153	160 173	107 115	124 134	138 149	152 164	112 121	125 135	136 146	146 157	116 125	126 136	134 144	142 153
280 290	114 123	142 153	164 176	186 200	124 133	144 154	160 172	176 189	130 139	145 155	157 169	169 182	134 144	146 156	155 167	165 177
300	131	164	189	214	142	165	184	202	149	166	181	194	154	167	178	189

477.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE - 35 kV

ISSUE	PAGE NUMBER
7/17	6-115

Std. Item:	W21NB
Item ID:	9313248 ^E
CU:	C477ALTWHMP35KNE
CU:	C477ALSCHMP35KNF

	FINAL SAG TABLE											
		LOADING (UNLOADED CONDITIONS)										
TEMP. °F	0	32	60	90	120	158	176	194				
TEMP. °C	-18	0	15	32	50	70	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	2.16	4.68	4.90	7.92	10.44	12.60	15.00	15.96				
75	6.84	11.16	11.42	15.00	18.24	21.12	24.24	25.68				
100	15.00	19.92	20.21	24.24	27.96	31.32	35.16	36.84				
125	25.80	30.96	31.26	35.52	39.60	43.44	47.76	49.68				
150	39.00	44.16	44.48	48.96	53.40	57.48	62.28	64.44				
175	54.48	59.76	60.09	64.68	69.36	73.68	78.84	81.12				
200	72.36	77.76	78.09	82.68	87.48	92.04	97.44	99.96				
225	92.64	98.04	98.38	103.08	108.00	112.68	118.32	120.96				
250	115.32	120.72	121.06	125.88	130.80	135.60	141.48	144.24				
275	140.40	145.80	146.14	150.96	156.00	160.92	166.92	169.80				
300	167.88	173.28	173.63	178.56	183.72	188.64	194.88	197.64				

		FINAL SAG TA	BLE	
	LOADIN	G (LOADED COND	ITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	4.68	6.60	8.16	*2000
75	10.92	13.68	15.36	*1928
100	19.68	22.80	24.60	*1909
125	30.72	34.08	36.00	*1914
150	44.04	47.64	49.56	*1925
175	59.64	63.36	65.28	*1937
200	77.52	81.48	83.40	*1946
225	97.92	101.88	103.80	*1955
250	120.60	124.56	126.48	*1961
275	145.68	149.76	151.68	*1967
300	173.16	177.36	179.28	*1971
	* No	te: Design Specificat	ion Constraint	

477.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE - 35 kV

Std. Item:	W21BD
Item ID:	9302808
CU:	C477ALTWHMPNE
CU:	C477ALSCHMPNE

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	8,360 lbs.	TRANSVERSE	0.681 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.3744 sq. in.	VERTICAL	1.596 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	2.035 Lb/Ft	528	NORMAL	739	
R. (@ 75°C)	0.0447 Ω / 1000'	IOIAL	2.030 LD/Ft	647	EMERGENCY	819	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	39.28°				
CONDUCTOR DIAMETER	0.722"						
COMPLETE DIAMETER	1.042" (Nominal)						
WEIGHT	637 lbs / 1000'						

INITIAL SAG TABLE																
							RULII	NG SF	PAN (F	EET)						
		12	25			15	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	973	679	546	462	848	664	566	496	778	654	579	521	737	647	589	541
ACTUAL SPAN (FEET)																
50	2	4	4	5	3	4	4	5	3	4	4	5	3	4	4	4
60	4	5	6	7	4	5	6	7	4	5	6	7	5	5	6	6
70	5	7	9	10	6	7	8	9	6	7	8	9	6	7	8	9
80	6	9	11	13	7	9	11	12	8	9	11	12	8	9	10	11
90	8	11	14	17	9	12	14	16	10	12	13	15	11	12	13	14
100	10	14	18	21	11	14	17	19	12	15	17	18	13	15	16	18
110	12	17	21	25	14	18	20	23	15	18	20	22	16	18	20	21
120	14	20	25	30	16	21	24	28	18	21	24	26	19	21	23	26
130	17	24	30	35	19	24	29	33	21	25	28	31	22	25	28	30
140	19	28	34	41	22	28	33	38	24	29	32	36	25	29	32	35
150	22	32	39	47	25	33	38	43	28	33	37	41	29	33	37	40
160	25	36	45	53	29	37	43	49	31	38	42	47	33	38	42	45
170	28 32	41	51	60	33	42	49	56 63	36	42 48	48	53	38	43	47	51 57
180		46	57	67	36	47	55		40		54	60	42	48	53	
190	35	51	63	75	41	52	61	70 77	44	53	60	66	47	53	59 65	64
200	39	57 62	70 77	83 91	45 50	58 64	68 75	77 95	49 54	59	66 72	74	52 57	59	65 72	71 78
210	43 48			100	54	64 70	75 82	85 93	54 60	65 71	73 80	81 89	57	65 72	72	
220 230	48 52	68 75	85 93	100		70 77	82 89	93 102	60 65		80 87	89 97	63	72 78	79 96	86 94
230 240	5∠ 57	75 81	93 101	110	60 65	83	89 97	102	71	78 85	87 95	97 106	69 75	78 85	86 94	9 4 102
					70			121								
250 260	61 66	88 96	109 118	130 140	70 76	90 98	106 114	121	77 83	92 99	103 112	115 124	81 88	93 100	102 110	111 120
270	72	103	128	151	82	96 105	123	141	90	99 107	121	134	95	100	119	120
	77	111	137	163		113	133	151	96	115	130	144			128	
280 290		111	147	174	88 95	122	142	162	103	_			102 109	116 125	128	139 149
290 300	83 88	119	158	174	101	130	152	174	111	123 132	139 149	155 165	117	133	147	160
300	00	141	130	107	101	130	102	174	111	102	143	103	117	100	141	100

Supersedes 7/15 Issue - Updated RBS, loading properties, sags, and tensions.

477.0 KCMIL. 19 STRAND. COMPACT AAC. 160 MIL COVERED TREE WIRE – 15 k	
4// UKUMU 19 SIRAMU UUMPAU AAU 160MU (OVERED IREE WIRE - 15 K)	\ /

ISSUE	PAGE NUMBER
7/17	6-117

Std. Item:	W21BD
Item ID:	9302808
CU:	C477ALTWHMPNE
CU:	C477ALSCHMPNF

	FINAL SAG TABLE											
		LOADING (UNLOADED CONDITIONS)										
TEMP. °F	0	32	60	90	120	158	176	194				
TEMP. °C	-18	0	15	32	50	70	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	1.44	3.60	3.83	7.08	9.96	12.24	14.64	15.60				
75	3.96	8.28	8.58	12.72	16.44	19.56	22.92	24.48				
100	9.24	15.12	15.46	20.28	24.60	28.32	32.52	34.44				
125	17.76	24.12	24.49	29.64	34.44	38.64	43.56	45.72				
150	28.44	35.04	35.42	40.80	45.84	50.52	56.04	58.44				
175	41.04	47.64	48.04	53.64	59.04	64.08	69.96	72.60				
200	55.56	62.28	62.69	68.40	74.04	79.32	85.56	88.32				
225	72.00	78.72	79.14	84.96	90.72	96.24	102.84	105.84				
250	90.36	97.08	97.50	103.44	109.32	115.08	121.92	125.04				
275	110.76	117.36	117.79	123.84	129.84	135.72	142.80	146.04				
300	132.96	139.68	140.10	146.04	152.28	158.28	165.48	168.84				

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	3.84	5.64	7.32	*2000
75	8.64	11.16	13.20	*2000
100	15.48	18.60	20.76	*1976
125	24.48	28.08	30.24	*1954
150	35.28	39.12	41.40	*1950
175	48.00	52.08	54.36	*1952
200	62.52	66.84	69.12	*1956
225	79.08	83.40	85.68	*1961
250	97.44	101.88	104.16	*1966
275	117.84	122.28	124.56	*1970
300	140.04	144.60	147.00	*1973
	* Note	: Design Specificat	ion Constraint	

477.0 KCMIL, 19 STRAND, COMPACT AAC, 160 MIL COVERED TREE WIRE - 15 kV

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	8,700 lbs.	TRANSVERSE	0.5617 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.2789 sq. in.	VERTICAL	1.101 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0523 Ω / 1000'	TOTAL	1.536 Lb/Ft	519	NORMAL	733	
R. (@ 75°C)	0.0625 Ω / 1000'	IOIAL		584	EMERGENCY	775	
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	43.14°				
CONDUCTOR DIAMETER	0.684"			•			
WEIGHT	365 lbs / 1000'						

						INITI	AL SA	AG TA	BLE							
							RULII	NG SF	PAN (I	FEET)						
		12	25			15			,		75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2400	1624	972	552	2449	1690	1063	643	2398	1655	1072	693	2217	1503	1001	696
ACTUAL SPAN (FEET)																
50 60	1 1	1 1	1 2	2 4	1 1	1 1	1 2	2 3	1 1	1 1	1 2	2 3	1 1	1 1	1 2	2 3
70 80	1 1	2 2	3 4	5 6	1 1	2 2	3 3	4 5 7	1 1	2 2	3 3	4 5	1 2 2	2 2	3	4 5
90 100	2	3	5 6	8 10	2	3	<u>4</u> 5	9	2	3	<u>4</u> 5	6 8	2	3 4	5	6 8
110	3	4	7	12	3	4	6	10	3	4	6	10	3	4	7	10
120	3	5	8	14	3	5	7	12	3	5	7	11	4	5	8	11
130	4	6	10	17	4	5	9	14	4	6	9	13	4	6	9	13
140	4	7	11	19	4	6	10	17	4	6	10	15	5	7	11	15
150	5	8	13	22	5	7	12	19	5	7	11	18	6	8	12	18
160	6	9	14	25	6	8	13	22	6	8	13	20	6	9	14	20
170	7	10	16	29	6	9	15	25	7	10	15	23	7	11	16	23
180	7	11	18	32	7	10	17	28	7	11	17	26	8	12	18	25
190	8	12	20	36	8	12	19	31	8	12	18	29	9	13	20	28
200	9	13	23	40	9	13	21	34	9	13	20	32	10	15	22	31
210	10	15	25	44	10	14	23	38	10	15	23	35	11	16	24	35
220	11	16	27	48	11	16	25	41	11	16	25	38	12	18	26	38
230	12	18	30	53	12	17	27	45	12	17	27	42	13	19	29	42
240	13	19	32	57	13	19	30	49	13	19	29	46	14	21	32	45
250	14	21	35	62	14	20	32	53	14	21	32	49	15	23	34	49
260	15	23	38	67	15	22	35	58	15	22	35	53	17	25	37	53
270	17	25	41	72	16	24	38	62	17	24	37	58	18	27	40	57
280	18	26	44	78	18	25	40	67	18	26	40	62	19	29	43	62
290	19	28	47 51	84	19	27	43	72 77	19	28	43	67	21	31	46	66
300	21	30	51	89	20	29	46	77	21	30	46	71	22	33	49	71

*** Simulated with a maximum tension of 3000 lbs. ***

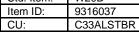
	336.4 KCMIL, 18/1 STRANDING, BARE ACSR, "MERLIN" – 15 kV									
ISSUE	ISSUE PAGE NUMBER									
7/15	6-119	OVERHEAD CONSTRUCTION STANDARD	ppl							

Std. Item:	TC52
Item ID:	9315752
CH	C33ASSTBR

			FINAL	SAG TABL	.E			
			LOADIN	G (UNLOA	DED COND	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded							
DEAD END SPAN (FEET)								
50	0.60	1.20	3.24	6.96	8.40	9.84	10.44	11.04
75	1.44	2.64	6.00	10.92	13.92	15.84	16.68	17.52
100	2.52	4.56	9.12	15.12	20.04	22.32	23.40	24.48
125	3.96	6.96	12.60	19.68	25.56	29.40	30.60	31.80
150	5.64	9.72	16.44	24.36	31.32	36.84	38.16	39.60
175	8.04	13.56	21.48	30.24	37.92	45.24	46.80	48.24
200	11.64	19.32	28.44	37.80	45.96	54.96	56.76	58.44
225	16.68	26.40	36.36	46.20	54.84	64.56	67.56	69.36
250	23.16	34.80	45.36	55.56	64.68	74.88	79.08	81.00
275	31.44	44.40	55.32	65.76	75.24	86.04	90.84	93.36
300	41.40	55.08	66.24	77.04	86.76	98.04	102.96	106.68

	1.015010	FINAL SAG TA		
	LOADING	TENSION (LBS.)		
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	2.52	3.12	3.84	2291
75	5.40	6.36	6.84	2414
100	9.00	10.20	10.32	2553
125	13.32	14.64	14.28	2700
150	18.24	19.44	18.48	2849
175	24.00	25.32	23.88	*2936
200	31.32	32.76	31.08	*2948
225	39.48	41.04	39.12	*2958
250	48.60	50.28	48.24	*2965
275	58.68	60.48	58.20	*2971
300	69.72	71.52	69.24	*2976

^{***} Simulated with a maximum tension of 3000 lbs. ***


336.4 KCMIL, 18/1 STRANDING, BARE ACSR, "MERLIN" - 15 kV

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 6-120 7/15

Doc. # ST.06.00.003

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	6,150 lbs.	TRANSVERSE	0.555 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.2644 sq. in.	VERTICAL	1.040 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0527 Ω / 1000'	TOTAL	1.479 Lb/Ft	514	NORMAL	725		
R. (@ 75°C)	0.0629 Ω / 1000'	IOIAL	1.479 LD/Ft	578	EMERGENCY	766		
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	46.55°					
CONDUCTOR DIAMETER	0.666"			•				
WEIGHT	315 lbs / 1000'							

								AG TA								
							RULII	NG SF	PAN (I	FEET)						
		12	25			15	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1444	827	483	333	1220	707	467	353	998	622	457	367	821	568	450	378
ACTUAL SPAN (FEET)																
50	1	1	2	4	1	2	3	3	1	2	3	3	1	2	3	3
60	1	2	4	5	1	2	4	5	2	3	4	5	2	3	4	5
70	2	3	5	7	2	3	5	7	2	4	5	6	3	4	5	6
80	2	4	6	9	2	4	6	9	3	5	7	8	4	5	7	8
90	3	5	8	12	3	5	8	11	4	6	8	10	5	7	9	10
100	3	6	10	14	4	7	10	13	5	8	10	13	6	8	11	13
110 120	4 5	7 8	12 14	17 20	5 6	8 10	12 15	16 19	6 7	9 11	13 15	16 19	7 8	10 12	13 15	15 18
	_	10		24	7	11	17				17	22	_	14	18	21
130 140	6 6	11	16 19	24 28	8	13	20	23 26	8 9	13 15	20	22 25	10 11	16	21	25
150	7	13	22	32	9	15	23	30	11	17	23	29	13	19	24	28
160	8	15	25	36	10	17	26	34	12	20	26	33	15	21	27	32
170	10	17	28	41	11	20	29	39	14	22	30	37	17	24	30	36
180	11	19	32	46	13	22	33	44	15	25	34	42	19	27	34	41
190	12	21	35	51	14	24	37	49	17	28	37	47	21	30	38	45
200	13	23	39	57	16	27	41	54	19	31	41	52	23	33	42	50
210	15	26	43	63	17	30	45	59	21	34	46	57	25	37	46	55
220	16	28	47	69	19	33	49	65	23	37	50	62	28	41	51	61
230	17	31	52	75	21	36	54	71	25	40	55	68	30	44	56	66
240	19	33	56	82	22	39	58	77	27	44	60	74	33	48	60	72
250	21	36	61	89	24	42	63	84	30	48	65	81	36	52	66	78
260	22	39	66	96	26	46	69	91	32	52	70	87	39	57	71	85
270	24	42	71	104	28	49	74	98	35	56	75	94	42	61	77	91
280	26	46	76	111	31	53	79	105	37	60	81	101	45	66	82	98
290	28	49	82	119	33	57	85	113	40	64	87	108	48	70	88	105
300	30	52	88	128	35	61	91	121	43	69	93	116	52	75	95	113

⊆
\circ
뽀
o;
ወ
Ō
Œ.
S
7
\geq
<u></u>
\overline{S}
S
⊆
Œ
1
<u>.</u>
\subseteq
ŏ
었
#
Œ
Q
_
~
W
ഗ
•
\overline{c}
oa
load
loadir
loading
loading
loading pi
loading pro
loading prop
loading prope
loading propert
loading propertie
loading properties
loading properties,
loading properties, s
loading properties, sa
loading properties, sag
loading properties, sags,
loading properties, sags, a
loading properties, sags, ar
loading properties, sags, and
loading properties, sags, and
loading properties, sags, and to
loading properties, sags, and ter
loading properties, sags, and tens
loading properties, sags, and tension
loading properties, sags, and tension
upersedes 7/15 Issue – Updated RBS, loading properties, sags, and tensions.

	336.4 KCMIL, 19 STRAND, BARE AAC, "TULIP" – 15 kV									
ISSUE	PAGE NUMBER		WIII							
7/17	6-121	OVERHEAD CONSTRUCTION STANDARD	ppl							

Std. Item:	W20B
Item ID:	9316037
CU	C33ALSTBR

	FINAL SAG TABLE										
		LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	158	176	194			
TEMP. °C	-18	0	15	32	50	70	80	90			
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded			
DEAD END SPAN (FEET)											
50	0.72	1.80	2.04	5.40	8.76	11.16	13.80	14.88			
75	1.68	3.72	4.06	8.76	13.44	17.04	20.88	22.44			
100	3.12	6.36	6.79	12.84	18.60	23.28	28.20	30.24			
125	5.88	11.64	12.14	19.20	25.68	31.08	36.96	39.36			
150	10.56	18.72	19.27	27.00	33.96	39.96	46.56	49.44			
175	18.00	27.60	28.17	36.12	43.56	50.04	57.24	60.48			
200	27.84	37.92	38.51	46.80	54.48	61.32	69.12	72.60			
225	39.60	49.80	50.39	58.68	66.60	73.80	82.20	85.80			
250	52.92	63.00	63.60	72.00	80.16	87.60	96.36	100.20			
275	67.68	77.64	78.25	86.76	95.04	102.72	111.84	115.92			
300	83.88	93.72	94.33	102.84	111.24	119.16	128.52	132.84			

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	0		
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	3.24	4.32	5.76	1710
75	6.72	8.16	9.48	1862
100	11.04	12.84	13.92	*2000
125	17.40	19.44	20.52	*2000
150	24.96	27.36	28.44	*2000
175	34.08	36.72	37.68	*1997
200	44.52	47.40	48.36	*1994
225	56.40	59.52	60.36	*1993
250	69.72	72.84	73.80	*1992
275	84.48	87.72	88.44	*1992
300	100.56	103.80	104.64	*1993
	* Note	e: Design Specificati	ion Constraint	

336.4 KCMIL, 19 STRAND, BARE AAC, "TULIP" - 15 kV

Doc. # ST.06.00.003

WINTER

(10°C)

593

657

ELECTRICAL PROPERTIES

MAXIMUM AMPACITY

NORMAL

EMERGENCY

SUMMER

(37.7°C)

425

519

COMPLETE

DIAMETER WEIGHT

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES		
R.B.S.	6,150 lbs.	TRANSVERSE	0.646 Lb/Ft		
C.S.A.	0.2644 sq. in.	VERTICAL	1.390 Lb/Ft		
R. (@ 25°C)	0.0527 Ω / 1000'	TOTAL	1.833 Lb/Ft		
R. (@ 75°C)	0.0629 Ω / 1000'	IOIAL	1.033 LD/Ft		
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	43.31°		
CONDUCTOR DIAMETER	0.607"				

0.937" (Nominal)

497 lbs / 1000

	INITIAL SAG TABLE															
		RULING SPAN (FEET)														
		12	25			1	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1215	938	713	510	1231	958	739	545	1244	977	764	577	1256	994	787	608
ACTUAL SPAN (FEET)																
50 60	1 2	2 3	3 5	4 6	2	3 4	3 5	4 6	2	3 4	3 5	4 6	2 4	3 4	3 5	4 5
70	3	5	7	8	4	5	7	8	4	6	7	8	5	6	7	7
80	4	6	9	11	5	7	9	10	6	7	9	10	6	8	9	10
90	5	8	11	14	6	9	11	13	7	9	11	13	8	10	11	12
100	6	10	13	17	7	11	13	16	9	11	13	16	10	12	14	15
110	7	12	16	20	9	13	16	19	10	14	16	19	12	14	16	18
120	9	14	19	24	11	15	19	23	12	16	19	22	14	17	19	22
130	10	16	22	29	12	18	23	27	15	19	23	26	16	20	23	26
140	12	19	26	33	14	21	26	32	17	22	26	30	19	23	27	30
150	13	22	30	38	17	24	30	36	19	25	30	35	22	27	30	34
160	15	25	34	43	19	27	34	41	22	29	35	40	25	30	35	39
170 180	17 19	28 31	38	49 55	21 24	31 34	39	47 52	25 28	33 37	39 44	45 50	28 32	34 38	39	44
	22	35	43 48	61	27	38	43 48	58	31	41	49	56	35	43	44	49 55
190 200	24	ან 38	40 53	68	29	30 42	40 54	56 64	35	41 45	49 54	62	39	43 47	49 54	ວວ 61
210	26	30 42	59	75	32	42 47	5 4 59	71	38	4 5	5 4 59	69	43	47 52	60	67
220	29	46	64	82	36	51	65	78	42	55	65	75	47	57	65	73
230	32	4 0	70	89	39	56	71	85	46	60	71	82	52	63	72	80
240	35	55	77	97	42	61	 77	93	50	65	78	90	56	68	78	87
250	37	60	83	106	46	66	84	101	54	71	84	97	61	74	85	95
260	40	65	90	114	50	71	90	109	59	77	91	105	66	80	91	103
270	44	70	97	123	54	77	98	117	63	83	98	113	71	86	99	111
280	47	75	104	132	58	83	105	126	68	89	106	122	76	93	106	119
290	50	81	112	142	62	89	113	135	73	95	113	131	82	100	114	128
300	54	86	120	152	66	95	120	145	78	102	121	140	88	107	122	137

336.4 KCMIL, 19 STRAND, C	COMPACT AAC,	165 MIL COVERED	TREE WIRE – 15 kV
---------------------------	--------------	-----------------	-------------------

ISSUE	PAGE NUMBER
7/21	6-123

Std. Item:	W21C
Item ID:	9305136
CIII	

FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)							
TEMP. °F	0	32	60	90	120	158	176	194	
TEMP. °C	-18	0	15	32	50	70	80	90	
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	
DEAD END SPAN (FEET)									
50	1.20	2.76	5.88	9.00	11.40	13.92	15.00	15.96	
75	2.76	5.64	9.96	14.04	17.52	21.24	22.80	24.24	
100	6.12	11.40	16.68	21.48	25.56	30.12	32.04	33.96	
125	12.24	19.20	24.96	30.24	34.92	40.20	42.48	44.64	
150	21.00	28.80	34.80	40.56	45.72	51.60	54.12	56.64	
175	32.04	40.08	46.32	52.44	57.84	64.32	67.08	69.84	
200	45.00	53.16	59.52	65.76	71.64	78.36	81.48	84.36	
225	59.76	67.80	74.40	80.88	86.88	94.08	97.32	100.44	
250	76.20	84.24	90.84	97.56	103.80	111.24	114.60	117.96	
275	94.32	102.36	109.08	115.80	122.28	129.96	133.56	136.92	
300	114.12	122.28	129.00	135.84	142.44	150.36	154.08	157.56	

	FINAL SAG TABLE								
	LOADING	LOADING (LOADED CONDITIONS) TENSION (LBS.							
TEMP. °F	0	32	60	0					
TEMP. °C	-18	0	15	-18					
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE					
DEAD END SPAN (FEET)									
50	3.84	5.16	6.36	1771					
75	7.92	9.6	10.68	1955					
100	14.28	16.44	17.52	1932					
125	22.32	24.96	26.04	1927					
150	32.04	34.92	36	1930					
175	43.56	46.68	47.64	1936					
200	56.64	59.88	60.84	1943					
225	71.4	74.88	75.72	1950					
250	87.96	91.44	92.28	1956					
275	106.2	109.8	110.52	1961					
300	126.12	129.72	130.56	1965					
	* Note	e: Design Specificati	ion Constraint						

336.4 KCMIL, 19 STRAND, COMPACT AAC, 165 MIL COVERED TREE WIRE - 15 kV

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	4,280 lbs.	TRANSVERSE	0.466 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.0968 sq. in.	VERTICAL	0.673 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.166 Ω / 1000'	TOTAL	1.119 Lb/Ft	256	NORMAL	354		
R. (@ 75°C)	0.195 Ω / 1000'	IOIAL	1.119 LD/Ft	286	EMERGENCY	374		
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	59.98°					
CONDUCTOR DIAMETER	0.398"			•				
WEIGHT	115 lbs / 1000'							

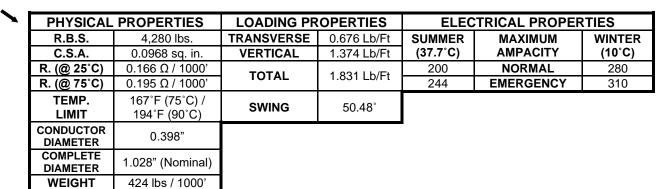
	INITIAL SAG TABLE															
		RULING SPAN (FEET)														
		12	25			1:	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1164	878	638	408	1173	887	650	425	1181	897	662	442	1190	907	675	459
ACTUAL SPAN (FEET)																
50	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
60	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1
70	1	1	1	2	1	1	1	2	1	1	1	2	1	1	1	2
80	1	1	2	3	1	1	2	3	1	1	2	3	1	1	2	2
90	1	2	3	3	1	2	3	3	1	2	3	3	1	2	3	3 4
100 110	1 2	2	3	4 5	1 2	2	3	4 5	1 2	2	3	4 5	2	2	3	4 5
120	2	3	4	6	2	3	4	6	2	3	4	6	2	3	4	5
130	2	3	5	7	3	3	5	7	2	3	4	7	2	3	4	6
140	3	4	5	8	3	4	5	8	3	4	5	8	3	4	5	7
150	3	4	6	10	3	4	6	9	3	4	6	9	3	4	6	8
160	4	5	7	11	4	5	7	10	4	5	7	10	4	5	7	10
170	4	6	8	12	4	6	8	12	4	6	8	11	4	6	7	11
180	5	6	9	14	5	6	9	13	5	6	9	13	5	6	8	12
190	5	7	10	15	5	7	10	15	5	7	9	14	5	7	9	14
200	6	8	11	17	6	8	11	16	6	8	11	16	6	8	10	15
210	6	9	12	19	7	9	12	18	6	9	12	17	6	8	11	17
220	7	10	13	20	7	10	13	20	7	9	13	19	7	9	12	18
230	8	10	14	22	8	10	14	21	8	10	14	21	8	10	13	20
240	8	11	15	24	9	11	15	23	8	11	15	23	8	11	15	22
250	9	12	17	26	9	12	17	25	9	12	16	24	9	12	16	23
260	10	13	18	29	10	13	18	27	10	13	18	26	10	13	17	25
270	11	14	20	31	11	14	19	30	11	14	19	29	10	14	19	27
280	11	15	21	33	12	15	21	32	11	15	21	31	11	15	20	29
290	12	17	23	36	13	17	22	34	12	16	22	33	12	16	21	32
300	13	18	24	38	13	18	24	36	13	17	24	35	13	17	23	34

Supersedes 7/15 Issue –	
Updated RBS,	
 Updated RBS, load properties, sags, and tensions. 	
gs, and tensions.	

1/0, 7 STRAND, BARE 6201-T81 A	AAC, "AZUSA" – 15 kV
--------------------------------	----------------------

ISSUE	PAGE NUMBER
7/17	6-125

Std. Item:	W20A
Item ID:	9314544
CU:	C10AAACBR


	FINAL SAG TABLE													
			LOADIN	G (UNLOA	DED COND	DITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194						
TEMP. °C	-18	0	15	32	50	70	80	90						
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded						
DEAD END SPAN (FEET)														
50	0.36	0.60	0.63	1.08	3.36	7.32	10.80	12.12						
75	0.96	1.32	1.39	2.40	6.12	11.40	16.32	18.36						
100	1.56	2.40	2.52	4.20	9.24	15.72	22.08	24.72						
125	2.52	3.60	3.78	6.36	12.60	20.16	27.96	31.08						
150	3.60	5.28	5.52	8.88	16.32	24.96	33.96	37.68						
175	4.92	7.08	7.39	11.76	20.28	29.88	40.20	44.40						
200	6.48	9.24	9.62	14.88	24.60	35.04	46.44	51.24						
225	8.16	11.64	12.08	18.24	28.92	40.32	52.92	58.20						
250	10.08	14.28	14.79	21.96	33.60	45.84	59.52	65.28						
275	12.24	17.16	17.74	25.92	38.40	51.48	66.12	72.36						
300	15.48	21.96	22.67	32.64	46.44	60.12	75.48	81.96						

		FINAL SAG TA	BLE							
	LOADIN	LOADING (LOADED CONDITIONS)								
TEMP. °F	0	32	60	0						
TEMP. °C	-18	0	15	-18						
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE						
DEAD END SPAN (FEET)										
50	3.60	3.24	2.04	1155						
75	7.68	6.72	4.32	1237						
100	12.60	11.16	7.32	1328						
125	18.48	16.20	10.68	1421						
150	24.96	21.84	14.52	1514						
175	32.04	27.84	18.72	1605						
200	39.60	34.44	23.16	1696						
225	47.64	41.28	27.96	1784						
250	56.16	48.60	33.12	1870						
275	65.04	56.28	38.40	1954						
300	75.60	65.76	46.32	*2000						
	* No	te: Design Specificati	ion Constraint							

1/0, 7 STRAND, BARE 6201-T81 AAAC, "AZUSA" – 15 kV

Std. Item:	W21NA
Item ID:	9313250 ^E
CU:	C1/0ALPESCNE
CU:	C10ALSCHMPNE

						INITI	AL SA	AG TA	BLE							
							RULII	NG SF	PAN (I	FEET)						
		12	25			15	50			17	175 200					
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1259	998	794	617	1273	1022	828	661	1281	1042	858	701	1168	956	801	672
ACTUAL SPAN (FEET)																
50 60	1 2	2 2	2 3	3 4	1 2	2 2	2 3	2 3	1 2	2	2	2 3	1 2	2 2	2 3	2
70	2	3	4	5	2	3	4	5	2	3	4	4	3	3	4	5
80	3	4	5	7	3	4	5	6	3	4	5	6	3	4	5	6
90	4	5	6	8	4	5	6	8	4	5	6	7	4	5	6	8
100	5	6	8	10	5	6	8	10	5	6	7	9	5	7	8	9
110	6	8	10	12	6	8	9	12	6	7	9	11	7	8	10	11
120	7	9	12	15	7	9	11	14	7	9	11	13	8	10	11	14
130	9	11	13	17	8	11	13	16	8	10	13	15	9	11	13	16
140	10	13	16	20	10	12	15	19	10	12	15	18	11	13	16	19
150	11	14	18	23	11	14	17	22	11	14	17	20	12	15	18	21
160	13	16	20	26	13	16	20	25	13	16	19	23	14	17	20	24
170	15	19	23	30	14	18	22	28	14	18	21	26	16	19	23	27
180	16	21	26	33	16	20	25	31	16	20	24	29	18	22	26	31
190	18	23	29	37	18	23	28	35	18	22	27	33	20	24	29	34
200	20	26	32	41	20	25	31	38	20	25	30	36	22	27	32	38
210	22	28	35	45	22	28	34	42	22	27	33	40	24	29	35	42
220	25	31	39	50	24	30	37	46	24	30	36	44	26	32	38	46
230	27	34	42	54	27	33	41	51	26	32	39	48	29	35	42	50
240	29	37	46	59	29	36	44	55	29	35	43	52	31	38	46	55
250	32	40	50	64	31	39	48	60	31	38	46	57	34	42	50	59
260	34	43	54	70	34	42	52	65	34	41	50	61	37	45	54	64
270	37	47	58	75	37	45	56	70	36	45	54	66	40	49	58	69
280	40	50	63	81	39	49	60	75	39	48	58	71	43	52	62	74
290	43	54	67	87	42	52	65	81	42	52	62	76	46	56	67	80
300	46	58	72	93	45	56	69	86	45	55	67	82	49	60	72	85

	•	D, CONCENTRIC ROUND 6201-T8 IIL COVERED TREE WIRE – 35 k\	•
ISSUE	PAGE NUMBER		WIN
7/17	6-127	OVERHEAD CONSTRUCTION STANDARD	ppl

Std. Item:	W21NA
Item ID:	9313250 ^E
CU:	C1/0ALPESCNE
CU:	C10ALSCHMPNF

			FINAL	SAG TABL	.E			
			LOADIN	G (UNLOA	DED COND	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded							
DEAD END SPAN (FEET)								
50	1.44	2.16	2.25	3.48	5.88	8.64	11.52	12.72
75	3.36	4.68	4.84	7.08	10.56	14.04	18.12	19.80
100	6.00	8.16	8.38	11.52	15.84	20.16	25.08	27.24
125	9.24	12.36	12.65	16.68	21.72	26.76	32.64	35.16
150	13.32	17.40	17.74	22.56	28.32	33.96	40.68	43.56
175	18.24	23.16	23.56	29.16	35.52	41.76	49.20	52.44
200	26.04	32.40	32.86	39.24	46.20	52.92	60.84	64.32
225	37.68	45.12	45.62	52.68	60.00	66.96	75.12	78.84
250	52.32	60.36	60.88	68.16	75.72	82.80	91.32	95.16
275	69.48	77.76	78.30	85.80	93.36	100.56	109.32	113.16
300	89.16	97.56	98.09	105.48	113.16	120.48	129.24	133.32

		FINAL SAG TA	BLE						
	LOADIN	LOADING (LOADED CONDITIONS)							
TEMP. °F	0	32	60	0					
TEMP. °C	-18	0	15	-18					
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE					
DEAD END SPAN (FEET)									
50	5.52	5.64	4.80	1252					
75	11.04	11.16	9.24	1395					
100	17.88	17.76	14.64	1536					
125	25.68	25.20	20.76	1672					
150	34.44	33.36	27.60	1800					
175	43.92	42.36	35.16	1921					
200	55.80	54.00	45.72	1972					
225	70.20	68.16	59.40	1986					
250	86.40	84.12	74.88	1995					
275	104.28	102.00	92.52	*2000					
300	124.20	121.80	112.20	*2000					
	* No	ote: Design Specificat	ion Constraint						

1/0, 7 STRAND, CONCENTRIC ROUND 6201-T81 AAAC, 315 MIL COVERED TREE WIRE – 35 kV

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 6-128 7/17

Doc. # ST.06.00.003

DIAMETER

COMPLETE

PHYSICAL	PROPERTIES
R.B.S.	4,280 lbs.
C.S.A.	0.0968 sq. in.
R. (@ 25°C)	0.166 Ω / 1000'
R. (@ 75°C)	0.195 Ω / 1000'
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)
CONDUCTOR	0.308"

LOADING PR	OPERTIES	ELEC	TRICAL PROPER	TIES
TRANSVERSE	0.576 Lb/Ft	SUMMER	MAXIMUM	WINTER
VERTICAL	1.019 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
TOTAL	1.470 Lb/Ft	214	NORMAL	296
IOTAL	1.470 LD/Ft	(37.7°C) AMPACITY (10°C	327	
SMING	54 99°			

SWING 54.99

0.728" (Nominal) DIAMETER WEIGHT 255 lbs / 1000

0.398"

	INITIAL SAG TABLE RULING SPAN (FEET)															
							RULII	NG SF	PAN (F	EET)						
		12	25			15	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1215	938	713	510	1231	958	739	545	1244	977	764	577	1256	994	787	608
ACTUAL SPAN (FEET)																
50	1	1	1	2	1	1	1	2	1	1	1	2	1	1	1	2
60	1	1	2	3	1	1	2	3	1	1	2	2	1	1	2	2
70	2	2	3	4	2	2	3	3	1	2	2	3	1	2	2	3
80	2	3	3	5	2	3	3	5	2	3	3	4	2	2	3	4
90	3	3	4	6	3	3	4	6	2	3	4	5	2	3	4	5
100	3	4	5	8	3	4	5	7	3	4	5	7	3	4	5	6
110	4	5	7	9	4	5	6	9	4	5	6	8	4	5	6	8
120	5	6	8	11	4	6	7	10	4	6	7	10	4	6	7	9
130	5	7	9	13	5	7	9	12	5	7	8	11	5	7	8	11
140	6	8	11	15	6	8	10	14	6	8	10	13	6	8	10	12
150	7	9	12	17	7	9	12	16	7	9	11	15	7	9	11	14
160	8	10	14	19	8	10	13	18	8	10	13	17	8	10	12	16
170	9 10	12 13	16	22 24	9 10	12 13	15	20 23	9	11 13	14	19 21	9 10	11 12	14 16	18
180	11	15	17		11		17	25 25	10 11	14	16 18		11	14		20
190 200	13	16	19 22	27 30	12	15 16	19 21	25 28	12	16	20	24 26	12	14	18 19	23 25
210	14	18	24	33	14	18	23	20 31	13	17	22	29	13	17	21	28
220	15	20	26	36	15	19	25	34	15	19	24	32	15	19	24	30
230	17	20 22	26 28	36 40	16	21	25 27	3 4 37	16	21	24 27	32 35	16	20	2 4 26	33
240	18	24	20 31	43	18	23	30	37 41	18	23	29	38	18	22	28	36
250	20	26	34	47	19	25	32	44	19	24	31	41	19	24	30	39
260	21	28	3 4 36	51	21	25 27	35	44 48	21	26	34	45	21	26	33	43
270	23	30	39	55	23	29	38	51	22	29	37	48	22	28	35	46
280	25	32	42	59	24	32	41	55	24	31	39	52	24	30	38	49
290	26	34	45	63	26	34	44	59	26	33	42	56	26	32	41	53
300	28	37	48	68	28	36	47	63	28	35	45	60	28	35	44	57

1/0, 7 STRAND, CONCENTRIC ROUND 6201-T81 AAAC
165 MIL COVERED TREE WIRE – 15 kV

ISSUE	PAGE NUMBER
7/17	6-129

OVERHEAD CONSTRUCTION STANDARD

Supersedes 7/15 Issue - Updated RBS, loading properties, sags and tensions.

Std. Item:	W20CA
Item ID:	9302830
CU:	C1/0ALHMPESTNE
CU:	C10ALSCPE1NE

	FINAL SAG TABLE							
			LOADIN	G (UNLOA	DED COND	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.84	1.32	1.38	2.28	4.80	7.92	11.16	12.36
75	2.04	2.88	3.01	4.80	8.52	12.72	17.16	18.96
100	3.60	5.04	5.24	8.04	12.84	17.88	23.52	25.80
125	5.64	7.80	8.07	11.88	17.52	23.40	30.12	32.88
150	8.04	11.16	11.49	16.08	22.68	29.40	37.08	40.32
175	10.92	14.88	15.28	20.88	28.32	35.64	44.28	48.00
200	14.28	19.20	19.66	26.16	34.20	42.36	51.84	55.92
225	18.24	24.12	24.64	31.92	40.80	49.56	59.76	64.32
250	25.80	33.72	34.34	42.96	52.56	61.68	72.24	77.04
275	36.96	46.68	47.36	56.88	66.72	75.96	86.88	91.68
300	51.00	61.92	62.62	72.48	82.44	91.80	102.84	107.88

	FINAL SAG TABLE					
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0		
TEMP. °C	-18	0	15	-18		
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE		
DEAD END SPAN (FEET)						
50	4.56	4.56	3.60	1202		
75	9.48	9.12	7.08	1317		
100	15.36	14.64	11.40	1436		
125	22.20	21.00	16.32	1553		
150	29.76	27.96	21.72	1668		
175	38.04	35.52	27.72	1778		
200	46.92	43.68	34.08	1885		
225	56.40	52.32	41.04	1984		
250	69.00	64.56	52.44	*2000		
275	83.64	78.84	66.36	*2000		
300	99.48	94.44	81.72	*2000		
	* Note	e: Design Specificat	ion Constraint			

1/0, 7 STRAND, CONCENTRIC ROUND 6201-T81 AAAC, 165 MIL COVERED TREE WIRE – 15 kV

Non-Standard Overhead Distribution Conductors

Maintenance Only

	NON – STANDARD OVERHEAD DISTRIBUTION CONDUCTORS						
	MAINTENANCE ONLY						
	ISSUE	PAGE NUMBER		SAHA			
Busi	1/07 ness Use	6-200	OVERHEAD CONSTRUCTION STANDARD	ppl			

•		
	Std. Item:	
	Item ID:	9302815 ^E
	CIT	

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELEC.	TRICAL PROPE	RTIES
R.B.S.	11400 lbs.	TRANSVERSE	0.6387 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.4995 sq. in.	VERTICAL	1.479 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.0282 Ω / 1000'	TOTAL	TOTAL 1.911 Lb/Ft	766	NORMAL	1095
R. (@ 75°C)	0.0335 Ω / 1000'	IOIAL		866	EMERGENCY	1159
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	37.55°			
CONDUCTOR DIAMETER	0.918"			•		
WEIGHT	597 lbs / 1000'					

	FINAL SAG TABLE							
			LOADIN	G (UNLOA	DED COND	OITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	1.32	4.44	7.80	10.56	12.72	15.12	16.08	17.04
75	4.08	9.48	13.68	17.28	20.28	23.64	25.08	26.40
100	9.48	16.20	21.00	25.32	29.04	33.12	34.92	36.72
125	17.52	24.60	29.76	34.68	38.88	43.80	45.96	48.00
150	27.36	34.68	40.20	45.48	50.28	55.68	58.20	60.48
175	39.12	46.56	52.32	57.84	63.00	69.00	71.64	74.28
200	52.68	60.12	66.00	71.88	77.40	83.76	86.64	89.52
225	67.92	75.48	81.60	87.60	93.36	100.08	103.20	106.20
250	85.08	92.64	98.76	105.00	111.00	118.08	121.32	124.44
275	103.92	111.48	117.84	124.20	130.32	137.64	141.00	144.36
300	124.68	132.24	138.60	145.08	151.32	158.88	162.36	165.84

FINAL SAG TABLE						
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0		
TEMP. °C	-20	0	15	-20		
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE		
DEAD END SPAN (FEET)						
50	3.60	5.88	8.04	*1994		
75	8.28	11.40	13.92	*1947		
100	14.76	18.60	21.24	*1936		
125	23.16	27.36	30.12	*1939		
150	33.12	37.68	40.68	*1945		
175	45.00	49.68	52.80	*1953		
200	58.56	63.48	66.60	*1959		
225	73.92	78.96	82.08	*1965		
250	91.08	96.24	99.36	*1970		
275	110.04	115.20	118.44	*1974		
300	130.68	135.96	139.20	*1977		
	* Note	: Design Specificati	ion Constraint			

636.0 KCMIL, 37 STRAND, BARE AAC,	"ORCHID"
MAINTENANCE ONLY	
	PAGE NUMBER

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE **6-201** 7/15

Std. Item:	
Item ID:	9302815 ^E
CIT.	C636ALSTPENE

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELEC	TRICAL PROPE	RTIES
R.B.S.	11,400 lbs.	TRANSVERSE	0.7022 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.5278 sq. in.	VERTICAL	1.745 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.0282 Ω / 1000'	TOTAL	2.181 Lb/Ft	627	NORMAL	985
R. (@ 75°C)	0.0335 Ω / 1000'	IOIAL	2.101 LD/Ft	777	EMERGENCY	1072
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	36.64°			
CONDUCTOR DIAMETER	0.918"			•		
COMPLETE DIAMETER	1.108"					
WEIGHT	745 lbs / 1000'					

			FINAL	SAG TABL	E			
			LOADIN	G (UNLOA	DED COND	OITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded							
DEAD END SPAN (FEET)								
50	1.92	5.40	8.52	11.04	13.08	15.36	16.32	17.28
75	5.76	11.04	14.88	18.24	21.12	24.36	25.68	27.00
100	12.72	18.72	23.04	27.00	30.48	34.44	36.24	37.92
125	21.96	28.20	32.88	37.32	41.40	45.96	48.00	49.92
150	33.24	39.72	44.64	49.44	53.88	59.04	61.32	63.48
175	46.68	53.16	58.32	63.36	68.16	73.68	76.20	78.72
200	62.16	68.64	73.92	79.20	84.24	90.24	92.88	95.52
225	79.56	86.16	91.56	97.08	102.24	108.48	111.36	114.12
250	99.12	105.72	111.24	116.76	122.16	128.64	131.64	134.52
275	120.60	127.32	132.84	138.60	144.12	150.84	153.84	156.96
300	144.24	150.96	156.60	162.36	168.00	174.84	178.08	181.20

		FINAL SAG TA	BLE	
	LOADIN	IG (LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0 32 60			0
TEMP. °C	-20	0	15	-20
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	4.20	6.60	8.64	*1955
75	9.60	12.72	15.12	*1924
100	17.04	20.76	23.28	*1924
125	26.40	30.48	33.24	*1934
150	37.92	42.24	45.00	*1944
175	51.36	55.92	58.68	*1953
200	66.84	71.52	74.40	*1961
225	84.36	89.16	92.04	*1967
250	103.92	108.72	111.72	*1972
275	125.52	130.44	133.44	*1976
300	149.16	154.08	157.08	*1979
	* No	ote: Design Specificati	ion Constraint	

63	6.0 KCMIL, 37 STRA	AND, AAC, 95 MIL HDPE COVERIN MAINTENANCE ONLY	NG, "TANGERINE"
ISSUE	PAGE NUMBER		SMIZE
7/15	6-202	OVERHEAD CONSTRUCTION STANDARD	ppl

PHYSICAL	PHYSICAL PROPERTIES		OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	5535 lbs.	TRANSVERSE	0.6693 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.3552 sq. in.	VERTICAL	1.450 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0528 Ω / 1000'	TOTAL	1.897 Lb/Ft	396	NORMAL	626	
R. (@ 75°C)	0.0630 Ω / 1000'	IOIAL	1.097 LD/Ft	490	EMERGENCY	680	
TEMP.	167°F (75°C)/	SWING	44.44°				
LIMIT	194°F (90°C)	OWING	77.77				
CONDUCTOR DIAMETER	0.666"			•			
COMPLETE DIAMETER	1.006"						
WEIGHT	513 lbs / 1000'						

			FINAL	SAG TABL	.E			
			LOADIN	G (UNLOA	DED CONE	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded							
DEAD END SPAN (FEET)								
50	1.44	4.20	7.56	10.32	12.48	14.88	15.84	16.80
75	3.12	7.56	12.00	15.96	19.08	22.56	24.12	25.44
100	6.96	13.44	18.60	23.28	27.24	31.56	33.48	35.28
125	13.92	21.48	27.00	32.16	36.72	41.88	44.04	46.20
150	23.76	31.44	37.32	42.84	47.88	53.52	56.04	58.44
175	35.40	43.32	49.32	55.20	60.48	66.72	69.48	72.12
200	48.96	56.76	63.00	69.00	74.64	81.24	84.24	87.12
225	64.20	72.12	78.36	84.60	90.48	97.44	100.56	103.68
250	81.24	89.04	95.52	101.88	108.00	115.20	118.56	121.68
275	100.08	107.88	114.36	120.84	127.08	134.64	138.00	141.36
300	120.60	128.52	135.00	141.60	147.96	155.76	159.24	162.72

		FINAL SAG TA	BLE	
	LOADIN	G (LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-20	0	15	-20
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	4.08	6.00	7.80	1733
75	8.16	10.56	12.48	1969
100	14.28	17.28	19.32	*2000
125	22.32	25.68	27.84	*1995
150	32.28	36.12	38.16	*1981
175	44.16	48.12	50.28	*1976
200	57.60	61.80	63.96	*1976
225	72.96	77.28	79.44	*1977
250	90.00	94.32	96.60	*1978
275	108.84	113.28	115.44	*1980
300	129.36	133.92	136.08	*1982
	* No	te: Design Specificati	ion Constraint	

336.4 KCMIL, 19 STRAND, AAC, 170 MIL HDPE COVERING, "ANONA" MAINTENANCE ONLY

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 6-203 7/15

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 06.00.004

PHYSICAL	PROPERTIES	LOADING PR	ROPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	5790 lbs.	TRANSVERSE	0.6084 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.2845 sq. in.	VERTICAL	1.242 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0528 Ω / 1000'	TOTAL	1.683 Lb/Ft	432	NORMAL	665	
R. (@ 75°C)	0.0630 Ω / 1000'	IOIAL	1.003 LD/Ft	530	EMERGENCY	723	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	44.72°				
	194 F (90 C)						
CONDUCTOR DIAMETER	0.666"						
COMPLETE	0.826"						
DIAMETER							
WEIGHT	417 lbs / 1000'						

	FINAL SAG TABLE							
			LOADIN	G (UNLOA	DED CONE	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	1.08	2.88	6.36	9.36	11.76	14.28	15.24	16.32
75	2.40	5.64	10.32	14.52	18.00	21.60	23.16	24.60
100	4.68	9.72	15.36	20.52	24.84	29.52	31.56	33.48
125	9.36	16.80	23.04	28.80	33.72	39.12	41.52	43.80
150	16.92	25.56	32.16	38.28	43.68	49.80	52.56	55.08
175	27.00	35.88	42.72	49.20	55.08	61.80	64.68	67.56
200	38.88	47.88	54.84	61.68	67.80	75.00	78.12	81.24
225	52.32	61.32	68.52	75.48	81.96	89.52	92.88	96.24
250	67.44	76.44	83.64	90.84	97.56	105.48	109.08	112.44
275	84.12	93.12	100.44	107.76	114.60	122.88	126.60	130.20
300	102.36	111.36	118.68	126.12	133.20	141.72	145.56	149.28

		FINAL SAG TA	BLE		
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)	
TEMP. °F	0	32	60	0	
TEMP. °C	-20	0	15	-20	
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE	
DEAD END SPAN (FEET)					
50	3.72	5.16	6.72	1688	
75	7.56	9.48	10.92	1876	
100	12.60	14.88	16.32	*1995	
125	19.92	22.68	24.12	*1975	
150	28.92	31.92	33.24	*1967	
175	39.36	42.60	44.04	*1965	
200	51.36	54.84	56.16	*1966	
225	64.92	68.52	69.84	*1969	
250	80.16	83.76	85.08	*1971	
275	96.84	100.56	101.88	*1974	
300	115.08	118.92	120.24	*1977	
	* Note	: Design Specificati	ion Constraint		

33	6.4 KCMIL, 19	STRAND	, AAC,	80 MIL	HDPE	COVERIN	IG, "CRAE	BAPPLE"
	MAINTENANCE ONLY							
ISSUF	PAGE NUMBE	R						13.17.

ISSUE	PAGE NUMBER
1/07	6-204

Std. Item:	
Item ID:	9315425
CU:	C33ALSTPFR/T

PHYSICAL	PROPERTIES	LOADING PR	ROPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	5535 lbs.	TRANSVERSE	0.5949 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.2757 sq. in.	VERTICAL	1.194 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.0528 Ω / 1000'	TOTAL	1.634 Lb/Ft	441	NORMAL	675
R. (@ 75°C)	0.0630 Ω / 1000'	IOIAL	1.034 LD/Ft	541	EMERGENCY	735
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	44.93°			
CONDUCTOR DIAMETER	0.666"			•		
COMPLETE DIAMETER	0.786"					
WEIGHT	394 lbs / 1000'					

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	1.08	2.88	6.48	9.48	11.76	14.28	15.36	16.32		
75	2.40	5.64	10.32	14.64	18.00	21.60	23.16	24.60		
100	4.32	9.00	14.76	20.04	24.48	29.16	31.20	33.12		
125	8.40	15.60	22.08	27.96	33.00	38.52	40.92	43.20		
150	15.36	24.12	30.84	37.20	42.72	48.96	51.72	54.36		
175	24.84	34.08	41.16	47.88	53.88	60.60	63.60	66.48		
200	36.36	45.72	52.92	59.88	66.24	73.56	76.80	79.92		
225	49.44	58.80	66.12	73.32	79.92	87.72	91.20	94.44		
250	64.08	73.44	80.88	88.20	95.16	103.20	106.92	110.40		
275	80.28	89.64	97.08	104.64	111.72	120.12	123.96	127.56		
300	98.04	107.28	114.84	122.52	129.72	138.48	142.32	146.16		

		FINAL SAG TA	BLE	
	LOADING	G (LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-20	0	15	-20
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	3.72	5.28	6.72	1622
75	7.68	9.48	11.04	1807
100	12.36	14.40	15.72	1990
125	19.32	21.96	23.16	*1978
150	27.96	30.84	32.16	*1970
175	38.16	41.28	42.48	*1968
200	49.80	53.16	54.36	*1969
225	63.00	66.48	67.56	*1971
250	77.76	81.24	82.44	*1973
275	93.96	97.56	98.64	*1976
300	111.72	115.44	116.40	*1978
	* No	te: Design Specificat	ion Constraint	

336.4 KCMIL, 19 STRAND, AAC, 60 MIL HDPE COVERING, "ANONA" MAINTENANCE ONLY							
WW.		PAGE NUMBER	ISSUE				
ppl	OVERHEAD CONSTRUCTION STANDARD	6-205	7/15				

PHYSICAL	PROPERTIES	LOADING PR	ROPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	8350 lbs.	TRANSVERSE	0.5205 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.1939 sq. in.	VERTICAL	0.952 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.0822 Ω / 1000'	TOTAL	L 1.385 Lb/Ft -	360	NORMAL	504
R. (@ 75°C)	0.1160 Ω / 1000'	IOIAL		399	EMERGENCY	527
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	44.05°			
CONDUCTOR DIAMETER	0.563"			•		
WEIGHT	291 lbs.					

			FINAL	SAG TABL	E.			
	LOADING (UNLOADED CONDITIONS)							
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.60	0.96	1.92	3.96	5.40	7.20	8.04	8.88
75	1.44	2.28	4.68	8.04	9.96	12.48	13.56	14.64
100	2.76	4.80	8.88	13.32	15.72	18.60	20.04	21.24
125	4.92	8.76	14.52	19.80	22.56	25.92	27.48	28.92
150	8.64	14.76	21.48	27.36	30.48	34.20	35.88	37.56
175	14.40	22.56	29.88	36.24	39.60	43.56	45.48	47.28
200	22.68	32.04	39.48	46.32	49.80	54.12	56.16	58.08
225	33.24	42.96	50.52	57.60	61.32	65.88	67.92	69.96
250	45.48	55.20	62.88	70.20	74.04	78.84	81.00	83.16
275	59.16	68.76	76.44	84.00	87.96	92.88	95.16	97.44
300	74.16	83.64	91.44	99.00	103.20	108.24	110.64	112.92

		FINAL SAG TA	BLE	
	LOADIN	G (LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-20	0	15	-20
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	2.64	2.76	2.52	*2000
75	5.88	6.24	5.76	*2000
100	10.44	10.92	10.20	*2000
125	16.20	16.92	16.08	*2000
150	23.40	24.24	23.16	*2000
175	31.80	32.76	31.56	*2000
200	41.52	42.60	41.28	*2000
225	52.68	53.64	52.32	*2000
250	65.04	66.12	64.68	*2000
275	78.60	79.80	78.36	*2000
300	93.60	94.80	93.24	*2000
	* No	te: Design Specificat	ion Constraint	

4/0, 6/1 STRANDING, BARE ACSR, "PENGUIN"
MAINTENANCE ONLY

ISSUE	PAGE NUMBER
7/10	6-206

=						
PHYSICAL	PROPERTIES	LOADING PR	ROPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	8560 lbs.	TRANSVERSE	0.5213 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.1939 sq. in.	VERTICAL	0.893 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.0831 Ω / 1000'	TOTAL	1.334 Lb/Ft	396	NORMAL	555
R. (@ 75°C)	0.0973 Ω / 1000'	IOIAL	1.334 LD/Ft	445	EMERGENCY	587
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	50.53°			
CONDUCTOR DIAMETER	0.563"			-		
WEIGHT	232 lbs.					

FINAL SAG TABLE										
	LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	0.48	0.72	1.44	4.80	8.28	11.52	12.72	13.92		
75	1.08	1.80	3.72	8.76	13.44	17.88	19.80	21.48		
100	2.04	3.48	7.20	13.80	19.32	24.96	27.36	29.52		
125	3.60	6.36	12.24	19.80	26.16	32.88	35.64	38.16		
150	6.00	10.92	18.84	27.00	34.08	41.52	44.64	47.64		
175	9.72	17.64	26.64	35.40	42.96	51.12	54.60	57.96		
200	15.60	26.28	35.88	45.00	52.92	61.68	65.52	69.12		
225	24.36	36.60	46.44	55.80	64.08	73.32	77.40	81.24		
250	35.52	48.36	58.32	67.80	76.32	86.04	90.36	94.56		
275	48.60	61.44	71.40	81.00	89.76	99.96	104.40	108.72		
300	63.00	75.72	85.80	95.52	104.52	114.96	119.64	124.08		

	FINAL SAG TABLE							
	LOADIN	G (LOADED COND	ITIONS)	TENSION (LBS.)				
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	2.52	2.64	2.16	*2000				
75	5.64	5.88	5.04	*2000				
100	9.96	10.32	9.24	*2000				
125	15.60	16.08	14.76	*2000				
150	22.56	23.04	21.48	*2000				
175	30.60	31.20	29.52	*2000				
200	40.08	40.68	38.88	*2000				
225	50.64	51.36	49.44	*2000				
250	62.52	63.24	61.32	*2000				
275	75.72	76.44	74.40	*2000				
300	90.12	90.84	88.80	*2000				
	* No	ote: Design Specificati	on Constraint					

4/0, 7 STRAND, BARE AAAC, "ALLIANCE" <i>MAINTENANCE ONLY</i>						
SMIZ.		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	6-207	7/10			

	Std. Item:	W18B
١	Item ID:	9315759 ^Y
	CIT	C40ALSTRR

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	3830 lbs.	TRANSVERSE	0.5073 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.1663 sq. in.	VERTICAL	0.835 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.0835 Ω / 1000'	TOTAL	1.277 Lb/Ft	383	NORMAL	535
R. (@ 75°C)	0.0999 Ω / 1000'	IOIAL	1.2// LD/FL	429	EMERGENCY	565
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	52.73°			
CONDUCTOR DIAMETER	0.522"			•		
WEIGHT	199 lbs.					

	FINAL SAG TABLE									
	LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	0.72	2.04	5.64	8.88	11.40	13.92	15.00	16.08		
75	1.80	4.20	9.12	13.80	17.40	21.12	22.68	24.12		
100	3.12	6.96	13.08	18.84	23.40	28.32	30.48	32.40		
125	4.92	10.08	17.28	24.12	29.76	35.76	38.40	40.80		
150	6.96	13.56	21.72	29.64	36.24	43.32	46.32	49.20		
175	9.60	17.40	26.52	35.40	42.84	51.00	54.60	57.84		
200	13.32	23.04	33.00	42.48	50.76	59.76	63.72	67.44		
225	21.00	33.12	43.44	53.16	61.68	71.28	75.48	79.44		
250	31.68	44.88	55.32	65.16	73.92	83.88	88.32	92.52		
275	44.64	57.96	68.28	78.24	87.36	97.68	102.24	106.68		
300	59.16	72.36	82.68	92.76	101.88	112.56	117.36	121.92		

	FINAL SAG TABLE							
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)				
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	4.20	5.04	6.12	1149				
75	8.28	9.36	10.08	1294				
100	13.32	14.28	14.52	1437				
125	18.96	19.68	19.20	1575				
150	25.32	25.68	24.24	1706				
175	32.04	32.04	29.64	1831				
200	3.33	3.31	3.05	*1915				
225	4.22	4.19	3.92	*1915				
250	5.21	5.18	4.90	*1915				
275	6.31	6.27	5.99	*1915				
300	7.51	7.47	7.18	*1915				
	* Note	: Design Specificati	ion Constraint					

	4/0, 7 STRAND, BARE AAC, "OXLIP" <i>MAINTENANCE ONLY</i>					
ISSUE	PAGE NUMBER		MIZZ			
7/15	6-208	OVERHEAD CONSTRUCTION STANDARD	ppl			

PHYSICAL	PHYSICAL PROPERTIES		LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	3445 lbs.	TRANSVERSE	0.5475 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.1776 sq. in.	VERTICAL	0.961 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0835 Ω / 1000'	TOTAL	1.406 Lb/Ft	331	NORMAL	501	
R. (@ 75°C)	0.1000 Ω / 1000'	IOIAL	1.400 LD/Ft	404	EMERGENCY	545	
TEMP.	167°F (75°C)/	SWING	51.98°				
LIMIT	194°F (90°C)	SWING	31.90				
CONDUCTOR DIAMETER	0.522"			•			
COMPLETE DIAMETER	0.642"						
WEIGHT	251 lbs / 1000'						

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	1.08	3.24	6.72	9.72	12.00	14.52	15.48	16.44		
75	2.40	6.00	10.80	15.00	18.36	21.96	23.40	24.84		
100	4.32	9.48	15.24	20.52	24.84	29.52	31.56	33.48		
125	6.84	13.32	20.16	26.28	31.56	37.32	39.84	42.12		
150	10.56	18.84	26.28	33.36	39.36	46.08	48.96	51.60		
175	18.48	28.32	36.24	43.56	49.92	57.24	60.36	63.36		
200	29.40	39.72	47.64	55.20	61.92	69.60	73.08	76.32		
225	42.36	52.56	60.60	68.28	75.36	83.52	87.12	90.60		
250	57.00	67.08	75.12	82.92	90.24	98.64	102.48	106.08		
275	73.20	83.16	91.20	99.12	106.56	115.32	119.28	123.12		
300	90.96	100.80	108.72	116.76	124.32	133.32	137.40	141.36		

	FINAL SAG TABLE							
	LOADIN	IG (LOADED COND	ITIONS)	TENSION (LBS.)				
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	4.68	6.00	7.20	1118				
75	9.24	10.56	11.64	1289				
100	14.52	15.96	16.56	1450				
125	20.64	21.84	21.84	1600				
150	27.84	29.04	28.44	*1703				
175	37.80	39.12	38.40	*1707				
200	49.32	50.64	49.92	*1711				
225	62.40	63.84	63.00	*1713				
250	76.92	78.36	77.52	*1715				
275	93.00	94.56	93.60	*1716				
300	110.64	112.20	111.24	*1717				
	* No	ote: Design Specificati	ion Constraint					

4/0, 7 STRAND, AAC, 60 MIL PE COVERING, "OLIVE" MAINTENANCE ONLY						
Will.		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	6-209	7/10			

=						
PHYSICAL	PROPERTIES	LOADING PR	ROPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	8560 lbs.	TRANSVERSE	0.5604 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.1939 sq. in.	VERTICAL	1.043 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.0831 Ω / 1000'	TOTAL	1.484 Lb/Ft	337	NORMAL	512
R. (@ 75°C)	0.0973 Ω / 1000'	IOIAL	1.404 LD/Fl	412	EMERGENCY	557
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	48.05°			
CONDUCTOR DIAMETER	0.563"			-		
COMPLETE DIAMETER	0.683"					
WEIGHT	307 lbs / 1000'					

FINAL SAG TABLE								
	LOADING (UNLOADED CONDITIONS)							
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.60	0.96	1.92	5.28	8.52	11.64	12.96	14.04
75	1.44	2.40	4.80	9.60	13.92	18.24	20.04	21.72
100	2.88	4.92	9.12	15.12	20.28	25.68	27.96	30.00
125	5.04	8.88	15.00	21.84	27.72	34.08	36.72	39.12
150	8.64	15.00	22.44	29.88	36.24	43.32	46.32	49.20
175	14.40	23.16	31.32	39.12	46.08	53.76	57.00	60.24
200	22.92	33.24	41.76	49.80	57.00	65.28	68.88	72.24
225	33.84	44.76	53.52	61.80	69.36	78.00	81.84	85.44
250	46.80	57.96	66.60	75.12	82.92	92.04	96.00	99.84
275	61.44	72.48	81.24	89.88	97.92	107.28	111.48	115.44
300	77.52	88.44	97.20	105.96	114.12	123.84	128.16	132.36

FINAL SAG TABLE						
	LOADING	TENSION (LBS.)				
TEMP. °F	0	32	60	0		
TEMP. °C	-20	0	15	-20		
	4 LB. WIND, ½" ICE	1⁄₂" ICE	6 LB. WIND	4 LB. WIND, ½" ICE		
DEAD END SPAN (FEET)						
50	2.76	3.00	2.76	*1999		
75	6.24	6.72	6.12	*2000		
100	11.16	11.76	10.92	*2000		
125	17.40	18.24	17.16	*2000		
150	25.08	26.04	24.84	*2000		
175	34.08	35.28	33.84	*2000		
200	44.52	45.84	44.28	*2000		
225	56.40	57.72	56.04	*2000		
250	69.60	71.04	69.36	*2000		
275	84.24	85.68	83.88	*2000		
300	100.32	101.76	99.96	*2000		

4/0, 7 STRAND, AAAC, 60 MIL PE COVERING, "PLANETREE" MAINTENANCE ONLY

ISSUE	PAGE NUMBER
7/18	6-210

PHYSICAL	PHYSICAL PROPERTIES		ROPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	3620 lbs.	TRANSVERSE	0.5451 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.1678 sq. in.	VERTICAL	0.952 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0838 Ω / 1000'	TOTAL	1.397 Lb/Ft	330	NORMAL	499	
R. (@ 75°C)	0.1000 Ω / 1000'	IOIAL	1.381 LD/Ft	402	EMERGENCY	543	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	51.87°				
CONDUCTOR DIAMETER	0.512"			•			
COMPLETE DIAMETER	0.632"						
WEIGHT	248 lbs / 1000'						

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	1.08	2.52	6.00	9.12	11.52	14.04	15.12	16.08		
75	2.28	5.16	9.84	14.16	17.64	21.36	22.92	24.36		
100	4.08	8.40	14.04	19.44	23.88	28.80	30.84	32.76		
125	6.48	12.12	18.72	25.08	30.48	36.36	38.88	41.28		
150	9.24	16.20	23.76	31.08	37.32	44.28	47.16	50.04		
175	13.44	22.08	30.36	38.28	45.36	53.04	56.40	59.64		
200	21.96	32.40	41.04	49.32	56.64	64.80	68.52	71.88		
225	33.48	44.52	53.28	61.68	69.24	77.88	81.72	85.44		
250	47.16	58.20	66.96	75.48	83.28	92.28	96.24	100.08		
275	62.40	73.44	82.08	90.72	98.64	108.00	112.08	116.16		
300	79.32	90.12	98.76	107.40	115.44	125.04	129.36	133.56		

	FINAL SAG TABLE								
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)					
TEMP. °F	0	32	60	0					
TEMP. °C	-20	0	15	-20					
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE					
DEAD END SPAN (FEET)									
50	4.68	5.64	6.60	1129					
75	9.12	10.20	10.80	1287					
100	14.52	15.60	15.60	1439					
125	20.64	21.48	20.76	1582					
150	27.48	27.96	26.40	1717					
175	35.40	35.76	33.48	*1810					
200	46.32	46.68	44.16	*1810					
225	58.68	58.92	56.40	*1810					
250	72.36	72.72	70.08	*1810					
275	87.60	87.96	85.32	*1810					
300	104.28	104.64	101.88	*1810					
	* Note	e: Design Specificati	ion Constraint						

4/0, 19 STRAND, AAC, 60 MIL PE COVERING, "POMEGRANITE" <i>MAINTENANCE ONLY</i>						
SMA		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	6-211	7/10			

Std. Item:	
Item ID:	9315758
CU:	C10ASSTBRRLR/T

PHYSICAL PROPERTIES		LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	4380 lbs.	TRANSVERSE	0.4655 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0968 sq. in.	VERTICAL	0.704 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.1630 Ω / 1000'	TOTAL	1.144 Lb/Ft	242	NORMAL	335
R. (@ 75°C)	0.2160 Ω / 1000'	IOIAL		268	EMERGENCY	351
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	53.88°			
CONDUCTOR DIAMETER	0.398"			•		
WEIGHT	145 lbs.					

FINAL SAG TABLE										
	LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	0.48	0.72	1.32	2.88	3.96	5.76	6.60	7.56		
75	1.08	1.68	2.88	5.52	7.20	9.60	10.80	11.88		
100	2.04	3.00	4.92	8.76	10.80	13.68	15.12	16.56		
125	3.12	4.56	7.44	12.36	14.76	18.12	19.80	21.48		
150	4.44	6.60	10.20	16.20	18.84	22.68	24.60	26.52		
175	6.12	8.88	13.44	20.16	23.28	27.48	29.64	31.68		
200	7.92	11.40	16.92	24.48	27.84	32.52	34.80	37.08		
225	10.08	14.40	20.64	28.92	32.64	37.56	40.08	42.48		
250	12.36	17.52	24.72	33.60	37.56	42.84	45.48	48.12		
275	17.28	24.72	33.96	42.48	46.92	52.80	55.68	58.44		
300	24.72	34.92	45.60	53.40	58.20	64.56	67.56	70.56		

	FINAL SAG TABLE							
	LOADIN	TENSION (LBS.)						
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	3.60	3.24	2.16	1197				
75	7.44	6.72	4.44	1292				
100	12.36	10.92	7.32	1394				
125	17.88	15.84	10.68	1498				
150	24.12	21.24	14.52	1601				
175	30.84	27.12	18.60	1702				
200	38.16	33.48	23.04	1800				
225	45.84	40.20	27.84	1896				
250	54.00	47.16	32.88	1989				
275	64.92	57.48	42.36	*2000				
300	77.28	69.36	53.88	*2000				
	* No	ote: Design Specificati	ion Constraint					

	1/0, 6/1	STRANDING, BARE ACSR, "RAVEN
		MAINTENANCE ONLY
ISSUE	PAGE NUMBER	

7/15 PAGE NUMBER
7/15 6-212

Std. Item:	
Item ID:	
CU.	C10ASSTLTRT

PHYSICAL	PROPERTIES	LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	4160 lbs.	TRANSVERSE	0.5407 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.1348 sq. in.	VERTICAL	0.921 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.1633 Ω / 1000'	TOTAL	1.368 Lb/Ft	210	NORMAL	320
R. (@ 75°C)	0.2160 Ω / 1000'	IOIAL	1.300 LD/Ft	256	EMERGENCY	348
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	53.82°			
CONDUCTOR DIAMETER	0.398"			•		
COMPLETE DIAMETER	0.6518"					
WEIGHT	226 lbs / 1000'					

FINAL SAG TABLE										
			LOADIN	G (UNLOA	DED COND	DITIONS)				
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded									
DEAD END SPAN (FEET)										
50	0.84	1.56	3.72	5.76	7.20	8.88	9.60	10.32		
75	1.80	3.36	6.72	9.72	11.64	13.92	15.00	15.96		
100	3.24	576.00	10.08	14.16	16.44	19.32	20.64	21.84		
125	5.04	8.64	13.92	18.96	21.60	24.96	26.52	27.96		
150	7.32	12.00	18.12	24.12	27.12	30.84	32.64	34.32		
175	9.96	15.72	22.68	29.52	32.88	37.08	39.00	40.92		
200	14.28	21.60	29.52	36.84	40.56	45.12	47.16	49.32		
225	22.32	31.68	40.08	47.52	51.36	56.28	58.44	60.72		
250	33.24	43.56	52.20	59.40	63.60	68.64	70.92	73.20		
275	46.32	57.00	65.52	72.72	77.04	82.20	84.72	87.00		
300	61.20	71.76	80.28	87.36	91.68	97.08	99.60	102.12		

	FINAL SAG TABLE								
	LOADIN	TENSION (LBS.)							
TEMP. °F	0	32	60	0					
TEMP. °C	-20	0	15	-20					
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE					
DEAD END SPAN (FEET)									
50	4.20	4.56	4.68	1229					
75	8.40	8.76	8.16	1377					
100	13.44	13.56	12.24	1523					
125	19.32	19.08	16.80	1664					
150	25.68	24.96	21.72	1800					
175	32.64	31.44	27.00	1928					
200	41.04	39.48	34.20	*2000					
225	51.96	50.28	44.76	*2000					
250	64.20	62.40	56.76	*2000					
275	77.64	75.84	70.08	*2000					
300	92.40	90.48	84.72	*2000					
_	* No	ote: Design Specificati	ion Constraint						

1/0, 6/1 STRANDING, ACSR, 110 MIL PE COVERING, "ALMOND" <i>MAINTENANCE ONLY</i>					
WW.		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD		7/10		

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	4160 lbs.	TRANSVERSE	0.5069 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.1081 sq. in.	VERTICAL	0.827 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.1633 Ω / 1000'	TOTAL	1.270 Lb/Ft	220	NORMAL	330	
R. (@ 75°C)	0.2160 Ω / 1000'	IOIAL	1.270 LD/Ft	267	EMERGENCY	359	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	53.17°				
CONDUCTOR DIAMETER	0.398"			•			
COMPLETE DIAMETER	0.518"						
WEIGHT	194 lbs / 1000'						

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	0.72	1.20	2.40	4.32	5.76	7.44	8.28	9.00		
75	1.56	2.52	4.68	7.92	9.72	12.00	13.08	14.16		
100	2.76	4.44	7.68	11.88	14.04	16.92	18.24	19.56		
125	4.32	6.84	11.04	16.32	18.84	22.08	23.64	25.20		
150	6.24	9.60	14.76	21.00	23.88	27.60	29.28	31.08		
175	8.52	12.84	18.84	25.92	29.16	33.24	35.16	37.20		
200	11.16	16.44	23.28	31.20	34.68	39.12	41.28	43.44		
225	14.16	20.40	27.96	36.60	40.32	45.24	47.64	49.92		
250	20.88	29.52	38.40	46.80	50.88	56.16	58.68	61.08		
275	30.48	41.04	50.52	58.56	63.00	68.52	71.16	73.68		
300	42.84	54.36	64.08	71.64	76.32	82.08	84.72	87.48		

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-20	0	15	-20
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	4.08	4.08	3.36	1183
75	8.28	8.04	6.48	1303
100	13.32	12.72	10.08	1427
125	19.20	18.12	14.28	1548
150	25.68	24.00	18.84	1666
175	32.76	30.36	23.76	1780
200	40.32	37.08	28.92	1890
225	48.36	44.40	34.56	1996
250	59.52	55.20	45.00	*2000
275	72.12	67.44	57.00	*2000
300	85.80	80.88	70.32	*2000

	1/0 ACSR, 6/1 STANDING, 60 MIL PE COVERING, "ALMOND" MAINTENANCE ONLY					
ISSUE	PAGE NUMBER		NH/Z.			
7/15	6-214	OVERHEAD CONSTRUCTION STANDARD	ppl			

Std. Item:		J
Item ID:	9314543	ľ
CU:	C10AAACPER/T	

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	4194 lbs.	TRANSVERSE	0.5286 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.1081 sq. in.	VERTICAL	0.843 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.1660 Ω / 1000'	TOTAL	1.295 Lb/Ft	228	NORMAL	344	
R. (@ 75°C)	0.1950 Ω / 1000'	IOIAL	1.295 LD/Ft	278	EMERGENCY	374	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	60.55°				
CONDUCTOR DIAMETER	0.468"			•			
COMPLETE DIAMETER	0.588"						
WEIGHT	166 lbs / 1000'						

	FINAL SAG TABLE									
LOADING (UNLOADED CONDITIONS)										
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	0.60	0.96	1.56	4.20	7.68	11.04	12.36	13.56		
75	1.32	2.04	3.48	7.44	12.12	16.92	18.72	20.52		
100	2.40	3.60	6.00	11.16	16.92	22.92	25.32	27.60		
125	3.72	5.52	8.88	15.12	21.84	29.16	32.16	34.92		
150	5.40	7.92	12.24	19.56	27.12	35.52	39.00	42.24		
175	7.32	10.56	15.96	24.24	32.64	42.12	46.08	49.92		
200	9.48	13.68	20.04	29.16	38.52	48.96	53.40	57.60		
225	12.00	17.16	24.48	34.44	44.52	55.92	60.84	65.52		
250	14.88	20.88	29.16	39.96	50.76	63.12	68.52	73.56		
275	20.40	28.80	38.88	50.64	61.80	74.64	80.16	85.44		
300	29.16	40.56	52.20	64.32	75.72	88.68	94.32	99.72		

	FINAL SAG TABLE								
	LOADING (LOADED CONDITIONS)								
TEMP. °F	0	32	60	0					
TEMP. °C	-20	0	15	-20					
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE					
DEAD END SPAN (FEET)									
50	4.20	3.96	3.00	1161					
75	8.64	8.16	6.00	1261					
100	14.16	13.20	9.84	1368					
125	20.52	18.84	14.04	1476					
150	27.60	25.20	18.84	1582					
175	35.28	32.04	24.00	1685					
200	43.56	39.36	29.52	1785					
225	52.32	47.16	35.28	1882					
250	61.44	55.32	41.52	1976					
275	73.56	66.72	51.84	*2000					
300	87.48	80.28	64.92	*2000					
	* Note	e: Design Specificat	ion Constraint						

1/0, 7 STRAND, AAAC	i, 60 MIL XLPE COVERING, "OILNUT"	′ – 15 kV
---------------------	-----------------------------------	-----------

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 6-215 7/15

W12B

9306923^Y

C02ASSTBR

Std. Item:

tem ID:

CU:

	FINAL SAG TABLE								
		LOADING (UNLOADED CONDITIONS)							
TEMP. °F	0	32	60	90	120	158	176	194	
TEMP. °C	-18	0	15	32	50	70	80	90	
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	
DEAD END SPAN (FEET)									
50	0.48	0.72	1.20	3.12	4.32	6.24	7.08	7.92	
75	1.08	1.56	2.76	5.88	7.56	10.08	11.16	12.36	
100	1.92	2.88	4.68	8.88	11.04	14.04	15.48	16.80	
125	3.00	4.44	7.08	12.24	14.64	18.00	19.68	21.36	
150	4.32	6.36	9.84	15.60	18.36	22.20	24.12	25.92	
175	5.88	8.52	12.96	19.20	22.20	26.40	28.44	30.48	
200	7.68	11.04	16.32	22.80	26.04	30.48	32.76	35.04	
225	10.44	15.24	22.08	28.32	31.92	36.96	39.36	41.88	
250	16.80	25.08	34.32	39.12	43.32	48.96	51.60	54.24	
275	27.60	38.88	47.40	52.08	56.76	62.76	65.52	68.28	
300	43.08	55.32	62.04	66.96	72.00	78.12	80.88	83.76	

	FINAL SAG TABLE					
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0		
TEMP. °C	-20	0	15	-20		
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE		
DEAD END SPAN (FEET)						
50	4.68	4.08	2.28	827		
75	9.60	8.04	4.80	921		
100	15.36	12.96	7.92	1016		
125	22.08	18.60	11.52	1109		
150	29.40	24.72	15.48	1199		
175	37.20	31.32	19.92	1286		
200	45.60	38.40	24.60	1370		
225	55.56	47.04	31.44	*1425		
250	68.64	59.40	43.44	*1425		
275	83.04	73.32	57.24	*1425		
300	98.88	88.56	72.84	*1425		
	* Note	e: Design Specificati	ion Constraint			

MAINTENANCE ONLY	#2, 6/1 S ⁻	TRANDING, BARE ACSR, "SPARRO	DW"
		MAINTENANCE ONLY	

ISSUE	PAGE NUMBER
7/15	6-216

Std. Item:	
Item ID:	
CH	C02ASSTPER/T

PHYSICAL	PHYSICAL PROPERTIES		LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	2710 lbs.	TRANSVERSE	0.4978 Lb/Ft	SUMMER	MUMIXAM	WINTER	
C.S.A.	0.0672 sq. in.	VERTICAL	0.739 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.2591 Ω / 1000'	TOTAL	1.191 Lb/Ft	178	NORMAL	266	
R. (@ 75°C)	0.3360 Ω / 1000'	IOIAL	1.191 LD/Ft	216	EMERGENCY	289	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	64.37°				
CONDUCTOR DIAMETER	0.406"			•			
COMPLETE DIAMETER	0.496"						
WEIGHT	119 lbs / 1000'						

	FINAL SAG TABLE							
		LOADING (UNLOADED CONDITIONS)						
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.60	0.96	1.80	4.08	5.40	7.08	7.92	8.64
75	1.44	2.28	3.84	7.32	9.00	11.28	12.36	13.44
100	2.64	3.96	6.48	10.92	12.96	15.72	17.04	18.36
125	4.08	6.12	9.48	14.76	17.16	20.28	21.84	23.40
150	5.88	8.64	12.96	18.84	21.48	24.96	26.76	28.44
175	8.04	11.64	16.80	22.92	25.80	29.76	31.68	33.60
200	13.92	20.40	27.84	33.00	36.48	40.92	42.96	45.00
225	24.60	33.84	41.88	45.84	49.68	54.36	56.64	58.80
250	40.20	49.92	56.76	60.84	64.80	69.72	72.00	74.16
275	58.32	67.80	73.56	77.76	81.84	86.76	89.04	91.32
300	78.24	87.36	92.28	96.48	100.56	105.60	107.88	110.16

FINAL SAG TABLE						
	LOADIN	G (LOADED COND	OITIONS)	TENSION (LBS.)		
TEMP. °F	0	0 32 60				
TEMP. °C	-20	0	15	-20		
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE		
DEAD END SPAN (FEET)						
50	5.40	4.92	3.48	827		
75	10.68	9.60	6.84	938		
100	17.04	15.12	10.92	1047		
125	24.24	21.48	15.48	1152		
150	32.16	28.32	20.40	1253		
175	40.56	35.64	25.80	1349		
200	52.80	47.28	36.84	*1355		
225	66.84	60.84	50.28	*1355		
250	82.44	76.20	65.64	*1355		
275	99.84	93.24	82.80	*1355		
300	118.80	111.96	101.64	*1355		
	* No	te: Design Specificat	ion Constraint			

#2, 6/1 STRANDING, ACSR, 45 MIL PE COVERING, "PIGNUT" MAINTENANCE ONLY			
SM/Z		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	6-217	7/15

PHYSICAL PROPERTIES		LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	2360 lbs.	TRANSVERSE	0.4191 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0411 sq. in.	VERTICAL	0.538 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.4070 Ω / 1000'	TOTAL	0.982 Lb/Ft	140	NORMAL	191
R. (@ 75°C)	0.5160 Ω / 1000'	IOIAL	0.962 LD/Ft	155	EMERGENCY	201
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	62.46°			
CONDUCTOR DIAMETER	0.257"			•		
WEIGHT	67 lbs.					

			FINAL	SAG TABI	_E			
			LOADIN	G (UNLOA	DED COND	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.48	0.60	0.84	1.80	3.00	4.92	5.88	6.84
75	0.96	1.32	1.92	3.72	5.52	8.04	9.36	10.68
100	1.68	2.28	3.48	6.12	8.40	11.40	12.96	14.52
125	2.64	3.60	5.28	8.88	11.28	14.76	16.68	18.48
150	3.84	5.28	7.44	11.88	14.28	18.24	20.28	22.32
175	5.16	7.08	9.96	14.64	17.40	21.60	23.88	26.16
200	7.08	9.72	13.68	18.36	21.60	26.28	28.68	31.20
225	11.40	16.32	23.16	27.00	31.08	36.72	39.48	42.24
250	20.28	29.16	35.28	40.08	44.88	51.00	53.88	56.64
275	35.76	45.96	50.76	55.92	61.08	67.32	70.20	72.96
300	55.44	63.72	68.64	73.92	79.08	85.20	88.08	90.84

FINAL SAG TABLE					
	LOADING	ITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0	
TEMP. °C	-20	0	15	-20	
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE	
DEAD END SPAN (FEET)					
50	5.28	4.08	1.80	697	
75	10.56	8.28	3.96	781	
100	17.04	13.44	6.72	865	
125	24.24	19.32	9.96	948	
150	32.28	25.80	13.68	1027	
175	40.92	32.76	17.76	1104	
200	50.52	40.80	23.16	1166	
225	63.24	52.32	33.36	*1180	
250	78.12	66.36	47.40	*1180	
275	94.44	82.20	63.60	*1180	
300	112.44	99.60	81.60	*1180	
300		99.60 : Design Specificat		*1180	

#4, 7/1 STRANDING, BARE ACSR, "SWANATE"
MAINTENANCE ONLY

ISSUE	PAGE NUMBER
7/15	6-218

Std. Item:		
CU:	C04ASPF	T

PHYSICAL	PROPERTIES	LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	2240 lbs.	TRANSVERSE	0.4589 Lb/Ft	SUMMER	MUMIXAM	WINTER
C.S.A.	0.0439 sq. in.	VERTICAL	0.627 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.4072 Ω / 1000'	TOTAL	1.077 Lb/Ft	136	NORMAL	200
R. (@ 75°C)	0.5160 Ω / 1000'	IOIAL	1.0// LD/Ft	164	EMERGENCY	217
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	66.49°			
CONDUCTOR DIAMETER	0.317"			•		
COMPLETE DIAMETER	0.377"					
WEIGHT	82 lbs / 1000'					

	FINAL SAG TABLE							
			LOADIN	G (UNLOA	DED COND	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.60	0.84	1.32	2.88	4.44	6.36	7.32	8.16
75	1.20	1.80	2.76	5.52	7.56	10.20	11.40	12.60
100	2.16	3.12	4.80	8.64	10.92	14.04	15.60	17.04
125	3.48	4.92	7.32	11.88	14.40	18.00	19.80	21.48
150	4.92	6.96	10.20	15.12	18.00	22.08	24.00	26.04
175	7.68	11.28	16.32	21.24	24.72	29.40	31.56	33.72
200	15.12	22.32	29.52	33.48	37.44	42.48	44.76	47.04
225	29.16	38.28	44.16	48.36	52.56	57.60	59.88	62.16
250	47.76	56.52	61.20	65.52	69.60	74.64	76.92	79.20
275	68.16	76.20	80.28	84.48	88.56	93.60	95.88	98.16
300	90.00	97.20	101.16	105.36	109.44	114.36	116.64	118.80

	FINAL SAG TABLE				
	LOADIN	G (LOADED COND	ITIONS)	TENSION (LBS.)	
TEMP. °F	0	32	60	0	
TEMP. °C	-20	0	15	-20	
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE	
DEAD END SPAN (FEET)					
50	5.76	4.92	2.88	697	
75	11.40	9.60	5.88	795	
100	18.12	15.24	9.60	892	
125	25.68	21.60	13.80	984	
150	33.96	28.44	18.36	1072	
175	44.16	37.68	25.92	*1120	
200	57.72	50.52	38.52	*1120	
225	73.08	65.40	53.40	*1120	
250	90.24	82.08	70.44	*1120	
275	109.32	100.80	89.28	*1120	
300	130.08	121.32	110.04	*1120	
•	* No	te: Design Specificati	ion Constraint		

#4, 7/1 STRANDING, ACSR, 30 MIL PE COVERING, "HICKORY" MAINTENANCE ONLY				
WW.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	6-219	7/15	

Std. Item:	
Item ID:	
CII	COAASDEGNE

PHYSICAL	PROPERTIES	LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	1770 lbs.	TRANSVERSE	0.4577 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0411 sq. in.	VERTICAL	0.613 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.4120 Ω / 1000'	TOTAL	1 065 Lb/Et	135	NORMAL	199
R. (@ 75°C)	0.5220 Ω / 1000'	IOIAL	1.065 Lb/Ft	163	EMERGENCY	216
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	68.73°			
CONDUCTOR DIAMETER	0.310"			•		
COMPLETE DIAMETER	0.370"					
WEIGHT	72 lbs / 1000'					

	FINAL SAG TABLE							
			LOADIN	G (UNLOA	DED COND	OITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.60	0.96	1.56	3.48	4.56	6.36	7.20	7.92
75	1.32	2.04	3.48	6.12	7.68	9.84	11.04	12.12
100	2.40	3.60	5.76	9.00	10.80	13.44	14.76	16.08
125	3.84	5.64	8.76	12.00	14.04	17.04	18.60	20.16
150	7.92	12.48	17.76	20.40	23.16	26.88	28.56	30.36
175	19.32	27.36	30.60	33.84	37.08	41.04	42.84	44.64
200	37.92	43.80	47.04	50.40	53.76	57.72	59.64	61.44
225	58.68	63.00	66.24	69.60	72.84	76.92	78.72	80.52
250	81.00	84.72	87.84	91.08	94.32	98.28	100.08	102.00
275	105.00	108.60	111.72	114.96	118.08	122.04	123.84	125.64
300	131.28	134.76	137.76	141.00	144.12	147.96	149.88	151.56

		FINAL SAG TA	BLE		
	LOADING	(LOADED CONE	DITIONS)	TENSION (LBS.)	
TEMP. °F	0	32	60	0	
TEMP. °C	-20	0	15	-20	
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE	
DEAD END SPAN (FEET)					
50	6.72	5.76	3.60	591	
75	13.08	11.04	7.20	688	
100	20.52	17.28	11.28	780	
125	28.80	24.24	16.08	866	
150	40.68	35.28	26.16	*885	
175	55.32	49.32	40.32	*885	
200	72.24	65.88	57.12	*885	
225	91.44	84.84	76.32	*885	
250	112.92	106.08	97.80	*885	
275	136.80	129.72	121.44	*885	
300	162.84	155.64	147.48	*885	
	* Note	e: Design Specificat	ion Constraint		

#4, 6/1 STRANDING, ACSR, 30 MIL PE COVERING, "BUTTERNUT" <i>MAINTENANCE ONLY</i>				
ISSUE	PAGE NUMBER		AMZ	
7/09	6-220	OVERHEAD CONSTRUCTION STANDARD	lqq	

Doc. # ST. 06.00.005

Non-Standard Copper Overhead Distribution Conductors

Maintenance Only

NON-STANDARD COPPER OVERHEAD DISTRIBUTION CONDUCTORS MAINTENANCE ONLY					
NAMES.		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	6-300	1/07		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 06.00,005

PHYSICAL	PROPERTIES	LOADING PR	ROPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	9160 lbs.	TRANSVERSE	0.5068 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.1663 sq. in.	VERTICAL	1.290 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0527 Ω / 1000'	TOTAL	1.686 Lb/Ft	486	NORMAL	679	
R. (@ 50°C)	0.0574 Ω / 1000'	IOIAL	1.000 LD/Ft	545	EMERGENCY	718	
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	21.76°				
CONDUCTOR DIAMETER	0.522"			•			
WEIGHT	654 lbs.						

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	1.32	2.28	4.20	6.72	8.88	11.16	12.12	12.96		
75	3.36	5.64	8.64	11.88	14.76	17.88	19.20	20.40		
100	6.96	10.68	14.40	18.24	21.72	25.44	27.12	28.68		
125	12.48	17.52	21.84	26.04	29.88	34.32	36.24	38.04		
150	20.28	25.92	30.60	35.28	39.48	44.28	46.44	48.60		
175	30.12	36.12	41.04	45.84	50.40	55.68	57.96	60.24		
200	41.76	47.88	52.92	57.96	62.76	68.40	70.92	73.32		
225	54.96	61.32	66.48	71.64	76.56	82.44	85.08	87.72		
250	69.96	76.32	81.60	86.88	91.92	98.04	100.80	103.56		
275	86.52	92.88	98.16	103.68	108.84	115.20	118.08	120.84		
300	104.64	111.12	116.40	121.92	127.32	133.80	136.68	139.56		

	FINAL SAG TABLE								
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)					
TEMP. °F	0	32	60	0					
TEMP. °C	-20	0	15	-20					
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE					
DEAD END SPAN (FEET)									
50	3.12	3.84	4.32	*2000					
75	7.08	8.28	8.76	*2000					
100	12.60	14.16	14.76	*2000					
125	19.80	21.60	22.08	*2000					
150	28.44	30.48	30.96	*2000					
175	38.76	40.92	41.40	*2000					
200	50.64	52.92	53.28	*2000					
225	64.08	66.48	66.84	*2000					
250	79.08	81.48	81.96	*2000					
275	95.76	98.28	98.64	*2000					
300	114.00	116.52	116.88	*2000					
	* Note	: Design Specificati	ion Constraint						

	4/0, 7 STRAND, HARD DRAWN COPPER, BARE MAINTENANCE ONLY							
	ISSUE	PAGE NUMBER		MIZZ				
Busi	1/07 6-301 CONSTRUCTION STANDARD PPI							

Std. Item:	W13K
Item ID:	9315933
CU:	C10BSTC

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	4752 lbs.	TRANSVERSE	0.4566 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.0829 sq. in.	VERTICAL	0.866 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.1051 Ω / 1000'	TOTAL	1.279 Lb/Ft	313	NORMAL	432	
R. (@ 50°C)	0.1150 Ω / 1000'	IOIAL	1.2/9 LD/Ft	350	EMERGENCY	457	
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	29.44°				
CONDUCTOR DIAMETER	0.368"			•			
WEIGHT	326 lbs.						

	FINAL SAG TABLE								
		LOADING (UNLOADED CONDITIONS)							
TEMP. °F	0	32	60	90	120	158	176	194	
TEMP. °C	-18	0	15	32	50	70	80	90	
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	
DEAD END									
SPAN (FEET)									
50	1.08	1.56	2.64	4.92	7.32	9.96	10.92	11.88	
75	2.28	3.48	5.40	8.52	11.88	15.36	16.92	18.24	
100	4.08	6.00	8.76	12.72	16.68	21.12	23.04	24.84	
125	6.48	9.12	12.72	17.40	21.96	27.24	29.52	31.68	
150	9.24	12.84	17.16	22.44	27.72	33.72	36.36	38.88	
175	12.60	17.04	22.08	27.96	33.84	40.56	43.56	46.32	
200	16.44	21.72	27.48	33.96	40.20	47.64	51.00	54.12	
225	23.04	29.76	36.24	43.20	49.92	57.72	61.20	64.56	
250	32.28	40.08	47.04	54.36	61.32	69.48	73.08	76.68	
275	43.44	51.96	59.40	66.84	73.92	82.32	86.16	89.76	
300	56.40	65.40	72.84	80.52	87.72	96.36	100.20	104.04	

	LOADING	LOADING (LOADED CONDITIONS)						
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	3.60	3.60	2.88	1314				
75	7.56	7.32	5.88	1426				
100	12.48	11.88	9.48	1542				
125	18.12	17.16	13.68	1658				
150	24.36	22.92	18.36	1770				
175	31.32	29.28	23.52	1877				
200	38.76	36.12	29.04	1980				
225	48.60	45.60	37.92	*2000				
250	60.00	56.76	48.84	*2000				
275	72.60	69.24	61.08	*2000				
300	86.40	82.80	74.64	*2000				

1/0, 7 STRAND, HARD DRAWN COPPER, BARE MAINTENANCE ONLY

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 6-302 7/15

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 06.00.005

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	4752 lbs.	TRANSVERSE	0.4947 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.0942 sq. in.	VERTICAL	0.978 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.1051 Ω / 1000'	TOTAL	1.396 Lb/Ft	278	NORMAL	415	
R. (@ 50°C)	0.1150 Ω / 1000'	IOIAL	1.390 LD/Ft	337	EMERGENCY	452	
TEMP.	167°F (75°C) /	SWING	33.91°				
LIMIT	194°F (90°C)	SWING	33.91				
CONDUCTOR DIAMETER	0.368"			•			
COMPLETE DIAMETER	0.488"						
WEIGHT	363 lbs / 1000'						

	FINAL SAG TABLE								
			LOADIN	G (UNLOA	DED COND	DITIONS)			
TEMP. °F	0	32	60	90	120	158	176	194	
TEMP. °C	-18	0	15	32	50	70	80	90	
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	
DEAD END									
SPAN (FEET)									
50	1.20	1.80	3.36	5.88	8.16	10.56	11.52	12.48	
75	2.52	4.08	6.48	9.84	12.96	16.32	17.76	19.08	
100	4.56	6.84	10.20	14.28	18.12	22.44	24.24	25.92	
125	7.20	10.44	14.40	19.20	23.64	28.80	30.96	33.12	
150	10.32	14.52	19.20	24.60	29.76	35.52	38.16	40.56	
175	14.04	19.08	24.48	30.48	36.12	42.72	45.60	48.36	
200	21.00	27.48	33.60	39.96	45.96	52.92	55.92	58.92	
225	30.36	37.80	44.40	51.00	57.24	64.44	67.68	70.80	
250	41.88	49.80	56.64	63.36	69.72	77.28	80.64	83.88	
275	55.08	63.36	70.20	77.04	83.64	91.32	94.80	98.28	
300	69.96	78.24	85.20	92.16	98.76	106.68	110.28	113.76	

FINAL SAG TABLE								
	LOADING	G (LOADED COND	ITIONS)	TENSION (LBS.)				
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	3.84	4.08	3.72	1349				
75	7.92	8.04	7.08	1482				
100	12.96	12.84	11.04	1617				
125	18.72	18.36	15.60	1748				
150	25.20	24.48	20.64	1873				
175	32.28	31.08	26.28	1991				
200	41.88	40.56	35.40	*2000				
225	53.04	51.60	46.20	*2000				
250	65.52	63.96	58.44	*2000				
275	79.20	77.64	72.00	*2000				
300	94.32	92.64	87.00	*2000				
	* Not	e: Design Specificati	ion Constraint					

	1/0, 7 STRAND, HARD DRAWN COPPER, 60 MIL PE COVERING MAINTENANCE ONLY						
	ISSUE	PAGE NUMBER		WIN			
Busi	1/07 6-303 OVERHEAD CONSTRUCTION STANDARD PPI						

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	5876 lbs.	TRANSVERSE	0.4553 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0680 sq. in.	VERTICAL	0.796 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.1653 Ω / 1000'	TOTAL	1.217 Lb/Ft	249	NORMAL	344
R. (@ 50°C)	0.1809 Ω / 1000'	IOIAL	1.21/ LD/FL	279	EMERGENCY	363
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	35.45°			
CONDUCTOR DIAMETER	0.366"			•		
WEIGHT	257 lbs.					

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END										
SPAN (FEET)										
50	0.60	0.84	1.20	1.92	3.60	6.60	7.80	9.00		
75	1.44	1.92	2.64	3.96	6.60	10.68	12.36	13.92		
100	2.64	3.36	4.56	6.72	10.08	15.00	17.16	19.20		
125	4.08	5.28	6.96	9.96	14.04	19.80	22.32	24.72		
150	5.88	7.56	9.84	13.56	18.36	24.84	27.72	30.48		
175	8.16	10.44	13.56	18.00	23.52	30.60	33.84	36.84		
200	12.00	15.48	19.80	25.44	31.68	39.24	42.72	45.96		
225	17.16	22.32	27.84	34.44	41.16	49.08	52.68	56.04		
250	24.48	31.08	37.68	44.88	51.84	60.12	63.72	67.32		
275	33.96	41.76	48.96	56.52	63.60	72.12	75.96	79.56		
300	45.60	54.24	61.68	69.36	76.68	85.32	89.16	93.00		

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-20	0	15	-20
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	3.00	2.52	1.44	1548
75	6.36	5.40	3.12	1628
100	10.56	9.12	5.52	1721
125	15.72	13.56	8.28	1819
150	21.36	18.60	11.64	1918
175	27.96	24.36	15.72	*2000
200	36.48	32.28	22.44	*2000
225	46.20	41.52	30.72	*2000
250	57.12	51.96	40.56	*2000
275	69.00	63.60	51.96	*2000
300	82.20	76.44	64.56	*2000
	* Note	: Design Specificati	ion Constraint	

#2, 3 STRAND, TYPE A COPPER – COPPERWELD, BARE MAINTENANCE ONLY

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 6-304 7/15

Supersedes 7/09 Issue - Updated item ID.

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	3050 lbs.	TRANSVERSE	0.4303 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0522 sq. in.	VERTICAL	0.698 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.1670 Ω / 1000'	TOTAL	1.1207 Lb/Ft	234	NORMAL	321
R. (@ 50°C)	0.1826 Ω / 1000'	IOIAL	1.1207 LD/Ft	261	EMERGENCY	339
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	35.46°			
CONDUCTOR DIAMETER	0.292"			•		
WEIGHT	205 lbs.					

	FINAL SAG TABLE											
		LOADING (UNLOADED CONDITIONS)										
TEMP. °F	0	32	60	90	120	158	176	194				
TEMP. °C	-18	0	15	32	50	70	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END												
SPAN (FEET)												
50	0.96	1.56	2.52	4.80	7.20	9.84	10.92	11.88				
75	2.28	3.36	5.16	8.40	11.64	15.24	16.68	18.12				
100	4.08	5.88	8.52	12.48	16.44	21.00	22.92	24.72				
125	6.36	8.88	12.48	17.04	57.72	27.00	29.28	31.56				
150	9.12	12.48	16.80	22.08	27.36	33.48	36.12	38.64				
175	12.36	16.68	21.60	27.60	33.36	40.20	43.20	46.08				
200	16.08	21.36	26.88	33.48	39.72	47.28	50.52	53.76				
225	22.44	29.04	35.52	42.48	49.20	57.12	60.60	63.96				
250	33.12	41.04	48.00	55.32	62.16	70.20	73.80	77.40				
275	46.44	54.96	62.28	69.60	76.56	84.72	88.44	92.04				
300	61.92	70.68	78.00	85.32	92.28	100.56	104.40	108.00				

	FINAL SAG TABLE							
	LOADING	G (LOADED CONE	OITIONS)	TENSION (LBS.)				
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE				
DEAD END SPAN (FEET)								
50	4.68	4.32	3.00	898				
75	9.36	8.52	6.00	1003				
100	15.12	13.56	9.60	1108				
125	21.72	19.32	13.80	1210				
150	28.92	25.68	18.60	1306				
175	36.84	32.64	23.76	1398				
200	45.24	40.08	29.40	1486				
225	55.80	49.92	38.16	*1525				
250	68.88	62.52	50.64	*1525				
275	83.40	76.68	64.68	*1525				
300	99.24	92.28	80.28	*1525				
	* Not	e: Design Specificat	ion Constraint					

	#2, 7 STF	RAND, HARD DRAWN COPPER, BAR <i>MAINTENANCE ONLY</i>	Ε
ISSUE PAGE NUMBER			
		OVEDHEVD	

ppl

Business Use PAGE NUMBER
6-305

Std. Item:	W13E
Item ID:	9312556
CH	CO2CHSTPE

PHYSICAL	PROPERTIES	LOADING PR	LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	3050 lbs.	TRANSVERSE	0.4601 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.0585 sq. in.	VERTICAL	0.777 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.1670 Ω / 1000'	TOTAL	1.203 Lb/Ft	213	NORMAL	314	
R. (@ 50°C)	0.1826 Ω / 1000'	IOIAL	1.203 LD/Ft	257	EMERGENCY	342	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	39.95°				
CONDUCTOR DIAMETER	0.292"			•			
COMPLETE DIAMETER	0.382"						
WEIGHT	228 lbs / 1000'						

	FINAL SAG TABLE										
		LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	158	176	194			
TEMP. °C	-18	0	15	32	50	70	80	90			
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded			
DEAD END SPAN (FEET)											
50	1.08	1.80	3.12	5.64	7.92	10.44	11.40	12.36			
75	2.52	3.84	6.24	9.48	12.72	16.08	17.52	18.84			
100	4.44	6.72	9.84	13.92	17.76	22.08	24.00	25.68			
125	6.96	10.08	14.04	18.84	23.28	28.44	30.72	32.76			
150	10.08	14.16	18.72	24.12	29.28	35.16	37.68	40.20			
175	13.68	18.60	24.00	29.88	35.64	42.24	45.12	47.88			
200	19.92	26.16	32.16	38.64	44.64	51.72	54.84	57.84			
225	30.36	37.92	44.40	51.00	57.24	64.44	67.68	70.80			
250	43.68	51.60	58.20	64.92	71.16	78.60	81.96	85.20			
275	59.04	67.08	73.68	80.40	86.64	94.20	97.68	100.92			
300	76.08	84.00	90.60	97.32	103.68	111.36	114.84	118.20			

		FINAL SAG TA	BLE			
	LOADING	G (LOADED COND	ITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0		
TEMP. °C	-20	0	15	-20		
	4 LB. WIND, ½" ICE	1⁄₂" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE		
DEAD END SPAN (FEET)						
50	4.92	4.68	3.72	926		
75	9.72	9.12	7.08	1046		
100	15.48	14.40	11.16	1163		
125	22.08	20.40	15.84	1274		
150	29.40	27.00	20.88	1380		
175	37.44	34.08	26.52	1479		
200	47.40	43.56	35.04	*1525		
225	60.00	55.80	47.16	*1525		
250	74.04	69.60	60.84	*1525		
275	89.52	84.96	76.20	*1525		
300	106.56	101.88	93.12	*1525		
* Note: Design Specification Constraint						

#2, 7 STRAN	#2, 7 STRAND, SOFT DRAWN COPPER, 45 MIL PE COVERING <i>MAINTENANCE ONLY</i>						
WHZ.		PAGE NUMBER	ISSUE				
ppl	OVERHEAD CONSTRUCTION STANDARD	6-306	7/21				

Std. Item:	W11G
Item ID:	9302814 ^E
CIT	C03CHSTBRNE

PHYSICAL	PROPERTIES	LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	2433 lbs.	TRANSVERSE	0.4197 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0416 sq. in.	VERTICAL	0.636 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.2106 Ω / 1000'	TOTAL	1.062 Lb/Ft	202	NORMAL	277
R. (@ 50°C)	0.2303 Ω / 1000'	IOIAL	1.062 LD/Ft	226	EMERGENCY	292
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	38.57°			
CONDUCTOR DIAMETER	0.260"			•		
WEIGHT	163 lbs.					

	FINAL SAG TABLE								
	LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194	
TEMP. °C	-18	0	15	32	50	70	80	90	
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	
DEAD END									
SPAN (FEET)									
50	0.96	1.56	2.52	4.80	7.20	9.84	10.80	11.88	
75	2.28	3.36	5.16	8.28	11.64	15.24	16.68	18.12	
100	3.96	5.76	8.52	12.48	16.44	21.00	22.92	24.72	
125	6.24	8.88	12.36	17.04	21.72	27.00	29.28	31.44	
150	9.00	12.48	16.80	22.08	27.36	33.36	36.12	38.64	
175	12.36	16.80	21.72	27.72	33.48	40.32	43.32	46.08	
200	20.76	27.24	33.24	39.60	45.60	52.56	55.68	58.68	
225	33.00	40.56	46.92	53.40	59.40	66.48	69.72	72.72	
250	48.36	56.04	62.40	68.88	74.88	82.08	85.32	88.44	
275	65.76	73.44	79.68	86.04	92.04	99.24	102.48	105.72	
300	84.96	92.40	98.52	104.88	110.88	118.08	121.44	124.68	

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-20	0	15	-20
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	5.28	4.68	3.00	749
75	10.56	9.24	6.12	851
100	16.80	14.64	9.84	950
125	23.88	20.76	14.16	1045
150	31.56	27.48	18.96	1134
175	40.08	34.80	24.36	*1216
200	52.44	46.56	35.76	*1217
225	66.36	60.00	49.32	*1217
250	81.96	75.24	64.68	*1216
275	99.12	92.28	81.72	*1217
300	117.96	110.88	100.56	*1217
	* Not	e: Design Specificat	ion Constraint	

#3, 7 \$

7/15 PAGE NUMBER
7/15 6-307

Std. Item:	W11H	
Item ID:	9302709 ^E	4
CU:	C03CHSTPENE	

PHYSICAL	PROPERTIES	LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	2433 lbs.	TRANSVERSE	0.4490 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0480 sq. in.	VERTICAL	0.704 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.2106 Ω / 1000'	TOTAL	1.135 Lb/Ft	185	NORMAL	272
R. (@ 50°C)	0.2303 Ω / 1000'	IOIAL	1.135 LD/Ft	223	EMERGENCY	296
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	45.00°			
CONDUCTOR DIAMETER	0.260"			•		
COMPLETE DIAMETER	0.350"					
WEIGHT	175 lbs / 1000'					

			FINAL SAG	TABLE					
		LOADING (UNLOADED CONDITIONS)							
TEMP. °F	0	32	60	90	120	158	176		
TEMP. °C	-20	0	15	32	50	70	80		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)									
50	1.20	1.80	3.00	5.40	7.68	10.20	11.16		
75	2.76	3.96	6.12	9.24	12.36	15.84	17.28		
100	4.80	6.96	9.84	13.68	17.52	21.84	23.64		
125	7.56	10.44	14.16	18.72	23.16	28.20	30.36		
150	10.80	14.64	19.08	24.24	29.16	34.92	37.56		
175	19.20	24.96	30.24	35.76	40.92	46.92	49.56		
200	31.80	38.40	43.92	49.56	54.72	60.84	63.60		
225	47.52	54.12	59.64	65.28	70.44	76.68	79.44		
250	65.40	71.88	77.28	82.80	88.08	94.32	97.20		
275	85.20	91.56	96.84	102.36	107.52	113.88	116.76		
300	106.80	113.04	118.32	123.72	128.88	135.24	138.24		

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-20	0	15	-20
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	5.52	5.16	3.96	779
75	10.68	9.84	7.44	896
100	16.92	15.36	11.52	1007
125	24.00	21.60	16.20	1112
150	31.68	28.44	21.36	1210
175	42.84	39.12	31.80	*1217
200	56.04	51.96	44.52	*1216
225	70.92	66.60	59.28	*1217
250	87.60	83.16	75.84	*1217
275	105.96	101.40	94.20	*1217
300	126.24	121.44	114.24	*1217
	* Note	e: Design Specificat	ion Constraint	

#3, 7 STRAN	#3, 7 STRAND, HARD DRAWN COPPER, 45 MIL PE COVERING MAINTENANCE ONLY					
SMW.	PAGE NUMBER	ISSUE				
ppl	OVERHEAD CONSTRUCTION STANDARD 6-308 7/1					

Std. Item:	W11D
Item ID:	9315668 ^Y
CU:	C04CUSTBR

PHYSICAL	PROPERTIES	LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	3938 lbs.	TRANSVERSE	0.4302 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0428 sq. in.	VERTICAL	0.653 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.2629 Ω / 1000'	TOTAL	1.082 Lb/Ft	186	NORMAL	255
R. (@ 50°C)	0.2875 Ω / 1000'	IOIAL	1.002 LD/Ft	208	EMERGENCY	270
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	41.83°			
CONDUCTOR DIAMETER	0.290"			•		
WEIGHT	162 lbs.					

	FINAL SAG TABLE										
			LOADIN	G (UNLOA	DED COND	DITIONS)					
TEMP. °F	0	32	60	90	120	158	176	194			
TEMP. °C	-18	0	15	32	50	70	80	90			
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded			
DEAD END											
SPAN (FEET)											
50	0.60	0.84	1.08	1.56	3.00	5.88	7.32	8.40			
75	1.44	1.80	2.40	3.48	5.76	9.72	11.52	13.20			
100	2.52	3.12	4.20	6.00	9.00	13.92	16.08	18.24			
125	3.84	4.92	6.36	8.88	12.72	18.48	21.00	23.52			
150	5.52	7.08	9.00	12.36	16.80	23.28	26.28	29.04			
175	7.56	9.60	12.12	16.08	21.24	28.44	31.68	34.92			
200	9.84	12.36	15.60	20.28	26.04	33.84	37.44	40.92			
225	12.48	15.60	19.32	24.72	31.08	39.60	43.44	47.28			
250	15.48	19.08	23.52	29.52	36.48	45.48	49.68	53.76			
275	18.72	23.04	27.96	34.56	42.00	51.72	56.16	60.60			
300	22.20	27.24	32.76	39.96	47.88	58.20	63.00	67.56			

	FINAL SAG TABLE								
	LOADIN	G (LOADED CONE	OITIONS)	TENSION (LBS.)					
TEMP. °F	0	32	60	0					
TEMP. °C	-20	0	15	-20					
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE					
DEAD END SPAN (FEET)									
50	3.84	3.00	1.44	1069					
75	7.92	6.36	3.12	1148					
100	13.20	10.56	5.40	1235					
125	19.20	15.60	8.16	1323					
150	25.92	21.12	11.52	1411					
175	33.24	27.24	15.24	1497					
200	41.04	33.84	19.32	1581					
225	49.44	40.92	23.88	1663					
250	58.32	48.36	28.68	1742					
275	67.56	56.16	33.84	1819					
300	77.16	64.32	39.36	1894					
	* No	te: Design Specificat	ion Constraint						

	#4, 3 STRAND, TYPE A COPPER – COPPERWELD, BARE MAINTENANCE ONLY				
ISSUE	PAGE NUMBER		SMIZZ		
7/15	6-309	OVERHEAD CONSTRUCTION STANDARD	ppl		

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	1970 lbs.	TRANSVERSE	0.4010 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	0.0328 sq. in.	VERTICAL	0.564 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.2602 Ω / 1000'	TOTAL	0.992 Lb/Ft	171	NORMAL	232	
R. (@ 50°C)	0.2847 Ω / 1000'	IOIAL	0.992 Lb/Ft	190	EMERGENCY	245	
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	38.97°				
CONDUCTOR DIAMETER	0.204"			-			
WEIGHT	126 lbs.						

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END										
SPAN (FEET)										
50	0.96	1.44	2.40	4.56	7.08	9.72	10.80	11.76		
75	2.16	3.12	4.92	8.04	11.40	15.00	16.56	18.00		
100	3.84	5.52	8.16	12.12	16.08	20.76	22.68	24.48		
125	6.00	8.52	11.88	16.56	21.24	26.64	29.04	31.20		
150	8.64	12.00	16.20	21.60	26.88	33.00	35.76	38.28		
175	16.32	22.08	27.72	33.60	39.00	45.36	48.12	50.76		
200	29.04	36.00	41.88	47.64	53.16	59.40	62.28	65.04		
225	45.24	52.32	57.96	63.72	69.12	75.48	78.36	81.12		
250	63.72	70.56	76.08	81.72	87.12	93.48	96.36	99.24		
275	84.12	90.60	96.12	101.64	106.92	113.28	116.28	119.16		
300	106.32	112.68	117.96	123.36	128.64	135.12	138.00	140.88		

	FINAL SAG TABLE									
	LOADIN	NG (LOADED COND	ITIONS)	TENSION (LBS.)						
TEMP. °F	0	32	60	0						
TEMP. °C	-20	0	15	-20						
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE						
DEAD END SPAN (FEET)										
50	5.88	5.04	2.88	635						
75	11.52	9.72	5.88	733						
100	18.24	15.36	9.48	826						
125	25.68	21.60	13.68	913						
150	33.96	28.68	18.48	*985						
175	46.32	40.32	29.76	*985						
200	60.48	54.00	43.68	*985						
225	76.56	69.72	59.76	*985						
250	94.56	87.36	77.76	*985						
275	114.48	107.04	97.56	*985						
300	136.20	128.76	119.40	*985						
	* N	ote: Design Specificati	on Constraint							

ppl

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 6-310 7/15

Std. Item:	W11E
Item ID:	9312557 ^Y
CH.	C04CHSOPE

PHYSICAL PROPERTIES		LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	1970 lbs.	TRANSVERSE	0.4210 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0356 sq. in.	VERTICAL	0.611 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.2602 Ω / 1000'	TOTAL	1.042 Lb/Ft	159	NORMAL	230
R. (@ 50°C)	0.2847 Ω / 1000'	IOIAL	1.042 Lb/Ft	191	EMERGENCY	250
TEMP.	167°F (75°C) /	CWINC	44 22°			
LIMIT	194°F (90°C)	SWING	44.33°			
CONDUCTOR DIAMETER	0.204"			_		
COMPLETE						
DIAMETER	0.264"					
WEIGHT	135 lbs / 1000'					

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	1.08	1.56	2.52	4.68	7.20	9.72	10.80	11.76		
75	2.28	3.36	5.28	8.28	11.52	15.12	16.68	18.00		
100	4.08	5.88	8.64	12.48	16.44	20.88	22.80	24.60		
125	6.48	9.00	12.48	17.04	21.72	27.00	29.28	31.44		
150	10.20	14.04	18.60	23.88	28.92	34.92	37.44	39.96		
175	19.44	25.56	30.96	36.60	41.76	47.76	50.40	52.92		
200	33.72	40.44	45.96	51.48	56.52	62.64	65.28	67.92		
225	51.00	57.60	62.88	68.28	73.44	79.44	82.20	84.84		
250	70.32	76.68	81.84	87.24	92.28	98.28	101.16	103.80		
275	91.68	97.80	102.84	108.12	113.16	119.16	122.04	124.68		
300	114.84	120.84	125.76	130.92	135.96	142.08	144.84	147.60		

	FINAL SAG TABLE									
	LOADING	OITIONS)	TENSION (LBS.)							
TEMP. °F	0	32	60	0						
TEMP. °C	-20	0	15	-20						
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE						
DEAD END SPAN (FEET)										
50	6.12	5.28	3.24	641						
75	11.88	10.20	6.48	741						
100	18.72	16.08	10.44	835						
125	26.40	22.56	14.88	925						
150	35.76	30.84	21.48	*985						
175	48.60	43.20	33.72	*985						
200	63.48	57.72	48.36	*985						
225	80.40	74.28	65.16	*985						
250	99.24	92.88	84.00	*985						
275	120.24	113.64	104.88	*985						
300	143.04	136.32	127.68	*985						
	* Not	e: Design Specificat	ion Constraint							

	#4, SOLID, HARD DRAWN COPPER, 30 MIL PE COVERING <i>MAINTENANCE ONLY</i>					
ISSUE	PAGE NUMBER		SMIZZ			
7/15	6-311	OVERHEAD CONSTRUCTION STANDARD	ppl			

WINTER

(10°C)

190

PHYSICAL	PHYSICAL PROPERTIES		ROPERTIES	ELEC	ELECTRICAL PROPERTIES			
R.B.S.	2585 lbs.	TRANSVERSE	0.4103 Lb/Ft	SUMMER	MAXIMUM	WINT		
C.S.A.	0.0269 sq. in.	VERTICAL	0.556 Lb/Ft	(37.7°C)	AMPACITY	(10°C		
R. (@ 25°C)	0.4186 Ω / 1000'	TOTAL	0.991 Lb/Ft	140	NORMAL	190		
R. (@ 50°C)	0.4564 Ω / 1000'	IOIAL	0.991 LD/Ft	155	EMERGENCY	201		
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	48.43°					
CONDUCTOR DIAMETER	0.230"			_				
WEIGHT	102 lbs.							

	FINAL SAG TABLE							
		LOADING (UNLOADED CONDITIONS)						
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END								
SPAN (FEET)								
50	0.60	0.72	0.96	1.44	2.52	5.40	6.84	8.04
75	1.32	1.68	2.16	3.24	5.16	9.12	10.92	12.60
100	2.40	3.00	3.84	5.52	8.28	13.08	15.36	17.52
125	3.72	4.68	6.00	8.28	11.88	17.52	20.16	22.68
150	5.28	6.72	8.52	11.52	15.84	22.20	25.20	28.08
175	7.20	9.12	11.40	15.12	20.04	27.24	30.60	33.72
200	9.48	11.76	14.76	19.08	24.72	32.52	36.12	39.72
225	12.00	14.88	18.36	23.40	29.64	38.04	42.00	45.84
250	17.16	21.48	26.64	33.12	40.32	49.32	53.40	57.36
275	26.52	33.24	40.08	47.76	55.32	64.32	68.40	72.36
300	40.44	48.84	56.52	64.44	71.88	80.88	84.96	88.80

	FINAL SAG TABLE							
	LOADIN	G (LOADED COND	OITIONS)	TENSION (LBS.)				
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	5.04	3.72	1.44	740				
75	10.20	7.80	3.24	818				
100	16.56	12.72	5.64	899				
125	23.76	18.48	8.52	978				
150	31.68	24.84	12.00	1055				
175	40.32	31.80	15.84	1130				
200	49.44	39.24	20.04	1202				
225	59.16	47.16	24.72	1272				
250	71.88	58.56	33.84	*1292				
275	87.00	72.72	47.28	*1293				
300	103.56	88.44	63.24	*1293				
	* Note: Design Specification Constraint							

#6, 3 STRAND, TYPE A COPPER – COPPERWELD, BARE MAINTENANCE ONLY PAGE NUMBER

OVERHEAD **CONSTRUCTION STANDARD**

ISSUE 6-312 7/15

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	1280 lbs.	TRANSVERSE	0.3867 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0234 sq. in.	VERTICAL	0.491 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.4129 Ω / 1000'	TOTAL	0.925 Lb/Ft	128	NORMAL	173
R. (@ 50°C)	0.4527 Ω / 1000'	IOIAL		142	EMERGENCY	182
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	45.72°			
CONDUCTOR DIAMETER	0.162"			•		
WEIGHT	79 lbs.					

	FINAL SAG TABLE							
			LOADIN	G (UNLOA	DED COND	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.96	1.32	2.28	4.32	6.84	9.48	10.56	11.52
75	2.04	3.00	4.68	7.68	11.04	14.76	16.32	17.76
100	3.72	5.28	7.80	11.64	15.72	20.28	22.32	24.12
125	9.24	13.56	18.12	22.68	26.88	31.56	33.72	35.64
150	23.40	29.04	33.48	37.80	41.88	46.44	48.60	50.52
175	42.24	47.40	51.48	55.56	59.52	64.08	66.24	68.28
200	63.48	68.16	72.12	76.08	79.92	84.48	86.52	88.68
225	87.12	91.56	95.40	99.24	102.96	107.52	109.68	111.72
250	113.40	117.72	121.32	125.16	128.88	133.44	135.48	137.64
275	142.20	146.40	150.00	153.72	157.44	162.00	164.16	166.20
300	173.76	177.84	181.44	185.16	188.76	193.32	195.48	197.52

	FINAL SAG TABLE							
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)				
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	7.44	6.00	3.00	463				
75	14.28	11.52	6.00	548				
100	22.08	17.88	9.72	628				
125	33.96	28.68	20.04	*640				
150	48.84	43.08	34.92	*640				
175	66.48	60.48	52.80	*640				
200	86.88	80.64	73.20	*640				
225	110.04	103.56	96.48	*640				
250	135.84	129.24	122.40	*640				
275	164.52	157.80	150.96	*640				
300	195.96	189.12	182.40	*640				
	* Note: Design Specification Constraint							

#	6, SOLID, HARD	DRAWN COP	PPER, BARE
	MAINT	ENANCE ON	<u>'</u> Y

ISSUE	PAGE NUMBER
7/15	6-313

Std. Item:	W9E	
Item ID:	9312558	1
CU:	C06CHSOPE	

PHYSICAL	PROPERTIES	LOADING PR	ROPERTIES	ELECTRICAL PROPERTIES		
R.B.S.	1280 lbs.	TRANSVERSE	0.4070 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	0.0234 sq. in.	VERTICAL	0.536 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.4129 Ω / 1000'	TOTAL	0.973 Lb/Ft	120	NORMAL	173
R. (@ 50°C)	0.4527 Ω / 1000'	IOIAL	0.973 LD/Ft	144	EMERGENCY	189
TEMP.	167°F (75°C) /	SWING	51.91°			
LIMIT	194°F (90°C)					
CONDUCTOR DIAMETER	0.162"					
COMPLETE DIAMETER	0.222"					
WEIGHT	87 lbs / 1000'					

	FINAL SAG TABLE							
		LOADING (UNLOADED CONDITIONS)						
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	0.96	1.56	2.76	5.28	7.68	10.20	11.16	12.12
75	2.28	3.48	5.64	9.00	12.24	15.72	17.16	18.60
100	4.80	7.32	10.92	15.00	18.84	23.04	24.84	26.52
125	14.52	19.68	23.88	27.96	31.68	35.88	37.68	39.48
150	31.08	35.88	39.84	43.68	47.28	51.60	53.52	55.32
175	50.40	54.96	58.56	62.28	65.88	70.08	72.00	73.92
200	72.36	76.68	80.16	83.76	87.36	91.56	93.48	95.40
225	97.08	101.16	104.52	108.12	111.60	115.92	117.84	119.76
250	124.44	128.40	131.88	135.36	138.84	143.04	145.08	147.00
275	154.68	158.64	162.00	165.48	168.96	173.16	175.20	177.12
300	187.80	191.76	195.00	198.48	201.96	206.16	208.20	210.12

	FINAL SAG TABLE							
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)				
TEMP. °F	0	32	60	0				
TEMP. °C	-20	0	15	-20				
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE				
DEAD END SPAN (FEET)								
50	7.56	6.36	3.84	484				
75	14.28	11.88	7.44	577				
100	22.80	19.44	13.20	*640				
125	35.64	31.68	25.68	*640				
150	51.36	47.16	41.40	*640				
175	69.96	65.52	60.00	*640				
200	91.44	86.76	81.48	*640				
225	115.80	111.00	105.84	*640				
250	143.04	138.24	133.08	*640				
275	173.16	168.24	163.20	*640				
300	206.16	201.24	196.20	*640				
	* Note: Design Specification Constraint							

ppl

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 6-314 7/15

Version	Date	Modification	Author(s)	Approval by (Name/Title)
6	7/21	Added Table 3 to 6-6Updated drawing title on 6-306		
5	7/18	 Corrected Description of "Planetree to AAAC in index. Corrected Description in title block to "AAAC. 225' spans" on 6-210. 		
4	7/17	 Corrected spelling of "Azusa" in Index and in titles on pages 6-125 and 6-126. Corrected reference for conductor data used in calculation – Section 6.2.40. Corrected normal rating temperature on page 6-111. Corrected sag-tension data for standard tree wires on pages 6-105 through 6-110, 6-113 through 6-118 and 6-121 through 6-130. 		
3	7/15	Updated item IDs throughout standard.		
2	7/10	Corrected final unloaded sags for 200' and 225' spans on pages 6-203, and 6-205 through 6-217.		
1	7/09	 Updated CUs on pages 6-127, 6-128, 6-203, 6-205, 6-208, 6-212, 6-213, 6-214, 6-215, 6-216, 6-217, 6-218, 6-219, 6-220, 6-302, 6-304, 6-305, 6-306, 6-307, 6-308, 6-309, 6-311, 6-313. Updated conductor ampacities on pages 6-107, 6-109, 6-115, 6-117, 6-123, 6-127, 6-129. 		

	SUMMARY OF RECENT CHANGES			
ISSUE	PAGE NUMBER		W1772	
7/21	6-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl	

SECTI	SECTION PAGE				
•	7.0	INTRODUCTION	7-1		
•	7.1	GENERAL	7-1 THRU 7-5		
•	7.2	RELATIVE LEVELS	7-5		
•	7.3	CLEARANCES OF SUPPORTING STRUCTURES FROM RAIL, CURB, HYDRANT & OTHER OBJECTS	7-5 THRU 7-6		
•	7.4	VERTICAL CLEARANCE TO GROUND, ROAD, RAILS, ETC.	7-6 THRU 7-9		
•	7.5	VERTICAL CLEARANCE OF WIRES, CONDUCTORS AND CABLES ABOVE WATER SURFACES	7-9 THRU 7-10		
•	7.6	CLEARANCE TO SWIMMING POOLS	7-10 THRU 7-12		
•	7.7	VERTICAL & HORIZONTAL CLEARANCE OF WIRES, CONDUCTORS AND CABLES TO RAIL CARS	7-12 THRU 7-13		
•	7.8	VERTICAL CLEARANCE OF EQUIPMENT CASES AND RIGID LIVE PARTS OF EQUIPMENT MOUNTED ON STRUCTURES	7-13 THRU 7-14		
•	7.9	CLEARANCE OF WIRES, CONDUCTORS, CABLES AND UNGUARDED LIVE PARTS TO BUILDINGS & OTHER INSTALLATIONS EXCEPT BRIDGES	7-14 THRU 7-18		
•	7.10	CLEARANCE TO BRIDGES	7-18 THRU 7-19		
•	7.11	SEPARATION OF CONDUCTORS AND SUPPORTS ON THE SAME POLE	7-20 THRU 7-24		
•	7.12	CLEARANCE TO PROPERTY LINE	7-25		
•	7.13	VERTICAL CLEARANCE BETWEEN WIRES, CONDUCTORS & CABLES AT POINT OF CROSSING DIFFERENT SUPPORTING STRUCTURES	7-25 THRU 7-26		
•	7.14	CLEARANCES OF VERTICAL & LATERAL SUPPLY CONDUCTORS FROM OTHER WIRES & SURFACES OF THE SAME STRUCTURE	7-26		
•	CONSTRUCTION DRAWINGS				
	0	Increased Horizontal Clearance For All Span Lengths	7-124		
	0	Climbing Space	7-127		
	0	BIL & Air – Wood Spacing	7-128		

Supersedes 7/08 - - Revised clearance to swimming pools.

CLEARANCES INDEX			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	7-i	7/13

Doc. # ST. 07.00.001

This page left intentionally blank.

	CLEARANCES INDEX			
	ISSUE	PAGE NUMBER		AM72
Busi	7/08 ness Use	7-ii	OVERHEAD CONSTRUCTION STANDARD	ppl

7.0 INTRODUCTION

7.0.10 Role of the National Electrical Safety Code

The National Electrical Safety Code (NESC) provides basic guidance for minimum clearances to protect the public and employees during the installation, maintenance and operation of electric supply and communication lines, and associated equipment. The NESC is not intended as a design specification or an instruction manual.

7.0.20 Role of this Standard

This standard is intended as a design specification to provide for compliance with the NESC, safe installation, operation and maintenance of lines, an adequate level of service reliability, and space for future equipment or conductors. New poles shall be selected to meet or exceed the clearances shown, which shall be considered as minimum requirements.

7.0.30 Clearance Requirements for Distribution Lines

Each vertical and horizontal clearance shall be observed, but within the limits of each other only.

The uniform clearance system contained in the NESC is based on the dimensions of the expected activities in each area, as well as the relative potential problem caused by each type of facility.

Conductor clearance is stated in terms of the "closest approach." This is the clear distance between surfaces that **must** be maintained under specified conditions.

In general, vertical clearance requirements must be met during maximum sag conditions to provide for the expected activity beneath the line.

In general, horizontal clearance requirements must be met with the conductor at rest to provide for the expected activity alongside the line. Conductor "blowout" (wind displacement) is considered under certain conditions (refer to Sections 7.9, 7.10 and 7.13).

7.1 GENERAL

Supersedes 7/08 Issue – Deleted reference to nonexistent EOP in 7.0.30.

Business Use

7.11.10 PPL Clearance Criteria for Distribution Lines

- A. Overhead distribution lines shall be designed to maintain adequate clearances under ice loaded conditions and the line's maximum conductor operating temperature (MCOT). In no case should a distribution line be designed for a MCOT below 120°F/48.9°C.
- B. The required MCOT of the distribution line shall be determined by the appropriate planning department.
- C. To protect conductors from damage caused by excessive heating, the required MCOT for the distribution shall not exceed the following limits:
 - i. 176°F/80°C for primary bare conductors 35 kV and below,
 - ii. 167°F/75°C primary covered conductors 35 kV and below,
 - iii. 120°F/48.9°C for spacer cable messengers and 167°F/75°C for spacer cable phase conductors (Phase conductor temperatures higher than 120°F/50°C are taken to have no influence in elevating messenger temperatures),
 - iv. Primary shielded and non-shielded aerial cables 35 kV and below shall be designed to operate with the messenger at 120°F/48.9°C ambient (Phase

	CLEARANCES		
WIIZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	7-1	7/15

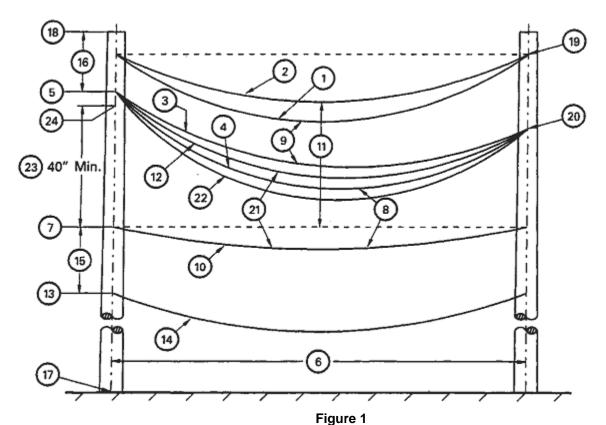
- conductor temperatures higher than 120°F/48.9°C are taken to have no influence in elevating messenger temperatures), and
- v. Secondary non shielded cables 0 to 750 V shall be designed to operate with the messenger at 120°F/48.9°C ambient (Temperatures of the insulated conductors, lashed or twisted about the messenger, above 120°F/48.9°C, are taken to have no influence in elevating messenger temperatures).
- D. New Installations and Extensions Clearances for the installation of all new electric supply lines and extensions to existing lines shall be in accordance with the latest edition of the NESC and the requirements of any applicable state or local laws, rules or regulations.
- E. Existing Installations Where an existing installation meets, or is altered to meet, the current NESC Rules, such installation is considered to be in compliance with the current edition of the NESC and is not required to comply with any previous edition of the NESC.
- F. Existing installations, including maintenance replacements, that currently comply with prior editions of the NESC, need not be modified to comply with these rules except as may be required for safety reasons by the administrative authority.
- G. Where conductors or equipment are added, altered, or replaced on an existing structure, the structure or the facilities on the structure need not be modified or replaced if the resulting installation will be in compliance with either (a) the NESC rules that were in effect at the time of the original installation, (b) the rules in effect in a subsequent edition of the NESC to which the installation has been previously brought into compliance, or (c) rules in the latest edition of the NESC.
- H. Clearances listed in the following STANDARDS and tables are considered minimum requirements for new construction. In some instances clearances exceeding those given may be required (e.g. when mandated by local ordinances). Other design considerations applying to Company work and operating practices may result in clearances greater than NESC minimum clearances. For example, vertical clearances for 34.5 kV grounded wye construction are based on pre-1987 codes, which called for 40 inch phase to neutral clearance at the pole and 30 inch phase to neutral clearance mid-span for spans up to 175 feet. These added clearances are deemed more prudent for hot-stick operation and maintenance of 25 kV and 35 kV constructions.
- I. Effectively grounded circuits are defined as those circuits originating from a grounded-wye connected transformer or system, or from a system provided with a grounding transformer of sufficient size to stabilize the phase to ground voltage at approximately its normal value, regardless of whether the neutral conductor is present with the circuit. Circuits having a maximum X₀/X₁ ratio of 3.0 at the substation bus are considered effectively grounded circuits.
- J. Voltage is the root-mean-square (rms) potential difference between any two conductors or between a conductor and ground. Voltages are expressed in nominal values unless otherwise indicated. Nominal voltage is the value assigned to a system or circuit of a given voltage class for the purpose of convenient designation. Operating voltage of the system may vary above or below the nominal voltage.
- K. Voltages in the following tables are phase to ground, unless otherwise noted, for effectively grounded circuits and those other circuits where all ground faults are cleared by promptly de-energizing the faulted section, both initially and following subsequent breaker operations. "Effectively grounded" means intentionally connected to earth through a ground connection or connections of sufficiently low impedance and having

	CLEARANCES			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/08 ness Use	7-2	OVERHEAD CONSTRUCTION STANDARD	ppl

sufficient current-carrying capacity to limit the buildup of voltages to levels below that which may result in undue hazard to persons or to connected equipment. The voltage of a circuit not effectively grounded is the highest nominal voltage available between any two conductors on the circuit.

- Clearance is defined as the clear distance between two objects measured surface to surface.
- M. Spacing is defined as the distance between two objects measured center to center.
- N. Clearances for tree wire, covered conductor, and spacer cable conductor are taken as if they were bare conductors.
- O. Open conductors are defined as electric supply or communication construction in which the conductors are bare, covered or insulated and without grounded shielding, or individually supported at a structure either directly or with insulators.
- P. Electric supply lines are those conductors used to transmit electric energy and their necessary supporting or containing equipment.
- Q. Communication conductors include fire alarm, telephone, cable television, police alarm, data, telegraph, clock, and other systems used for communication service.
- R. Fiber-Optic Cables in the supply space:

There are two general categories:


- 1. Fiber optic cables supported by an effectively ground metallic messenger.
- 2. All dielectric fiber optic (ADFO) cable.

Clearance requirements:

- ADFO cables (i.e. meeting NESC Rule 230F1b) installed in the supply space have no specified clearances from supply conductors and other cables in the supply space.
- Fiber optic cables supported by an effectively ground metallic messenger (i.e.
 meeting NESC Rule 230F1a) and ADFO cables (i.e. meeting NESC Rule 230F1b)
 are prohibited from being installed in the Communication Worker Safety Zone
 between the supply space and the communication space, but may be treated the
 same as effectively grounded neutrals for clearance purposes.

CLEARANCES			
CMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	7-3	7/08

7.1.20 <u>NESC Vertical Clearance Requirements Illustration – Rules 232 & 235</u>

- **1 -** Lowest upper supply conductor at position which produces maximum final sag; effectively grounded circuits 0-22 kV phase to ground.
- 2 Lowest upper supply conductor at 60°F/15°C, final, unloaded sag; effectively grounded circuits 0-22 kV phase to ground
- **3 -** Secondary cable, 0-750 V, supported by effectively grounded messenger; messenger at same operating ambient as 1 above.
- **4 -** Effectively grounded neutral associated with 1 above.
- **5 -** Lowest electrical point of attachment.
- **6 -** Actual span length.
- 7 Highest communication conductor attachment.
- **8 -** May be reduced to 12 inches for effectively grounded neutral conductors, associated with circuits 0-22 kV phase to ground.
- **9 -** Clearance in-span primary to secondary; must be 75% of that required at support, all span lengths.
- 10 Highest communication conductor, Company design based on fire alarm pair or single telephone loop with midspan sag; 4 inches for 0 to 150 feet; 6 inches for 150 to 200 feet; 8 inches for 200 to 250 feet; and 12 inches for 250 to 300 feet; all ambients.

	CLEARANCES			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/19 ness Use	7-4	OVERHEAD CONSTRUCTION STANDARD	ppl

- 11 For spans exceeding 150 feet, vertical clearances at the pole between the open supply conductors of over 750 V, but less than 50 kV, and the highest communication conductor, shall be adjusted, so that under conditions of both conductors at 60°F/15°C, no wind, and final unloaded sag, no point in the top supply conductor span shall be below a straight line joining the support points of the highest communication conductor.
- **12 -** Secondary cable, 0-750 V, supported by effectively grounded messenger; at position which produces maximum final sag.
- 13 Lowest communication conductor attachment.
- 14 Lowest communication conductor.
- **15 -** Communication conductor allocated space.
- 16 Electric conductor allocated space.
- 17 Final grade.
- **18 -** Top of pole structure.
- **19 -** Primary conductor attachment.
- **20 -** Secondary cable or neutral attachment.
- **21 -** Clearance in-span, secondary to top communication conductor; must be 75% of that required at support; all span lengths.
- **22 -** Effectively grounded neutral conductor associated with top primary conductor; neutral at maximum sag condition.
- **23 -** At pole clearance may be reduced to 30 inches from bottom of grounded non-current carrying equipment, such as transformers, capacitors and voltage regulators.
- **24 -** Lowest electrical ownership.

7.2 RELATIVE LEVELS

Where supply lines of different voltages are attached to the same pole or cross one another, the higher voltage conductors should, where practical, be placed above those of lower voltage.

7.3 CLEARANCES OF SUPPORTING STRUCTURES FROM RAIL, CURB, HYDRANT & OTHER OBJECTS

Poles for overhead distribution lines shall be located with adequate clearance to railroad and automobile traffic. The following table demonstrates NESC minimum requirements. These requirements should be exceeded if practicable. State authorities prefer that poles be set back as far as possible from the pavement edge, behind guard rails, back of the ditch, behind sidewalks, curbs, etc. In any case, the approval of the authorities shall be obtained. Avoid poles at exposed corners and similar locations where they are likely to be struck by motor vehicles or snow removal equipment.

CLEARANCES			
SMA		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	7-5	7/08

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 07.00.001

Table 1 Clearance of Supporting Structures from Rail, Curb or Hydrant (Reference: NESC Rule 231)

Supporting structures¹, support arms, attached equipment, and braces shall have the following clearances (in feet) measured between the nearest parts of the objects concerned:

Objects	Minimum (Ft.)	Recommended (Ft.)
A. Fire Hydrants	3^{2}	42
B. Streets, Roads, Highways ³	Horizontal Clearand Above (
 With street curbs (clearance measured from street side of the curb) Arterial Streets which are primarily for through traffic Local Streets which are primarily for access to residences, business or other abutting property With no curbs 	0.5 0.5	2 ⁴ 1 ² See Note 5
C. All Railroad Tracks	Horizontal Clearand Above the Nea	
	12 ⁶	

FOOTNOTES:

- 1. Supporting structures are defined as the main supporting unit, usually a pole or tower.
- 2. This clearance also applies to anchor guys and push braces.
- 3. Where a governmental authority exercising jurisdiction over structure location has issued a permit for, or otherwise approved, specific locations for supporting structures, that permit or approval shall govern.
- 4. Place the supporting structures as far as practical behind the curb within the road right-of-way.
- Place the supporting structures a sufficient distance from the roadway to avoid contact by ordinary vehicles using the traveled way.
- 6. This may be reduced to 7 feet where the supporting structure is not the controlling obstruction, provided sufficient space for a driveway is left where the cars are loaded and unloaded.

7.4 <u>VERTICAL CLEARANCES OF WIRES, CONDUCTORS, CABLES, AND EQUIPMENT ABOVE GROUND, ROADWAY, RAILS, ETC.</u>

Clearances for distribution conductors, found in Table 2, above ground, rails, etc., are based on a conductor temperature of 60°F/15°C, no wind.

- 18 feet for: wires carrying less than 750 volts; guys, message wires, and communication cables; supply cables encases in a continuous metal sheath; and insulated supply cables fastened to an effectively grounded messenger cable,
- ii. 20 feet for wires carrying more than 750 volts to 15,000 volts,
- iii. 22 feet for wires carrying more than 15,000 volts to 50,000 volts, and
- iv. 22 feet plus 4/10 inch for each 1,000 volt increase for wires carrying more than 50,000 volts.

			CLEARANCES	
	ISSUE	PAGE NUMBER		SMIZE
Busi	7/19 ness Use	7-6	OVERHEAD CONSTRUCTION STANDARD	ppl

Business Use

Table 2
Minimum Vertical Clearance of Wires, Conductors, and Cables Above Ground, Roadways, or Rails
(Reference: NESC Table 232-1)

Column	Section Heading	
Grounded guys; messengers, surge protection wires; grounded neutrals; shielded supply cables supported grounded messenger; ungrounded guys exposed to 0- to 300 V ^{11,15} ; and insulated communication cables ar conductors		
2A	Non-shielded supply cables, 0 to 750 V, supported by grounded messenger	
2B	Non-insulated communication conductors	
3	Open supply conductors 0 to 750 V; non-shielded supply cables supported by grounded messenger under 5 kV _{Ø-} or 2.9 kV _{Ø-G} ; ungrounded guys exposed to over 300 V to 750 V ¹⁴	
4	Open supply conductors over 750 V-22 kV; ungrounded guys exposed to 750 V to 22 kV ¹⁴	

Nature of Surface Underneath Wires, Conductors, or Cables		2A 2B	3	4	
		(ft.)	(ft.)	(ft.)	
Where wires, conductors, or cables cross over or overhang					
Track rails of railroads (not using overhead electric supply conductors) ^{2,16}		24.0	24.5	26.5	
2. Roads, streets, and other areas subject to truck traffic ³		16.0	16.5	18.5	
3. Driveways, parking lots, and alleys ²³		16.0 ⁷ ,13	16.5 ⁷	18.5	
4. Land traversed by vehicles, such as cultivated, grazing, forest, orchards, etc. ²⁶		16.0	16.5	18.5	
5. Spaces and ways subject to pedestrians or restricted traffic only9		12.08	12.5 ⁸	14.5	
Where Wires, Conductors Or Cables Run Along Highway Or Rights-Of-Way But Do Not Overhang The Roadway					
Nature of Surface Underneath Wires, Conductors, or Cables		2A	3	4	
		2B			
		(ft.)	(ft.)	(ft.)	
6. Roads, streets, or alleys		16.0	16.5	18.5	
7. Roads in rural districts where it is unlikely that vehicles will be crossing under the line		14.0 ¹⁰	14.5 ¹⁰	16.5	

Note:

For voltages exceeding 22 kV, increase clearances specified above at a rate of 0.4 inches per kV in excess of 22 kV (reference NESC Rule 232C2a).

FOOTNOTES:

Note: Footnotes 1, 4-6, 17-22, and 25, are not used.

- 2. For wires, conductors, or cables crossing over mine, logging, or similar railways that handle only cars lower than standard freight cars, the clearance may be reduced by an amount equal to the difference in height between the highest loaded car handled and 20 feet, but the clearance shall not be reduced below that required for street crossings
- 3. Does not include neutral conductors effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1).

CLEARANCES				
	SMIZZ		PAGE NUMBER	ISSUE
2	ppl OVERHEAD CONSTRUCTION STANDARD		7-7	7/08

7. Where vehicles exceeding 8' in height are not normally encountered nor reasonably anticipated, service drop(s) clearances over residential driveways only may be reduced to the following:

	Feet
Insulated supply service drops limited to 300 V to ground	12.5
Insulated drip loops of supply service drops limited to 300 V to ground	10.5
Supply service drops limited to 150 V to ground that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C3)	12.0
Drip loops only of service drops limited to 150 V to ground that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C2 or 230C3)	
Insulated communication service drops	11.5

8. These clearance values for service drops to residential buildings only may be reduced to the following:

	Feet
Insulated supply service drops limited to 300 V to ground	10.5
Insulated drip loops of supply service drops limited to 300 V to ground	10.5
Supply service drops limited to 150 V to ground that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C3)	
Drip loops only of service drops limited to 150 V to ground that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C1 or 230C3)	10.0

- Spaces and ways subject to pedestrians or restricted traffic only are those where riders on horseback or other large animals, vehicles, or other mobile units exceeding 8 feet in height, are prohibited by regulation or permanent terrain configurations or are otherwise not normally encountered nor reasonably anticipated.
- 10. Where a supply or communication line along a road is located relative to fences, ditches, embankments, etc., so that ground under the line would not be expected to be traveled except by pedestrians, the clearances may be reduced to the following values:

	Feet
Insulated communication conductor and communication cables	9.5
Conductors of other communication circuits	9.5
Lashed aerial cables (insulated and fully metallic shielded) installed according to these standards and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C1), supply cables limited to 150 V to ground that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C2 or 230C3), and neutral conductors that are effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1)	9.5
Insulated supply conductors limited to 300 V to ground	12.5
Guys	9.5

- 11. No clearance from ground is required for anchor guys not crossing tracks, rails, streets, driveways, roads, or pathways.
- 12. This clearance may be reduced to 13 feet for communication conductors and guys.
- 13. Where this construction crosses over or runs along alleys, driveways, or parking lots not subject to truck traffic, this clearance may be reduced to 15 feet.

CLEARANCES			
ISSUE	PAGE NUMBER		SMIZZ
7/16	7-8	OVERHEAD CONSTRUCTION STANDARD	ppl

- 14. Ungrounded guys and ungrounded portions of span guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to slack conductor or guy.
- 15. Anchor guys insulated in accordance with these standards may have the same clearance as grounded guys.
- 16. Adjacent to tunnels and overhead bridges that restrict the height of loaded rail cats to less than 20 feet, if mutually agreed to by the parties at interest.
- 23. For the purpose of this Rule, trucks are defined as any vehicle exceeding 8 feet in height. Areas not subject to truck traffic are areas where truck traffic is not normally encountered nor reasonably anticipated.
- 24. Communication cables and conductors may have a clearance of 15 feet where poles are in back of curbs or other deterrents to vehicular traffic.
- 26. When designing a line to accommodate oversized vehicles, these clearance values shall be increased by the difference between the known height of the oversized vehicle and 14 feet.

7.5 VERTICAL CLEARANCE OF WIRES, CONDUCTORS AND CABLES ABOVE WATER SURFACES

Table 3 Vertical Clearance Above Water Surface (Reference: NESC Table 232-1)

	26. When designing a line to accommodate oversized vehicles, these clearance values shall be increased by the difference between the known height of the oversized vehicle and 14 feet.	Supersedes			
7.5	VERTICAL CLEARANCE OF WIRES, CONDUCTORS AND CABLES ABOVE WATER SURFACES	edes			
Vertical clearances of distribution supply wires and conductors over waterways shall not be less than shown on Table 3: Vertical Clearance Above Water Surfaces. Where the U.S. Army Corps of Engine issued a crossing permit, clearances of that permit shall govern, if greater.					
	Table 3 Vertical Clearance Above Water Surface (Reference: NESC Table 232-1)	– Editoria			
Colum	nn Section Heading	al an			
1	Insulated communication conductors and cable; messengers; surge-protection wires; grounded guys;	Ind			
•	ungrounded guys exposed to 0 to 300 V ^{11,15}	g			
2					
2	ungrounded guys exposed to 0 to 300 V ^{11,15} Non-insulated communication conductors; and non-shielded supply cables 0 to 750 V supported by	g			

Nature of Surface Undernooth Wires Conductors or Cobles	1	2	3	4
Nature of Surface Underneath Wires, Conductors, or Cables	(ft.)	(ft.)	(ft.)	(ft.)
Where wires, conductors, or cables cross over or	r overhan	g		
1. Water areas not suitable for sailboating or where sailboating is prohibited ²¹	14.0	14.5	15.0	17.0
2. Water areas suitable for sailboating including lakes, ponds, reservoirs, tidal waters, rivers, streams, and canals with an unobstructed surface area of: 17,18,19,20,21				
a. Less than 20 acres	17.5	18.0	18.5	20.5
b. Over 20 to 200 acres	25.5	26.0	26.5	28.5
c. Over 200 to 2000 acres	31.5	32.0	32.5	34.5
d. Over 2000 acres	37.5	38.0	38.5	40.5

Notes:

Supersedes 1/06 Issue – Editorial and paging revisions.

(a) Clearances may be reduced under certain conditions. See NESC Rule 232.

	CLEARANCES				
	WIN		PAGE NUMBER	ISSUE	
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	7-9	7/08	

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 07.00.001

FOOTNOTES:

Note: Footnotes 1-10, 12, 13, and 16 will not be used.

11. No clearance from ground is required for anchor guys not crossing tracks, rails, streets, driveways, roads, or pathways.

- 14. Ungrounded guys and ungrounded portions of span guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.
- 15. Anchor guys insulated in accordance with these standards may have the same clearance as grounded guys.
- 17. For controlled impoundments, the surface area and corresponding clearances shall be based upon the design high-water level.
- 18. For uncontrolled water flow areas, the surface area shall be that enclosed by its annual high-water mark. Clearances shall be based on the normal flood level; if available, the 10-year flood level may be assumed as the normal flood level.
- 19. The clearance over rivers, streams, and canals shall be based upon the largest surface area of any 1 mile long segment that includes the crossing. The clearance over a canal, river, or stream normally used to provide access for sailboats to a larger body of water shall be the same as that required for the larger body of water.
- 20. Where an over-water obstruction restricts vessel height to less than the applicable reference height given in NESC Table 232-3, the required clearance may be reduced by the difference between the reference height and the over-water obstruction height, except that the reduced clearance shall not be less than that required for the surface area on the line crossing side of the obstruction.

CLEARANCE TO SWIMMING POOLS

7.6

Service drops or other supply wires and conductors should not pass over a swimming pool or the surrounding land within 25 feet around the edge of the pool. If such crossings cannot be avoided, the clearances shown below shall be obtained. For all spans, horizontal clearances must be increased as shown on Page 7-124. For information on other requirements and relocation policy refer to Specifications for Electrical Installations (ESB 750).

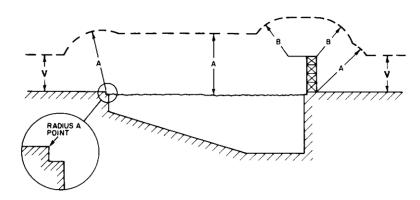


Figure 3

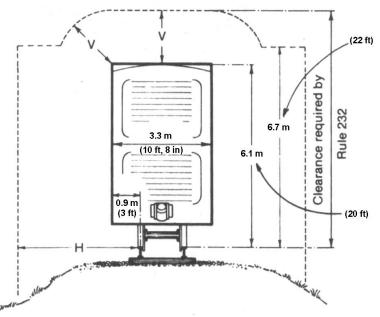
CLEARANCES				
ISSUE	PAGE NUMBER		SMIZZ	
7/13	7-10	OVERHEAD CONSTRUCTION STANDARD	ppl	

Table 4 Clearance to Swimming Pools (Reference: NESC Table 234-3, Figure 234-3, Rules 232 and 234)

Column	Section Heading			
1	Insulated communication conductors and cables; messengers; surge-protection wires; grounded guys; ungrounded guys exposed to 0-300 V³; neutral conductors that are effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1); lashed aerial cables (insulated and fully metallic shielded) installed according to these standards and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C1)			
Unguarded rigid live parts, 0 to 750 V; non-insulated communication conductors; supply cables of 0 that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. r NESC Rule 230C2 or 230C3); ungrounded guys exposed to open supply conductors of over 300 V to				
3	Supply cables over 750 V and under 5 kV phase-to-phase or 2.9 kV phase-to-ground that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C2 or 230C3); open supply conductors, 0 to 750 V			
4	Unguarded rigid live parts over 750 V to 22 kV; ungrounded guys exposed to over 750 V to 22 kV ²			
5	Open supply conductors, over 750 V to 22 kV			

	Column 1 (ft) ⁷	Column 2 (ft) ⁸	Column 3 (ft)	Column 4 (ft)	Column 5 (ft)
Clearance in any direction from the water level, edge of pool, base of diving platform, or anchored raft	22.0	22.5	23.0	24.5	25.0
B. Clearance in any direction to the diving platform, tower, water slide or other fixed pool-related structures	14.0	14.5	15.0	16.5	17.0
V. Vertical clearance to adjacent land	*Clearances specified in Section 7.4*				

FOOTNOTES:


- 1. For voltages over 22 kV and up to 50 kV increase specified clearance at a rate of 0.4 inches per kV over 22 kV.
- 2. Ungrounded guys and ungrounded portions of guys between insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.
- 3. Anchor guys insulated in accordance with these standards may have the same clearance as grounded guys.
- 4. Where wires, conductors, cables, or unguarded rigid live parts are over a swimming pool or the surrounding area, clearances in any direction shall be as shown in the Figure 3 and Table 4 on Page 7-10. This rule does not apply to a pool enclosed by a solid or screened permanent structure.
- 5. If rescue poles are not used by lifeguards on supervised beaches and waterways, the clearances in Table 3 on Page 7-8 for appropriate land/water body shall be used.
- 6. Use clearances in Table 3 on Page 7-8 for waterways subject to waterskiing.
- 7. These clearance requirements do not apply when these facilities are 10 ft or more horizontally from the edge of the pool, diving platform, diving tower, water slide, or other fixed, pool-related structures.

		CLEARANCES		
	WWZ		PAGE NUMBER	ISSUE
s Use	ppl	OVERHEAD CONSTRUCTION STANDARD	7-11	7/13

- 8. These clearance requirements do not apply for non-insulated communication conductors; supply cables of 0 to 750 V that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C2 or 230C3); ungrounded guys exposed to open supply conductors of over 300 V to 750 V when these facilities are installed 10 ft or more horizontally from the edge of the pool, diving platform, diving tower, water slide, or other fixed, pool-related structures.
- 9. Use clearances in Table 3 on Page 7-8 for waterways subject to waterskiing.

7.7 VERTICAL & HORIZONTAL CLEARANCE OF WIRES, CONDUCTORS AND CABLES TO RAIL CARS

(Reference: NESC Rules 232, 234-1, 234I, Table 232-1, and Figure 234-5)

V = Vertical clearance

above rails specified by Section 7.4 of these standards, minus 20 feet (height of rail car) H = Horizontal clearance to nearest rail.

Overhead Wires, Conductors Or Cables		In Feet
		Н
Grounded Guys, Messengers, Surge Protection Wires, Grounded Neutrals, Shielded Supply Cables Supported By Grounded Messenger, Ungrounded Guys exposed to 0 to 300 V ^(e) And Insulated Communication Cables And Conductors	3.5	8.5
Non-shielded Supply Cables, 0 to 750 V, Supported By Grounded Messenger, Non-insulated Communication Conductors	4.0	9.0
Open Supply Conductors, 0 to 750 V, Non-shielded Supply Cables Supported By Grounded Messenger, Under 5 kV $_{\Phi-\Phi}$, or 2.9 kV $_{\Phi-g}$, Ungrounded Guys Exposed To Over 300 V to 750 V ^(f)	4.5	9.5
Open Supply Conductors Over 750 V to 22 kV; Ungrounded Guys Exposed To 750 V to 22 $kV^{(f)}$	6.5	11.5

			CLEARANCES	
	ISSUE	PAGE NUMBER		WHI.
Busi	7/13 ness Use	7-12	OVERHEAD CONSTRUCTION STANDARD	ppl

Notes:

- (a) If the Railroad crossed requires greater clearances than detailed in this Standard, the Railroad clearances shall apply.
- (b) Voltages are phase to ground for grounded circuits and those circuits where ground faults are cleared promptly by de-energizing the faulted section. For systems that are not effectively grounded, voltages are phase-to-phase.
- (c) Anchor guys shall not be located less than 12 feet from the nearest track rail.
- (d) Anchor guys insulated in accordance with these standards may have the same clearance as grounded guys.
- (e) Ungrounded guys and ungrounded portions of span guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to slack conductor or guy.

7.8 <u>VERTICAL CLEARANCE OF EQUIPMENT CASES AND RIGID LIVE PARTS OF EQUIPMENT MOUNTED</u> ON STRUCTURES

Table 5 (Reference: NESC Rule 232B, Table 232-2)

Note - These vertical clearances above ground or roadway surfaces are for unguarded rigid live parts such as potheads, transformer bushings, surge arresters, and short lengths of connecting supply conductors which are not subject to variations in sag.

Column	Section Heading				
1	Nonmetallic or effectively grounded support arms, switch handles, platforms, braces, and equipment cases				
2	Unguarded rigid live parts of 0 to 750 V and ungrounded cases that contain equipment connected to circuits of not more than 750 V				
3	Unguarded rigid live parts of over 750 V to 22 kV and ungrounded cases that contain equipment connected to circuits of over 750 V to 22 kV				

		Clearance Above Ground or Roadway			
	Nature of Surface Below	Column 1 (ft.)	Column 2 (ft.)	Column 3 (ft.)	
1.	Where rigid parts overhang:				
	a. Roads, streets and other areas subject to truck traffic ⁴	15.0	16.0	18.0	
	b. Driveways, parking lots and alleys	15.0	16.0 ⁶	18.0	
	 Other land traversed by vehicles such as cultivated land, grazing land, forest, orchard, etc. 	15.0 ⁷	16.0	18.0	
	d. Spaces and ways subject to pedestrians or restricted traffic only ⁵	11.0 ⁷	12.0 ^{1(b)}	14.0	
2.	Where rigid parts are along and within the limits of highways or other road rights-of-way but do not overhang the roadway				
	a. Roads, streets and alleys	15.0 ⁷	16.0	18.0	
	 Roads in rural districts where it is unlikely that vehicles will be crossing under the line 	13.0 ⁷	14.0 ²	16.0	

CLEARANCES					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	7-13	7/08		

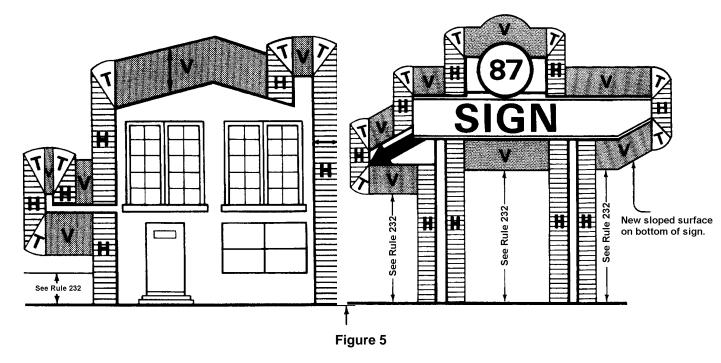
Water areas not suitable for sailboating or where sailboating in prohibited9	14.0	14.5	15.0
--	------	------	------

FOOTNOTES:

Note: Footnotes 3, 6, and 8 will not be used.

- For insulated live parts limited to 150 V, this clearance may be reduced to 10 ft.
- 2. Where a supply line along a road is limited to 300 V to ground and is located relative to fences, ditches, embankments, etc., so that the ground under the line would not be expected to be traveled except by pedestrians, this clearance may be reduced to 12 feet.
- 4. For the purpose of this rule, trucks are defined as any vehicle exceeding 8 feet in height. Areas not subject to truck traffic are areas where truck traffic is not normally encountered nor reasonably anticipated.
- 5. Spaces and ways subject to pedestrians or restricted traffic only are those areas where riders on horseback or other large animals, vehicles or other mobile units exceeding 8 feet in height, are prohibited by regulation or permanent terrain configurations or are otherwise not normally encountered nor reasonably anticipated.
- ← 6. This clearance may be reduced to the following values for driveways, parking lots, and alleys not subject to truck traffic:

a. Insulated live parts limited to 300 V to ground 12 b. Insulated live parts limited to 150 V to ground 10


- 7. Effectively grounded switch handles and supply or communication equipment cases (such as fire alarm boxes, control boxes, communication terminals, meters, or similar equipment cases) may be mounted at a lower level for accessibility provided such cases do not unduly obstruct a walkway. Switch handles and supply or communications shall be located so as not to serve as a means of approach to unguarded live parts by unqualified persons.
 - 9. Where the US Army Corps of Engineers, the state, or surrogate thereof has issued a crossing permit, clearance of that permit shall govern.

7.9 <u>CLEARANCE OF WIRES, CONDUCTORS, CABLES AND UNGUARDED LIVE PARTS TO BUILDINGS & OTHER INSTALLATIONS EXCEPT BRIDGES</u>

Primary wires should not be installed over buildings. There are cases, however, especially for temporary work, where such construction cannot be avoided. The clearance of 300 V to 15,000 volt lines over or near buildings and appurtenances shall be as much as is practicable. In no case should it be less than shown below. Services may however, be attached to or run along, or over the building in accordance with accepted practices.

Minimum clearances for multiplex conductors attached to buildings are shown below as well.

			CLEARANCES	
	ISSUE	PAGE NUMBER		AM/C
Busi	7/08 ness Use	7-14	OVERHEAD CONSTRUCTION STANDARD	ppl

Regions Where Conductors Are Prohibited: H = Horizontal; V = Vertical; T = Transitional = Vertical (Arc)

Table 6 Clearance of Wires, Conductors, Cables and Unguarded Live Parts to Buildings & Other Installations Except Bridges

(Reference: NESC Tables 234-1 and Rules 232 and 234)

Column	Section Heading				
1	Grounded guys, messengers; surge protection wires; grounded neutrals; shielded supply cables supported by grounded messenger; ungrounded guys exposed to 0 to 300 V ¹³ ; and insulated communication cables and conductors				
2	Non-shielded supply cables 0 to 750 V, supported by grounded messenger				
3	Unguarded rigid live parts 0 to 750 V; ungrounded equipment cases, 0-750 V; ungrounded guys exposed to open supply conductors of over 300 to 750 V ⁵ , and non-insulated communication conductors				
4	Open supply conductors 0-750 V; non-shielded supply cables supported by a grounded messenger, over 750 V and under 5 kV $_{\Phi-\Phi}$ or 2.9 kV $_{\Phi-G}$ ¹⁸				
5	Unguarded rigid live parts, over 750 V-22 kV; ungrounded equipment cases, 750 V–22 kV; ungrounded guys exposed to over 750 V to 22 kV ⁵				
6	Open supply conductors, over 750 V to 22 kV				

	CLEARANCES		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	7-15	7/08

Clearance of:	1	2	3	4	5	6
Clearance or:	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
Buildings a. Horizontal						
(1) To walls, projections, and guarded windows	$4.5^{2,7}$	5.0 ²	5.0^{2}	5.5 ^{2,9}	7.0^{2}	7.5 ^{2,10,11}
(2) To unguarded windows ⁸	4.5	5.0	5.0	5.5 ⁹	7.0	7.5 ^{10,11}
(3) To balconies and areas readily accessible to peedestrieans ³	4.5	5.0	5.0	5.5 ⁹	7.0	7.5 ^{10,11}
 b. Vertical (1) Over/under roofs or projections not readily accessible to pedestrians 	3.0	3.5	10.0	10.5	12.0	12.5
 (2) Over/under balconies and roofs readily accessible to pedestrians³ 	10.5	11.0	11.0	11.5	13.0	13.5
(3) Over roofs accessible to vehicles but not subject to truck traffic ⁶	10.5	11.0	11.0	11.5	13.0	13.5
(4) Over roofs accessible to truck traffic ⁶	15.5	16.0	16.0	16.5	18.0	18.5
 Signs, chimneys, billboards, radio and TV antennas, tanks, and other installations not classified as buildings or bridges a. Horizontal⁴ 						
(1) To portions that are readily accessible to pedestrians ³	4.5	5.0	5.0 ²	5.5 ⁹	7.0 ²	7.5 ^{10,11}
(2) To portions that are not readily accessible to pedestrians ³	3.0	3.5	5.0 ^{1,2}	5.5 ^{2,9}	7.0 ²	7.5 ^{2,10,11}
b. Vertical (1) Over/under catwalks and other	10.5	11.0	44.0	44.5	12.0	40.5
surfaces upon which personnel walk	10.5	11.0	11.0	11.5	13.0	13.5
(2) Over/under other portions of such installations ⁴	3.0	3.5	5.5	6.0	7.5	8.0
Clearance from other supporting						
structures ¹⁵ a. Horizontal (no wind)	5.0 ¹⁶	5.0 ¹⁶	5.0 ¹⁶	5.0 ¹⁶		5.0 ¹⁶
b. Vertical	4.5 ¹⁷	4.5 ¹⁷	4.5 ¹⁷	4.5 ¹⁷		4.5 ¹⁷

FOOTNOTES:

Footnotes 1 and 12 are not used

- Where available space may not permit this value, the clearance may be reduced by 2 feet provided the wires, conductors, or cables, including splices and taps, and unguarded live parts have a covering that provides sufficient dielectric strength to limit the likelihood of a short circuit in case of momentary contact with a structure or building.
- 3. A roof, balcony, or area is considered readily accessible to pedestrians if it can be casually accessed through a doorway, ramp, window, stairway, or permanently mounted ladder by a person on foot who neither exerts extraordinary physical effort nor employs tools or devices to gain entry. A permanently mounted ladder is not considered a means of access if its bottom rung is 8 feet or more from the ground or other permanently installed accessible surface.

	CLEARANCES				
	ISSUE	PAGE NUMBER		WIV	
Busi	7/16 ness Use	7-16	OVERHEAD CONSTRUCTION STANDARD	ppl	

- 4. The required clearances shall be to the closest approach of motorized signs or moving portions of installations (reference NESC rule 234C).
- 5. Ungrounded guys and ungrounded portion of guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed to a slack conductor or guy.
- 6. For purpose of this rule, trucks are defined as any vehicle exceeding 8 feet in height.
- 7. This clearance may be reduced to 3 inches for the effectively grounded portions of guys.
- 8. Windows not designed to open may have the clearances permitted for walls and projections.
- 9. The clearance at rest shall be not less than the value shown in this table. Also, when the conductor or cable is displaced by wind, the clearance shall be not less than 4.5 feet (reference NESC Rule 234C1b).
- 10. The clearance at rest shall be not less than the value shown in this table. Also, when the conductor or cable is displaced by wind, the clearance shall be not less than 4.5 feet (reference NESC Rule 234C1b).
- 11. Where available space will not permit this value, the clearance may be reduced to 7 feet for conductors limited to 8.7 kV to ground.
- 13. The anchor end of guys insulated in accordance with these standards may have the same clearance as grounded guys.
- 14. For clearances above railings, walls, or parapets around balconies or roofs, use the clearances required for roofs not accessible to pedestrians.
- 15. Support structures include those to which the conductor is not attached, such as lighting support, a traffic signal support, and a supporting structure of another line.
- 16. This may be reduced to 3 feet for effectively grounded guys and messengers, insulated communication conductors and cables, neutral conductors that are effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1), and supply cables of 300 V or less that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C1, 230C2 or 230C3).
- 17. This may be reduced to 2 feet for effectively grounded guys and messengers, insulated communication conductors and cables, neutral conductors that are effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1), and supply cables of 300 V or less that are insulated and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C1, 230C2 or 230C3).
- 18. Does not include neutral conductors effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1).

Note:

For horizontal clearances under wind displacement conditions, reference the table found in 7.10 corresponding to minimal clearance values. Sample calculations for accounting for wind displacement can be referenced on Page 7-124.

7.10 CLEARANCE TO BRIDGES

The clearance of distribution conductors and cables to bridges shall not be less than those shown in Table 7 below. These are minimum values that should be increased wherever practicable. The clearance over pedestrian walks or over roadways on bridges shall meet the requirements of Table 2 on Page 7-6.

CLEARANCES					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	7-17	7/17		

For all spans, horizontal clearances must be increased as shown on Page 7-124.

Under wind displacement conditions, the following conductors and cables shall be in accordance with the below specified horizontal clearances to bridges. Sample calculations for increased clearances due to wind displacement can be referenced on Page 7-124.

Table 7
Horizontal Clearances Under Wind Displacement Conditions²
(Reference: NESC Rule 234D1b)

Conductor of Cable	Horizontal Clearance Required when Displaced by Wind
Conductor of Cable	(Feet)
Open Supply Conductor, 0 to 750 V ¹	3.5
230C2 Cable, Above 750 V	3.5
230C3 Cable, Above 750 V	3.5
Open Supply Conductor, over 750 V to 22 kV	4.5

FOOTNOTES:

- 1. Does not include neutral conductors effectively grounded throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1).
- 2. See Table 8 for clearances for conductors and cables at rest (not displaced by wind).

Table 8
Clearance of Wires, Conductors, Cables, and Unguarded Rigid Live Parts from Bridges
(Reference: NESC Table 234–2 and Rule 234D1a)

Column	Section Heading			
1	Unguarded rigid live parts, 0 to 750 V; non-insulated communication conductors; supply cables of 0 to 750 V meeting Rules 230C2 or 230C3 ⁷ ; ungrounded equipment cases; 0 to 750 V; ungrounded guys exposed to open supply conductors over 300 V to 750 V ⁴			
2	Supply cables over 750 V meeting Rules 230C2 or 230C37; open supply conductors, 0 to 750 V10			
3	Open supply conductors, over 750 V to 22 kV			
4	Unguarded rigid live parts, over 750 V to 22 kV; ungrounded equipment cases, 750 V to 22 kV; ungrounded guys exposed to open supply conductors of over 750 V to 22 kV ⁴			

	Column 1 (Feet)	Column 2 (Feet)	Column 3 (Feet)	Column 4 (Feet)
1. Clearance over bridges ¹				
a. Attached ³	3.0	3.5	5.5	5.0
b. Not Attached	10.0	10.5	12.5	12.0
 2. Clearance beside, under, or within bridge structure⁶ a. Readily accessible portions of any bridge including wing, walls, and bridge attachments¹ (1) Attached³ (2) Not Attached b. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments² 	3.0 5.0	3.5 ⁸ 5.5 ⁸	5.5 ⁹ 7.5 ⁹	5.0 7.0
(1) Attached ^{3,5}	3.0	3.5^{8}	5.5^{9}	5.0
(2) Not Attached ^{4,5}	4.0	4.5 ⁸	6.5 ⁹	6.0

			CLEARANCES	
	ISSUE	PAGE NUMBER		WW
Busi	7/08 ness Use	7-18	OVERHEAD CONSTRUCTION STANDARD	ppl

FOOTNOTES:

- 1. Where over traveled ways on or near bridges, the clearances of Section 7.4 also apply.
- Bridge seats of steel bridges carried on masonry, brick, or concrete abutments that require frequent access for inspection shall be considered as readily accessible portions.
- 3. Clearance from supply conductors to supporting arms and brackets attached to bridges shall be the same as specified in Section 7.14 if the supporting arms and brackets are owned, operated, or maintained by the same utility.
- 4. Ungrounded guys and ungrounded portions of guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.
- 5. Where conductors passing under bridges are adequately guarded against contact by unauthorized persons and can be de-energized and appropriately grounded on each side of the work location for maintenance of the bridge, clearances of the conductors from the bridge, at any point, may have the clearances specified in Section 7.14 for clearance from surfaces of support arms plus one-half the final unloaded sag of the conductor at that point.
- 6. Where the bridge has moving parts, such as a lift bridge, the required clearances shall be maintained throughout the full range of movement of the bridge or any attachment thereto.
- 7. Where permitted by the bridge owner, supply cables may be run in rigid conduit attached directly to the bridge.
- 8. The clearance at rest shall not be less than the value shown in this Table. Also, when the conductor or cable is displaced by wind, the clearance shall be not less than 3.5 feet (reference NESC Rule 234D1b).
- 9. The clearance at rest shall be not less than the value shown in this Table. Also, when the conductor or cable is displaced by wind, the clearance shall be not less than 4.5 feet (reference NESC Rule 234D1b).
- 10. Does not include neutral conductors effectively grounded throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1).

7.11 SEPARATION OF CONDUCTORS AND SUPPORTS ON THE SAME POLE

7.11.10 <u>General</u>

Minimum recommended separations between supports and conductors on the same pole are shown in Table 9 on Page 7-20. These should be used on all poles for new lines. They shall generally be used for pole replacements. These should be used only when values recommended for new poles per the Drawings demonstrated in Section 9 - Primaries, are not practicable. As these values are suggesting minimum guidelines, clearances shall be increased to provide additional safety protection wherever possible.

	CLEARANCES		
SMIZZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	7-19	7/18

Table 9 Vertical Clearance Between Conductors at Supports (Reference: NESC Rules 235A, C and Table 235-5)

Column	Section Heading
1	Lashed aerial cables (insulated and fully metallic shielded) installed according to these standards and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C1); insulated, nonshielded cable operated at not over 5 kV phase to phase, or 2.9 kV phase to ground, supported on and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C3); neutral conductors that are effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1); and insulated communication cables, located in the supply space, supported by an effectively grounded messenger (i.e. meeting NESC Rule 224A2)
2	Open supply conductors, 0 to 8.7 kV ¹²
3	Open supply conductors, over 8.7 kV to 50 kV, same utility ⁸
4	Open supply conductors, over 8.7 kV to 50 kV, different utilities ⁸

		Cond	luctors ar	nd Cables	Usually At	Upper L	evels	
Conductors and Cables Usually at Lower Levels		mn 1	Column 2 ¹²		Column 38		Column 48	
		hes)	(Inc	hes)	(Inch	es)	(Inches)	
	At Pole	Mid- Span	At Pole	Mid- Span	At Pole	Mid- Span	At Pole	Mid- Span
Communication Conductors and Cables								
a. Located in the communication space	40 ^{1,5,6}	30 ¹²	40	30 ¹³	40	30	40+A ⁷	See Note 15 See
b. Located in the supply space	16 ^{9,10}	12	16 ¹⁰	12	40 ¹⁰	30	40+A ⁷	Note 15
2. Supply conductors and cables a. Open conductors 0 to 750 V; lashed aerial cables (insulated and fully metallic shielded) installed according to these standards and cabled together with an effectively grounded bare messenger or neutral; insulated, nonshielded cable operated at not over 5 kV phase to phase, or 2.9 kV phase to ground, supported on and cabled together with an effectively grounded bare messenger or neutral; and neutral conductors that are effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1)	16 ⁹	12	16²	12 ¹⁴	16+A ^{4,7}	See Note 15	40+A ⁷	See Note 15
b. Open conductors over 750 V to 8.7 kV			16²	12	16+A ^{4,7}	See Note 15	40+A ⁷	See Note 15
 c. Open conductors over 8.7 to 22 kV (1) If worked on alive with live-line tools and adjacent circuits are neither de-energized nor covered with shields or protectors 					16+A ⁷	See Note 15	40+A ⁷	See Note 15
(2) If not worked on alive except when adjacent circuits (either above or below) are de-energized or covered by shields or protectors, or by use of live-line tools not requiring line workers to go between live wires					16+A ^{3,7}	See Note 15	40+A ^{3,7}	See Note 15
d. Open conductors exceeding 22 kV , but not exceeding 50 kV					16+A ^{3,7}	See Note 15	40+A ^{3,7}	See Note 15

A = 0.4 inches per kV in excess of 8.7 kV

When using column and row headings, voltages are phase to ground for effectively grounded circuits and those other circuits where all ground faults are cleared by promptly de-energizing the faulted section, both initially and following subsequent breaker operations.

			CLEARANCES	
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/10 ness Use	7-20	OVERHEAD CONSTRUCTION STANDARD	ppl

FOOTNOTES:

- 1. Where supply circuits of 600 V or less, with transmitted power of 5,000 W or less, are run below communication circuits, the clearance may be reduced to 16 inches. This type of installation must be built following special requirements of NESC Rule 220B2. Distribution Standards Engineering should be consulted prior to making an installation of this type.
- 2. Where conductors are operated by different utilities, a vertical clearance of not less than 40 inches is recommended.
- 3. These values do not apply to conductors of the same circuit or circuits being carried on adjacent conductor supports.
- 4. May be reduced to 16 inches where conductors are not worked on live except when adjacent circuits (either above or below) are de-energized or covered by shields or protectors, or by the use of live line tools not requiring line workers to go between live wires.
- May be reduced to 30 inches for neutral conductors effectively grounded throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1); fiber-optic cables installed in the supply space supported on a messenger that is effectively grounded throughout its length (i.e. meeting NESC Rule 230F1a); and entirely dielectric fiber-optic cables or fiber-optic cables supported on a messenger that is entirely dielectric and installed in the supply space (i.e. meeting NESC Rule 230F1b). Bonding is not required for entirely dielectric fiber-optic cables or fiber-optic cables supported on a messenger that is entirely dielectric and installed in the supply space (i.e. meeting NESC Rule 230F1b).
- 6. May be reduced to 30 inches for lashed aerial cables that are insulated, shielded and installed according to these standards where the supply neutral or messenger is bonded to the communication messenger (i.e. meeting NESC Rule 230C1), except that in accordance with the PPL settlement agreement with Verizon, Verizon requires PPL to maintain 40" clearance at the pole between lashed aerial cables and Verizon owned communication cables. Application of this exception for lashed aerial cables shall require approval from Overhead Distribution Standards.
- 7. The greater of phasor difference or phase-to-ground voltage (for more information see NESC Rule 235A3).
- 8. Example: For a 50 kV-to-ground conductor above a 22 kV-to-ground conductor, when the conductors are 180 degrees out of phase: A = (50 + 22 8.7) * 0.4 = 25.4 inches, then round A up to 26 inches.
- 9. No clearance is specified between neutral conductors effectively grounded throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1) and insulated communication cables located in the supply space and supported by an effectively grounded messenger (i.e. meeting NESC Rule 230F1a).
- 10. No clearance is specified between entirely dielectric fiber-optic cables or fiber-optic cables supported on a messenger that is entirely dielectric and installed in the supply space (i.e. meeting NESC Rule 230F1a) and supply cables and conductors.
- 11. Does not include neutral conductors effectively ground throughout their length and associated with circuits of 0 to 22 kV phase to ground.

	CLEARANCES		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	7-21	7/08

- 12. May be reduced to 12 inches for neutral conductors effectively grounded throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1); fiber-optic cables installed in the supply space supported on a messenger that is effectively grounded throughout its length (i.e. meeting NESC Rule 230F1a); entirely dielectric fiber-optic cables or fiber-optic cables supported on a messenger that is entirely dielectric and installed in the supply space (i.e. meeting NESC Rule 230F1b); and lashed aerial cables installed according to these standards where the supply neutral or messenger is bonded to the communication messenger (i.e. meeting NESC Rule 230C1). Bonding is not required for entirely dielectric fiber-optic cables or fiber-optic cables supported on a messenger that is entirely dielectric and installed in the supply space (i.e. meeting NESC Rule 230F1b).
- 13. Supply service drops of 0 to 750 volts, running above and parallel to communication service drops, may have a spacing of not less than 12 inches at any point in the span, including the point of their attachment to the building or structure being served provided the non-grounded conductors are insulated and that clearance as otherwise required by these standards is maintained between the two service drops at the pole.
- 14. Where conductors are operated by different utilities, a vertical clearance of not less than 30 inches is recommended.
- 15. 75% of clearance required at the pole.

7.11.20 Separation on Replaced Poles

In general, the separations on poles that are replaced shall conform to the requirements for new poles. In some special cases, separation may be reduced, but shall not be less than permitted on existing poles.

7.11.30 Reduction of Separation on Poles

Reduced separations of conductors and facilities may be used to accommodate other pole users but shall not be less than clearances required for 15 kV primary circuits.

7.11.40 Basic Impulse Level (BIL) & Air – Wood Spacing

BIL refers to the ability of the pole top design to resist flashovers caused by lightning or line surges.

Distribution pole tops are generally designed to provide 150 kV minimum BIL. This impulse strength shall be based entirely on the impulse flashover of 20 inches or more of wood. Where lightning arresters are used, the "inches of wood" requirement does not apply for the particular conductor having the arrester. In locations where sufficient wood separation is not obtainable due to guy attachment, the use of a fiberglass guy strain insulator will meet this requirement. Additionally, insulated pole top pins (P6B and P6C), long strain insulators (I2), guy strain insulator (TI95B, TI95C, TI95D), and wood braces (TB60 & B37B) may be used to provide the necessary separation if it cannot be met with standard hardware.

In design and construction of pole tops, avoid shorting out the insulation provided by air and wood with steel crossarm braces, steel hardware, ground wires, guy wires, etc. The total distance measured over insulators, wood, and air should be as great as possible.

CLEARANCES						
ISSUE	PAGE NUMBER		SMIZZ			
7/10	7-22	OVERHEAD CONSTRUCTION STANDARD	ppl			

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 07.00.001

7.11.50 Climbing Space

Standard pole top designs shall meet or exceed code requirements for vertical or lateral clearance for line conductors at different levels attached to the same pole. When various designs are combined, however, or when work is done on an existing pole, care should be taken to provide good clearance and to maintain climbing and working space. Page 7-127 shows the NESC clearance required when workers must climb through energized conductors. This drawing should be used as a guide even when the conductors concerned are covered by protective equipment or otherwise guarded as an unvarying practice before personnel climb past them.

Those who install services and secondaries should provide enough space for the personnel who may have to climb through these services to work on the primaries above. Multiplex service taps made 3 feet or more away from the pole will help improve the climbing and working space (Reference Section 10-Secondaries, Construction Drawings).

The climbing space needs to be provided on one side or a corner of the support only.

Vertical runs physically protected by conduit or other protective covering securely attached without spacers to the surface of the pole are not considered to obstruct climbing space.

The climbing space shall extend vertically in the same position - 40 inches above and 40 inches below any wire attachment, but may otherwise be shifted to any other adjacent side or corner of the pole.

All voltages in Table 10 on Page 7-22 are between the two conductors bounding the climbing space, except for communications conductors, which are voltage to ground. Where two conductors are in different circuits, the voltage between conductors shall be the arithmetic sum of the voltages of each conductor to ground for a grounded circuit or phase to phase for an ungrounded circuit.

CLEARANCES						
SMIZZ		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	7-23	7/10			

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 07.00.001

Table 10 Horizontal Climbing Space Between Conductors (Reference: NESC Rule 236 and Table 236-1)

			Horizontal Clearance Between Conductors Bounding the Climbing Space ²					
Character of			On S.O. Structures used Solely By:		On J.O. Structures			
С	onductors Adjacent to Climbing Space	Voltage of Conductors Communication Conductors		Supply Conductors	Supply Conductors Above Communications Conductors	Communication Conductors Above Supply Conductors ³		
			(Inches)	(Inches)	(Inches)	(Inches)		
1.	Communication	0 to 150 V	No Requirements		See Footnote 1	No Requirements		
	conductors	Over 150 V	24 Recommended		See Footnote 1	24 Recommended		
2.	Lashed aerial cables (insulated and shielded) installed according to these standards (i.e. meeting NESC Rule 230C1)	All	-		See Footnote 1	No Requirements		
3.	Insulated, nonshielded cable operated at not over 5 kV phase to phase, or 2.9 kV phase to ground, supported on and cabled together with an effectively grounded bare messenger or neutral (i.e. meeting NESC Rule 230C3).	All	1	24	24	30		
4.	Open supply line	0-750 V		24	24	30		
	conductors and	750 V-15 kV		30	30	30		
1	covered supply cables,	15 kV-28 kV		36	36	36		
	including spacer cable and tree wire (i.e.	28 kV-38 kV		40	40			
	meeting NESC Rule	38 kV-50 kV 50 kV-73 kV		46	46 54			
	230D)	Over 73 kV		54 >54	04			
	/	OVEL /3 KV		>54				

FOOTNOTES:

- 1. Climbing space shall be the same as required for the supply conductors immediately above, with a maximum of 30 inches except that a climbing space of 16 inches across the line may be used for communication cables or conductors where the only supply conductors at a higher level are 0 to 750 V secondaries supplying airport or airway marker lights or crossing over the communication line and attached to the pole top or a pole-top extension fixture.
- 2. Attention is called to the operating requirements of NESC Rules 441A and 446C.
- 3. This relation of levels in general is not desirable and should be avoided.
- 4. The climbing space specified in Table 10 above shall be provided above the top support arm to the ridge pin conductor but need not be carried past it.
- 5. All supply equipment such as transformers, capacitors, cable terminations, switches, etc. when located below conductors or other attachments, shall be mounted outside the climbing space.

	CLEARANCES						
	ISSUE	PAGE NUMBER		MIZZ			
Busi	7/10 ness Use	7-24	OVERHEAD CONSTRUCTION STANDARD	ppl			

Business Use

7.12 CLEARANCE TO PROPERTY LINE

In general, conductors and supports shall not overhang property lines unless a right of way or easement has been obtained. In checking overhang, it should be assumed that conductors on rigid supports will be deflected by wind at the amount calculated on Page 7-124.

Plan for future buildings or structures along the property lines, or, if local ordinances specify, along the established building line. If it is probable that a structure will be erected in the foreseeable future, the right-of-way should be adequate to provide standard clearances to such a structure.

7.13 <u>VERTICAL CLEARANCE BETWEEN WIRES, CONDUCTORS & CABLES AT POINT OF CROSSING DIFFERENT SUPPORTING STRUCTURES</u>

It is generally undesirable to build a distribution line directly over or under another line. Where this cannot be avoided, clearance should be provided so that a worker on the top of a pole will be able to maintain adequate working clearances from conductors overhead. Six feet of clearance from the pole top to overhead distribution conductors at 60°F/15°C final sag is suggested as a minimum. See Sub-Transmission or Transmission Standards for voltages over 22 kV.

Table 11

Vertical Clearance Between Wires, Conductors, and Cables Carried on Different Supporting Structures
(Reference: NESC Rule 233, Table 233-1)

Column	Section Heading
1	Effectively grounded supply guys, ⁷ span wires and messengers, neutral conductors effectively grounded throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1), and overhead shield/surge-protection wires
2	Effectively grounded communication guys, ⁷ span wires and communication conductors and cables
3	Lashed aerial cables (insulated and shielded) installed according to these standards (i.e. meeting NESC Rule 230C1), and insulated supply cables of 0 to 750 V (i.e. meeting NESC Rule 230C2 or 230C3)
4	Open supply conductors 0 to 750 V, ⁶ and insulated supply cables over 750 V other than lashed aerial cables (i.e. meeting NESC Rule 230C2 or 230C3)
5	Open supply conductors over 750 V to 22 kV

		U	pper Leve	el .	
Lower Level	1 (ft)	2 (ft)	3 (ft)	4 (ft)	5 (ft)
Effectively grounded supply guys, ⁷ span wires and messengers, neutral conductors effectively grounded throughout their length and associated with circuits of 0 to 22 kV phase to ground, and overhead shield/surge-protection wires	21,2	2 ^{1,2}	2 ²	2	2
 Effectively grounded communication guys,⁷ span wires and communication conductors and cables 	21	21,2	2	48	5 ⁷
 Lashed aerial cables (insulated and shielded) installed according to these standards, and insulated supply cables of 0 to 750 V 	2	2	2	2	2
 Open supply conductors 0 to 750 V,⁶ and insulated supply cables over 750 V other than lashed aerial cables 	2	4 ⁹	2	2	2
5. Open supply conductors, 750 V to 22 kV	2	5 ^{5,9}	2 ⁹	2 ⁹	2

CLEARANCES					
WW.		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	7-25	7/10		

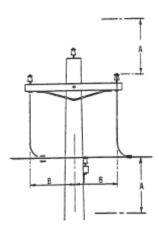
Supersedes 7/08 Issue – Paging revisions

FOOTNOTES:

Note: Footnotes 3, 4, 6, are not used.

- 1. No clearance is specified between guys or span wires that are electrically interconnected.
- The clearance of communication conductors and their guy span, and messenger wires from each other
 in locations where no other classes of conductors are involved may be reduced by mutual consent of the
 parties concerned, subject to the approval of the regulatory body having jurisdiction, except for fire-alarm
 conductors and conductors used in the operation of railroads.
- This clearance may be reduced to 4 feet where supply conductors of 750 V to 8.7 kV cross a communication line more than 6 feet horizontally from the communications structure.
- 6. Does not include neutral conductors effectively grounded throughout their length and associated with circuits of 0 to 22 kV phase to ground (i.e. meeting NESC Rule 230E1).
- 7. These clearances may be reduced by not more than 25% to a guy insulator, provided that full clearance is maintained to its metallic end fittings and the guy wires. The clearance to an insulated section of a guy between two insulators may be reduced by not more than 25% provided that full clearance is maintained to the uninsulated portion of the guy.
- 8. This clearance may be reduced to 2 feet for supply service drops.
- 9. In general, this type of crossing is not recommended.

7.14 <u>CLEARANCES OF VERTICAL & LATERAL SUPPLY CONDUCTORS FROM OTHER WIRES & SURFACES OF THE SAME STRUCTURE</u>


Table 12¹
Clearance of Open Lateral² and Vertical Conductors (Inches)
(Reference: NESC Rule 239E, Tables 239-1)

	Phase to Phase Voltage					
Clearances of Open Vertical & Lateral Conductors	0-8.7 kV (Inches)	8.7-15 kV (Inches)	15-25 kV (Inches	25-35 kV (Inches)	35-50 kV (Inches)	
From Surfaces of Supports	3 ³	5	7	9	12	
From Span Guys and Messenger Wires ⁶	64	9	13	17	23	
Anchor Guys	6	8	11	13	17	

Table 13⁵
Clearances Between Open Vertical Conductors and Pole Surface (Figures 6 & 7)
(Reference: NESC Rule 239E, Tables 239-2)

Clearances of Open Vertical & Lateral Conductors	Effectively Grounded Circuits (Ф-G) Voltage	Not Effectively Grounded Circuits (Φ-Φ) Voltage	A. Zones Above & Below Conductor Where Clearances May Apply	B. Minimum Clearance Between Vertical Conductor & Pole Center
	(kV)	(kV)	(Feet)	(Inches)
From Surfaces of Supports	0 to 22	0 to 22	6	19
From Span, Guy and Messenger Wires ⁶	22 to 30	22 to 30	6	22
Anchor Guys	30 to 50	30 to 50	6	30

	CLEARANCES			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/10 ness Use	7-26	OVERHEAD CONSTRUCTION STANDARD	ppl

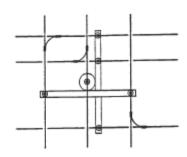


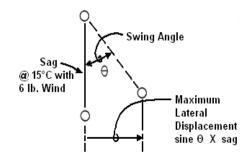
Figure 6

Figure 7

A = zone above and below conductor
B = distance between vertical wire and pole center

FOOTNOTES:

- 1. Table 12 applies to supply conductors on supply line structures or within the supply space of jointly used poles.
- 2. Lateral A wire or cable extending in a general horizontal direction at an angle to the general direction of the line conductors.
- 3. Clearance may be reduced to 1 inch for supply circuits 0 to 750 volts. A neutral conductor may be attached directly to the structure surface.
- 4. Clearance may be reduced to 2 inches for insulated non-shielded cable operated at 0 to 750 volts and supported on and cabled together with an effectively grounded bare messenger.
- 5. If open wire conductors are within 4 feet of the pole, vertical conductors shall be run in one of the following ways:
 - a. Open vertical conductors shall have the clearances given in Table 13 within the zone specified in the table.
 - b. Within the zone above and below open supply conductors, as given in Table 13, vertical and lateral conductors may be enclosed in nonmetallic conduit or in cable protected by an insulated covering and may be run on the pole surface.
 - c. Grounding conductors may be run on the pole surface without molding.
- 6. These clearances may be reduced by not more than 25% to a guy insulator, provided that full clearance is maintained to its metallic end fittings and the guy wires. The clearance to an insulated section of a guy between two insulators may be reduced by not more than 25% provided that full clearance is maintained to the uninsulated portion of the guy.


CLEARANCES			
WIIV.		PAGE NUMBER	ISSUE
_{Jse} ppl	OVERHEAD CONSTRUCTION STANDARD	7-27	7/10

Basic HORIZONTAL clearances shown in Tables 2, 4, 6, 7, 8, and 11 must be increased as follows to allow for wind caused lateral conductor displacement. For horizontal adders between conductors carried on different poles (Table 11), apply adder for only one of the conductors.

The vertical sag at 60°F/15°C final with 6 lb. wind taken from Section 6-Primary Conductors for the subject conductor and span is multiplied by the sine of the conductor's swing angle to obtain maximum conductor horizontal movement.

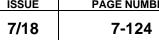
The sine of the swing angle may be calculated or taken from the following table (rounding up to the next value shown).

Swing Angle (Θ)	Sine
25°	0.4226
30°	0.5000
35°	0.5736
40°	0.6428
45°	0.7071
50°	0.7660
55°	0.8192
60°	0.8660

Example:

For a 200 feet span of 336.4 kcm AAC 19 Strand Bare (Std. Item W20B)

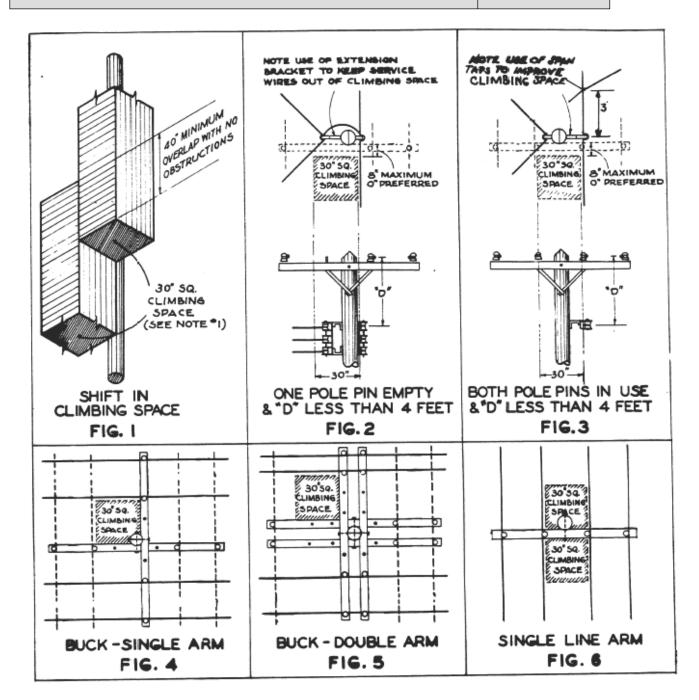
- 1. Swing Angle = 46.5degrees (from Page 6-121)
- 2. Multiplier = 0.7660 (from table above for 50°)
- 3. Sag at 60°F/15°C, 6 lb. wind for 200 foot span = 48.36 inches (from Page 6-122)
- 4. Maximum Lateral Displacement = (48.36 inches) X (0.7660) = 37.04 inches


Note:

If point of conflict is not at point of maximum sag, the additional horizontal clearance may be reduced as follows:

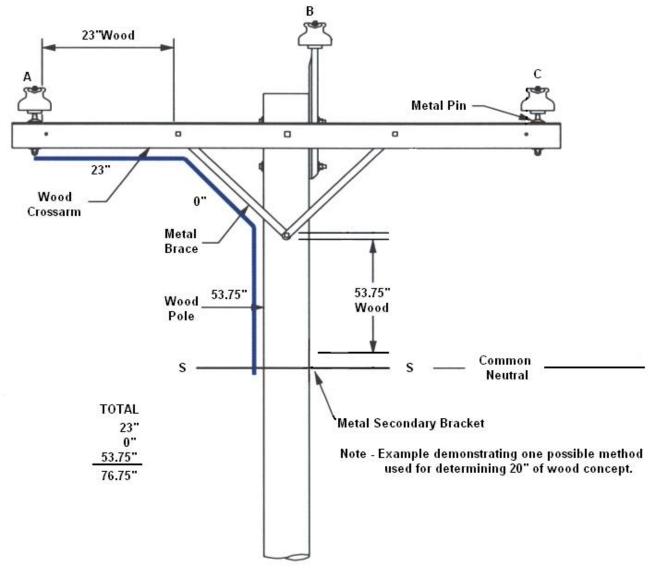
If the distance between point of crossing or clearance and the nearest support is ____% of the total span, multiply additional clearance by the multiplier outlined below.

Percent of Span	Multiplier
5%	0.19
10%	0.36
15%	0.51
20%	0.64
25%	0.75
30%	0.84
35%	0.91
40%	0.96
45%	0.99
50%	1.00
*Interpolate for intermedi	ate vales or use next higher multiplier.


	INCREASED HORIZ	CONTAL CLEARANCE FOR ALL S	PAN LENGTHS
ISSUE	PAGE NUMBER		AM72.

OVERHEAD CONSTRUCTION STANDARD

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 07.00.001



Notes:

- The climbing space should preferably be continuous from the ground to beyond the top of the
 pole; but when necessary, it may be shifted from one quarter of the pole to another provided
 the sections overlap at least 40 inches and there are no obstructions between the two
 climbing space columns. The climbing space column should extend 40 inches above and
 below the limiting conductors, but need not extend above a pole top pin.
- 2. Climbing space should be located in the quarter of the pole not occupied by risers.

		CLEARANCES		
	MIZZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	7-27	7/10

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 07.00.001

To resist current leakage or electrical flashover a minimum amount of 20" of wood and effective insulation is needed. Non-conducting material such as air, wood, porcelain, or fiberglass is taken together to determine the insulation level.

Keep as much air, wood, porcelain and fiberglass between phase and ground and between phases as is practicable. The above drawing illustrates the 20 inches of wood concept.

Spacing can be increased by

- 1. Relocating hardware, pins, deadends, guy attachments, etc.
- 2. Using wood braces.
- 3. Using fiberglass pole top pin.
- 4. Using fiberglass guy insulator or extra insulators in deadends.

For applications where surge arresters are used, this 20 inches of wood requirement does not apply for the particular conductor having the arrester.

	BIL & AIR – WOOD SPACING				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	1/06 ness Use	7-128	OVERHEAD CONSTRUCTION STANDARD	ppl	

Version	Date	Modification	Author(s)	Approval by (Name/Title)
8	07/19	Added information about required clearances within state highway rights-of-way in new Section 7.4 on page 7-6.		
7	07/18	 Corrected page reference in Section 7.11.10 on page 7-19. Corrected conductor information page references on page 7-124. 		
6	07/17	Added "effectively" to "grounded guys" when allowing reduced clearances to guy wires – Table 6, FN7, page 7-17.		
5	07/16	 Page 7-8 – revise Footnotes 7 and 8 to reflect 2017 NESC revisions. Page 7-16 – delete Footnote 1 to reflect 2017 NESC revisions. 		
4	07/15	Remove reference to nonexistent EOP from 7.0.30.		
3	07/13	Section 7.6 - Clearances to Swimming Pools: Revised text, modified FN 7 and added FN 8.		
2	07/10	Table 9: Revised FN 5, added new FN 6 and renumbered FNs 6 and 7 for Verizon clearances to PLAC at pole, per Verizon settlement agreement.		
1	07/08	 Under 7.0.10, modified description of role of NESC & standard. Under 7.11.10, modified description of MCOT. Under 7.11.10.R, fiber-optic cable information updated Clarified conductor type descriptions on page 7-8. Modified wire type descriptions and added water slides in Table 4. Added FN 6, added switch handles in FN 7 on page 7-14. Revised FNs 16 through 18 on page 7-17. Added FN 10 under Table 8. Modified column descriptions in Table 9. Revised FNs 1, 5, 7, 9, 10, 11 and 12 under Table 9. Revised Conductor Descriptions for Rows in Table 10. Modified conductor descriptions in Table 11. Added FN 6 under Table 11. 		

SUMMARY OF RECENT CHANGES				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	7-NOTES	7/19	

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 07.00.001

	SUMMARY OF RECENT CHANGES			
	ISSUE	PAGE NUMBER		WIVE
Busi	7/16 ness Use	7-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl

SECTION	PAGE
8.0 GENERAL	8-1
8.1 CONSTRUCTION TYPE	8-1
8.2 CORROSION	8-1
 8.2.10 TYPES OF CORROSION 	8-1
 8.2.11 OXIDATION CORROSION 	8-1
o 8.2.12 COPPER OXIDATION	8-1
 8.2.13 ALUMINUM OXIDATION 	8-1
 8.2.14 STEEL & IRON OXIDATION 	8-2
o 8.2.15 GALVANIC CORROSION	8-2
8.3 CONSTRUCTION MATERIAL	8-3
o 8.3.10 ARRESTERS	8-3
o 8.3.11 CABLE	8-3
o 8.3.12 CONNECTORS	8-4
o 8.3.13 CUTOUTS	8-5
o 8.3.14 GUYING	8-6
 8.3.15 INSULATORS AND COPPER DEADENDS 	8-6
o 8.3.16 SWITCHGEAR	8-7
o 8.3.17 TRANSFORMERS	8-7 THRU 8-8
 8.4 ADDITIONAL GUIDELINES REGARDING CONSTRUCTION IN SALT CONTAMINATED AREAS 	8-9

SECTION 8 – COASTLINE CONSTRUCTION INDEX				
v .		PAGE NUMBER	ISSUE	
	OVERHEAD CONSTRUCTION STANDARD	8-i	7/13	

	SECTION 8 – COASTLINE CONSTRUCTION INDEX			
	ISSUE	PAGE NUMBER		WWZ
Busi	7/09 ness Use	8-ii	OVERHEAD CONSTRUCTION STANDARD	ppl

8.0 GENERAL

This Section covers PPL overhead distribution construction in "Coastline Areas" for secondary and primary voltages through 15 kV. A "Coastline Area" is all areas within 1/2 mile of a saltwater coastline and those areas beyond 1/2 mile from a saltwater coastline where experience shows that the area experiences heavy salt spray. Note: This standard may also be applied where experience shows that the area experiences heavy road salt contamination.

8.0.10 "Coastal" Environment

In the direct vicinity of the coastline, pollution is deposited onto insulators and equipment mainly by spray, wind and fog. The pollution build-up is generally rapid, especially during spray or salt fog conditions. A build-up of pollution over a longer term can also occur through a deposit of wind-borne particles, consisting of quick dissolving and inert components that vary depending on local soil characteristics. Natural cleaning of the insulators by rain is typically effective as the active component of the pollution consists mainly of fast dissolving salts. Reference IEC Standard 60815-1.

8.0.11 Approach

The following standard guidelines have been developed based on field experience in salt contaminated areas and the identification of equipment deterioration caused by tracking or corrosion. This is standard is a "working standard" meaning that it is under continuous development and new guidelines will be issued as additional information is received by Standards regarding equipment that has deteriorated due to salt contamination.

8.1 CONSTRUCTION TYPE

Overhead construction in "Coastline Areas" is generally the same as in other areas with the exception of some changes in the materials used. This standard identifies a list of materials to be used for **Standard Construction** (materials used in other areas) or **Coastline Construction** (materials used in Coastline Areas).

8.2 CORROSION

8.2.10 Types of Corrosion

There are two types of corrosion, Oxidation and Galvanic.

8.2.11 Oxidation Corrosion

Oxidation corrosion of metals occurs in the presence of oxygen with or without the presence of water. Metal oxides begin to form on the surface of metals as soon as they are exposed to air.

8.2.12 Copper Oxidation

On copper, a solid layer of copper oxides will form, providing some protection from additional oxidation corrosion and significantly reducing the electrical conductivity of the surface of the copper. The thickness of the oxide layer on copper will vary depending on the temperature of the copper and will appear as a black or green surface discoloration of the copper. Copper oxide layers will reduce the number and area of contacting points in a connection, thus increasing the contact resistance. Copper conductors must be cleaned prior to making a connection.

8.2.13 Aluminum Oxidation

On aluminum, a solid layer of aluminum oxides will form, providing protection from additional oxidation corrosion and significantly reducing the electrical conductivity of the surface of the aluminum. Oxide growth is self-limiting on aluminum (~2 nanometers thickness) and is usually

	Coastline Construction			
	AMD		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	8-1	7/09

transparent to the eye. Oxide growth rate on aluminum depends on humidity and temperature. Aluminum oxide is a fast forming, hard, non-conductive coating that develops on the surface of aluminum conductors exposed to air. Unlike copper oxides, aluminum oxide is not visually obvious and should be assumed to exist in all cases of bare aluminum. Aluminum oxide must be removed from a conductor's surface prior to making a connection. Wire brushing and the immediate application of an oxide inhibitor is required to prevent the reformation of this non-conductive oxide layer prior to connector installation.

8.2.14 Steel & Iron Oxidation

A layer of iron oxides will form on steel or iron but will not become solid enough to protect the underlying metal from further oxidation. The underlying steel or iron will continue to be exposed to air and oxidation corrosion will continue until the iron or steel is fully consumed. To protect iron and steel from corrosion, the company normally uses either barrier coatings, such as paint, that protect the metal from exposure to air or galvanic coatings, such as zinc, that sacrifice themselves to protect the underlying metal.

8.2.15 Galvanic Corrosion

Galvanic corrosion is the electrolytic action of moisture and other elements of the atmosphere in conjunction with dissimilar metals. This will happen with the metals in electrical connections. Galvanic corrosion is a minor issue in copper or copper alloy connections; however, it is a significant issue if aluminum and copper are involved, unless moisture can be kept away from the connection.

Galvanic corrosion occurs when dissimilar metals are in the presence of an electrolyte with the metals acting as a battery. The metal with the more negative galvanic potential (the anode) loses electrons to the other metal (the cathode) releasing additional ions into the electrolyte and resulting in the loss of material from the anode. Like metals in direct contact are subject to minimal, if any, galvanic corrosion as an electric potential is difficult to establish.

In electrical connections between dissimilar metals (copper to aluminum) galvanic corrosion will occur when an electrolyte is present. Salt contamination on electrical facilities becomes a strong electrolyte when wet from drizzle, fog or high humidity that will promote galvanic corrosion at connections between dissimilar metals. In electrical connections between similar metals (copper to copper or aluminum to aluminum) little galvanic corrosion will occur.

Galvanic corrosion can be controlled in Coastal Areas by keeping electrolytes (salt and water) away from the electrical connection. This standard emphasizes the use of sealed piercing connectors, cold shrink and gel wrap covers and corrosion inhibitors as ways of keeping electrolytes away from electrical connections.

	Coastline Construction				
	ISSUE	PAGE NUMBER	ΔMD_{x}		l
Busi	7/09 ness Use	8-2	OVERHEAD CONSTRUCTION STANDARD PPI		

8.3 CONSTRUCTION MATERIAL

8.3.10 Arresters

Riser Arresters – 12kV

Standard Construction – Use standard riser arresters.

Coastline Construction - Use extra creepage riser pole arrester

Standard Construction	Coastline Construction
12kV Arrester	12kV Arrester with extra creepage
Std Item L3ER	Std Item L3ERN

8.3.11 **Cables**

Aluminum secondary/service 600V insulated overhead cables can be used in a Coastal Area. To prevent galvanic corrosion, salt and water must not be able to penetrate the area between the phase conductor insulation and the conductor. Care must be taken during installation to avoid damaging the cable insulation. All phase conductor connections must be made with insulated piercing connectors. Bare aluminum neutrals can be connected with H-Tap connectors. Be sure to wire brush the conductors first. Exposed secondary cable phase conductor ends must be covered with cold shrink end caps (Std Item UC90C) to prevent salt contamination. In addition, the cold shrink end caps must be covered with one layer of vinyl plastic black insulating tape (Std Item T2W1) to protect it from ultraviolet (UV) light exposure.

Standard Construction – #2 or 1/0 Aluminum triplex cable Coastline Construction – #2 or 1/0 Aluminum triplex cable

Standard Construction	Coastline Construction
#2 Aluminum Triplex – Std Item W15B	#2 Aluminum Triplex – Std Item W15B
(500' coil)	(500' coil)
#2 Aluminum Triplex – Std Item W15B	#2 Aluminum Triplex – Std Item W15B
(1,200' reel)	(1,200' reel)
1/0 Aluminum Triplex – Std Item W15C	1/0 Aluminum Triplex – Std Item W15C
(500' coil)	(500' coil)
1/0 Aluminum Triplex – Std Item W15C	1/0 Aluminum Triplex – Std Item W15C
(1,000' reel)	(1,200' reel)
(1,000 Teel)	(1,200 1eei)

8.3.12 Connectors

(A) <u>Secondary/services connectors</u>
Standard Construction - H-Tap compression connectors with plastic covers.

		Coastline Construction		
	SMIZZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	8-3	7/20

Coastline Construction – Weatherproof piercing connectors or H-tap with Gel-filled enclosure cover.

Standard Construction	Coastline Construction	
H-Tap Compression Connectors w/Covers	Weatherproof Piercing Connector	H-Tap compression connector with gel filled enclosure cover
Conductor Range #8 to 1/0 Al & Cu	Conductor Range #8 to 1/0 Al &Cu	Conductor Range #8 to 1/0 Al & Cu
Std Item S13	Std Item S5	Std Items C61A & C61B
	TO RESP. 1	

(B) <u>Primary connectors</u>

Spacer cable/Tree wire compression splice

Standard construction and Coastline construction on spacer cable/tree wire require that all splices be covered with cold shrink covers for new installations and Gelwrap covers for existing splices that were never covered but should be.

Standard & Coastline Construction		
Splice with Cold shrink or Gelwrap waterproof cover		
Conductor Range 1/0 thru 795kcmil		
Cold Shrink cover – 336.4 thru 795kcmil (Not suitable for 1/0)		
Std Item S16		
Gelwrap Cover 1/0 thru 556.4kcmil		
Std Item C62		
Gelwrap Cover 336.4 thru 795kcmil		
Std Item C63		

	Coastline Construction			
	ISSUE	PAGE NUMBER		WHA
Busi	7/20 ness Use	8-4	OVERHEAD CONSTRUCTION STANDARD	ppl

Business Use

(C) <u>Spacer cable/Tree wire tap – Bolted Parallel groove connector</u> Standard Construction – Bolted parallel groove connector with no covering Coastline Construction – Bolted parallel groove connector with Gelwrap waterproofing cover.

Standard Construction	Coastline Construction
Parallel Groove Connector - Bare	Parallel Groove Connector with Gelwrap cover
Conductor Range 1/0 thru 795kcmil	Conductor Range 1/0 thru 795kcmil
	For small 1 bolt connector
	Std Item C67
	For large 2 & 3 bolt connectors
	Std Item C68

8.3.13 <u>Cutouts</u>

15kV - 100 AMP

Standard Construction – Use standard 15kV polymer cutouts.

Coastline Construction – Use 27kV polymer cutouts for extra creepage distance.

Standard Construction	Coastline Construction
15kV Polymer Cutout	27kV Polymer Cutout
Std Item C43S10	Std Item C43S41

<u>23kV – 35kV</u>

Cutouts for this application are still under investigation for future incorporation into these Coastline Construction standards. Please contact Standards Engineering on a case-by-case basis for particular situations.

	Coastline Construction		
SMI72		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	8-5	7/20

1

8.3.14 **Guying**

Guy Deadends (Down guys and span guys)

Standard Construction – Use a preformed guy deadend on one end of guy wire and an automatic deadend on the other end of guy wire for ease of deadending the guy wire.

Coastline Construction – Used a preformed guy deadend on both ends of the guy wire. Automatic deadends corrode and fail in service.

Standard Construction	Coastline Construction
Preformed and automatic deadend	Preformed deadend
12.5M Guy Wire	12.5M Guy Wire
12.5M Preformed Std Item P54E	12.5M Preformed Std Item P54E
12.5M Automatic (Short bail)	
Std Item G5C4	
12.5M Automatic (Long bail)	
Std Item G5C4L	

8.3.15 <u>Insulators and Copper Automatic Dea</u>dends

Dead End Insulators

Standard construction and Coastline construction use the same polymer deadend insulator because the creepage distance is adequate for both constructions.

Standard & Coastline Construction
Polymer Deadend Insulator
15kV Insulator Std Item I7PA
35kV Insulator Std Item I7PB

			Coastline Construction	
	ISSUE	PAGE NUMBER		AMAZ
Busi	7/20 ness Use	8-6	OVERHEAD CONSTRUCTION STANDARD	ppl

8.3.16 Switchgear

Three phase 14.4kV, 600A, low-profile, padmounted, outdoor, metal-enclosed switchgear containing gang operated loadbreak switches and S&C type SML-20 loadbreak power fuses.

Standard Construction – Steel Cabinet

Coastline Construction - Stainless Steel Cabinet

SWITCHGEAR – 14.4KV, 600 AMP.					
	Standards Construction	Coastline Construction			
CONFIGURATION					
	STD ITEM	STD ITEM			
PME-9					
Two Switch Compartments	US45	US45SS			
Two Fuse Compartments					
	Steel Cabinet	Stainless Steel Cabinet			
PME-10 Four Switch Compartments	US45A	US45ASS			
3	Steel Cabinet	Stainless Steel Cabinet			

8.3.17 Transformers

(A) Pole Type Transformers

Standard Construction – Use standard steel conventional transformers. Coastline Construction – Use stainless steel conventional transformers.

TRANSFORMER, SINGLE - PHASE POLE TYPE							
			Standards Cons	truction	Coastline Construction		
			Conventional Transform MS 2523	er	Stainless St Transform MS 2526	er	
PRIMARY VOLTAGE	SECONDARY VOLTAGE	KVA	PHYSICAL DATA CODE	STD ITEM	PHYSICAL DATA CODE	STD ITEM	
12470GrdY/7200	120 / 240	25 50	10-165-10-00-00	T91CB	11-165-10-00-00	T91CBS	
13200GrdY/ 7620	120 / 240	10 25 50 75 100 167	10-167-10-00-00	T91DE	11-167-10-00-00	T91HPS	
13800GrdY/7970	120 / 240	25 50	10-169-10-00-00	T91EB	11-169-10-00-00	T91HQS	
4160GrdY/2400 X 13800GrdY/7970	120 / 240	25 50	10-317-33-00-00	T91HF3	11-317-10-00-00	T91AJS	

	Coastline Construction		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	8-7	7/20

(B) <u>Single Phase Padmount (Minipad) Transformers</u> Standard Construction – Use standard steel conventional transformers. Coastline Construction – Use stainless steel conventional transformers

TRANSFORMER, SINGLE - PHASE PADMOUNT (MINIPAD) TYPE						
			Standards Cons	truction	Coastline Construction	
		Conventional Steel Transformer MS 2561		Stainless Steel Transformer MS 2562		
PRIMARY VOLTAGE	SECONDARY VOLTAGE	KVA	PHYSICAL DATA CODE	STD ITEM	PHYSICAL DATA CODE	STD ITEM
4160GrdY/2400 X	240/420	25	20 247 40 00 05	UT31E	24 247 40 00 05	UT31ES
13800GrdY/7970	240/120	50	30-317-16-00-05		31-317-16-00-05	
12470GrdY/7200	240/120	25	30-165-16-00-05	UT31G	31-165-16-00-05	UT31GS
12470010177200		50	30 103 10 00 03			
	240/120	25				
		50		UT31H		UT31HS
13200GrdY/ 7620		75	30-167-16-00-05		31-167-16-00-05	
		100				
		167				
100000 11/7070	240/120	25	00 400 40 00 05	UT31J	04 400 40 00 05	UT31JS
13800GrdY/7970		50	30-169-16-00-05		31-169-16-00-05	

TRANSFORMER, THREE – PHASE WYE-WYE PADMOUNT TYPE						
			Standards Cons	truction	Coastline Const	ruction
			Conventional Transform MS 2572	er	Stainless St Transform MS 2575	
PRIMARY VOLTAGE	SECONDARY VOLTAGE	KVA	PHYSICAL DATA CODE	STD ITEM	PHYSICAL DATA CODE	STD ITEM
		75				
13200GrdY/ 7620	208Y/120	150	30-691-73-00-05	UT42H	31-691-73-00-05	UT42HS
13200GIQ1/ 7620		300			31-091-73-00-05	
		500				
		75				
13200GrdY/ 7620		150		UT47H		UT47HS
	480Y/277	300	30-691-74-00-05		31-691-74-00-05	
		500				
		750				

Supersedes 7/09 Issue	
lssue -	
Removed Item ID'	
Item ID	
S	
see Section 22.	

			Coastline Construction	
	ISSUE	PAGE NUMBER		SMIZE
Busi	7/13 ness Use	8-8	OVERHEAD CONSTRUCTION STANDARD	ppl

8.4 ADDITIONAL GUIDELINES REGARDING CONSTRUCTION IN SALT CONTAMINATED AREAS

8.4.10 Conductors

- All bare aluminum alloy primary conductors (AAC & AAAC) are acceptable for use in Coastline Construction.
- Aluminum Conductor Steel Reinforced (ACSR) conductors are not an acceptable conductor for use in Coastline Construction due to the potential for corrosion between the steel and aluminum conductors.

8.4.11 Hardware

- Galvanized mild steel hardware corrodes badly and becomes unsightly in three to five years.
- Stainless steel, Duronze, and other metals all have excellent corrosion resistance.
- Aluminum hardware works well.
- Properly applied, aluminum hardware items show excellent resistance to marine corrosion and are expected to last as long as the pole on which they are installed. Their higher initial cost should be offset by drop in replacement costs.
- The following aluminum alloys are acceptable
 - Cast alloy ASTM 356-T6
 - Wrought alloys ASTM 6061-T6, 6151-T6, and 2024-T4.
 - Alloy ASTM 2024-T4 must have a minimum anodized coating of 0.0007-in. for exposure to a marine atmosphere.

8.4.12 Poles

Fill old bolt holes with Alvania No 2 grease before installing aluminum bolts (2024 or 6061-T6 Alloy) in creosoted poles. Otherwise, Poultice attack of the bolts will occur. This attack causes some corrosion where the bolt enters and exits the pole hole. Only minor corrosion occurs. Exposed portions of the aluminum bolts will remain in excellent condition.

	Coastline Construction		
SMZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	8-9	7/20

Version	Date	Modification	Author(s)	Approval by (Name/Title)
4	7/20	 Revised Switchgear table on page 8-7 to include currently used PME-9 and PME-10. Revised numbering in index. Corrected section numbering and table alignment on pages 8-3 through 8-6. 		
3	7/14	 Added H connector Gel covers for secondaries Corrected table in 8.2.17 		
2	7/13	 Removed Item ID's from entire section. Added Copper Deadends in Section 8.2.21 on Page 8-6 		
1	7/09	New Section		

SUMMARY OF RECENT CHANGES						
ISSUE	PAGE NUMBER	OVERHEAD CONSTRUCTION STANDARD	SMIZZ			
7/20	8-NOTES		ppl			

SECTION	DN	PAGE
•	9.0 GENERAL	9-1
•	9.1 DESIGN OF PRIMARY FEEDERS	9-1 THRU 9-3
•	9.2 POLE TOPS	9-3 THRU 9-5
•	9.3 TYPES OF CONDUCTORS	9-5 THRU 9-6
•	9.4 SEPARATION OF CONDUCTORS	9-6 THRU 9-7
•	9.5 OTHER	9-7 THRU 9-9
•	9.6 VOLTAGE CONVERSIONS	9-9
•	CONSTRUCTION DRAWINGS	
	PHASE POSITIONS	9-105
	PRIMARY DEAD ENDS - DETAILS	9-115
	HAND WRAPPED TIES	9-118
	TIE CONDUCTORS	9-120
	SINGLE LOOP HOT LINE TIES	9-122
	DOUBLE LOOP HOT LINE TIES	9-124
	MAXIMUM SPANS	9-200 THRU 205
	o SPACING	9-206
	ISOLATING CIRCUITS OF DIFFERENT VOLTAGES	9-207
	10 (DELTA) AND 30 CROSSARM POLE TOP – 0-15 kV – 0° –	
	10° `	9-411
	o ALTERNATE 30 CROSSARM POLE TOP – 0-15 kV – 0° - 10 °	
	– (FOR USE WHEN POLE TOP IS UNAVAILABLE FOR CENTER PHASE)	9-411C
	 FIBERGLASS 1Φ (DELTA) AND 3Φ CROSSARM POLE TOP 	0.4445
	− 0-15 kV − 0° − 10°	9-411F
	o 10 (DELTA) AND 30 DOUBLE CROSSARM POLE TOP – 0-35	9-412
-	kV CROSSINGS AND ANGLES 0° – 10° o 10 (DELTA) AND 30 CROSSARM POLE TOP – 0-15 kV – 11°	
	- 20°	9-413
	o FIBERGLASS 1Ф (DELTA) AND 3Ф CROSSARM POLE TOP	9-413F
	- 0-15 kV - 11° - 20°	9-4131
	 1Φ (DELTA) AND 3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV CROSSINGS 11° – 45° / ANGLES - 21° – 45° 	9-414
	o 10 (DELTA) AND 30 DEADEND CROSSARM POLE TOP – 0-	0.115
	15kV – 46°-60° ANGLES / BACK-TO-BACK DEADENDS	9-415
	o FIBERGLASS POLE - 1Φ (DELTA) AND 3Φ CROSSARM POLE	0.4455
	TOP – 0-15 kV CROSSINGS 0° – 60° / 21°– 60° ANGLES / BACK-TO-BACK DEADENDS (TANGENT)	9-415F
	10 (DELTA) AND 30 FIBERGLASS DEADEND CROSSARM	0.440
	POLE TOP - 0-15 kV -ANGLES -61° - 90° AND DEADENDS	9-416
	• FIBERGLASS POLE - 10 (DELTA) AND 30 FIBERGLASS	0.4405
	DEADEND CROSSARM POLE TOP – 0-15 kV –ANGLES -61° – 90° AND DEADENDS	9-416F
	10 (DELTA) AND 30 FIBERGLASS DEADEND CROSSARM	0.447
	POLE TOP – 0-15 kV DEADENDS	9-417
	 FIBERGLASS POLE - 1Φ (DELTA) AND 3Φ FIBERGLASS 	9-417F
	DEADEND CROSSARM POLE TOP - 0-15 kV DEADENDS	

15 kV DISTRIBUTION PRIMARY INDEX

OVERHEAD CONSTRUCTION STANDARD

9-i | 7/21

SECTION		PAGE
	3Ф CROSSARM POLE TOP – 0-15 kV (PREFERRED) 0° – 10°	
0	TAP TO 1Φ ARMLESS	9-419 FIG 1
0	3Φ CROSSARM POLE TOP – 0-15 kV (ALTERNATE) 0° – 10° TAP TO 1Φ ARMLESS –	9-419 FIG 2
0	3Φ CROSSARM POLE TOP – 0-15 kV (PREFERRED) 11° – 20° TAP TO 1Φ ARMLESS	9-421 FIG 1
0	3Φ CROSSARM POLE TOP – 0-15 kV (ALTERNATE) 11° – 20° TAP TO 1Φ ARMLESS	9-421 FIG 2
0	1Φ (DELTA) AND 3Φ (WYE) CROSSARM POLE TOP – 0-15 kV – TO 1Φ (DELTA) AND 2Φ (WYE) 11° – 20° TAP	9-422
0	3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV (PREFERRED) - CROSSINGS 11° – 45° / ANGLES 21° – 45° - TAP TO 1Φ ARMLESS	9-423 FIG 1
0	3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV (ALTERNATE) - CROSSINGS 11° – 45° / ANGLES 21° – 45° - TAP TO 1Φ ARMLESS	9-423 FIG 2
0	1Φ (DELTA) AND 3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV CROSSINGS 11°-45° / ANGLES 21°-45° - TAP TO 1Φ (DELTA) AND 2Φ (WYE)	9-424
0	1Φ (DELTA) AND 3Φ CROSSARM POLE TOP – 0-15 kV – 0° – 10° TAP TO 1Φ (DELTA) OR 3Φ CROSSARM	9-435
0	PRIMARY MIDSPAN TAP	9-436
	1Φ (DELTA) AND 3Φ SINGLE ALLEY ARM POLE TOP $-$ 0-15 kV $-$ 0° $-$ 10°	9-437
0	1Φ (DELTA) AND 3Φ DOUBLE ALLEY ARM POLE TOP – 0-15 kV CROSSINGS AND ANGLES 0° – 10°	9-438
	1Φ (DELTA) AND 3Φ SINGLE ALLEY ARM POLE TOP – 0-15 kV – 11° – 20°	9-439
0	1Φ (DELTA) AND 3Φ DOUBLE ALLEY ARM POLE TOP – 0-15 kV CROSSINGS 11° – 60° / ANGLES 21° – 60°	9-440
0	1Φ (DELTA) AND 3Φ SINGLE ALLEY OFFSET POLE TOP – 0- 15 kV – 0° – 10°	9-441
0	ALTERNATE 3Φ CROSSARM POLE TOP – 0-15 kV – 0° - 10 ° –(FOR USE WITH POLE TOP MOUNTED ANTENNA)	9-450
0	1Ф ARMLESS POLE TOP – 0-15 kV – 0° – 20°	9-711
0	1Φ ARMLESS POLE TOP – 0-15 kV – 0° – 20° - DELTA	9-712
0	1Ф ARMLESS POLE TOP – 0-15 kV – 21° – 60°	9-713
0	1Ф ARMLESS POLE TOP – 0-15 kV – 21° – 60° - DELTA	9-714
0	1Φ ARMLESS POLE TOP – 0-15 kV – 61° – 90° AND DEADEND	9-715
0	1Φ DELTA / 2Φ WYE ARMLESS POLE TOP – 0-15 kV – 61° – 90° AND DEADEND	9-716
0	1Φ ARMLESS POLE TOP – 0-15 kV – 0° – 20° – TAP TO 1 Φ ARMLESS	9-719
0	1Φ ARMLESS POLE TOP – 0-15 kV – 0° – 20° – TAP TO 1 Φ ARMLESS - DELTA	9-720

	15kV DISTRIBUTION PRIMARY INDEX				
	ISSUE	PAGE NUMBER		WHI.	
Busi	7/20 ness Use	9-ii	OVERHEAD CONSTRUCTION STANDARD	ppl	

SECTION		PAGE
0	1Φ AND 3Φ ARMLESS POLE TOP – 0-15 kV – 0° – 20° (MAINTENANCE ONLY)	9-811
0	1Φ AND 3Φ ARMLESS POLE TOP – 0-15 kV – 0° – 20°	9-812
0	1Φ (DELTA) AND 3Φ (MAINTENANCE ONLY) ARMLESS POLE TOP – 0-15 kV – 21° – 60°	9-813
0	1Φ (DELTA) AND 3Φ (MAINTENANCE ONLY) ARMLESS POLE TOP – 0-15 kV – 61° – 90° AND DEADEND	9-814
0	3Φ ARMLESS POLE TOP $-$ 0-15 kV (PREFERRED) $-$ 0° $-$ 20° $-$ TAP TO 1 Φ ARMLESS	9-823
0	3Φ ARMLESS POLE TOP – 0-15 kV (ALTERNATE) – 0° – 20° – TAP TO 1 Φ ARMLESS	9-825
0	1Φ (DELTA) AND 3Φ ARMLESS POLE TOP – 0-15 kV – 0° – 20° – TAP TO 3 Φ FIBERGLASS DEADEND CROSSARM	9-835

15 kV DISTRIBUTION PRIMARY INDEX

OVERHEAD PAGE NUMBER ISSUE
CONSTRUCTION STANDARD 9-iii 7/20

	15kV DISTRIBUTION PRIMARY INDEX				
ISSUE	PAGE NUMBER		AMIZ		
7/20	9-iv	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 09.00.002

This section includes the design and construction requirements necessary for overhead distribution lines in a crossarm or armless configuration and for single or multiple phases at 15kV primary distribution voltage levels and below. The following Standards shall be used for the design and construction of all new lines, line reconductoring projects, voltage conversion projects, and for pole replacements. Existing facilities should be modified to the current Standards when it is economically feasible to do so. For 25kV and 35kV class circuits, refer to Section 20 or Section 21 of the Overhead Standards book.

9.0.10 Voltage Classes

For the purpose of simplifying the terminology to be used in various descriptions of the following drawings, the voltage class designations are as follows:

5 kV - This designation is generally referred to primary circuit voltages of 5 kV and below regardless if the system is effectively grounded or non-effectively grounded.

15 kV - This designation is generally referred to primary circuit voltages of 15kV and below regardless if the system is effectively grounded or non-effectively grounded.

Refer to Pages 1-1 and 1-2 in the Overhead Standards book for specific voltages within the classes.

9.0.20 <u>Coordination With Other Parties</u>

Contact shall occur with all necessary communication companies and municipalities during the initial planning stages so that all parties may properly coordinate their required activities. Construction shall be coordinated to allow for maximum system reliability and efficiency.

9.1 DESIGN OF PRIMARY FEEDERS

The standard 3 phase distribution feeder shall be 4 wire (three conductors, one neutral) multi-grounded wye. The objective is to design and safely construct distribution lines that will provide maximum service reliability at a reasonable cost. This can be attained by routing feeders through minimum tree and traffic exposure, employing the proper type of conductors for the conditions along the route, and providing circuit capacity for normal and reasonably probable contingency conditions, including anticipated load growth.

9.1.10 Routing

The route of the feeder should be such that normally only one distribution circuit is placed on a pole line. Where this is not possible, an effort should be made such that one feeder shall serve the local load while additional express feeders utilizing spacer cable or Preassembled Lashed Aerial Cable (PLAC) are carried through the area.

When feeder construction is necessary along the route of an existing subtransmission circuit, consider underbuilding the subtransmission circuit verses installing a duplicate pole line or major undergrounding. Underbuild of subtransmission can be used if the subtransmission is accessible by bucket truck for normal maintenance and can be taken out of service if required. Seven (7) foot minimum vertical clearance between upper and lower circuits is recommended for worker safety. Approval from the Transmission or Subtransmission Engineering Department is required.

15 kV DISTRIBUTION PRIMARY OVERHEAD OV

9.1.20 Basic Impulse Insulation Level (BIL)

BIL refers to the ability of the pole top design to resist flashovers caused by lightning or line surges. Surge arresters, coordinated to the BIL of the equipment, are installed to limit the overvoltages on equipment by discharging surge current to ground.

Pole tops are designed to provide a minimum of 150 kV insulation impulse withstand. This impulse level is based on the assumed impulse flashover strength of 20 inches or more of wood.

Where lightning arresters are used and where grounding conductors are installed, the 20 inches of wood requirement does not apply for the particular conductor having the arrester. In locations where sufficient wood separation is not obtainable, the use of fiberglass strain insulators shall be installed. Fiberglass guy strain insulators shall be installed onto all new primary guy installations maintaining BIL requirements - refer to Section 3 for guying requirements.

See Section 7 for additional BIL information and drawings.

9.1.30 Size and Loading of Conductors

The initial load on the conductors of the feeder main and taps/branches shall be limited to allow reasonable load growth before the maximum normal peak load limit is reached. This initial load value should allow for a minimum of 10 years of additional expected load growth. The current values for normal and emergency loads are based on consideration of economy with respect to losses and the thermal limits of the conductor. See Section 6 - Primary Conductors for more information on specific primary conductors.

A. Size of Main Line Conductors

15 kV new main line feeders shall utilize 336.4 kcmil or 477 kcmil All Aluminum Conductors (AAC) primary conductors however, upon Engineering approval, 795 kcmil AAC is available. Existing conductors of adequate size may serve for part of any feeder main (see Section 9.3.50) and use of any other conductor size for this purpose will be considered on a case-by-case basis. See Section 6 - Primary Conductors for additional information.

B. Size of Tap (Branch Line) Conductors

Three phase taps shall utilize 1/0 All Aluminum Alloy Conductor (AAAC), 336.4 kcmil AAC, or 477 kcmil AAC primary conductors.

Generally single phase taps shall utilize 1/0 AAAC conductor for expected loading up to 100A. Loadings above this value require the addition of one or more phases.

In existing taps that have a conductor smaller than #2 where it is not economically feasible to reconductor the line or convert it to a higher voltage, step down transformers should be installed.

C. Size of Grounded Neutral Conductors

Maintain a common neutral with minimum splices for effectively grounded circuits. Note: See Sections 13.4 and 13.5 for information on the bonding of circuit neutrals.

All neutral conductors shall be 1/0 aluminum except when a larger size is either existing or necessary as part of a secondary system. Example: 4/0 AAAC is used with 336.4 kcmil multiplex. Use of a larger neutral conductor, or use of any other secondary cable

	15 kV DISTRIBUTION PRIMARY				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	ness Use	9-2	OVERHEAD CONSTRUCTION STANDARD	ppl	

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 09.00.002

configuration or size, requires that National Electric Safety Code (NESC) clearances for that particular construction be met.

Generally if existing primary conductors are **smaller** than 1/0 aluminum or equivalent and a neutral conductor exists, it should be used if it is equal size or larger than the primary conductor.

If existing primary conductors are equal to or **larger** than 1/0 aluminum or equivalent and a neutral conductor exists, it should be used if it is at least equivalent to 1/0 aluminum or #3 copper. #2 ACSR (aluminum cable, steel reinforced) is also acceptable.

Existing 7/16 inch CW (copperweld) or #1 AWAC 2/5 messenger may also be used as an effectively grounded neutral, but separate secondary neutrals shall be used with this type of construction.

9.1.40 <u>Voltage Regulation and Flicker</u>

It is suggested that a voltage profile be run for each feeder so that regulation can be reviewed. Contact Distribution Engineering.

Voltage regulation on the primary feeder shall be such that voltage to customers can be maintain to the following acceptable levels on a 120 V base:

Rhode Island - 126 V maximum, 114 V minimum.

The voltage is controlled by the station load tap changers (LTC) transformers or station regulators, line regulators, and capacitors. Methods of setting regulators are discussed in Electric & Gas System Bulletin #206 or the Engineering Department Procedures (EDP).

Voltages on lines serving loads such as motors, welders, etc., should be checked to see that any flicker does not exceed the limits given in Section 10. Loads that may cause excessive flicker should be referred to the Distribution Engineering Department.

9.1.50 Radio and Television Interference

Radio and television interference can be caused by loosely connected equipment and materials, which could cause arcing between parts. The higher the primary voltage, the greater the possibility of creating radio and television interference. This interference can be controlled by taking reasonable care to minimize the creation of sharp projections of energized parts by properly applying insulator ties, by making certain all bolted connections on structures are properly tightened, and by maintaining suitable clearances of pole hardware.

9.2 POLE TOPS

The following can be used for pole top constructions and pole considerations.

9.2.10 <u>Selection of Sole Owned and Jointly Owned Poles</u>

There is no standard pole height or class that can positively meet all construction conditions without causing unnecessary expense. Selection of pole height and class requires the

15 kV DISTRIBUTION PRIMARY				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	9-3	7/14	

coordination of all pole users. Once the correct pole height and class is determined for the most common pole in the project, the remaining pole heights and classes should be easily determined with small changes made to the original calculations. See Section 2 for pole selection information.

Existing poles in sound condition and in the proper locations should be used if pole loading and minimum clearance requirements can be met for the facilities that are being installed.

Prior to changing a jointly owned pole, it should be determined that the communications company is not occupying the Company's space. If the pole must be replaced, or if new poles are to be installed, they shall be selected to provide clearances specified for present and future needs following the Joint Use Contractual Agreements. The Company may be entitled to reimbursement of transfer costs.

Whenever present and future construction requires more pole space, pole top extensions should be considered before a new, larger pole is installed.

9.2.20 Crossarm Construction

The standard primary 3 phase construction is bare wire on a crossarm, which, for a tangent pole, consists of a 6-pin-8 foot wood crossarm with wood braces, a 24 inch steel pole top pin, steel crossarm pins, and porcelain pin-type insulators for 15kV and below. This type of construction is also recommended for long span rural lines and for lines in heavy industrial areas. It may also be necessary to continue this type of construction on existing lines that are rebuilt to maintain consistency of existing crossarm construction.

Double crossarms are required at line angles over 20 degrees using pin insulators (refer to NESC Rule 261D5(c)), and at c rossings of railroads, limited access highways, and navigable waterways requiring waterway crossing permits (refer to NESC Table 242-1).

Other crossarm sizes and arrangements may be used as field conditions require. They are:

- A. Two-Pin Crossarm (10 foot) Use when specifically called for on individual standards or additional clearances are required.
- B. Six -Pin Heavy Duty Crossarm (10 foot) Use for 3000 lbs Deadend construction.
- C. Extension Arms (Alley Arms) Use when this is the only practical method of obtaining clearance from trees, buildings, etc., or for reducing or eliminating an angle in the line. In general, two or more adjacent poles with extension arms shall be used to reduce the excessive lateral stress, which may be caused by one extension arm in a straight line. Side guys or equivalent may be required to support the unbalanced load of a series of extension arms. (9-440 series)
- D. Offset Arms Use 6 pin with wood braces when the full offset of an extension arm (Alley Arm) is not required. Refer to Section 7 for adequate BIL separation. See 9-441 for Offset Arm construction drawings.
- E. Fiberglass Crossarms Fiberglass deadend crossarms are standard for most deadend applications (see individual structure drawings). Fiberglass tangent crossarms are used on fiberglass poles and when lifting weight of the arm is an issue or when strength is required without the use of crossarm braces.

9.2.30 <u>Armless Construction</u>

Three phase armless construction is available for distribution lines in urban and suburban residential districts for 15 kV and below if span limitations permit. It may also be considered in situations where tree trimming permission is restricted and spacer cable construction will be too costly. See drawings in the 9-800 series for armless construction details.

	15 kV DISTRIBUTION PRIMARY				
ISSUE	PAGE NUMBER		SMIZZ		
7/20	9-4	OVERHEAD CONSTRUCTION STANDARD	ppl		

Single phase armless (vertical) construction, utilizing steel pole top pin, can be used for all voltages. The drawings in the 9-700 series have various diagrams pertaining to effectively grounded and noneffectively grounded circuits.

9.2.40 Spacer Cable Construction

Spacer Cable construction is preferred for distribution lines when NESC Clearances, Tree Trimming Clearances, and Right of Way Issues can not be resolved with the recommended crossarm or armless types of construction. It may also be selected for an additional express feeder purpose similar to preassembled lashed aerial cable (PLAC).

9.2.50 Phase Position

Circuits should hold the same relative phase position throughout their entire length as far as practicable following the guidelines shown on Page 9-105. Where there is an established policy on phase position in an operating area, it may be continued.

9.3 TYPES OF CONDUCTORS

The type of conductor shall be selected as follows:

9.3.10 Bare Conductors

Bare conductors are preferred over tree wire, spacer cable and preassembled lashed aerial cable due to the cost, construction/maintenance requirements and current carrying capacity. They shall be used in areas where there are no restrictions on tree trimming (local, state, or otherwise).

9.3.20 Covered Conductors

PE covered conductor is not approved for new installations but may be used for maintenance purposes only. This conductor is designed to withstand limited incidental tree contact.

9.3.30 <u>Tree Wire</u>

Tree wire is an approved conductor for new installations in open wire configurations, including crossarm construction, armless construction and single phase construction. This conductor is designed to withstand incidental tree contact, but is not designed to withstand extended tree contact, nor to be installed to permanently eliminate tree trimming. Tree wire may also be installed when local municipal ordinances mandate that covered primary conductors be installed.

Although tree wire offers some electrical protection, <u>it is not an insulated conductor</u>. It must be treated as a bare conductor during installation and maintenance.

Tree Wire contains a layer of semi-conducting material at the aluminum conductor surface.

WARNING: When skinning these conductor coverings, do not allow the removed covering to contact equipment grounds or adjacent live phase conductors as an electrical flash may result.

9.3.40 Spacer Cable

Tree wire is the only wire to be used in a spacer cable configuration. Spacer cable configuration provides maximum reliability and is to be used in heavy tree areas, but is not designed to withstand extended tree contact, nor to be installed to permanently eliminate tree trimming. See Section 16-Aerial/Spacer Cable for more information and construction details. Tree wire in a

	15 kV DISTRIBUTION PRIMARY				
	SMIZZ		PAGE NUMBER	ISSUE	
se	ppl	OVERHEAD CONSTRUCTION STANDARD	9-5	7/18	

spacer cable configuration is also approved for express or multiple feeder installations on existing poles.

9.3.50 Preassembled Lashed Aerial Cable (PLAC)

Preassembled lashed aerial cable is approved for expressed or multiple feeder installations on existing poles. This eliminates the need for the installation of a second pole line. It can also be used to achieve NESC Clearance or Right of Way Issues. See Section 16 for more information on this conductor and construction details.

9.3.60 Existing Conductors

- A. 5 kV Existing conductors in good condition, may remain in place for 5kV operations. They may be repaired and maintained using the same or similar conductors. Non-standard conductors should not, however, be used for replacement of several spans, nor for adding a third phase to an existing line. When it is necessary to perform extensive repair work on an existing non-standard line, replacing it with standard conductors is required.
- B. 15 kV Do not use existing conductors smaller than #2 for 15kV effectively grounded systems. Refer to Section 14 regarding the installation of step-up/step-down transformers. Triple Braid Weatherproof (TBWP) insulated conductors should normally be replaced if it will be operating at 15 kV or above in the foreseeable future.

9.4 SEPARATION OF CONDUCTORS

9.4.10 General

Minimum recommended separations between supports and conductors on the same pole are shown on the construction drawings. These should be used on all poles for new lines. They are generally used for pole replacements.

9.4.20 <u>Separation on New Poles</u>

The vertical clearance between primary line conductors and neutral or secondary conductors at poles for new lines shall generally not be less than 56" for 0-15 kV. This distance allows work on the neutral or secondary while maintaining the NESC Phase to Ground Minimum Approach Distance (MAD), including a 30" dimension for "Reach" (based upon the average line worker's extended reach from chest to finger tips of 30").

Note: NESC Phase to Ground MAD for 15 kV = 26" + Reach of 30" = 56"

- A. <u>Primary Tangent Poles</u> (where wires are on pin insulators and crossarms) the vertical separation between the bolt for the primary crossarm and the secondary bracket shall be not less than 48" for 15 kV. This will allow 56" clearance between primary line conductors and the neutral or secondary conductors. The distance between the crossarm bolt and the top of the 15kV insulator holding the primary conductor is 8". This distance plus the distance from the crossarm bolt to the secondary bracket (48") will total a minimum of 56".
- B. <u>Primary Deadend Poles</u> the vertical separation between the bolts for the primary crossarm and the secondary bracket shall be not less than 56" for 0-15 kV lines.

9.4.30 Separation on Existing Poles

When pole tops are being rearranged to accommodate additional facilities or when circuits are cut over to a higher voltage level, the recommended separations between primary line conductors and neutrals or secondaries for work on new poles **must** be used if possible. This

	15 kV DISTRIBUTION PRIMARY				
	ISSUE	PAGE NUMBER		WHZ.	
Busi	7/15 ness Use	9-6	OVERHEAD CONSTRUCTION STANDARD	ppl	

Business Use

will hold future work to a minimum and allow work on secondaries without covering the primaries (NESC Minimum Approach Distance). However, extensive work and pole change outs should not be undertaken solely to reduce work that might become necessary in the future.

When pole tops are rearranged to accommodate additional facilities on the pole, without regard to the owner of the new facilities:

- A. If the vertical separation between the primary and the secondary/neutral is 56" or more at the pole, a minimum vertical separation of 56" shall be maintained. This allows qualified electrical line workers to maintain MAD from the primary wires while working on the secondary/neutral at the pole.
- B. If the vertical separation between the primary and the secondary/neutral is less than 56", NESC minimum vertical separations at the pole and in the span shall be maintained. See Section 7.11 (Separation of Conductors and Supports on the Same Pole) for information on these minimum clearance requirements.

9.4.40 Space Available on Jointly Owned Poles

Before replacing any jointly owned poles, be certain that communication company and other attachments cannot be rearranged to permit the desired construction.

9.4.50 <u>Separation on Replaced Poles</u>

The separations on poles that are replaced should conform to the requirements for new poles. In some special cases, separation may be reduced, but shall not be less than that permitted on existing poles.

9.4.60 Reduction of Separation on Poles

Reduced separations of conductors and facilities made to accommodate communication, CATV or other third party interest shall not be less than 15kV minimum requirements.

9.5 OTHER

9.5.10 Surge Arresters

See Section 13.6 (Lightning Protection) and Section 13.7 (Surge Arrester Application Table) for more information on when arresters are required and what type should be used.

9.5.20 Insulators

- A. Bare Conductor One piece radio free, pin type, porcelain insulators of the appropriate ANSI class shall be used to support the phase conductors. A one piece polymer deadend insulator of proper voltage rating shall be used to deadend the conductor.
- B. Tree wire/spacer cable A one piece, plain top, pin type, polyethylene insulator of the appropriate ANSI class shall be used to support the phase conductor. A one piece polymer deadend insulator of proper voltage rating shall be used to deadend the conductor. **Note:** do <u>not</u> remove conductor covering at insulator location. To maintain the integrity of the covering, it must remain intact.

9.5.30 Neutral Brackets

An uninsulated metal bracket shall be used to support the common neutral conductor in the secondary position. See Section 10 for information on Secondaries.

15 kV DISTRIBUTION PRIMARY				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	9-7	7/11	

9.5.40 Conductor Ties

Follow these guidelines to ensure the reliability of primary circuits and to reduce or eliminate interruptions caused by inadequate conductor tie practices. Line conductors are to be positioned on its insulators that will produce minimum strain on the tie wires. The function of the tie wire is only to hold the line conductor on its insulator. Conductor strain shall be taken by the insulator and pin.

Hand wrapped ties are to be used for all types of conductor within the 15 kV class. Ties are to be made by hand and without the use of pliers. A tie wire must be neatly and tightly wrapped around the insulator and conductor with free ends wrapped tightly around the conductor. On lines that may eventually be operated above 15 kV, the free ends shall be folded back on the conductor at a distance of 3 inches to facilitate the future removal of the tie with hot sticks.

Hot line ties are to be used when lines are being worked with hot sticks. These also need to be wrapped neatly and tightly around the insulator and conductor. Single loop ties are to be recommended for spans under 160 feet while double loop ties are recommended for conductors with spans of 160 feet and over.

Utilize preformed conductor ties (TT1) for 3000 lb construction.

Care shall be taken to use the proper length and size tie for each conductor specified in the tables on Page 9-120. Refer to Pages 9-118 thru 9-124 for diagrams and information on Hand Wrapped and Hot Line Ties.

9.5.50 Types of Ties -

- A. Bridle tie shall be used for all bare and covered conductors larger than #4 AWG regardless of span length.
- B. Looped Western Union and Cross Top Tie shall be used for all bare and covered conductors # 4 AWG or smaller (#4, #6,etc.).
- C. Bare Conductor Use bare tie wire. (W22A,W22BA,W22C)
- D. Tree Wire Use covered tie wire (W22D). <u>Note:</u> Do **not** use molded plastic ties. Do **not** remove tree wire covering at polyethylene pin type insulator.
- E. Existing Polyethylene and Neoprene Covered Line Wire to be converted to the 15 kV Voltage class – Install 15 kV pin type polyethylene insulator and tie with covered tie wire (W22D) where existing covering on conductor has not been previously removed. Where covering has been removed, use a pin type porcelain insulator and tie conductor to insulator with bare tie wire.
- F. Existing Braid Covered (rubber) Line Wire (Maintenance Only) Remove the covering at the insulators (30 inches on both sides of the insulator) and tie with bare tie wire of the same metal as the line conductor for all voltages.
- G. Double insulators shall use ties for single insulators with each tie occupying one-half the available space between insulators same number of turns with closer spacing.

9.5.60 Splices, Connectors, Taps, Etc.

See Section 5 (Connectors) for all information regarding choosing and installing splices, connectors, taps, deadend clamps, etc for bare or covered wire.

	15 kV DISTRIBUTION PRIMARY				
ISSUE	PAGE NUMBER		SMIZZ		
7/11	9-8	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 09.00.002

9.5.70 When Voltage Changes Along Line

When two sections of line with different voltages, both 15kV or below, come to the same poles, see page 9-207 for required line isolation by establishment of a de-energized span. This situation will typically occur at locations where a voltage conversion project ends and no tie through a step-down / step-up transformer is established or where line extensions of different voltages meet to serve all customers along a road.

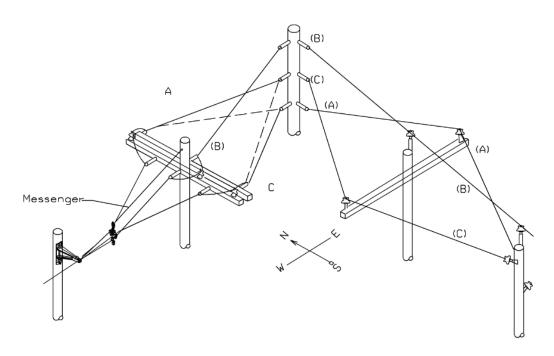
9.6 VOLTAGE CONVERSIONS

All voltage conversions done on the PPL distribution system must be done in accordance with EOP D010 - Primary Circuit/Transformer Voltage Conversion.

9.6.10 <u>Material Requirements</u>

Certain material items shall be replaced or added during a conversion. These include, but are not limited to, the following:

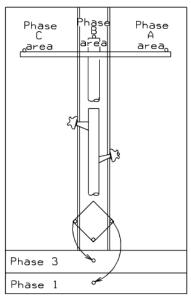
- A. Wood insulator pins must be replaced with steel pins.
- B. Correct insulation level must be in place: single bell insulators in deadends and 5kV pin insulators must be replaced.
- C. Guy wires must be built to current standards see Section 3.4.50 (Voltage Conversions) for details.
- D. Primary taps shall be fused.
- E. Arresters shall be installed per Section 13.6 (Lightning Protection).


	15 kV DISTRIBUTION PRIMAR	Υ	
AMIZ		PAGE NUMBER	ISSUE
pl	OVERHEAD CONSTRUCTION STANDARD	9-9	7/16

p

© 2022 PPL Corporation. All rights reserved.

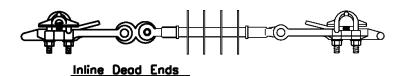
Doc. # ST. 09.00.002

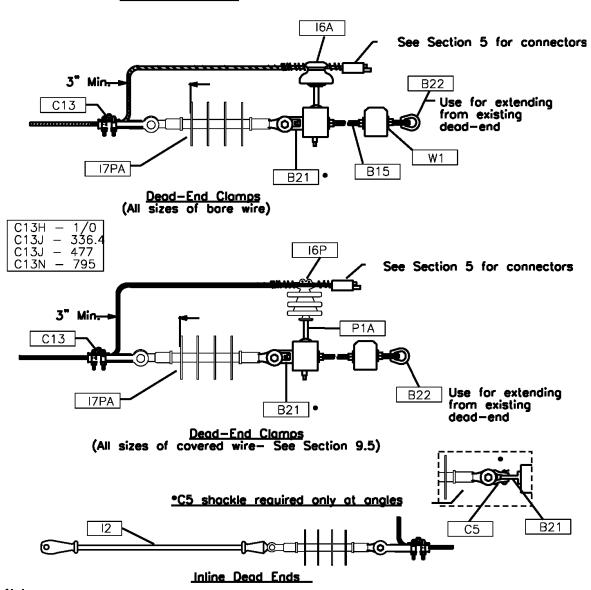

15 kV DISTRIBUTION PRIMARY				
ISSUE	PAGE NUMBER		SMIZZ	
7/11	9-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl	

Notes:

If there are local rules that have been superintendent, the approved by the division superintendent, these should be followed where practicable. Otherwise use the rules below:

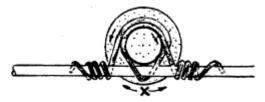
- (1) Put phase A on the northerly or easterly side for horizontal crossarm or spacer cable installation. Put phase A on the bottom for vertical construction.
- (2) Put phase B in the middle or top positoin for horizontal crossarm or for vertical construction. Phase B shall occupy the middle and bottom position for spacer cable in triangular arrangments.
- (3) Put phase $\mathbb C$ in the remaining position.




Look north Look east Look west

PHASE POSITIONS
15 kV DISTRIBUTION PRIMARY

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 9-105 7/07


Notes:

Maintain full impulse and flashover strength; see Section 7. This drawing is for dead-ends on wood crossarms or wood poles.

See 2.8 for information on crossorm. Use heavy duty crossorms(C31D) and braces(TB60) and gain plates(C37) for 3000 lb construction.

PRIMARY DEAD – ENDS 15 kV DISTRIBUTION PRIMARY				
ISSUE	PAGE NUMBER		WHZ.	
7/18	9-115	OVERHEAD CONSTRUCTION STANDARD	ppl	

HAND WRAPPED TIES

LOOPED WESTERN UNION (LWU) - SIDE GROOVE TIE FIG I

CROSS TOP (CT) TOP GROOVE TIE FIG II

FIG I & II TO BE USED FOR ALL BARE AND COVERED CONDUCTOR OF #4 AWG OR SMALLER.

BRIDLE TIE SIDE GROOVE FIG III

BRIDLE TIE TOP GROOVE
FIG IV
FIG III & IV TO BE USED ON ALL COPPER & ALUMINUM CONDUCTORS LARGER THAN #4
AWG

	HAND WRAPPED TIES 15 kV DISTRIBUTION PRIMARY					
	SMIZZ		PAGE NUMBER	ISSUE		
i U	se ppl	OVERHEAD CONSTRUCTION STANDARD	9-118	7/11		

Supersedes 1/06 Issue – 25-35 kV Construction Information is Relocated to New Section 20

TIE CONDUCTORS

TABLE I – LENGTH AND TYPE - FOR BARE LINE CONDUCTOR

Line Conductor Size	Tie Wire	Std	Class 55-4 Insulator – 15kV			
AWG-kcmil	Size AWG	Item	Side Groo	ove	Top Groove	
			Length	Type	Length	Type
			(Inches)		(Inches)	
# 6 Cu	# 6 Cu	W22A	28	LWU	32	CT
#6A CW &CCW	# 6 Cu	W22A	32	LWU	36	CT
# 4 Cu	# 6 Cu	W22A	38	LWU	40	CT
# 3 Cu	# 6 Cu	W22A	55	Bridle	46	Bridle
# 2 Cu	# 4 Cu	W22BA	62	Bridle	54	Bridle
# 1/0 Cu	# 4 Cu	W22BA	70	Bridle	60	Bridle
# 4/0 Cu	# 4 Cu	W22BA	76	Bridle	64	Bridle
Larger Cu	# 4 Cu	W22BA	•	Bridle	-	-
# 4 ACSR	#4 AL	W22C	38	LWU	40	CT
# 2 ACSR	#4 AL	W22C	62	Bridle	53	Bridle
# 1/0 ACSR	#4 AL	W22C	66	Bridle	56	Bridle
# 4/0 AAC	#4 AL	W22C	78	Bridle	66	Bridle
336.4 AAC	#4 AL	W22C	86	Bridle	74	Bridle
336.4 ACSR3000#	#4 AL	TT1B	Preform	Bridle	Preform	Bridle
477.0 AAC	#4 AL	W22C	105	Bridle	93	Bridle
477.0 ACSR	#4 AL	W22C	105	Bridle	93	Bridle
795 AAC	#4 AL	W22C	108	Bridle	96	Bridle

TABLE II - LENGTH AND TYPE - FOR COVERED AND TREE LINE CONDUCTOR

Note: If insulation is removed 30", use bare tie wire (see above)

Line Conductor Size	Tie Wire	Std	Class 55-4 Insulator – 15kV			
AWG-kcmil	Size AWG	Item	Side Groo	ove	Top Groove	
			Length	Type	Length	Type
			(Inches)		(Inches)	
# 6 Cu	#4 AL TPR	W22D	28	LWU	32	CT
#6A CW &CCW	#4 AL TPR	W22D	32	LWU	36	CT
# 4 Cu	#4 AL TPR	W22D	38	LWU	40	CT
# 3 Cu	#4 AL TPR	W22D	38	Bridle	50	Bridle
# 2 Cu	#4 AL TPR	W22D	62	Bridle	54	Bridle
# 1/0 Cu	#4 AL TPR	W22D	68	Bridle	60	Bridle
# 4/0 Cu	#4 AL TPR	W22D	77	Bridle	68	Bridle
Larger Cu	#4 AL TPR	W22D	-	Bridle	-	-
# 4 ACSR	#4 AL TPR	W22D	38	LWU	40	CT
# 2 ACSR	#4 AL TPR	W22D	62	Bridle	53	Bridle
# 1/0 ACSR	#4 AL TPR	W22D	66	Bridle	56	Bridle
# 4/0 AAC	#4 AL TPR	W22D	78	Bridle	66	Bridle
336.4 AAC	#4 AL TPR	W22D	86	Bridle	74	Bridle
477.0 AAC	#4 AL TPR	W22D	105	Bridle	93	Bridle
795 AAC	#4 AL TPR	W22D	108	Bridle	96	Bridle

	TIE CONDUCTORS 15 kV DISTRIBUTION PRIMARY					
	ISSUE	PAGE NUMBER		SMIZE.		
Busi	7/11 ness Use	9-120	OVERHEAD CONSTRUCTION STANDARD	ppl		

SINGLE LOOP HOT LINE TIES

1. <u>USE SINGLE LOOP TIES FOR SPANS UNDER 160 FEET</u>. where lines are to be worked hot. Use double ties for spans over 160 feet. and for all angle poles.

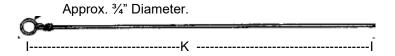


Figure A - Prepare Loop - Two Required

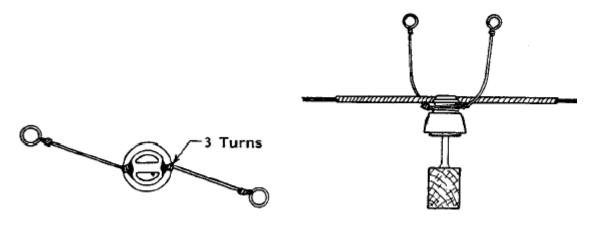


Figure B - Loops In Place On Insulator

Figure C - Conductor In Place

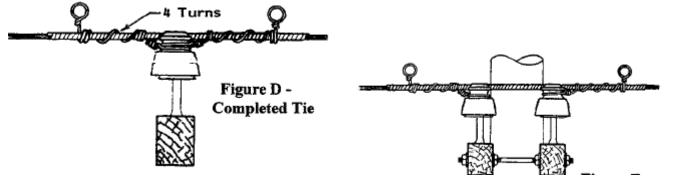


Figure E - On Double Arms

Line Wire	Tie Wire	Length	Line Wire	Tie Wire	Length
Size	Size	"K"	Size	Size	"K"
AWG-kcmil	AWG-kcmil	(Inches)	AWG-kcmil	AWG-kcmil	(Inches)
#3 Copper	#6 Copper	32	#1/0 6201 AI.	#4 Alum.	34
#1/0 Copper	#4 Copper	36	#4/0 6201 AI.	#4 Alum	40
#4/0 Copper	#4 Copper	40	336.4 ECA	#4 Alum	44
#4 ACSR	#4 Alum.	28	477.0 ECA	#4 Alum	46
#1/0 ACSR	#4 Alum.	34			

		SINGLE LOOP HOT LINE TIES 15 kV DISTRIBUTION PRIMAR		
Ī	AMAZ		PAGE NUMBER	ISSUE
s U	se ppl	OVERHEAD CONSTRUCTION STANDARD	9-122	7/11

DOUBLE LOOP HOT LINE TIES

1. <u>USE DOUBLE LOOP TIES FOR SPANS OVER 160 FEET</u>. where lines are to be worked on hot and for all angle poles. Use single ties for spans under 160 feet.

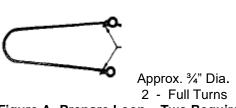
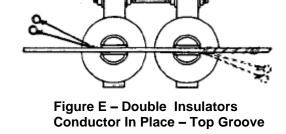



Figure A- Prepare Loop – Two Required

1 Full Turn in Necks of all Ties Shown

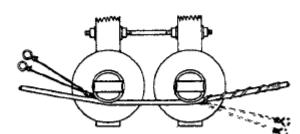


Figure B – Loops In Place On Insulator (Top View)

Figure F – Double Insulators Conductor In Place – Side Groove

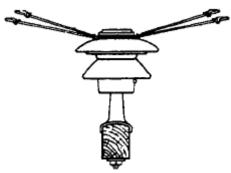


Figure C – Loops In Place On Insulator

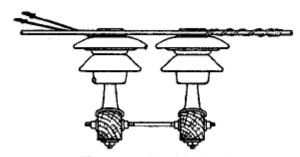


Figure G – Double Insulators Elevation

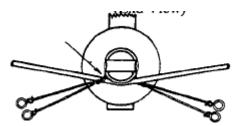


Figure D – Conductor In Place (In Side Groove For Angle In Line)

	DOUBLE LOOP HOT LINE TIES 15 kV DISTRIBUTION PRIMARY				
	ISSUE	PAGE NUMBER		SM/A	
Busi	7/11 ness Use	9-124	OVERHEAD CONSTRUCTION STANDARD	ppl	

Pole spans are limited primarily by the sag characteristics of the primary conductor relative to the horizontal and vertical separations provided by the standard pole top arrangement. Increases in separations at the pole may permit longer spans. Transverse wind loadings may not allow use of extremely long spans. Maximum spans are determined by the following criteria:

Horizontal Clearance (Distance between Phase Conductors at the same level)

Maximum spans are limited by the HORIZONTAL clearance of the primary conductors outlined in the NESC (National Electrical Safety Code) rule 235B.

The clearance at the supports of conductors shall not be less than the greater of the following:

- The clearance shown here (from NESC Table 235-1):
 - 12" for supply conductors with 0 to 8.7 kV between conductors of the same or different circuits.
 - o 15" for supply conductors with 8.7 to 15 kV between conductors of the same or different circuits.
 - See NESC Rule 235B1a and Table 235-1 for other voltages.
- The clearance (in inches) given by one of the following formulas at a conductor temperature of 60°F (15°C), final unloaded sag with no wind:
 - For conductors smaller than AWG #2: $c = (0.3)(V) + 4.04\sqrt{s 24}$.
 - For conductors of AWG #2 and larger: = $(0.3)(V) + 8\sqrt{\frac{s}{12}}$.

Where,

c = horizontal clearance between the primary conductors, in inches,

V = voltage between the conductors, in kV, and

s = sag of the conductor having the greater sag, in inches.

Clearances are between conductors located at approximately the same level.

Vertical Clearance (Primary to Secondary or Neutral)

Maximum spans are limited by the VERTICAL clearance between primary and secondary or neutral conductors outlined in NESC Rule 235C and Section 7.11 of these Standards. The separation shown on the pole top drawings in this section maintain the 12 inch minimum mid-span clearance. Clearances between conductors that are directly above and below each other are limited by the sag of the primary conductor and the sag of either secondary or neutral conductors.

A comparison of sags under two different operating conditions must be evaluated and the operating condition requiring the greatest separation at the structure must be used. These conditions are as follows:

- The upper conductor is at final sag at the greater of 120°F (50°C) or the maximum operating temperature for which the line is designed to operate and the lower conductor is at final sag at the same ambient conditions, 50°F (10°C), as the upper conductor without electrical loading, or
- The upper conductor is at final sag at 32°F (0°C)with ½" radial thickness of ice, and the lower conductor is at final sag without electrical or ice loading at the same ambient conditions, 32°F (0°C), as the upper conductor.

Generally, the sag of primary conductor (bare or tree wire) at its maximum operating temperature of 194°F (90°C) is greater than its sag under ice loaded conditions. Generally, the sag of a spacer cable messenger under ice loaded conditions is greater than its sag at its maximum operating temperature of 120°F (590°C). A comparison should, however, be made.

MAXIMUM SPANS 15 kV DISTRIBUTION PRIMARY				
WIII		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	9-200	7/18	

Primary conductors, bare or tree wire, are designed to limit the maximum conductor operating temperature to 194°F (90°C) with a summer ambient temperature of 100°F (37.7°C) and a winter ambient temperature of 50°F (10°C). The worst case maximum conductor operating temperature clearance condition will occur when the lower conductor, secondary or neutral, is at the winter ambient temperature of 50°F (10°C).

Sag charts for bare and tree wire primary conductors and neutrals is in Section 6-Primary Conductors. Sag charts for secondary wires are in Section 10-Secondaries.

An additional limit on span lengths comes from NESC Rule 235C2b(3). For span lengths in excess of 150', a supply conductor above 750V but less than 50kV shall not sag lower in the span than a straight line joining the points of support of the highest communication cable or conductor when the supply conductor is at a conductor temperature of 60°F (15°C), no wind displacement and final unloaded sag conditions. This requirement must be met whether or not there is a secondary or neutral wire below this primary conductor.

Vertical Clearance (Secondary to Communications)

Maximum spans are limited by the VERTICAL clearance between secondary or neutral conductors and communication conductors outlined in NESC Rule 235C and Section 7.11 of these Standards. The separation shown on the pole top drawings in this section maintain the 30 inch minimum mid-span clearance. Clearances between conductors that are above and below each other and are limited by the sag of the secondary or neutral conductors and the sag of the communication conductors.

A comparison of sags under two different operating conditions must be evaluated and the operating condition requiring the greatest separation at the structure must be used. These conditions are as follows:

- The upper conductor is at final sag at the greater of 120°F (50°C) or the maximum operating temperature for which the line is designed to operate and the lower conductor is at final sag at the same ambient conditions, 50°F (10°C), as the upper conductor without electrical loading, or
- The upper conductor is at final sag at 32°F (0°C) with ½" radial thickness of ice, and the lower conductor is at final sag without electrical or ice loading at the same ambient conditions, 32°F (0°C), as the upper conductor.

Generally, for secondary triplex or quadplex, the sag under ice loaded condition is greater than the sag at 120°F (50°C), the maximum operating temperature of the supporting neutral. A comparison should, however, be made.

	MAXIMUM SPANS 15 kV DISTRIBUTION PRIMARY				
	ISSUE	PAGE NUMBER		SMIZZ	
cina	7/18	9-201	OVERHEAD CONSTRUCTION STANDARD	ppl	

EXAMPLE CALCULATION - MAXIMUM SPANS

Given:

15 kV class construction

Primary Voltage - 15kV effectively grounded

Pole Framed to 9-411A

Grade C construction

1 – 40 ft., class 3 wood pole JT NE (84" Allocated)

3 - 477 kcmil AAC bare conductors (W21BA)

1/0 AAAC triplex secondary cable (W15C)

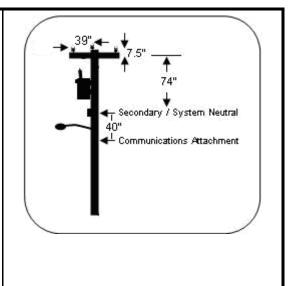
Ø to Ø Primary Horizontal Separation = 39" (9-206)

Vertical Pole Spacing (74"+8" = 82")

(8" = thru bolt of xarm to conductor on top of insulator)

40" Spacing (Bottom Secondary Bracket to top of comm.)

For 300' Ruling Span


477 - Sag @ 60°F final, no wind, no ice = 114.40" (6-114).

For 135' Span*

477 - Sag @ 194°F final, no wind, no ice = 50"

1/0 Triplex - Sag @ 50°F final, no wind, no ice = 11"

* = Calculated Values (Steps 5-7)

Maximum Span Based on Horizontal Separations Between Primary Conductors: Steps 1-2

Step	Action Use	
1	Determine maximum primary conductor sag based on 39" horizontal separation between primary conductors (see Page 9-200).	From above for #2 AWG and greater: $c = (0.3)(V) + 8\sqrt{\frac{s}{12}}$ where, $s = \text{Sag (inches)} \qquad = \text{unknown}$ $c = \text{Primary phase to phase separation (inches)} \qquad = 39"$ $V = \text{Circuit voltage, phase-to-phase (kV)} \qquad = 15\text{kV}$ Therefore, $s = 12 * \left(\frac{c - 0.3V}{8}\right)^2$ and $s = 12 * \left(\frac{39 - 0.3(15)}{8}\right)^2$ $s = 223.2"$

	EXAMPLE CALCULATION - MAXIMUM SPANS 15 kV DISTRIBUTION PRIMARY			
	SMIZZ		PAGE NUMBER	ISSUE
Business Use	ppl	OVERHEAD CONSTRUCTION STANDARD	9-202	7/18

Step	Action	Use
2	Determine the maximum span based on maximum primary conductor sag of 223" for 477kcmil AAC Bare Conductor.	$s_m = s_r * \left(\frac{L_m^2}{L_r^2}\right)$
		Where,
		$\begin{array}{lll} s_m = \text{Maximum sag determined in Step 1 (inches)} = 223.2" \\ s_r = \text{Ruling span sag (inches)} &= 114.4" \\ L_m = \text{Maximum span (feet)} &= \text{unknown} \\ L_r = \text{Ruling span (feet)} &= 300' \end{array}$
		Therefore,
		$L_m = L_r * \sqrt{\frac{s_m}{s_r}}$
		and
		$L_m = L_r * \sqrt{\frac{s_m}{s_r}}$
		$L_m = L_r * \sqrt{\frac{s_m}{s_r}}$ $L_m = 300 * \sqrt{\frac{223.2}{114.4}}$
		$L_m = 420'$

Determine Sag of Actual Span versus Ruling Span: Steps 3-7

Step	Action	Use
3	Determine Sags in "Other Span". (135' span)	$S_a = S_r * \left(\frac{L_a^2}{L_r^2}\right)$ Where, $S_a = \text{Sag of Actual Span (inches)}$ $S_r = \text{Sag of Ruling Span (inches)}$ $L_a = \text{Length of Actual Span (feet)}$ $L_r = \text{Length of Ruling Span (feet)}$
4	Calculate sag for 135' span - 477 Sag @ 194°F (90°C) Final Unloaded (See 6-114)	$S_a = \text{Sag of Actual Span} = \text{Unknown}$ $S_r = \text{Sag of Ruling Span} = 42.96" (125' \text{ Ruling span })$ $L_a = \text{Length of Actual Span} = 135'$ $L_r = \text{Length of Ruling Span} = 125'$ $S_a = S_r * \left(\frac{L_a^2}{L_r^2}\right)$ $S_a = 42.96 * \left(\frac{135^2}{125^2}\right)$ $S_a = 50"$

		EXAMPLE CALCULATION - MAXIMUM SPANS 15 kV DISTRIBUTION PRIMARY			
	ISSUE	PAGE NUMBER		WIII	
Busi	7/18 ness Use	9-203	OVERHEAD CONSTRUCTION STANDARD	ppl	

Step	Action	Use
5	Calculate sag for 135' span - 1/0 Triplex	S_a = Sag of Actual Span = Unknown L_a = Length of Actual Span = 135' L_r = Length of Ruling Span = 150'
	Sag @ 50°F (10°C), unloaded, initial (See 10-5)	S_r = Sag of Ruling Span = 13" (150' Ruling span)
		$S_a = S_r * \left(\frac{L_a^2}{L_r^2}\right)$ $S_a = 13 * \left(\frac{135^2}{150^2}\right)$ $S_a = 11$ "
	Sag @ 32°F (0°C) , ½" ice, final (See 10-5)	$S_r = {\rm Sag~of~Ruling~Span} = 13"~(150'~{\rm Ruling~span}~)$ $S_a = S_r * \left(\frac{L_a^2}{L_r^2}\right)$ $S_a = 31 * \left(\frac{135^2}{150^2}\right)$ $S_a = 25"$

Maximum Span Based on Vertical Separations between Primary, Secondary and Communication Conductors: Steps 8-10

Step	Action	Use
6	Calculate mid-span separation between primary and secondary	Vertical Spacing at Pole Primary to center of crossarm Center of crossarm to secondary Total Primary Conductor Sag Secondary Conductor Sag Mid-span vertical separation between primary and secondary (12" minimum required per Section 7)
7	Calculate mid-span separation between secondary and communications	Vertical Spacing at Pole Secondary to communications (40" + 2" from Sec cond to bottom of Sec Bracket) Secondary Conductor Sag - 25" Mid-span vertical separation between secondary and communications (30" minimum required per Section 7) Note 1: To meet the required 30" mid-span clearance, the vertical spacing at the pole between secondary and communications would need to be increased to 55". Note 2: This calculation is conservative because it makes no allowance for communications cable sag. If the communications cable sag is known, it may be accounted for as the secondary sag is accounted for in Step 7 above.

Determine Clearance between Sagged Primary Conductor and Communication's In-Line-of-Site (>150' & >750V NESC Rule 235C.2b.3): Steps 11-12

EXAMPLE CALCULATION - MAXIMUM SPANS 15 kV DISTRIBUTION PRIMARY			
NW/A	PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	9-204	7/19

Step	Action	Use	
8	Check whether sagged primary conductor is above or below communications line-of-sight.	Vertical Spacing at Pole Primary to center of crossarm Center of crossarm to secondary Secondary to communications Total 137 Primary Conductor Sag Sagged primary conductor above comm. line-of-sight (0" minimum required per Section 7) Note: This NESC rule applies only for spans greater than 150'. calculation is shown here as an example even though this is less than 150'.	" "" "" The

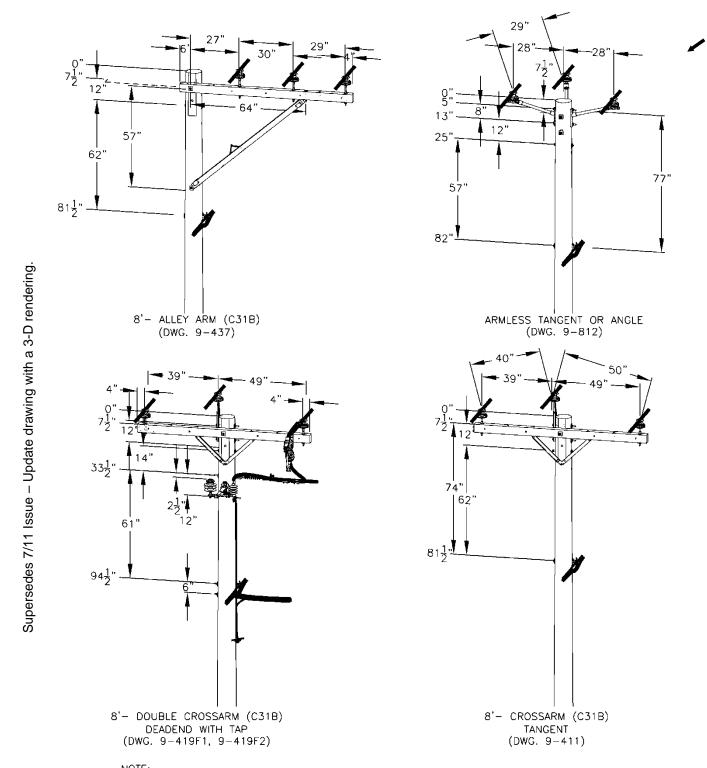
Conclusions:

Horizontal Clearances – The horizontal clearance of 39" will allow a maximum span of up to 420' for 477 Bare AAC before mid span contact becomes an issue between primary conductors. This calculated value, per NESC guidelines, is well beyond the span of 135' in the above example. (Steps 1 - 4)

Vertical Clearances – There are several vertical clearances that need to be evaluated regarding maximum spans. They are as follows:

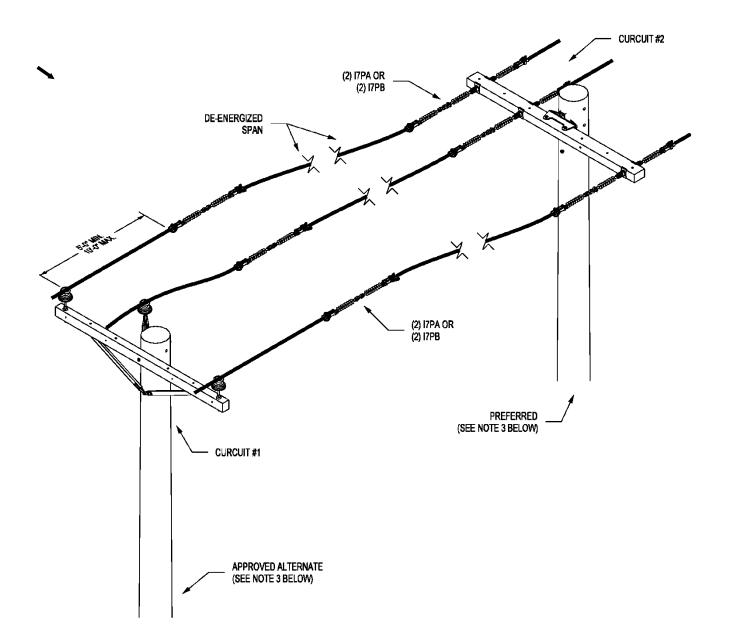
<u>Primary to Secondary</u> – The vertical mid-span clearance between the primary and secondary conductor was calculated to be 43" for a span of 135' in the above example. The NESC minimum clearance shown in Section 7, Page 7-19 indicates 12" is the minimum required at mid span. Therefore, mid span contact between primary and the conductor in the secondary position is not an issue in the above example. (Steps 6 & 7)

Secondary to Communications


<u>Span Requirements:</u> The span of 135' will not allow a vertical mid-span clearance of 30" between the secondary conductor (#1/0 Triplex) and the communications cable. This span can only be accommodated by increasing the at-pole separation between the secondary and communications by: (i) installing a taller pole, (ii) raising the secondary bracket to the minimum dimensions indicated in drawing (9-411A), (iii) requesting the communications company to lower their cable, or (iv) having the communications company sag their cable following the sag of the secondary conductor in the secondary position maintaining 30" mid span clearance.

<u>Ice Loaded Conditions</u>: Sag information for Conductors in the Secondary Position should be shared with the various Communication Companies to assist them in evaluating their cable sag requirements to meet NESC codes. Both Electric and Communication companies are allocated their attachment space on poles; however, a mid span clearance of 30" must be maintained when ice loading conditions occur. (See Section 7)

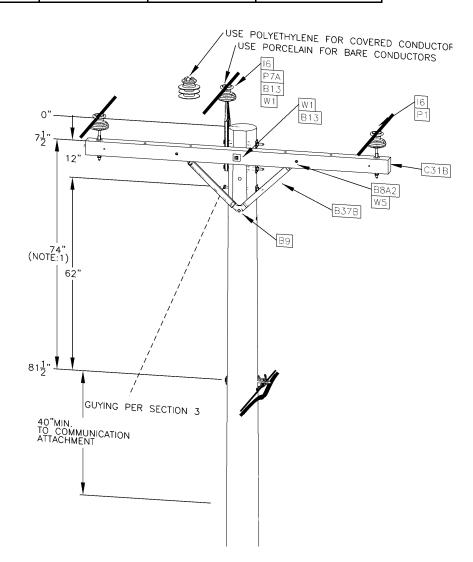
Maximum spans are also limited by pole, crossarm, pin and insulator loadings and strengths. See Section 2.


	EXAMPLE CALCULATION - MAXIMUM SPANS 15 kV DISTRIBUTION PRIMARY			
	ISSUE	PAGE NUMBER		WIII
ıci	7/18	9-205	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 09.00.004

-THESE DIMENSIONS ARE SHOWN AS GENERAL INFORMATION FOR STANDARD POLE TOPS USING STANDARD MATERIALS. REFER TO SECTION 9 PRIMARY DRAWINGS FOR OTHER ARRANGEMENTS.

	SPACING 15 kV DISTRIBUTION PRIMARY				
Ī	WIII		PAGE NUMBER	ISSUE	
	ppl	OVERHEAD CONSTRUCTION STANDARD	9-206	7/16	



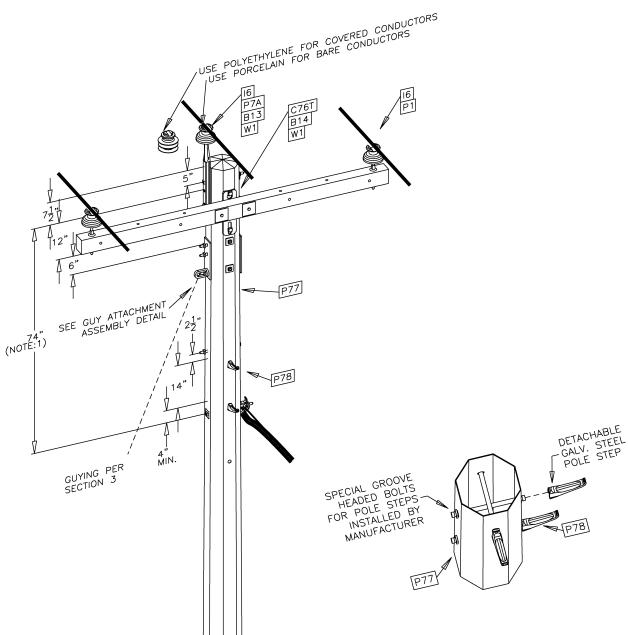
NOTES:

- 1. Install a de-energized span between circuits of different voltages. Do not connect the span conductors to either circuit. Do not ground span.
- 2. Use <u>two</u> polymer deadend insulators at either end of de-energized span. Use insulators appropriate for the higher voltage circuit at both ends.
- 3. Preferred construction for both ends of the de-energized span is to deadend the line conductors to a fiberglass deadend crossarm (see structure at right in figure above). A nonpreferred alternate is to installation double in-line insulators (see structure at left above). This alternate is allowed only when the conductors for both circuits are the same and deadending conductors to a crossarm is impractical.

	ISOLATING CIRCUITS OF DIFFERENT VOLTAGES						
	ISSUE	PAGE NUMBER		WIIV			
Quci	7/16	9-207	OVERHEAD CONSTRUCTION STANDARD	ppl			

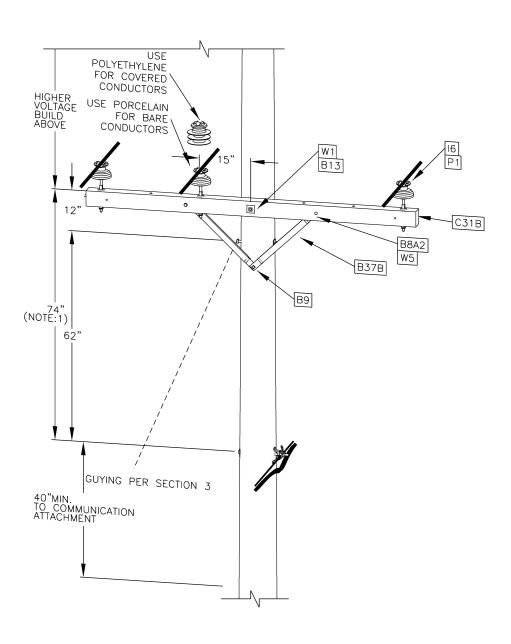
	0-15KV 3Φ - Bare	MU = @9-411ACL	0-15KV 3Φ - Covered
MU = @9-411A			
MU = @9-411B	0-15KV 1Φ - Bare	MU = @9-411BCL	0-15KV 1Φ - Covered

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPANS WITH 1/0 TRIPLEX SEC				
SEC BRKT	חסו ב כנזב	MAI	N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	135	135	135	
81.5	45 JT-111"	220	220	220	
	SPANS WITH	1/0 AAAC	NEUTRAL		
SEC BRKT	POLE SIZE	MAI	N LINE		
ATTACHMENT	FULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	225	195	186	
81.5	45 JT-111"	300	-		
102	45 JT-111"	-	250		
109	45 JT-111"	-	1	240	
THIS TABLE	THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE				


NOTES

- 1. This clearance can be reduced to a minimum of 48" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. For single phase delta circuit construction, omit the center phase.

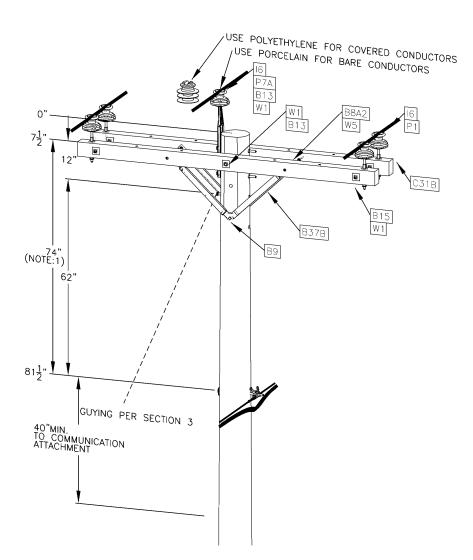
	1Φ (DELTA) AND 3Φ CROSSARM POLE TOP – 0-15 kV 0° - 10°						
	PAGE NUMBER ISSU						
Use	ppl	OVERHEAD CONSTRUCTION STANDARD	9-411	7/16			


Supersedes 7161 Issue - Replaced guying detail with reference to Section for guying information.

NOTES:

- This clearance can be reduced to a minimum of 52" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- Detachable steel pole steps maybe left installed while maintaining an 8 foot minimum from ground level.
- 3. If grounding is necessary, install down ground & molding with appropriate grounding kit (Std Item S34) which includes nylon clips and self tapping screws. Place clips approximately 12"-18" apart.
- Install 12.5M maximum guy wire. If 25M is required, install 2 separate 12.5M guys.
- For single phase delta circuit construction, omit the center phase.

	FIBERGLASS 1Φ (DELTA) AND 3Φ CROSSARM POLE TOP – 0-15 kV 0° - 10°					
ISSUE PAGE NUMBER						
Busi	7/20 ness Use	9-411F	OVERHEAD CONSTRUCTION STANDARD	ppl		



NOTES

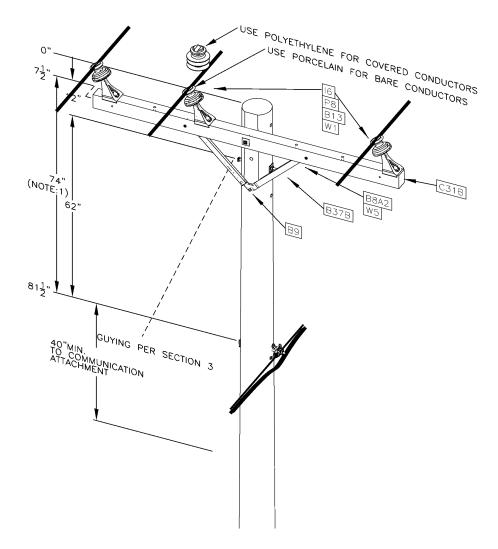
1. This clearance can be reduced to a minimum of 48" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

ALTERNATE 3Φ CROSSARM POLE TOP – 0-15 kV – 0° - 10°						
(FOR USE WHE	(FOR USE WHEN POLE TOP IS UNAVAILABLE FOR CENTER PHASE)					
SMAZ	PAGE NUMBER ISSUE					
ppl	OVERHEAD CONSTRUCTION STANDARD	9-411C	7/19			

	PRIMARY CONSTRUCTION					
ISSUE	PAGE NUMBER		WIN			
7/19	9-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl			

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPANS WI	TH 1/0 TRI	PLEX SEC		
SEC BRKT	DOL E 0175	MA]	IN LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	135	135	135	
81.5	45 JT-111"	220	220	220	
	SPANS WI	TH 1/0 AAA	AC NEUTRAL		
SEC BRKT	POLE SIZE	MAI	N LINE		
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	225	195	186	
81.5	45 JT-111"	300			
102	45 JT-111"		250		
109	45 JT-111"			240	
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

NOTES

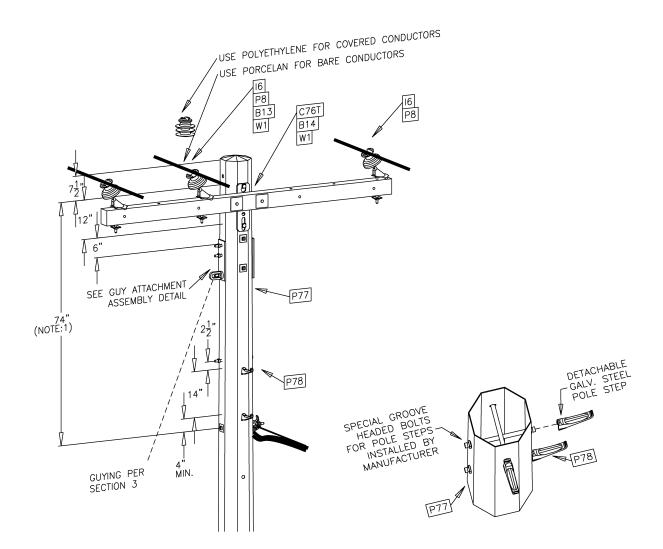

- 1. This clearance can be reduced to a minimum of 48" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. For single phase delta circuit construction, omit the center phase.

1Φ (DELTA) AND 3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV
CROSSING AND ANGLES - 0° - 10°

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 9-412 7/17

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPANS W	ITH 1/0 TR	IPLEX SEC		
SEC BRKT	DOLE 0175	MA]	N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	1 35	135	135	
81.5	45 JT-111"	220	220	220	
	SPANS WIT	H 1/0 AAA(NEUTRAL		
SEC BRKT	DOLE 017E	MA]	N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	225	195	186	
81.5	45 JT-111"	300			
102	45 JT-111"		250		
109	45 JT-111"	-		240	
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					


NOTES

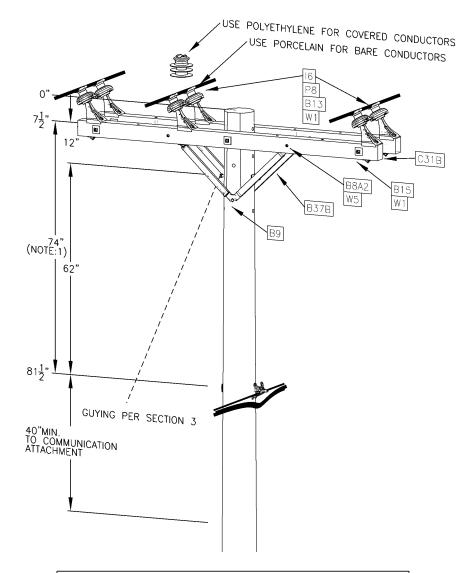
- This clearance can be reduced to a minimum of 48" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. For single phase delta circuit construction, omit the center phase.

	PRIMARY CONSTRUCTION					
ISSUE	PAGE NUMBER		WINZ			
7/19	9-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl			

		Doc. # ST. 09.00.005				
MU =	@9-413AF	0-15KV 3Ф - Bare	MU = @9-413AFCL	0-15KV 3Ф - Covered		

MU = @9-413BFCL

NOTES:

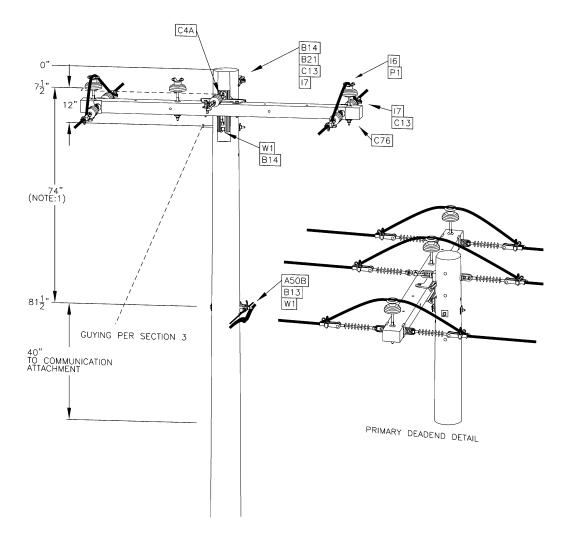

MU = @9-413BF

0-15KV 1Φ - Bare

- 1. This clearance can be reduced to a minimum of 52" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. Detachable steel pole steps maybe left installed while maintaining an 8 foot minimum from ground level.
- 3. If grounding is necessary, install down ground & molding with appropriate grounding kit (Std Item S34) which includes nylon clips and self tapping screws. Place clips approximately 12"-18" apart.
- 4. Install 12.5M maximum guy wire. If 25M is required, install 2 separate 12.5M guys.
- 5. For single phase delta circuit construction, omit the center phase.

FIBERGLASS 1Φ (DELTA) AND 3Φ CROSSARM POLE TOP – 0-15 kV					
11° - 20 °					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	9-413F	7/20		

0-15KV 3Φ - Bare


SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS						
SPANS WITH 1/0 TRIPLEX SEC						
SEC BRKT	DOLE 0175	MAIN LINE				
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
81.5	40 JT-84"	135	135	135		
81.5	45 JT-111"	220	220	220		
SPANS WITH 1/0 AAAC NEUTRAL						
SEC BRKT	DOLE 0175	MAIN LINE				
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
81.5	40 JT-84"	225	195	186		
81.5	45 JT-111"	300				
102	45 JT-111"		250			
109	45 JT-111"	-		240		
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE						

NOTES

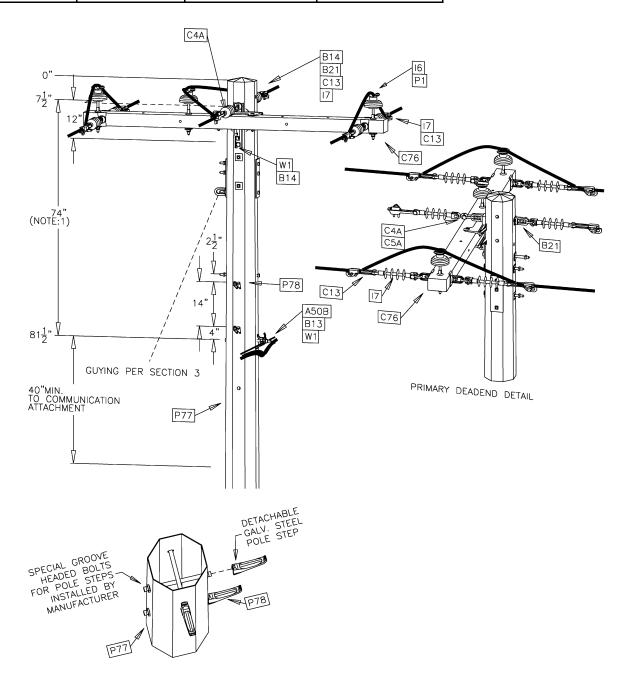
- This clearance can be reduced to a minimum of 48" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. For single phase delta circuit construction, omit the center phase.

	1Φ (DELTA) AND 3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV CROSSINGS 11° - 45° / ANGLES - 21° - 45°					
	ISSUE	PAGE NUMBER		AMIZ		
Busi	7/16 ness Use	9-414	OVERHEAD CONSTRUCTION STANDARD	ppl		

		0-15KV 3Φ - Bare	MU = @9-415ACL	U-15KV 3Ψ - Covered
MU =	= @9-415A			
MU =	= @9-415B	0-15KV 1Φ - Bare	MU = @9-415BCL	0-15KV 1Φ - Covered

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS							
	SPANS WITH 1/0 TRIPLEX SEC						
SEC BRKT	BBKT BOLE OLZE MAIN LINE						
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC			
81.5	45 JT-111"	135	135	135			
81.5 45 JT-111" 220 220 220							
	SPANS WITH 1/0 AAAC NEUTRAL						
SEC BRKT	ר כזייר	MAI	N LINE				
ATTACHMENT	POLE SIZE	336.4 AAC	477 AAC				
81.5	45 JT-111"	255	185	175			
86	86 45 JT-111" 300						
106	106 45 JT-111" 240						
107	107 45 JT-111" 225						
THIS TABLE	BASED ON E	QUAL OWNER	RSHIP PERCEN	NTAGE			

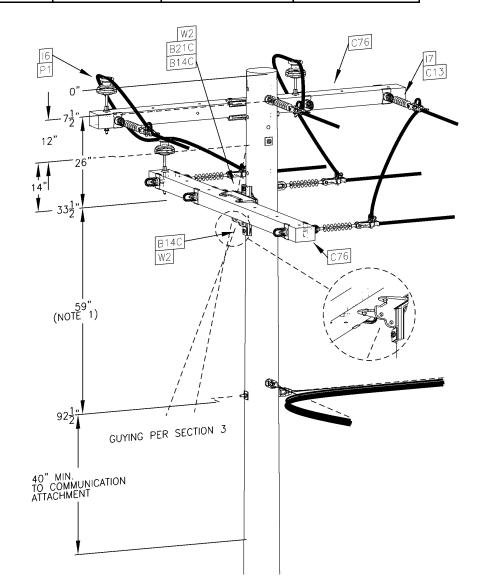
- This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. For single phase delta circuit construction, omit the center phase.


1Φ (DELTA) AND 3Φ DEADEND CROSSARM POLE TOP – 0-15 kV 46° - 60° ANGLES / BACK-TO-BACK DEADENDS (TANGENT) OVERHEAD CONSTRUCTION STANDARD 1 PAGE NUMBER 1 ISSUE 7/20

 © 2022 PPL Corporation. All rights reserved.

 Doc. # ST. 09.00.005

 MU = @9-415AF
 0-15KV 3Φ - Bare
 U-15KV 3Φ - Covered


 MU = @9-415BF
 0-15KV 1Φ - Bare
 MU = @9-415BFCL
 0-15KV 1Φ - Covered

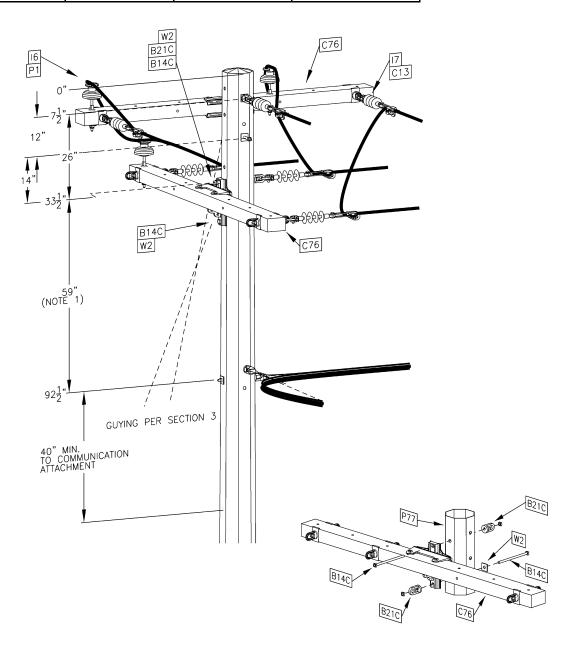
- 1. This clearance can be reduced to a minimum of 60" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. Detachable steel pole steps maybe left installed while maintaining an 8 foot minimum from ground level.
- 3. If grounding is necessary, install down ground & molding with appropriate grounding kit (Std Item S34) which includes nylon clips and self tapping screws. Place clips approximately 12"-18" apart.
- 4. Install 12.5M maximum guy wire. If 25M is required, install 2 separate 12.5M guys.
- 5. For single phase delta circuit construction, omit the center phase.

	FIBERGLASS POLE - 1Φ (DELTA) AND 3Φ CROSSARM POLE TOP – 0-15 kV							
	CROSSINGS - 0° - 60° / ANGLES 21° - 60° / BACK-TO-BACK DEADENDS (TANGENT)							
	ISSUE	PAGE NUMBER		SMIZE.				
Busi	7/21 ness Use	9-415F	OVERHEAD CONSTRUCTION STANDARD	ppl				

0-15KV 3Φ - Bare MU = @9-416AMU = @9-416B 0-15KV 1Ф - Bare 0-15KV 1Φ - Covered MU = @9-416BCI

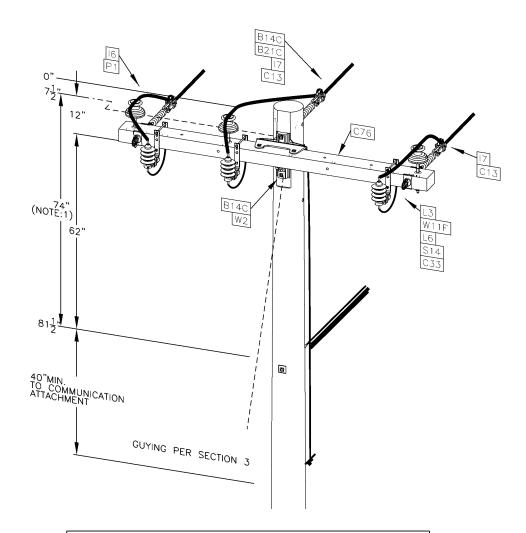
SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS						
SPANS WITH 1/0 TRIPLEX SEC						
SEC BRKT	DOL E 017E	MA]	MAIN LINE			
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
92.5	45 JT-111"	185				
92.5	45 JT-111"		185			
97.5 45 JT-111" 180						
	SPANS W	ITH 1/0 AA	AC NEUTRAL			
SEC BRKT	סט ב כניזר	MAI	N LINE			
ATTACHMENT	ATTACHMENT POLE SIZE		336.4 AAC	477 AAC		
103.5	45 JT-111"	255	i	I		
108.5 45 JT-111"		1	185	-		
108.5	45 JT-111"	1	1	175		
THIS TABLE	BASED ON E	QUAL OWNER	RSHIP PERCEI	NTAGE		

NOTES


Supersedes 7/14 Issue – Update drawing with a 3-D rendering.

- This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- For single phase delta circuit construction, omit the center phase.

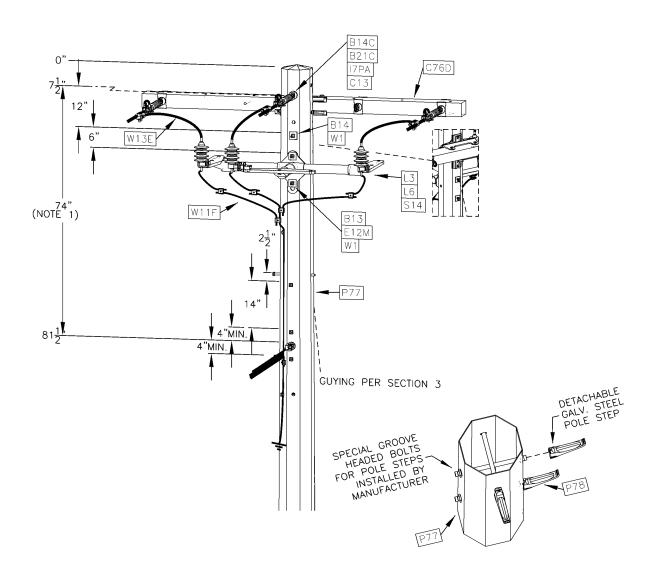
1Φ (DELTA) AND 3Φ FIBERGLASS DEADEND CROSSARM POLE TOP - 0-15 kV ANGLES 61° - 90° AND DEADENDS


OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 9-416 7/16

- 1. This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. Detachable steel pole steps maybe left installed while maintaining an 8 foot minimum from ground level.
- If grounding is necessary, install down ground & molding with appropriate grounding kit (Std Item S34) which includes nylon clips and self tapping screws. Place clips approximately 12"-18" apart.
- 4. Install 12.5M maximum guy wire. If 25M is required, install 2 separate 12.5M guys. The first guy in each direction can be placed on the crossarm bracket (see 9-417F for a side view of the fiberglass crossarm with a guy wire installed).
- 5. For single phase delta circuit construction, omit the center phase.

	FIBERGLASS POLE - 1Φ (DELTA) AND 3Φ FIBERGLASS DEADEND CROSSARM POLE TOP – 0-15 kV - ANGLES - 61° - 90° AND DEADENDS							
	POLE TOP - 0-15 kV - ANGLES - 61 - 90 AND DEADENDS							
	ISSUE	PAGE NUMBER		Wille.				
7/21 9-416F CONSTRUCTION STANDARD PP								

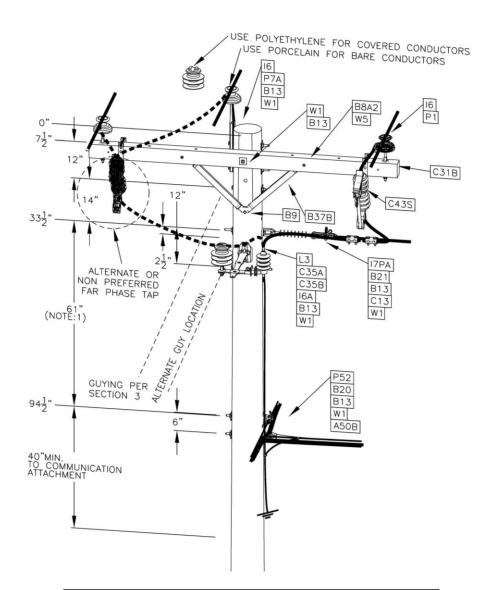
MU = @9-417A	0-15KV 3Φ - Bare	MU = @9-417ACL	0-15KV 3Φ - Covered
MU = @9-417B	0-15KV 1Φ - Bare	MU = @9-417BCL	0-15KV 1Φ - Covered



SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS							
	SPANS WITH 1/0 TRIPLEX SEC						
SEC BRKT	SEC BBKT DOLE CLZE MAIN LINE						
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC			
81.5 40 JT-84" 135 135 135							
81.5 45 JT-111" 220 220 220							
SPANS WITH 1/0 AAAC NEUTRAL							
SEC BRKT	חטור כנזר	MAI	N LINE				
ATTACHMENT	ATTACHMENT POLE SIZE 1/0 AAAC 336.4 AAC 477 AAC						
81.5	40 JT-84"	225	185	175			
86	45 JT-111"	300					
106 45 JT-111" 240							
107	45 JT-111"			225			
THIS TABLE	BASED ON E	QUAL OWNE	RSHIP PERCEI	NTAGE			

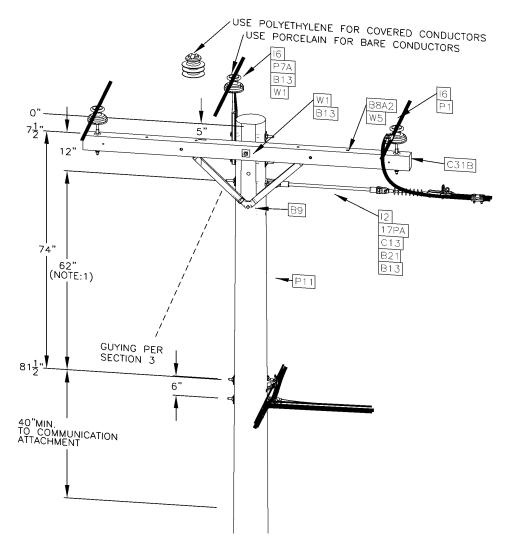
- This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- For single phase delta circuit construction, omit the center phase.

1Φ (DELTA) AND 3Φ FIBERGLASS DEADEND CROSSARM POLE TOP – 0-15 kV DEADENDS				
WIA.	PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	9-417	7/21	


	MU = @9-417AFCL	0-15KV 3Φ - Covered
MU = @9-417BF		0-15KV 1Φ - Covered

- 1. This clearance can be reduced to a minimum of 54" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. Detachable steel pole steps maybe left installed while maintaining an 8 foot minimum from ground level.
- 3. If grounding is necessary, install down ground & molding with appropriate grounding kit (Std Item S34) which includes nylon clips and self tapping screws. Place clips approximately 12"-18" apart.
- 4. Install 12.5M maximum guy wire. If 25M is required, install 2 separate 12.5M guys.
- 5. For single phase delta circuit construction, omit the center phase.

	FIBERGLASS POLE - 1Φ (DELTA) AND 3Φ FIBERGLASS DEADEND CROSSARM POLE TOP – 0-15 kV - DEADENDS						
	ISSUE PAGE NUMBER						
Busi	7/21 ness Use	9-417F	OVERHEAD CONSTRUCTION STANDARD	ppl			


MU = @9-419F1A	0-15KV 3Φ - Bare	MU = @9-419F1ACL	0-15KV 3Φ - Covered
MU = @9-419F1B	0-15KV 1Φ - Bare	MU = @9-419F1BCL	0-15KV 1Φ - Covered

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS						
SPANS WITH 1/0 TRIPLEX SEC						
SEC BRKT	POLE SIZE		MAIN LINE		TAP	
ATTACHMENT	FULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC	
94.5	45 JT-111"	180	180	180	180	
SPANS WITH 1/0 AAAC NEUTRAL						
SEC BRKT	POLE SIZE	MAIN LINE			TAP	
ATTACHMENT	1 000 3120	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC	
94.5	45 JT-111"	300	-	-	1	
102	45 JT-111"	-	250	-	ı	
109	45 JT-111"			240	-	
94.5	45 JT-111"				207	
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE						

 This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

1Φ AND 3Φ CROSSARM POLE TOP – 0-15 kV – (PREFERRED) 0°-10° – TAP TO 1Φ ARMLESS				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	9-419 FIG 1	7/21	

SEE 9-200	FOR ADDI	TIONAL IN	FORMATION	ON MAXIM	IUM SPANS
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	POLE SIZE		MAIN LINE TAP		
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
81.5	40 JT-84"	135	135	135	135
81.5	45 JT-111"	220	220	220	220
	SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT	POLE SIZE		MAIN LINE		TAP
ATTACHMENT	I OLL SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
81.5	40 JT-84"	225	195	186	210
81.5	45 JT-111"	300			
102	45 JT-111"		250		
109	45 JT-111"			240	
81.5	45 JT-111"				210
THIS TAB	LE BASED	ON EQUAL	OWNERSHIP	PERCENT	AGE

- This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. If this configuration is needed, the fused cutout and arrester for the tap **must** be placed on the next pole down the tap. Otherwise, Drawing 9-419 FIG1 shall be used.

	PRIMARY CONSTRUCTION				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/11 ness Use	9-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl	

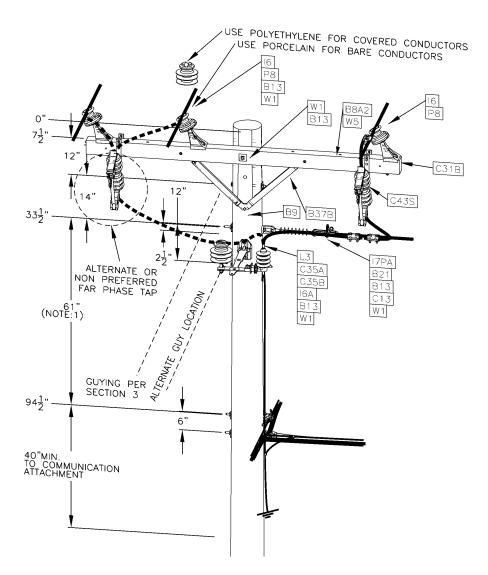
Copyright 2021 PPL. For information regarding property rights, confidentiality and use see Section 1. Printed copies of this document are not document controlled. Refer to the PPL Sky, Distribution Engineering Services website, for the latest version. Controlled copies are maintained in Documentum.

Doc. # ST. 09.00.005

MU = @9-420A	0-5KV 3Φ - Bare	MU = @9-420ACL	0-5KV 3Φ - Covered
MU = @9-420B	0-5KV 1Φ - Bare	MU = @9-420BCL	0-5KV 1Φ - Covered

Drawing 9-420 has been removed.

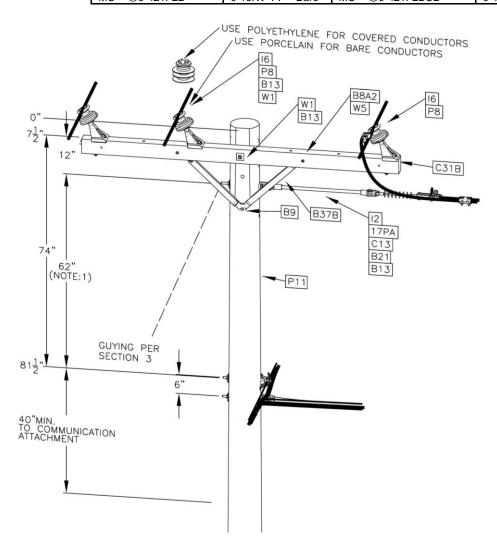
Refer to Drawing 9-435.


Supersedes 7/20 Issue - Corrected page formatting.

1Φ AND 3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV 0°-10°-TAP TO 1Φ ARMLESS DELTA

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE

Business Use



SEE 9-200	FOR ADDIT	IONAL INFO	O NOITAMA	MUMIXAM /	SPANS	
	SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	POLE SIZE		MAIN LINE		TAP	
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC	
94.5	45 JT-111"	180	180	180	180	
	SPANS WITH 1/0 AAAC NEUTRAL					
SEC BRKT	POLE SIZE		MAIN LINE		TAP	
ATTACHMENT	FULE 312E	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC	
94.5	45 JT-111"	300				
102	45 JT-111"		250			
109	45 JT-111"			240		
					227	
94.5	45 JT-111"				207	

 This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

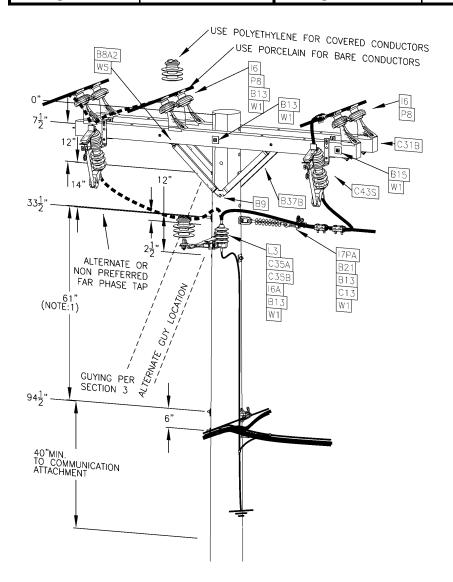
	1Φ AND 3Φ CROSSARM POLE TOP – 0-15 kV – (PREFERRED) 11 ° - 20 ° – TAP TO 1Φ ARMLESS				
	ISSUE	PAGE NUMBER		WIV	
Busi	7/21 ness Use	9-421 FIG 1	OVERHEAD CONSTRUCTION STANDARD	ppl	

MU = @9-421F2A	0-15KV 3Φ - Bare	MU = @9-421F2ACL	0-15KV 3Φ - Covered
MU = @9-421F2B	0-15KV 1Φ - Bare	MU = @9-421F2BCI	0-15KV 1Φ - Covered

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	POLE SIZE		MAIN LINE TAP		
ATTACHMENT	FULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
81.5	40 JT-84"	135	135	135	1 35
81.5	45 JT-111"	220	220	220	220
	SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT	POLE SIZE	MAIN LINE TAP			TAP
ATTACHMENT	TOLL SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
81.5	40 JT-84"	225	195	186	210
81.5	45 JT-111"	300			
102	45 JT-111"		250		
109	45 JT-111"			240	
81.5	45 JT-111"				210
THIS TABL	E BASED O	N EQUAL O	WNERSHIP P	ERCENTAGE	

NOTES: This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

1. If this configuration is needed, the fused cutout and arrester for the tap **must** be placed on the next pole down the tap. Otherwise, Drawing 9-421 FIG1 shall be used.


1Φ AND 3Φ CROSSARM POLE TOP – 0-15 kV – (ALTERNATE) 11 ° - 20 ° – TAP TO 1Φ ARMLESS					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	9-421F2	7/21		

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPAN	NS WITH 1/0	TRIPLEX SE	.c	
SEC BRKT	BOLE C175	MAIN LINE TAP			
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
81.5	40 JT-84"	135	135	135	100
81.5	45 JT-111"	220	220	220	100
SPANS WITH 1/0 AAAC NEUTRAL					
SEC BRKT	POLE SIZE	MAIN LINE TAP			
ATTACHMENT	FOLE 312E	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
81.5	40 JT-84"	225	195	186	80
81.5	45 JT-111"	300			
102	45 JT-111"		250		
109	45 JT-111"			240	
81.5	45 JT-111"				85
THIS TABL	E BASED ON	EQUAL OWN	ERSHIP PERCE	ENTAGE	

- This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. For single phase delta main line, omit center phase on top crossarm.

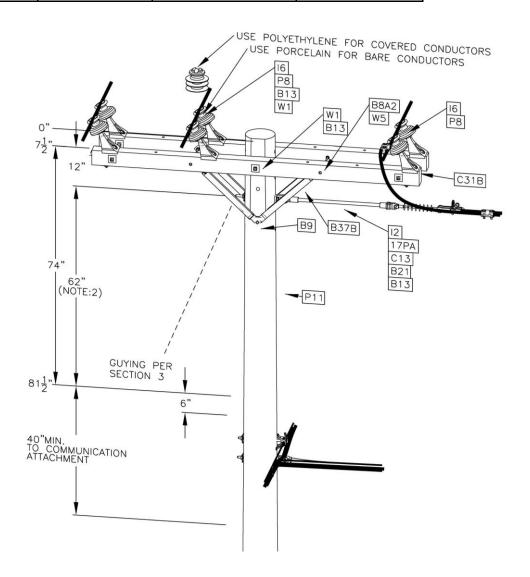
	1Φ AND 3Φ CROSSARM POLE TOP – 0-15 kV 11° - 20° – TAP TO 1Φ ARMLESS - DELTA					
	ISSUE	PAGE NUMBER		WHI.		
Busi	7/21 9-422 CONSTRUCTION STANDARD PPI					

MU = @9-423F1A	0-15KV 3Φ - Bare	MU = @9-423F1ACL	0-15KV 3Φ - Covered
MU = @9-423F1B	0-15KV 1Φ - Bare	MU = @9-423F1BCL	0-15KV 1Φ - Covered

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS						
	SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	POLE SIZE MAIN LINE TAP					
ATTACHMENT	FULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC	
94.5	45 JT-111"	180	180	180	180	
SPANS WITH 1/0 AAAC NEUTRAL						
SEC BRKT	POLE SIZE MAIN LINE TAP			TAP		
ATTACHMENT	FULE 31ZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC	
94.5	45 JT-111"	300		-		
102	45 JT-111"		250			
109	45 JT-111"			240	i	
94.5	45 JT-111"				207	
THIS TABL	<u> </u>					

 This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

1Φ AND 3Φ DOUBLE CROSSARM POLE TOP - 0-15 kV (PREFERRED) CROSSINGS 11 $^{\circ}$ - 45 $^{\circ}$ / ANGLES - 21 $^{\circ}$ - 45 $^{\circ}$ - TAP TO 1Φ ARMLESS

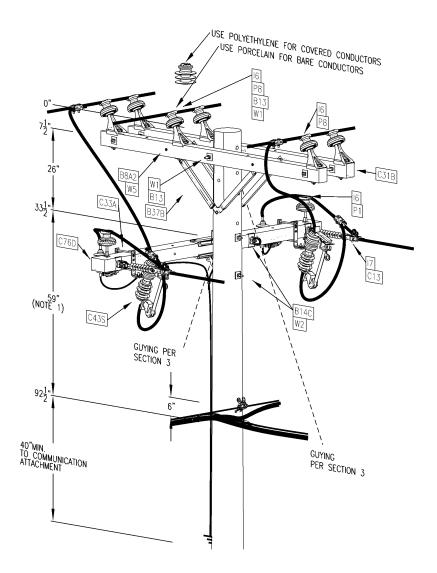

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

9-423 FIG 1 7/21

		,
	(/	
	v	
	_	
	_	
-	~	١
	_	
	T	١
	ᅶ	
		١
	cr	١
	SECHEN	
	CT.	١
	×	ĺ
	C	
	$\overline{}$	
	CL	Į
	iī	١
	v.	į
	_	
		۱
	CAC ISSUE	٠
	N	
	١,	۰
	_	۰
	_	
	_	
	C.	١
	"	١
	U.	į
	_	
	_	
	~	١
	٩L	į
	- 7	
	- 1	
	- 1	
	-	
	_	۱
	C	
	ζ	
	$\frac{c}{c}$	
	$\frac{c}{c}$	
	S	
)
	COLLECT)
	COLLECT	
	Collecte	
	Collected	
	Ë	
_		
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-		
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	
-	_	

MU = @9-423F2A	0-15KV 3Φ - BARE	MU = @9-423F2ACL	0-15KV 3Φ - Covered
MU = @9-423F2B	0-15KV 1Φ - BARE	MU = @9-423F2BCL	0-15KV 1Φ - Covered



SEE 9-200	SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	POLE SIZE	MAIN LINE TAP				
ATTACHMENT	PULE SIZE	1/0 AAAC	1/0 AAAC			
81.5	40 JT-84"	135	135	135	135	
81.5	45 JT-111"	220	220	220	220	
	SPANS WITH 1/0 AAAC NEUTRAL					
SEC BRKT	POLE SIZE		MAIN LINE		TAP	
ATTACHMENT	TOLL SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC	
81.5	40 JT-84"	225	195	186	210	
81.5	45 JT-111"	300				
102	45 JT-111"		250			
109	45 JT-111"			240		
81.5	45 JT-111"				210	
THIS TABL	E BASED (ON EQUAL	OWNERSHIP	PERCENT	4GE	

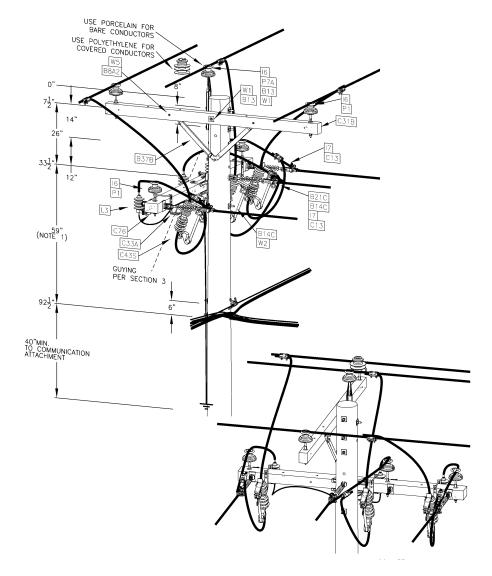
- 1. If this configuration is needed, the fused cutout and arrester for the tap **must** be placed on the next pole down the tap. Otherwise, Drawing 9-423 FIG1 shall be used.
- 2. This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

	1Φ AND 3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV (ALTERNATE)				
	CROSSINGS 11° - 45° / ANGLES - 21° - 45° – TAP TO 1Ф ARMLESS				
	ISSUE	PAGE NUMBER		sMHz.	
Busi	7/21 ness Use	9-423F2	OVERHEAD CONSTRUCTION STANDARD	ppl	

MU = @9-424A	0-5KV 3Ф - Bare	MU = @9-424ACL	0-5KV 3Φ - Covered
MU = @9-424B	0-5KV 1Φ - Bare	MLI = @9-424BCI	0-5KV 1Φ - Covered

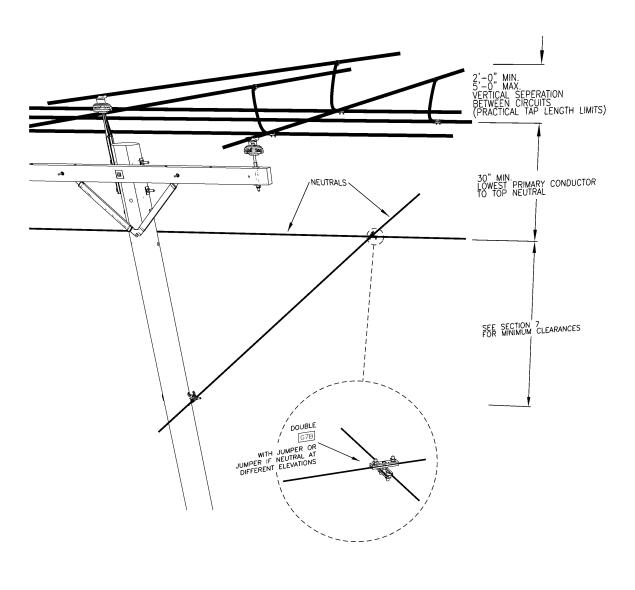
SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	SEC BRKT DOLE GLZE MAIN LINE TAP				
ATTACHMENT	POLE SIZE 1/0 AAAC 336.4 AAC 477 AAC 1/0 AAA				1/0 AAAC
81.5	40 JT-84"	135	1 35	135	100
81.5	45 JT-111"	220 220 220 100			
	SPANS	WITH 1/0	AAAC NEUTRA	L	
SEC BRKT	POLE SIZE		MAIN LINE		TAP
ATTACHMENT	FULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
81.5	40 JT-84"	225	195	186	80
81.5	45 JT-111"	300	-	i	
102	45 JT-111"		250		
109	45 JT-111"			240	
81.5	45 JT-111"			-	85
THIS TABLE	E BASED ON	EQUAL OWN	ERSHIP PERCE	NTAGE	

- This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. For single phase delta main line, omit center phase on top crossarm.

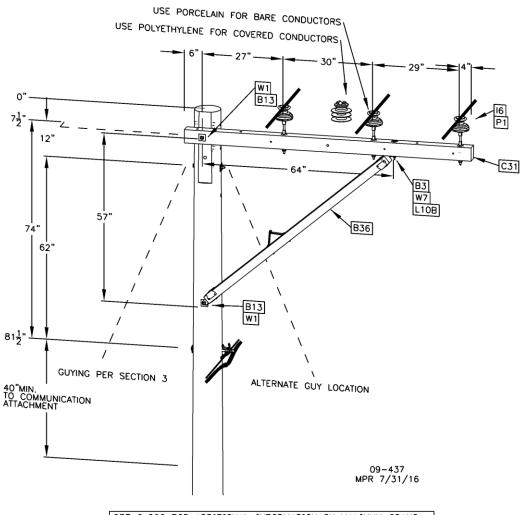

1Φ AND 3Φ DOUBLE CROSSARM POLE TOP – 0-15 kV
CROSSINGS 11° - 45° / ANGLES - 21° - 45° – TAP TO 1Φ ARMLESS DELTA
PAGE NUMBER ISSUE

OVERHEAD CONSTRUCTION STANDARD

9-424 7/21


MU = @9-435A	0-15KV 3Ф - Bare	MU = @9-435ACL	0-15KV 3Φ - Covered
MU = @9-435B	0-15KV 1Φ - Bare	MU = @9-435BCL	0-15KV 1Φ - Covered

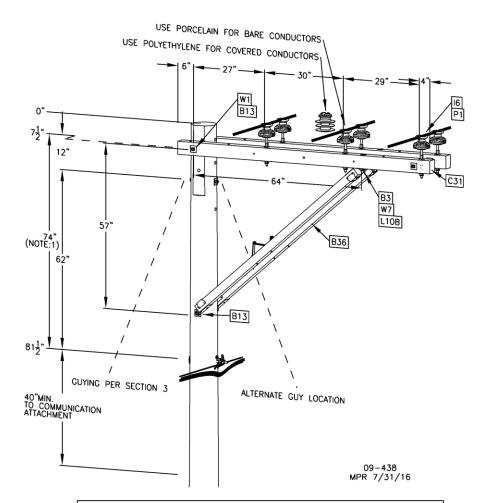
SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT BOLE CIZE MAIN LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
92.5	45 JT-111"	185			
92.5	45 JT-111"		185		
97.5	45 JT-111"			180	
	SPANS W	'ITH 1/0 AA	AC NEUTRAL		
SEC BRKT	POLE SIZE	MAI	N LINE		
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
103.5	45 JT-111"	255			
108.5	45 JT-111"		185		
108.5	45 JT-111"		-	175	
THIS TABLE	BASED ON	EQUAL OWNE	RSHIP PERCE	NTAGE	


- 1. This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. For single phase delta circuit construction, omit the center phases.

	1Φ AND 3Φ CROSSARM POLE TOP – 0-15 kV 0°-10° – TAP TO 1Φ OR 3Φ CROSSARM					
	ISSUE	PAGE NUMBER		WHZ		
Busi	7/21 ness Use	9-435	OVERHEAD CONSTRUCTION STANDARD	ppl		

- 1. Midspan taps may be required where poles are set back at heavy intersections.
- 2. See Drawing 9-435 for standard 3-phase taps at the pole.
- 3. Refer to Page 9-105 for information on relative phase positioning.
- 4. Always wire brush the surface of conductors immediately before installing any type of connector.
- 5. See Section 5 for more details on connectors available.

		PRIMARY MIDSPAN TAP		
	SMIZZ		PAGE NUMBER	ISSUE
se	ppl	OVERHEAD CONSTRUCTION STANDARD	9-436	7/21

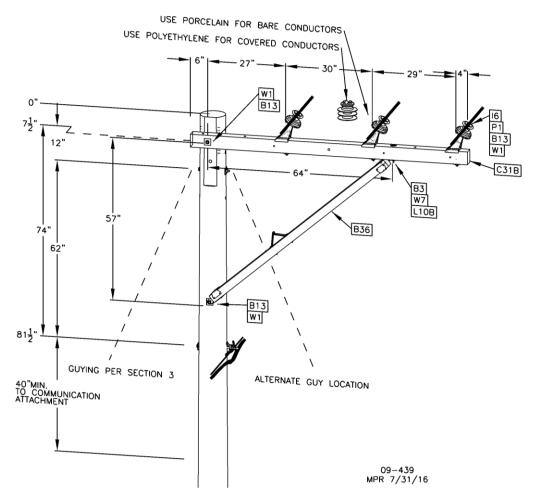


SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS						
	SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT POLE CLZE MAIN LINE						
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
81.5	40 JT-84"	135	135	135		
81.5	45 JT-111"	220	220	220		
	SPANS WI	TH 1/0 AAA	C NEUTRAL			
SEC BRKT	DOLE 017E	MAI	N LINE			
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
81.5	40 JT-84"	225	195	186		
81.5	45 JT-111"	300				
102	45 JT-111"		250			
109	45 JT-111"			240		
THIS TABLE	BASED ON I	EQUAL OWNE	RSHIP PERCE	NTAGE		

- 1. Alley arm construction shall be used only as required for lateral clearance to avoid restricted tree trimming or to eliminate some offset line conditions.
- 2. For single phase delta, omit the center conductor.
- 3. Guying is not always necessary for in-line poles with offset arms unless calculated forces are exceeding pole strength (refer to Section 3 for guying information).
- 4. Two or more adjacent poles with extension arms shall be used to reduce the excessive lateral stress.

	1Φ AND 3Φ SINGLE ALLEY ARM POLE TOP – 0-15 kV –					
	0° - 10 °					
	ISSUE	PAGE NUMBER		SMI		
Busi	7/21 ness Use	9-437	OVERHEAD CONSTRUCTION STANDARD	ppl		

1411 00 1001	0.4510.40+ 0	1411 00 100101	0.4510.40+ 0
MU = @9-438A	0-15KV 3Ф - Bare	MU = @9-438ACL	0-15KV 3Ф - Covered
MU = @9-438B	0-15KV 1Φ - Bare	MU = @9-438BCI	0-15KV 1Φ - Covered

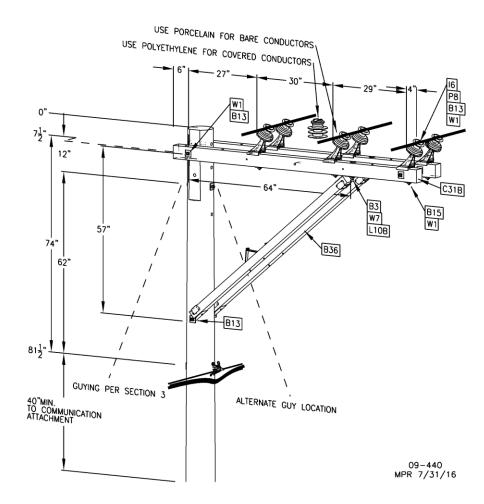


SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	SEC BRKT DOLE CLIFE MAIN LINE				
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	135	135	135	
81.5	45 JT-111"	220	220	220	
	SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT	חסו ב כנייב	MAI	N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	225	195	186	
81.5	45 JT-111"	300			
102	45 JT-111"		250		
109	45 JT-111"			240	
THIS TABLE	E BASED ON	EQUAL OWN	ERSHIP PERCE	ENTAGE	

- 1. Alley arm construction shall be used only as required for lateral clearance to avoid restricted tree trimming or to eliminate some offset line conditions.
- 2. For single phase delta, omit the center conductor.
- 3. Guying is not always necessary for in-line poles with offset arms unless calculated forces are exceeding pole strength (refer to Section 3 for guying information).
- 4. Two or more adjacent poles with extension arms shall be used to reduce the excessive lateral stress.

	1Φ AND 3Φ DOUBLE ALLEY ARM POLE TOP – 0-15 kV – CROSSING AND ANGLES - 0° - 10°			
NATE: PAGE NUI				ISSUE
	ppl	OVERHEAD CONSTRUCTION STANDARD	9-438	7/21

MU = @9-439A	0-15KV 3Ф - Bare	MU = @9-439ACL	0-15KV 3Φ - Covered
MU = @9-439B	0-15KV 1Φ - Bare	MU = @9-439BCL	0-15KV 1Φ - Covered



SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	SEC BRKT DOLE STORE MAIN LINE				
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	135	135	135	
81.5	45 JT-111"	220	220	220	
	SPANS W	ITH 1/0 AA	AC NEUTRAL		
SEC BRKT	DOLE 6175	MAI	N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	225	195	186	
81.5	45 JT-111"	300			
102	45 JT-111"		250		
109	45 JT-111"			240	
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

- 1. Alley arm construction shall be used only as required for lateral clearance to avoid restricted tree trimming or to eliminate some offset line conditions.
- 2. For single phase delta, omit the center conductor.
- 3. Guying is not always necessary for in-line poles with offset arms unless calculated forces are exceeding pole strength (refer to Section 3 for guying information).
- 4. Two or more adjacent poles with extension arms shall be used to reduce the excessive lateral

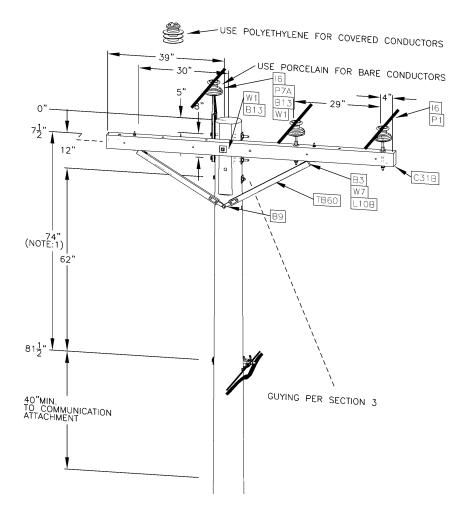
	1Ф AND 3Ф SINGLE ALLEY ARM POLE TOP – 0-15 kV – 11° - 20°				
ISSUE	PAGE NUMBER		WWZ		
7/21	9-439	OVERHEAD CONSTRUCTION STANDARD	ppl		

MU = @9-440A	0-15KV 3Ф - Bare	MU = @9-440ACL	0-15KV 3Ф - Covered
MU = @9-440B	0-15KV 1Φ - Bare	MU = @9-440BCI	0-15KV 1Φ - Covered

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT POLE SIZE MAIN LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	135	135	135	
81.5	45 JT-111"	220	220	220	
	SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT	POLE SIZE	MAI	N LINE		
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	225	195	186	
81.5	45 JT-111"	300			
102	45 JT-111"		250		
109	45 JT-111"	- 1		240	
THIS TABLE					

- 1. Alley arm construction shall be used only as required for lateral clearance to avoid restricted tree trimming or to eliminate some offset line conditions.
- 2. For single phase delta, omit the center conductor.
- 3. Guying is not always necessary for in-line poles with offset arms unless calculated forces are exceeding pole strength (refer to Section 3 for guying information).
- 4. Two or more adjacent poles with extension arms shall be used to reduce the excessive lateral stress.

1Φ AND 3Φ DOUBLE ALLEY ARM POLE TOP – 0-15 kV CROSSINGS 11° - 60° / ANGLES - 21° - 60°				
AMZ	PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	9-440	7/21	

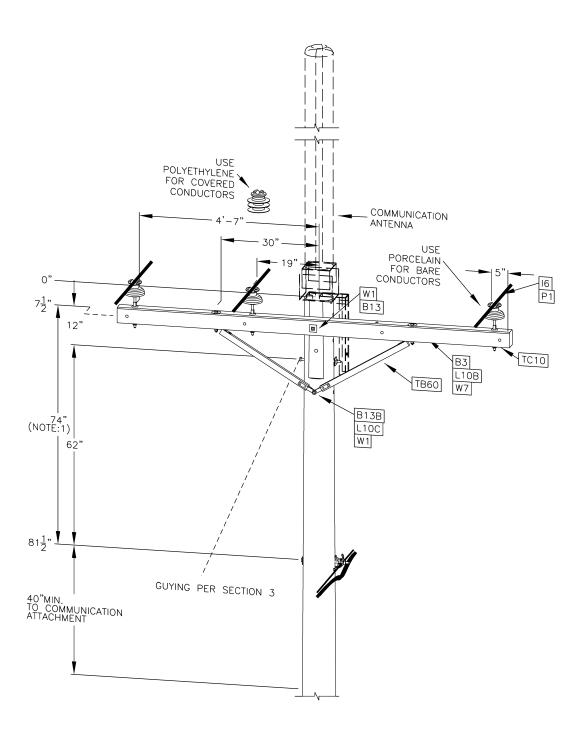

0-15KV 1Φ - Bare

MU = @9-441A

MU = @9-441B

Ċ	
∇	
Œ	
- 73	
χ.	
æ	
rsedes	
Ϋ́	
0,	
//20	
\sim	
_	
Issue	
ñ	
~	
₼	
`.	
`.	
O	
∃	
Ē	
rrec	
rrecte	
rrected	
rrected	
a	
a	
a	
d page	
d page t	
d page t	
d page	
d page form:	
d page t	
d page form:	

'n

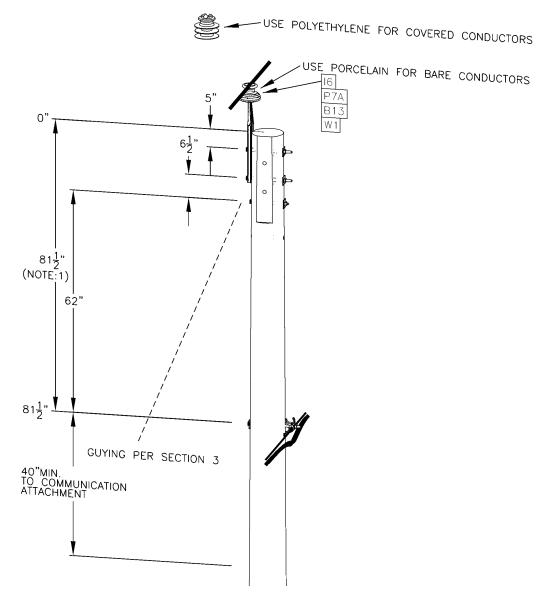


0-15KV 1Φ - Covered

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT BOLE CLZE MAIN LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	135	135	135	
81.5	45 JT-111"	220	220	220	
	SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT	DOLE 0175	MAI	N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
81.5	40 JT-84"	225	195	186	
81.5	45 JT-111"	300			
102	45 JT-111"	i	250		
109	45 JT-111"	I		240	
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

- This clearance can be reduced to a minimum of 48" if needed.
- Offset arm construction shall be used only as required for lateral clearance to avoid restricted tree trimming or to eliminate some offset line conditions.
- 3. For single phase delta, omit the center conductor.
- Guying is not always necessary for in-line poles with offset arms unless calculated forces are exceeding pole strength (refer to Section 3 for guying information).

1Φ AND 3Φ SINGLE OFFSET POLE TOP – 0-15 kV – 0° - 10°				
ISSUE	PAGE NUMBER		WIW.	
7/21	9-441	OVERHEAD CONSTRUCTION STANDARD	ppl	

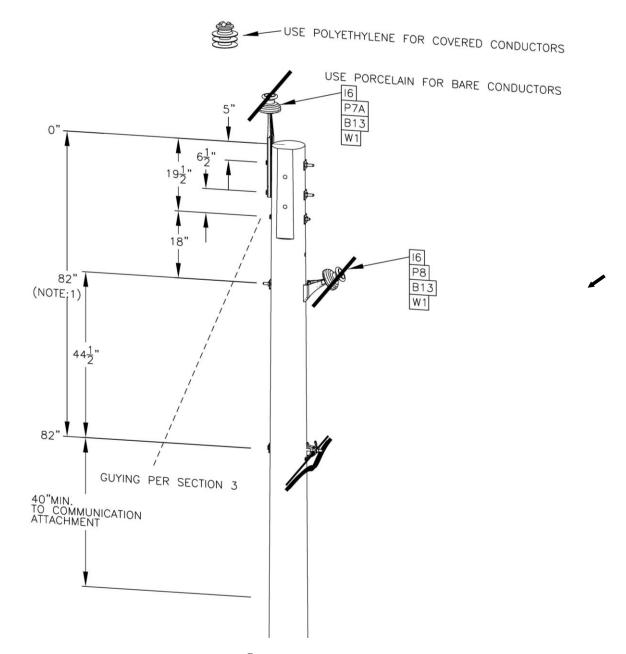

NOTES

Supersedes 7/20 Issue - Corrected page formatting.

1. This clearance can be reduced to a minimum of 48" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearance

ALTERNATE 3 Φ CROSSARM POLE TOP – 0-15kV - 0° - 10° (FOR USE WITH POLE TOP MOUNTED ANTENNA)						
sMHz.		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	9-450	7/21			

MU = @9-711	0-15KV 1Φ - Bare	MU = @9-711CL	0-15KV 1Φ - Covered	
MU = @9-711AF	0-15KV 1Φ - Bare	MU = @9-711AFCL	0-15KV 1Φ - Covered	Fiberglass pole

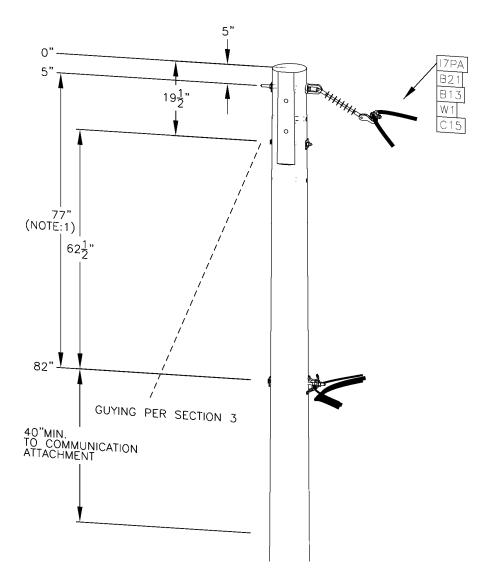


SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS								
	SPANS WITH 1/0 TRIPLEX SEC							
SEC BRKT	DOLE 6175	MAI	N LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC				
81.5	40 JT-84"	135	135	135				
81.5	45 JT-111"	220	220	220				
	SPANS W	TH 1/0 AAA	AC NEUTRAL					
SEC BRKT	DOLE 0175	MAI	N LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC				
81.5	40 JT-84"	225	195	186				
81.5	45 JT-111"	300						
102	45 JT-111"		250					
109	45 JT-111"			240				
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE								

1. This clearance can be reduced to a minimum of 48" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

	1Φ ARMLESS POLE TOP – 0-15 kV 0° - 20°						
	ISSUE	PAGE NUMBER		AMD.			
Busi	7/16 ness Use	9-711	OVERHEAD CONSTRUCTION STANDARD	ppl			

MU = @9-712	0-5KV 1Φ - Bare	MU = @9-712CL	0-5KV 1Φ - Covered	
MU = @9-712F	0-5KV 1Φ - Bare	MU = @9-712FCL	0-5KV 1Φ - Covered	Fiberglass Pole

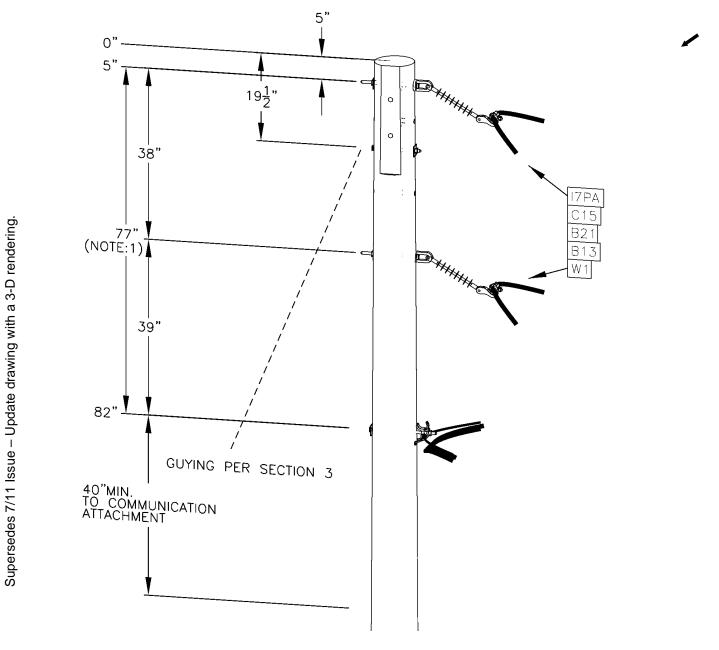


Supersedes 7/16 Issue – Corrected angle pin from P7A to P8.

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS									
SPANS WITH 1/0 TRIPLEX SEC					SPANS WITH	H 1/0 AAAC	NEUTRAL		
SEC BRKT POLE SIZE MAIN LINE			N LINE		SEC BRKT	POLE SIZE	MA]	N LINE	
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC
81.5	40 JT-84"	1 35	126	106	81.5	40 JT-84"	130	105	100
81.5	45 JT-111"	220			106	45 JT-111"	240	-	
97	45 JT-111"		185		108	45 JT-111"		170	
100	45 JT-111"			180	108	45 JT-111"		1	162
THIS TAB	THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE								

	1Φ ARMLESS POLE TOP – 0-15 kV 0° - 20° - DELTA					
	SMIZZ		PAGE NUMBER	ISSUE		
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	9-712	7/17		

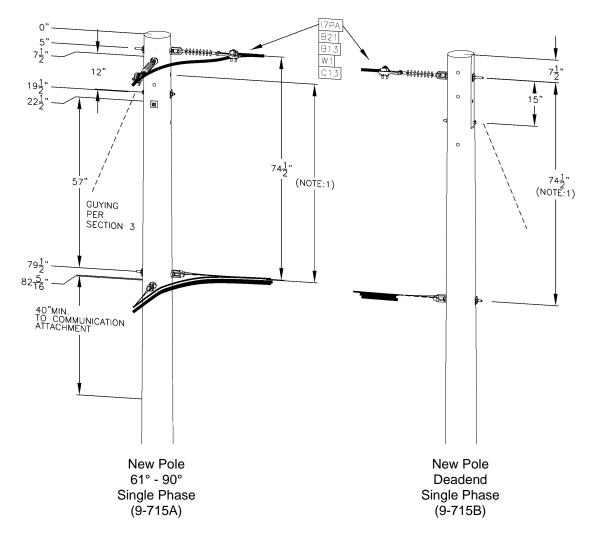
MU = @9-713	0-15KV 1Φ - Bare	MU = @9-713CL	0-15KV 1Φ - Covered	
MU = @9-713F	0-15KV 1Ф - Bare	MU = @9-713FCL	0-15KV 1Φ - Covered	Fiberglass Pole


SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS								
	SPANS WITH 1/0 TRIPLEX SEC							
SEC BRKT	DOLE 617E	MA]	N LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC				
82	40 JT-84"	135	135	135				
82	45 JT-111"	220	220	220				
	SPANS W	ITH 1/0 AA	AC NEUTRAL					
SEC BRKT	חטור כנזר	MAI	N LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC				
82	40 JT-84"	225	190	180				
83	45 JT-111"	300						
106	45 JT-111"		240					
108	45 JT-111"			230				
THIS TABLE								

NOTES:

1. This clearance can be reduced to a minimum of 65" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

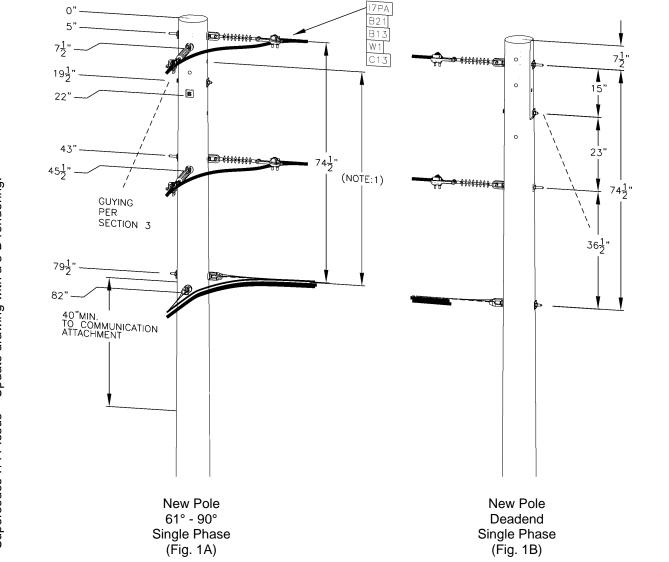
	1Φ ARMLESS POLE TOP – 0-15 kV 21° - 60°						
	ISSUE	PAGE NUMBER		SMIZZ			
Busi	7/16 ness Use	9-713	OVERHEAD CONSTRUCTION STANDARD	ppl			


MU = @9-714	0-5KV 1Φ - Bare	MU = @9-714CL	0-5KV 1Φ - Covered		
MU = @9-714F	0-5KV 1Ф - Bare	MU = @9-714FCL	0-5KV 1Φ - Covered	Fiberglass Pole	9

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS											
	SPANS WITH 1/0 TRIPLEX SEC					SPANS	WITH 1/0 A	AAC NEUTRAI	L		
SEC BRKT	DOLE 0175	MAI	N LINE		SEC BRKT	POLE SIZE	MAI	N LINE			
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
82	40 JT-84"	115	101	97	82	40 JT-84"	106	82	80		
82	45 JT-111"	220			106	45 JT-111"	210		ı		
98	45 JT-111"		175		108	45 JT-111"		160			
102	102 45 JT-111" 160 108 45 JT-111" 140										
THIS TAB	THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE										

		1Φ ARMLESS POLE TOP – 0-15 21° - 60° - DELTA	kV	
	WWZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	9-714	7/16

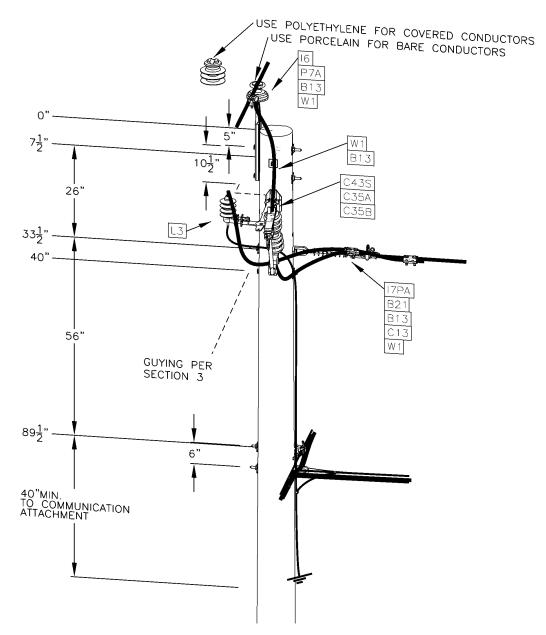
MU = @9-715A	0-15KV 1Ф - Ваге	MU = @9-715ACL	0-15KV 1Φ - Covered	
MU = @9-715B	0-15KV 1Φ DE- Bare	MU = @9-715BCL	0-15KV 1Φ DE- Covered	
MU = @9-715AF	0-15KV 1Φ - Bare	MU = @9-715AFCL	0-15KV 1Φ - Covered	Fiberglass Pole
MU = @9-715BF	0-15KV 1Ф DE- Bare	MU = @9-715BFCL	0-15KV 1Φ DE- Covered	Fiberglass Pole



SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS								
SPANS WITH 1/0 TRIPLEX SEC								
SEC BRKT	001 5 6175	MAI	N LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC				
82	40 JT-84"	135	135	135				
82	45 JT-111"	220	220	220				
	SPANS W	ITH 1/0 AA	AC NEUTRAL					
SEC BRKT	פטיב כניבר	MAI	N LINE					
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC				
82	40 JT-84"	225	185	175				
86	45 JT-111"	300						
105 45 JT-111" 235								
107		225						
THIS TABLE	BASED ON E	QUAL OWNER	RSHIP PERCEN	NTAGE				

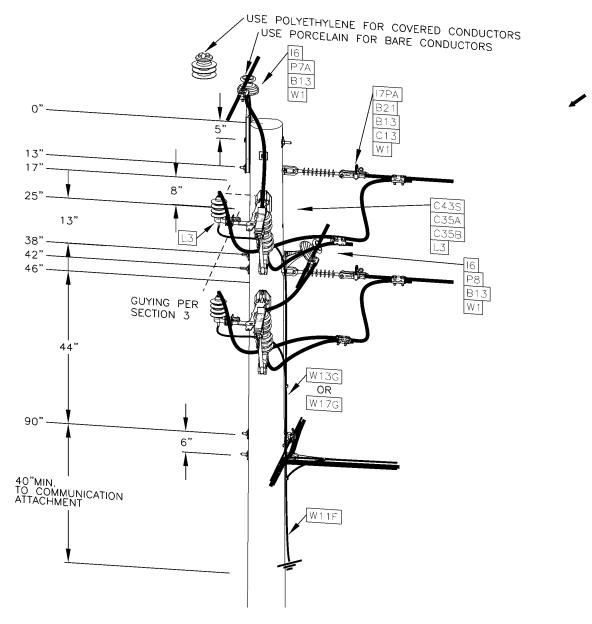
- This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 2. This configuration can also be used for back-to-back (tangent) deadends.

	1Φ ARMLESS POLE TOP – 0-15 kV 61° - 90° AND DEADEND						
	ISSUE	PAGE NUMBER		AMD			
Busi	7/16 ness Use	9-715	OVERHEAD CONSTRUCTION STANDARD	ppl			


MU = @9-716A	0-5KV 1Φ - Bare	MU = @9-716ACL	0-5KV 1Φ - Covered	
MU = @9-716B	0-5KV 1Φ DE- Bare	MU = @9-716BCL	0-5KV 1Φ DE- Covered	
MU = @9-716AF	0-5KV 1Φ - Bare	MU = @9-716AFCL	0-5KV 1Φ - Covered	Fiberglass Pole
MU = @9-716BF	0-5KV 1Φ DE- Bare	MU = @9-716BFCL	0-5KV 1Φ DE- Covered	Fiberglass Pole

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS										
	SPANS WITH 1/0 TRIPLEX SEC					SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT	DOL C 6175	MAI	N LINE		SEC BRKT	POLE SIZE	MAI	N LINE		
ATTACHMENT			336.4 AAC	477 AAC	ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
82	40 JT-84"	128	88	85	82	40 JT-84"	101	78	76	
83	45 JT-111"	210			108	45 JT-111"	210			
88	45 JT-111"	-	175		108	45 JT-111"		156		
101	101 45 JT-111" 155 108 45 JT-111" 138									
THIS TABL	THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE									

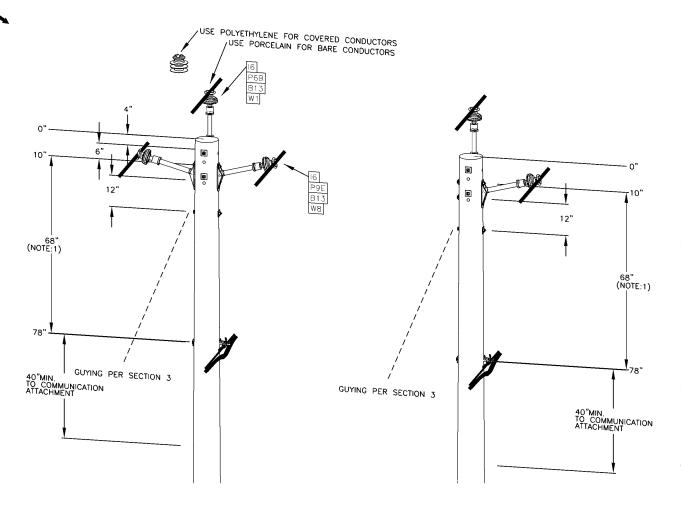
1Φ DELTA / 2Φ WYE ARMLESS POLE TOP – 0-15 kV 61° - 90° AND DEADEND							
SMIZZ		PAGE NUMBER	ISSUE				
ppl	OVERHEAD CONSTRUCTION STANDARD	9-716	7/16				


MU = @9-719	0-15KV 1Φ - Bare	MU = @9-719CL	0-15KV 1Φ - Covered	
MU = @9-719F	0-15KV 1Φ - Bare	MU = @9-719FCL	0-15KV 1Φ - Covered	Fiberglass Pole

SEE 9-200	SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS								
	SPANS	3 WITH 1/0	TRIPLEX S	SEC					
SEC BRKT	POLE SIZE		MAIN LINE		TAP				
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC				
89.5	45 JT-111"	200	200	200	200				
	SPANS	S WITH 1/0) AAAC NEU	TRAL					
SEC BRKT	POLE SIZE		MAIN LINE		TAP				
ATTACHMENT	FULE 312E	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC				
89.5 45 JT-111" 300 225 205 200									
THIS TABLE	THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE								

	1Φ ARMLESS POLE TOP – 0-7.2 kV 0° - 20° – TAP TO 1Φ ARMLESS							
	ISSUE	PAGE NUMBER		WW.				
Busi	7/16 ness Use	9-719	OVERHEAD CONSTRUCTION STANDARD	ppl				

Supersedes 7/15 Issue - Update drawing with a 3-D rendering.


SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS									
	SPANS WITH 1/0 TRIPLEX SEC								
SEC BRKT	POLE SIZE		MAIN LINE		TAP				
ATTACHMENT	FULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC				
82	40 JT-84"	131	127	121	131				
82	45 JT-111"	218							
98	45 JT-111"	-	185						
98	45 JT-111"			175					
82	45 JT-111"				157				
	SPANS	WITH 1/0 A	AAC NEUTRAL						
SEC BRKT	POLE SIZE	MAIN LINE			TAP				
ATTACHMENT	FULL SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC				
82	40 JT-84"	132	102	100	107				
107	45 JT-111"	240							
109	45 JT-111"		180						
109	45 JT-111"			162					
107	45 JT-111"				230				
THIS TABLE	BASED ON I	QUAL OWNE	RSHIP PERCE	NTAGE					

OVERHEAD CONSTRUCTION STANDARD	9-720	7/16		
	PAGE NUMBER	ISSUE		
0° - 20° – TAP TO 1Φ ARMLESS - DELTA				
1Φ ARMLESS POLE TOP – 0-15 kV				

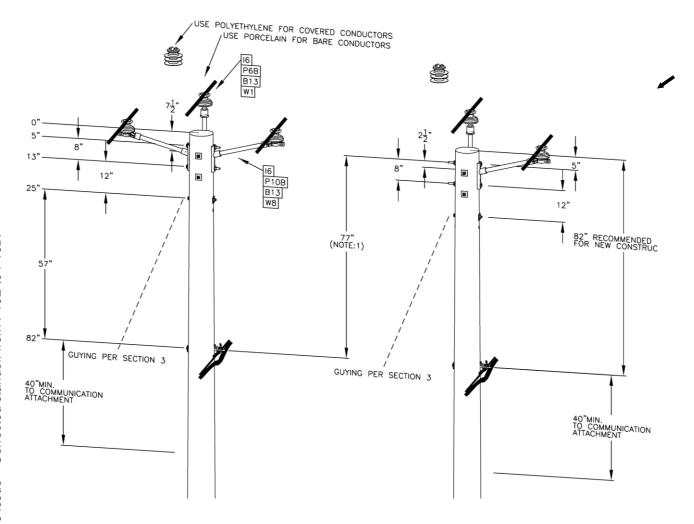
ppl

Supersedes 7/11 Issue - Update drawing with a 3-D rendering.

MU = @9-811A	0-15KV 3Ф - Bare	MU = @9-811ACL	0-15KV 3Ф - Covered
MU = @9-811B	0-15KV 3Φ - Bare	MU = @9-811BCL	0-15KV 3Φ - Covered

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPANS W	ITH 1/0 TR	IPLEX SEC		
SEC BRKT	POLE SIZE	MA]	IN LINE		
ATTACHMENT	1 000 3120	1/0 AAAC	336.4 AAC	477 AAC	
78	40 JT-84"	N/A	N/A	N/A	
78	45 JT-111"	N/A	N/A	N/A	
	SPANS WI	TH 1/0 AAA	AC NEUTRAL		
SEC BRKT	POLE SIZE	MAI	N LINE		
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
78	40 JT-84"	N/A	N/A	N/A	
78 45 JT-111" N/A N/A N/A					
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

THIS DRAWING IS FOR MAINTENANCE PURPOSES ONLY

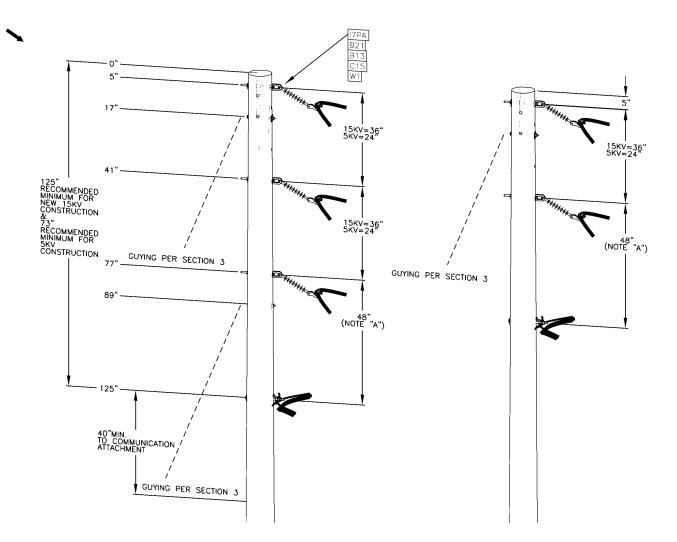

For new construction, see Drawing 9-812

NOTES:

1. This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

	1Φ AND 3Φ ARMLESS POLE TOP – 0-15 kV 0° - 20° (MAINTANENCE ONLY)					
	ISSUE	PAGE NUMBER		MID		
Busi	7/16 ness Use	9-811	OVERHEAD CONSTRUCTION STANDARD	ppl		

MU = @9-812A	0-15KV 3Φ - Bare	MU = @9-812ACL	0-15KV 3Φ - Covered	
MU = @9-812B	0-15KV 1Φ - Bare	MU = @9-812BCL	0-15KV 1Φ - Covered	
MU = @9-812AF	0-15KV 3Φ - Bare	MU = @9-812AFCL	0-15KV 3Φ - Covered	Fiberglass Pole
MU = @9-812BF	0-15KV 1Φ - Bare	MU = @9-812BFCL	0-15KV 1Φ - Covered	Fiberglass Pole



SEE 9-200 F	SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPANS	WITH 1/0 T	RIPLEX SEC			
SEC BRKT	DOLE 0175	MAI	N LINE			
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
82	40 JT-84"	131	131	131		
82	45 JT-111"	218	218	218		
	SPANS V	VITH 1/0 A	AAC NEUTRAL			
SEC BRKT	DOLE 0175	MA]	N LINE			
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
82	40 JT-84"	221	206	187		
82	45 JT-111"	300				
102	45 JT-111"		250			
107	45 JT-111"			235		
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE						

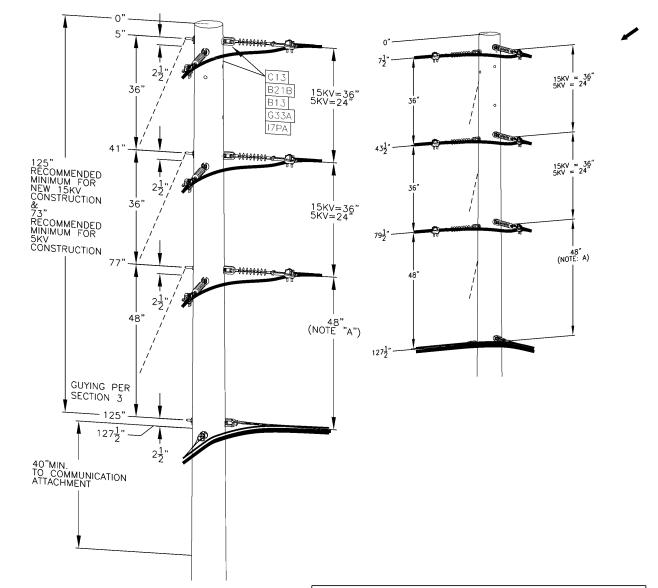
This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).

	1Φ AND 3Φ ARMLESS POLE TOP – 0-15 kV 0° - 20°						
	SMI		PAGE NUMBER	ISSUE			
Use	ppl	OVERHEAD CONSTRUCTION STANDARD	9-812	7/17			

Fiberglass Pole
Fiberglass Pole

MAINTENANCE PURPOSES ONLY

Three-phase vertical construction shown in the figure above is not the preferred construction method. New line construction (including line extensions and taps) shall use crossarms, epoxy standoff insulator pins, or spacer cable configuration. Single phase delta vertical construction may be used only when no other options are feasible.


Note A

MINIMUM DIMENSIONS	
5KV OPERATION	20"
NEUTRAL ONLY-15KV OPERATION	20"
600V SECONDARY-15KV	48"

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS						
	SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT POLE SIZE MAIN LINE						
ATTACHMENT	TOLL SIZE	1/0 AAAC	336.4 AAC	477 AAC		
125	125 45 JT-125"		131	112		
	SPANS W	ITH 1/0 AA	AC NEUTRAL			
SEC BRKT	POLE SIZE	MAI	IN LINE			
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC		
125	45 JT-125"	152	110	105		
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE						

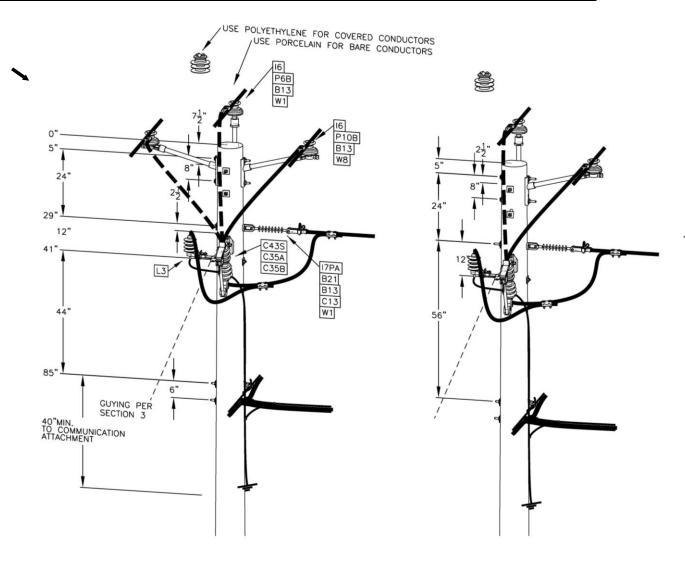
	1Φ (DELTA) AND 3Φ (MAINTENANCE ONLY) ARMLESS POLE TOP – 0-15 kV 21°- 60°						
	ISSUE	PAGE NUMBER		WK.			
Busi	7/16 ness Use	9-813	OVERHEAD CONSTRUCTION STANDARD	ppl			

MU = @9-814A	0-15KV 3Ф - Bare	MU = @9-814ACL	0-15KV 3Φ - Covered	
MU = @9-814AF	0-15KV 3Φ - Bare	MU = @9-814AFCL	0-15KV 3Φ - Covered	Fiberglass Pole

Note A

Supersedes 7/17 Issue – Corrected MU names.

MINIMUM DIMENSIONS	
5KV OPERATION	20"
NEUTRAL ONLY-15KV OPERATION	20"
600V SECONDARY-15KV	48"


SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	POLE SIZE	MAIN LINE			
ATTACHMENT	1 000 3120	1/0 AAAC	336.4 AAC	477 AAC	
127.5	45 JT-127.5"	131	131	112	
	SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT	POLE SIZE	MAIN LINE			
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	
127.5	45 JT-127 . 5"	152	110	105	
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

MAINTENANCE PURPOSES ONLY

Three-phase vertical construction shown on this drawing is not the preferred construction method. New line construction (including line extensions and taps) shall use crossarms, epoxy standoff insulator pins, or spacer cable configuration. Single phase delta vertical construction may be used only when no other options are feasible.

	3Φ ARMLESS POLE TOP – 0-15 kV 61°- 90° AND DEADEND (MAINTENANCE ONLY)				
	WW.		PAGE NUMBER	ISSUE	
U	se ppl	OVERHEAD CONSTRUCTION STANDARD	9-814	7/19	

MU = @9-823A	0-15KV 3Ф - Bare	MU = @9-823ACL	0-15KV 3Φ - Covered	
MU = @9-823B	0-15KV 1Φ - Bare	MU = @9-823BCL	0-15KV 1Φ - Covered	
MU = @9-823AF	0-15KV 3Φ - Bare	MU = @9-823AFCL	0-15KV 3Ф - Covered	Fiberglass Pole
MU = @9-823BF	0-15KV 1Φ - Bare	MU = @9-823BFCL	0-15KV 1Ф - Covered	Fiberglass Pole

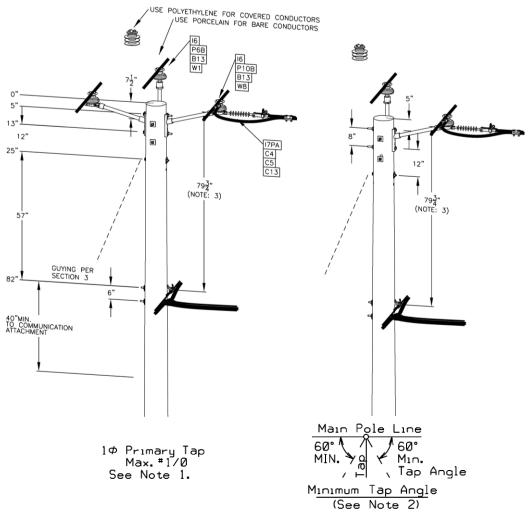
SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SF	PANS WITH	1/0 TRIPLE>	< SEC	
SEC BRKT	POLE SIZE	MAIN LINE			TAP
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
85	45 JT-111"	209	209	209	209
	SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT	POLE SIZE	MAIN LINE		TAP	
ATTACHMENT	TOLL SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
86	45 JT-111"	300			
102	45 JT-111"	-	250		
107	45 JT-111"	-		235	-
86	45 JT-111"	-		1	200
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

	3Φ ARMLESS POLE TOP – 0-15kV (PREFERRED) 0°-20°- TAP TO 1Φ ARMLESS			
	ISSUE	PAGE NUMBER		MIZZ
Busi	ness Use	9-823	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 09.00.007

Drawing 9-824 has been removed.

Refer to Drawing 9-835.


PRIMARY CONSTRUCTION

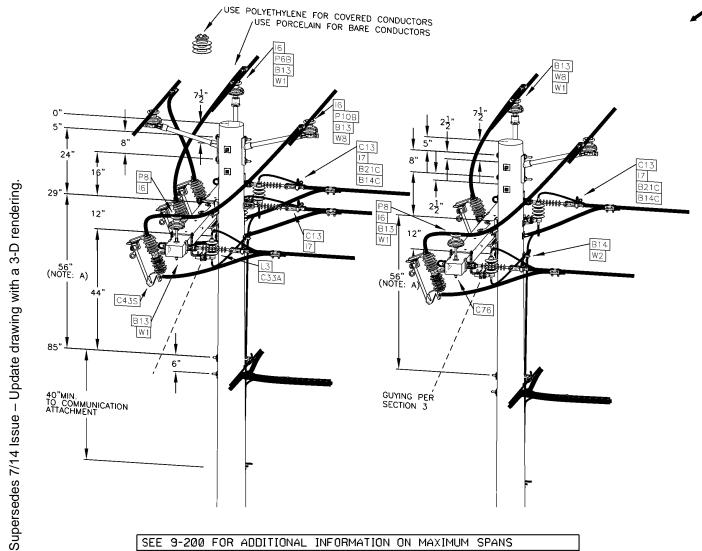
OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

9-BLANK 7/11

MU = @9-825A	0-15KV 3Φ - Bare	MU = @9-825ACL	0-15KV 3Ф - Covered	
MU = @9-825B	0-15KV 1Φ - Bare	MU = @9-825BCL	0-15KV 1Φ - Covered	
MU = @9-825AF	0-15KV 3Φ - Bare	MU = @9-825AFCL	0-15KV 3Ф - Covered	Fiberglass Pole
MU = @9-825BF	0-15KV 1Φ - Bare	MU = @9-825BFCL	0-15KV 1Φ - Covered	Fiberglass Pole

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	POLE SIZE		MAIN LINE		TAP
ATTACHMENT	FULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
82	40 JT-84"	131	131	131	137
82	45 JT-111"	218	218	218	220
	SP	ANS WITH 1	/Ø AAAC NEL	JTRAL	
SEC BRKT	POLE SIZE		MAIN LINE		TAP
ATTACHMENT	1 OLL 312L	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
82	40 JT-84"	221	206	187	230
82	45 JT-111"	300			
102	45 JT-111"		250		
107	45 JT-111"			235	
82	45 JT-111"				300
THIS TABLE	BASED ON E	EQUAL OWNE	RSHIP PERCE	NTAGE	·


NOTES:

- 1. Tap shall be single-phase and have a 1/0 maximum conductor size.
- 2. Tap circuit angle shall be not less than 60° off main pole line (see detail above).
- 3. This clearance can be reduced to a minimum of 56" if needed and if NESC midspan clearances are maintained (see Section 7.11 for required midspan clearances).
- 4. This configuration may only be used when the configuration of drawing 9-823 is not feasible. If this configuration is used, the fused cutout and arrester for the tap **must** be placed on the next pole down the tap.

	3Φ ARMLESS POLE TOP – 0-15 kV (ALTERNATE) 0° - 20° – TAP TO 1Φ ARMLESS				
	ISSUE	PAGE NUMBER		WHZ.	
Busi	7/17 ness Use	9-825	OVERHEAD CONSTRUCTION STANDARD	ppl	

Doc. # ST. 09.00.007

MU = @9-835A	0-15KV 3Ф - Bare	MU = @9-835ACL	0-15KV 3Ф - Covered	
MU = @9-835B	0-15KV 1Φ - Bare	MU = @9-835BCL	0-15KV 1Φ - Covered	
MU = @9-835AF	0-15KV 3Φ - Bare	MU = @9-835AFCL	0-15KV 3Ф - Covered	Fiberglass Pole
MU = @9-835BF	0-15KV 1Φ - Bare	MU = @9-835BFCL	0-15KV 1Ф - Covered	Fiberglass Pole

SEE 9-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
SPANS WITH 1/0 TRIPLEX SEC					
SEC BRKT	סטור כזייר		MAIN LINE		TAP
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
85	45 JT-111"	209	209	209	209
	SP	ANS WITH :	L/Ø AAAC NE	EUTRAL	
SEC BRKT	POLE SIZE		MAIN LINE		TAP
ATTACHMENT	FULE SIZE	1/0 AAAC	336.4 AAC	477 AAC	1/0 AAAC
86	45 JT-111"	300			
102	45 JT-111"		250		
107	45 JT-111"			235	-
86	45 JT-111"				200
THIS TABLE BASED ON FOUND OWNERSHIP PERCENTAGE					

1Φ (DELTA) AND 3Φ ARMLESS POLE TOP – 0-15 kV 0° - 20° – TAP TO 1Φ (DELTA) AND 3Φ FIBERGLASS DEADEND CROSSARM

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 9-835 7/16

Version	Date	Modification	Author(s)	Approval by (Name/Title)
12	7/21	 Corrected drawing titles on pages 9-415F, 9-416F, 9-417, and 9-417F. Corrected formatting on pages 9-413 through 9-450. 		
11	7/20	 Corrected reference to NESC rule in Section 9.2.20 Moved guy details for fiberglass poles to Section 3 on drawings 9-411F, 9-413F, 9-415F, and 9-416F. Modified center string deadend connection on drawings 9-415 and 9-415F. 		
10	7/19	 Correct ruling span length and table reference in step 5 of sample calculations on page 9-204. Added new drawing 9-411C. Corrected MUs on 9-413F. Added new drawing 9-450. 		
9	7/18	 Editorial modifications in 9.3.20. Revise 9.3.30 to allow tree wire with armless construction. Correct 9-115 by removing figure-8 chain link in two figures. Revise example calculations on pages 9-200 through 9-205. 		
8	7/17	 In 9.2.20(E), revised the use of double wood crossarms and fiberglass crossarms. Revise On 9-814, deleted single phase MUs. On 9-825, corrected Note 4. Corrected part call outs on 9-419 Fig 1, 9-421 Fig 2, 9-423 Fig 2, 9-812, 9-823 and 9-825. 		

			PRIMARY CONSTRUCTION	
	ISSUE	PAGE NUMBER		WHZ
Busi	7/21 ness Use	9-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

Version	Date	Modification	Author(s)	Approval by (Name/Title)
7	7/16	 Add information for isolating circuits of different voltages – new section 9.5.70 and new drawing 9-207. Replace structure drawings with 3-D renderings. Correct alley arm brace material call out on 9-437 through 9-440. 		
6	7/15	 In 9.3.60, changed "#4 or smaller" to "smaller than #2" to match 9.1.30(B). Information on insulator replacements during conversions was added to Section 9.6.10. Corrected mounting bolt on 9-415, 9-415F, 9-417F, 9-419 and 9-421. Corrected issue date on 9-435. Corrected bracket location on 9-719. 		
5	7/14	 In 9.3.10, clarified text. Replaced double wood deadend crossarms with fiberglass deadend crossarm assemblies in 9-415, 9-416, 9-417, 9-422, 9-424, 9-435 and 9-835. Corrected materials in 9-416F. Added I24 as spacer over deadend arm in 9-415F. 		
4	7/13	Moved arresters to lower crossarms on 9-422, 9-424 and 9-435		
3	7/12	Updated voltage regulation limits in Section 9.1.40.		

SUMMARY OF RECENT CHANGES		
	PAGE NUMBER	ISSUE
OVERHEAD CONSTRUCTION STANDARD	9-NOTES-2	7/21

Doc. # ST. 09.00.007

Version	Date	Modification	Author(s)	Approval by (Name/Title)
2	7/11	 Added (required) cutout(s) and arrester(s) to most tap drawings Removed guy wire materials - refer to Section 3 for guying materials and CUs Removed Drawing 9-420 - refer to Drawing 9-435 for new construction. Removed Drawing 9-824 - refer to Drawing 8-435 for new construction. Corrected drawing titles of those showing single phase delta taps. Labeled vertical construction drawings as "Maintenance Only" as this is not the preferred construction method for new lines. 		
1	07/08	 New construction drawings for Fiberglass Construction: 9-411F, 9-413F, 9-415F, 9-417F. Added fiberglass MU information: 9-711, 9-712, 9-713, 9-714, 9-715, 9-716, 9-719, 9-720, 9-812, 9-813, 9-814, 9-823, 9-824, 9-825, 9-835. 		

			PRIMARY CONSTRUCTION	
	ISSUE	PAGE NUMBER		WWZ
Busi	7/21 ness Use	9-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

SUMMARY OF RECENT CHANGES

ppl

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

9-NOTES-2 7/21

Business Use

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 10.00.001

SECTION	PAGE
• 10.0 GENERAL	10-1 THRU 10-2
10.1 SECONDARY CRIB DESIGN	10-2 THRU 10-4
10.2 SAG-TENSION TABLES	10-5 THRU 10-6
10.3 1/0 – 3C ALUMINUM MAINLINE CONDUCTOR SPLICING	10-7
10.4 FLICKER CHART	10-8
10.5 TRANSFORMER REGULATION	10-9
10.6 RESIDENTIAL TRANSFORMER LOADING	10-10 THRU 10-11
 CONSTRUCTION DRAWINGS AND GRAPHS 	
 FIG. 1 STRAIGHT LINE POLE ATTACHMENT 	10-100
 FIG. 2 ANGLE POLE ATTACHMENT 	10-100
 FIG. 3 CORNER POLE ATTACHMENT 	10-100
 FIG. 4 JUNCTION POLE ATTACHMENT 	10-101
 FIG. 4a SECONDARY WIRE DETAIL 	10-101
 FIG. 5 DEAD END POLE ATTACHMENT 	10-101
o FIG. 6 TIE POINT	10-102
 FIG. 7 CONNECTION TO OPEN WIRE 	10-102
 FIG. 8 TRANSFORMER POLE CONNECTION 	10-103

SECONDARIES INDEX				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	10-i	7/20	

SECONDARIES INDEX					
ISSUE	PAGE NUMBER		WHZ		
1/06	10-ii	OVERHEAD CONSTRUCTION STANDARD	ppl		

10.0 GENERAL

The following STANDARDS section applies to new installation of overhead secondary conductors.

In cases where existing secondary conductors are deteriorated, clearances are doubtful, or poles need replacement, consideration should be given to rebuilding the entire secondary in accordance with these Standards.

10.0.10 Secondary "CRIB"

Secondary "CRIB" describes the overhead secondary supply conductors, typically 120/240 volt, that are supplied by a distribution transformer located near the load mid-point and that supply individual service drop cables along its route.

10.0.20 <u>Secondary Voltages</u>

See STANDARDS section 11 for available secondary voltages.

10.0.30 Conductors

The Standard single phase, secondary crib cable is a 1/0-3/C aluminum cable consisting of one base aluminum alloy neutral messenger and two aluminum cable covered conductors continuously wrapped around the neutral messenger. Applications for this cable include residential, industrial, commercial, and outdoor lighting.

Quadruplex cables shall be used for all 120/208 V, 277/480 V effectively grounded and 240 V and 480 V not effectively grounded secondaries.

For line currents greater than 245 amps., use 4/C 336.4 kCMIL secondary cable.

10.0.40 Conductor Location

In general, secondary conductors shall normally be installed on the street or highway side of the pole. On inside angles, it may be necessary or preferable to attach secondary conductors on the field side of the pole. "Boxing" in a pole by installing secondary cable on the opposite side from that of communication conductors should be avoided.

For rack construction, the neutral shall be located on the top spool of the rack. The grounded conductor of a 3 phase Delta secondary shall be installed in the top position on the power secondary rack. This grounded phase conductor shall not be used as a system neutral nor shall a system neutral be used as the grounded phase conductor.

When two or more secondary circuits are located on the same pole, the following order is recommended from the top: single phase secondary; 3-phase, 4 wire secondary; 3-phase, 3 wire secondary; and multiple street lighting.

All grounded neutrals (except secondary neutrals of not effectively grounded primary systems), located on the same pole shall be bonded together.

SECONDARIES					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	10-1	07/09		

10.0.50 Clearances

See Section 7-Clearances for specific details.

Span taps should be made where practical to provide adequate clearance, climbing, and working space on the pole. An extension bracket (Std. Item A50E) may be used with triplex to improve clearances and climbing space, or to avoid trees.

10.0.60 Sags and Tension

See Pages 10-5 and 10-6 for sags and tensions.

10.0.70 Taps and Connections

See STANDARDS Section 5-"Connectors" for taps, connections and methods of covering connections.

10.0.80 <u>Tree Trimming</u>

Although secondary cables require a relatively small clearance from trees, they are not designed to withstand abrasion from continual contact with tree limbs.

10.0.90 Secondary Cable Dimensions

See STANDARDS Section 11 – "Services" – page 11-62, for secondary and service drop cable dimensional data.

10.1 SECONDARY CRIB DESIGN

Good secondary crib design is dependent on knowledge of load. Actual load checks furnish the most accurate information about existing loads and should be used whenever practical. Other tools such as GIS data are also available to accurately estimate existing loads.

Good secondary crib design also includes provisions for future load growth. Adherences to the principles in this STANDARD will result in secondary that can grow substantially without major rebuilding.

Gaps between adjacent secondary cribs should be filled in with secondary cable when the gap is less than 400-feet in length. For longer gaps, install a standard 1/0 aluminum neutral conductor only, unless future load growth is expected within the area of the gap.

Proper balance must be maintained between length of secondaries, size of conductors, loading of transformers, and overall voltage regulation in service drop, secondary, and transformer installations.

Proper secondary crib design will take into account all of the following:

- 10.1.10 <u>Transformer Location</u> Good secondary crib design will place the distribution transformer in the physical center of the secondary crib run. Adjustments can be made to favor the electrical center of the load, or accommodate other existing pole top equipment.
- **10.1.20** <u>Transformer KVA Size</u> –A typical residential secondary crib will have one of three basic load profiles:
 - 1. Oil or Gas Heat 8kW diversified per residence (includes electric range, dryer, and window air conditioner units)
 - 2. Oil or Gas Heat w/ Central Air 10kW per residence

	SECONDARIES					
	ISSUE	PAGE NUMBER		WWZ		
Busi	07/16 ness Use	10-2	OVERHEAD CONSTRUCTION STANDARD	ppl		

Supersedes 01/06 Issue – General Revision

3. Electric Heat - 20kW per residence

The following Table provides a guide to determine the maximum number of residential customers that can be served by a secondary crib. (assumes single family homes less than 3,500 square feet and multi-family homes)

Table 1

Maximum Number of Residential Customers						
Transformer Oil or Gas Oil or Gas Heat KVA Size Heat W/ Central Air Electric Heat 50% Electric Heat 50% Oil/Gas Heat						
25 KVA	9	5	2	3		
50 KVA	12	8	5	6		

10.1.30 <u>Length of Secondary Crib</u> - Transformer KVA size, transformer location, secondary crib load, and voltage drop shall determine the length of secondary crib. For evenly distributed loads, the following Table serves as a guide to determine the approximate length of a straight, 2-way 1/0 triplex secondary to provide a 1.5% voltage drop at the ends with the transformer located in the center.

Table 2

Total KVA Load	Total Length of Secondary	Length of Secondary from Transformer to End
15 kVA	1000 feet	500 feet
25 kVA	700 feet	350 feet
50 kVA	350 feet	175 feet

- 10.1.40 <u>Voltage Drop</u> Voltage drop in secondary cribs should be limited to 1.5% in areas where new load growth can reasonably be expected. In areas where new load growth is not expected, this may be increased to a maximum of 3% of nominal (120V). A voltage drop calculator is available on the PPL Distribution Engineering Services website.
- **Flicker** Consider only the part of the secondary which is to be checked for flicker voltage drop. Determine the kW-Ft and the power factor for the fluctuating load. From the diagram on Page 10-9 determine the kW-Ft that will result in 1% drop.

Divide the kW-Ft by the value found and the quotient will be the percent drop as shown above. While this method is not strictly accurate, the error is in the safe side and it should serve for most problems. For more accurate results calculate load, power factor, and voltage drop before and after adding fluctuating load.

10.1.60 <u>Commercial or Industrial Secondaries</u>

In planning commercial and industrial secondaries, consider the overall voltage regulation in the service, secondary, transformer and primary rather than specifically limiting the drop in each of the parts.

The size of secondary and service wires should be determined by consideration of both voltage drop and current. Multiplex cables are recommended if current rating and voltage drops permit. Voltage drop on secondary and service should not exceed 3%. Current should not exceed the values shown in basic data for Section 6-Primary Conductors. It is generally economical to stay well below those values for everything except temporary work. In the case of intermittent loads, the above voltage limitations may be exceeded provided the resulting voltage is satisfactory.

SECO	N	DAF	₹IES
------	---	-----	------

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 10-3 07/09

Supersedes 01/06 Issue - General Revision

Transformer loading should not exceed 100% of rating where the daily load factor is 100% and ambient temperature is $30^{\circ}\text{C}/86^{\circ}\text{F}$ or $0^{\circ}\text{C}/32^{\circ}\text{F}$. However, loading may be increased 0.3% for each 1% decrease in load factor to a maximum of 115% of rating at 50% load factor. In addition, if peak loads occur at ambients other than $30^{\circ}\text{C}/86^{\circ}\text{F}$ or $0^{\circ}\text{C}/32^{\circ}\text{F}$, loading may be increased 1% for each $1^{\circ}\text{C}/34^{\circ}\text{F}$ decrease or decreased 2% for each $1^{\circ}\text{C}/34^{\circ}\text{F}$ increase in ambient. The effects of load factor and temperature may be added to permit a maximum of 145% load with a load factor of 50% or less, at ambients of $0^{\circ}\text{C}/32^{\circ}\text{F}$ or below.

Starting currents and flicker voltage drops should be checked where applicable. Consult Pages 10-9 and 10-10 for further data on starting current and flicker limitations. Flicker should, in general, be kept below the borderline of irritation. However, avoid increasing the cost of an installation to reduce flicker if the customer should apply corrective measures to his load.

	SECONDARIES						
ISSUE	ISSUE PAGE NUMBER						
07/09	10-4	OVERHEAD CONSTRUCTION STANDARD	ppl				

Supersedes 01/06 Issue - Page shift due to general revisions.

3/c - 1/0 Aluminum Triplex Secondary Cable Messenger 1/0 7 Strand 6201 or ACSR

TABLE 3
INITIAL SAGS AND TENSIONS – 150 FT. RULING SPAN – FOR INITIAL INSTALLATION ONLY

TEMP.	TENCION	SAG IN INCHES ACTUAL SPAN IN FEET				
(°F)	TENSION (LBS.)					
()	(LB3.)	100	125	150	175	200
0	1495	4	7	10	13	17
30	1245	5	8	11	16	20
40	1165	5	9	12	17	22
50	1085	6	9	13	18	23
60	1010	6	10	14	19	25
70	940	7	11	15	21	27
80	875	7	11	16	22	29
90	805	8	12	18	24	31
100	745	8	13	19	26	34
120	640	10	15	22	30	39

MAXIMUM DESIGN SAGS AND TENSIONS - INITIAL

TEMP. (°F)	ICE (IN.)	WIND (PSF)	K (LF./FT.)	SAG (IN.)	TENSION (LBS.)
0	0.5	4.0	0.3	31	2000
32	0.5	0	0	29	1630
32	0	0	0	12	1225
120	0	0	0	22	640

TABLE 4
FINAL SAGS AND TENSIONS – 150 FT. RULING SPAN – FOR CLEARANCES PURPOSES ONLY

	TENCION	SAG IN INCHES						
TEMP. (°F)	TENSION				L SPAN IN FEET			
	(LD3.)	100	125	150	175	200		
0	1250	5	8	11	15	20		
30	975	6	10	15	20	26		
40	895	7	11	16	22	29		
50	820	8	12	18	24	31		
60	745	8	13	19	26	34		
70	690	9	14	21	28	37		
80	635	10	16	23	31	40		
90	580	11	17	24	33	44		
100	535	12	18	26	36	47		
120	470	13	21	30	41	54		

MAXIMUM DESIGN SAGS AND TENSIONS - FINAL

TEMP. (°F)	ICE (IN.)	WIND (PSF)	K (LF./FT.)	SAG (IN.)	TENSION (LBS.)
0	0.5	4.0	0.3	32	1925
32	0.5	0	0	31	1505
32	0	0	0	15	955
120	0	0	0	30	470

SAG-TENSION TABLES OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 10-5 7/09

3/c - 1/0 Aluminum Triplex Secondary Cable Messenger 1/0 7 Strand 6201 or ACSR

TABLE 5
INITIAL SAGS AND TENSIONS – 200 FT. RULING SPAN – FOR INITIAL INSTALLATION ONLY

			2001 11 1(02)1(0 01 /1(1 1 01(11(11)))2 11(01/(22)(110									
TEMP.	TENSION		SA	AG IN INCH	IES							
(°F)	(LBS.)		ACTUAL SPAN IN FEET									
()	(LBS.)	150	175	200	225	250						
0	1155	12	17	22	28	34						
30	955	15	20	26	34	41						
40	895	16	22	28	36	44						
50	840	17	23	30	38	47						
60	790	18	24	32	40	50						
70	745	19	26	34	43	53						
80	700	20	28	36	46	56						
90	660	21	29	38	48	60						
100	630	23	31	40	51	63						
120	570	25	34	42	56	70						

MAXIMUM DESIGN SAGS AND TENSIONS - INITIAL

TEMP. (°F)	ICE (IN.)	WIND (PSF)	K (LF./FT.)	SAG (IN.)	TENSION (LBS.)
0	0.5	4.0	0.3	56	2000
32	0.5	0	0	52	1600
32	0	0	0	26	955
120	0	0	0	45	570

TABLE 6
FINAL SAGS AND TENSIONS – 200 FT. RULING SPAN – FOR CLEARANCES PURPOSES ONLY

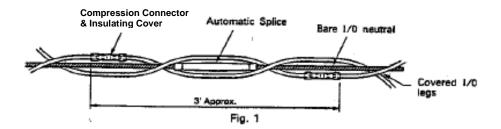
AGS AND	33 AND TENSIONS - 200 FT. ROLLING SPAN - FOR CLEARANCES FORFOSI									
TEMP.	TENSION		SA	G IN INCH	ES	·				
(°F)	(LBS.)		ACTU	AL SPAN II	N FEET					
(1)		150	175	200	225	250				
0	965	15	20	26	33	41				
30	775	18	25	32	41	51				
40	725	20	27	35	44	54				
50	680	21	21 28 37		47	58				
60	640	22	30	39	50	62				
70	605	26	32	42	53	65				
80	575	25	34	44	56	69				
90	545	26	35	46	59	73				
100	520	27	37	49	61	76				
120	475	30	41	53	67	83				

MAXIMUM DESIGN SAGS AND TENSIONS - FINAL

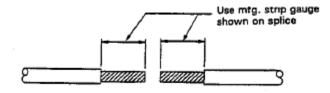
TEMP. (°F)	ICE (IN.)	WIND (PSF)	K (LF./FT.)	SAG (IN.)	TENSION (LBS.)
0	0.5	4.0	0.3	56	1975
32	0.5	0	0	54	1530
32	0	0	0	33	765
120	0	0	0	53	475

	SAG – TENSION TABLES									
	ISSUE	PAGE NUMBER		SMIZZ						
Busi	7/09 ness Use	10-6	OVERHEAD CONSTRUCTION STANDARD	ppl						

Supersedes 01/06 Issue – Page shift due to general revisions.

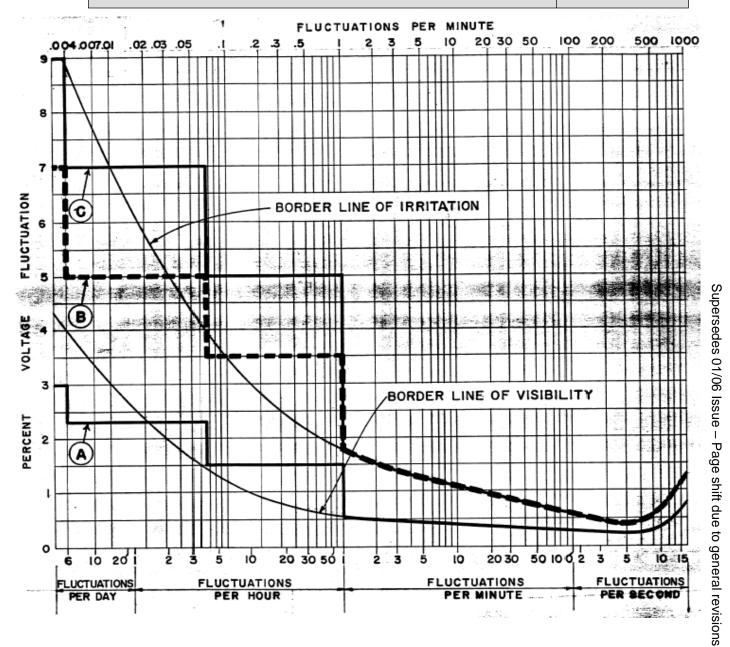

10.3 1/0 - 3C ALUMINUM MAINLINE CONDUCTOR SPLICING

10.3.10 Application


This Section covers splicing 3/C - 1/0 secondary mains in the street. Splicing should not take place within 5 feet of any pole, to allow for multiple secondary services and streetlight.

10.3.20 Procedure - Initial Steps, Neutral Splicing

- A. Cut conductors to give sleeve locations shown in Figure I below. **Note:** Total splicing length is about 36 inches.
- B. Make certain ends are somewhat square and free of burrs.
- C. Use **full tension automatic** splice, Std. Item S19K, on the neutral. **Make sure the neutral** carries all the tension and the live legs are relatively slack when all splicing is complete.
- D. Follow manufacturer's splicing recommendations on splice packaging including wire brushing.



10.3.30 Procedure – Leg Conductor Splicing

- A) Use compression splice, Std. Item S26D on legs.
- B) Strip covering from all leg conductors **using strip guide on Insulated splice.** Strip length is important to insure proper conductor insertion and to insure no exposed bare metal outside the splice housing.
- C) Bring proper ends together, short conductor of left cable with long conductor of right cable, spiraling conductor around neutral to match lay of cable; and similarly with other two cable ends.
- D) Insert skinned conductors into splice as far as barrier. No bare conductor should protrude from end of connector. Indent each splice in turn, making four crimps per side using the MD-6 or equivalent tool with W243 die, Item ID 6512709. Cover with poly cover. See Standards Section 5 – Connectors for information about covers.

	SECONDARY CABLE SPLICING										
SMIZZ		PAGE NUMBER	ISSUE								
ppl	OVERHEAD CONSTRUCTION STANDARD	10-7	7/16								

NOTES:

For motor starting loads, the maximum percent voltage fluctuation allowable for each starting step shall be limited as follows:

- a) On LVAC secondary network, at the service entrance equipment, or on the general system at the substation bus, *Curve A*.
- b) On a primary feeder or secondary which can affect other customers, Curve B.
- c) At service entrance on the radial service of the motor user, no limitations, but recommend voltage fluctuation not exceed, *Curve C*.

If the calculated fluctuation due to motor starting exceeds the above limitations the problem should be referred to the Engineering department. For other type of fluctuating loads, refer problem to the Engineering department.

			FLICKER CHART	
	ISSUE	PAGE NUMBER		SMIZE
Busi	7/09 ness Use	10-8	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 10.00.002

Supersedes 01/06 Issue - Page shift due to general revisions.

	35		25.4	24.8	44.6	63.6	83.3	117	182 271			7.5	24.3	38.4	48.6	77.1	93	138	199	255		5.5	1.1	15.0	25.0	34.2	46.8	59.1	79
TION AT	09								177										188			5.0	10.4	14.5	24.2	34.2	46.8	90.9	31
REGULA									185 1										200								51.6		
VE 1%	8																						ĭ	-	સં	ю	Ω	õ	ბ
A TO GIV	82		17.4	22.5	40.5	61.8	83.8	124	192 29.1	·		6.1	18.5	29.5	44.4	72.9	92.6	141	200	286									
AD IN KV	06		17.1	23.1	41.4	65.4	87.2	131	201	}		6.1	18.5	29.5	45.5	74.5	96.2	147	210	304									
THREE PHASE LOAD IN KVA TO GIVE 1% REGULATION AT VARIOUS POWER FACTORS	92		17.2	24.2	43.6	6.69	93.8	134	339	}		6.2	18.9	စ္တ	47.8	78.7	103	160	226	339									
THREE F	100		18.4	30.0	53.6	91.5	125	201	300			7.2	21.5	30.2	57.6	102	137	225	300	201		6.8	14.3	21.4	45.9	70.2	103	161	222
THREE PHASE TRANSFORMER	BANK RATING IN KVA	ERS (AFTER 1975)	30.0	45.0	75.0	112.5	150.0	225.0	300.0	(1960 THRU 1975)	d	15	93	45	75	112.5	150	225	300	501	(PRIOR TO 1960)	15	90	45	75	112.5	150	225	300
ΑT	32	NEW TRANSFORMERS	8.5	8.3	14.9	21.2	27.8	38.9	9 01	RANSFORMERS	CLINICIO	5.5	8.1	12.8	16.2	25.7	31.0	46.0	99	82	RANSFORMERS	1.9	3.7	2.0	8.3	11.4	15.6	19.7	56
KVA TO GIVE 1% REGULATION AT DRS	09	NEW TR	6.7	7.5	13.5	20.0	26.3	37.8	20 88 88	TRANSE		2.2	8.9	10.1	14.8	23.4	29.4	4.1	S	82	TRANSF	1.7	3.5	4.8	8.1	11.4	15.6	20.3	27
E 1% REG	80		5.9	7.4	13.4	20.5	27.2	39.9	65 7			5.0	6.3	9.4	14.8	23.4	29.4	46.9	29	83		1.7	3.5	4.8	8.3	12.5	17.2	22.7	31
A TO GIVI S	82		5.8	7.5	13.5	20.6	27.9	41.2	64 97			2.0	6.2	9.7	14.8	24.0	30.9	46.9	29	8									
	06		5.7	7.7	13.8	21.8	29.1	43.6	67 103			2.0	6.2	9.7	15.2	24.8	32.1	49.0	2	5									
SINGLE PHASE LOAD IN VARIOUS POWER FACTO	92		5.7	8.1	14.5	23.3	31.3	44.8	74 113			2.1	6.3	10.0	16.0	26.2	34.5	53.2	75	113									
SINGLE	100		6.1	10.0	17.9	30.5	41.7	67.0	100 167			2.4	7.2	10.1	19.2	34.1	45.5	75.0	9	167		2.3	4.8	7.1	14.3	23.4	34.5	53.6	74
INDIVIDUAL	RATING IN KVA		10	15	52	37.5	20	75	100			5	9	15	52	37.5	20	75	100	167		ß	9	15	22	37.5	20	75	100

The values for 60% and 35% P.F. are intended principally for use in motor starting problems. The 60% power factor is applicable to low starting current, high starting torque motors while the 35% power factor is applicable to high starting current, normal starting torque motors.

TRANSFORMER REGULATION PAGE NUMBER ISSUE OVERHEAD CONSTRUCTION STANDARD 10-9 7/09

10.6 RESIDENTIAL TRANSFORMER LOADING

The following loading schedules should be used as a guide for determining when to change a transformer and what size new transformer to install for residential load only. Peak month kWh data from GIS serves as a measurement of existing load. The table shown on Page 10-11 serves for estimating new customer's expected peak month kWh load.

The need for change outs due to new loads on existing transformers can be determined by kWh data and expected kWh loads. If the total of the two exceeds changeout loading criterion, a transformer change is warranted. If it exceeds the maximum install loading but not the changeout loading, change of the transformer should be avoided unless significant load growth or voltage problems are anticipated.

If the existing peak month kWh loads from GIS exceed transformer peak month changeout loading, change transformer and size as shown below.

New transformer installations should be sized in accordance with the install loading table, with consideration for adjacent building lots if development is anticipated within 3 years. Refer to Electrical Service Information and Requirements Handbook and local city/town ordinances for information on and mandates to locate certain residential electric facilities underground.

Engineers and planners must exercise good judgment in selecting transformers, taking probable load growth,

economy, and performance into consideration.

	SUMMER	CRITICAL	WINTER CRITICAL				
Transformer Nameplate	Changeout Loading (Peak Month kWh)	Install Loading (Peak Month Kwh)	Changeout Loading (Peak Month kWh)	Install Loading (Peak Month kWh)			
5 *	1,800	001 to 1,300	2,500	001 to 1,500			
10	4,100	1,300 to 3,200	5,500	1,500 to 4,000			
15 *	7,300	3,200 to 5,000	9,500	4,000 to 5,000			
25	13,700	5,000 to 10,500	17,000	5,000 to 12,000			
37 ½ *	20,500	10,500 to 17,000	27,000	12,000 to 18,000			
50	27,500	17,000 to 26,500	38,000	18,000 to 30,000			
75	41,000	26,500 to 35,000	60,000	30,000 to 39,000			
100	55,000	35,000 to 53,000	82,000	39,000 to 70,000			
167	92,000	53,000 to 83,000	140,000	70,000 to 110,000			

^{*} No longer PPL standard transformer kVA sizes

The schedule for summer critical loading of pole mounted transformers is based on an expected 5% annual load growth and approximately 160% peak one-half hour demand at changeout.

The schedule for winter critical pole mounted transformer loading is based on an expected 5% annual load growth and approximately 200% peak one-half hour demand at changeout.

If a transformer is suspected of supplying appreciable air conditioning load, the 160% summer loading design criteria does not apply and field testing should be utilized.

	RESIDENTIAL TRANSFORMER LOADING									
	ISSUE	PAGE NUMBER		SMIZZ						
Busi	7/10 ness Use	10-10	OVERHEAD CONSTRUCTION STANDARD	ppl						

When new residential customers are to be serviced and no kWh data is available the following figures may be used as expected peak month kWh consumption to add to other known kWh load for determining required transformer capacity.

	Exp	ected Load					
Connected Load		(Peak Month kW	h)				
	Single Family	Multifamily Family Dwelling Units	Mobile Homes Permanent Residence				
Less than 800 square feet, no heat		600 *					
More than 800 square feet, no heat		800 *					
No heat	900 *		800 *				
Up to 5 kW heat	2800	1600	2500				
Up to 10 kW heat	4300	2500	3500				
Up to 15 kW heat	5800	3500	4500				
Up to 20 kW heat	6300	4200					
Up to 25 kW heat	6800	4800					
Up to 30 kW heat	7300						
Up to 35 kW heat	7800						

Where connected load includes range, water heater and/or dryer, add applicable kWh shown below to the living unit expected load (Peak Month kWh).

Where connected load includes air conditioning, add applicable kWh to only those living units that do not have heat (e.g. living units designated *).

add: 100 kWh for Range

100 kWh for Dryer

400 kWh for Water Heater

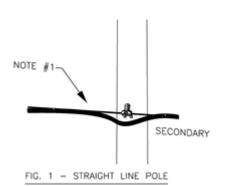
* Air conditioning

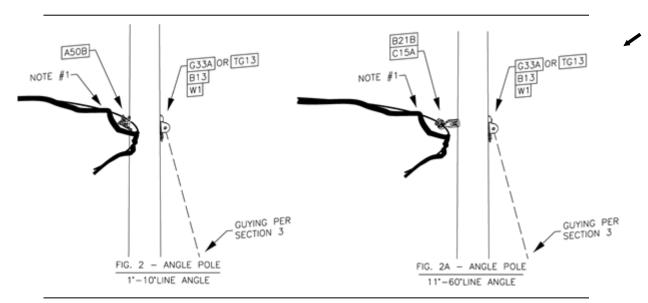
600 kWh for 1-ton Window Unit 2000 kWh for 5-ton Central

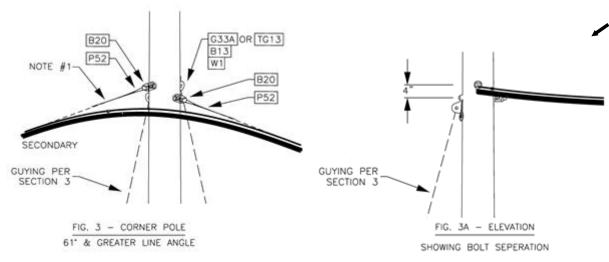
To determine transformer size for overhead pole mounted transformers having connected load of both electric heat and air conditioning, the summer and winter peaks must be evaluated separately. The transformer Peak Month Kwh for each condition must be applied to respective load schedule (Summer Critical & Winter Critical) to determine which loading schedule is applicable.

Distributed Generation (DG) Loading Requirement

A DG system is designed to produce electrical energy. A comprehensive understanding of its impact to residential loading must be considered. Photovoltaic (PV) is typical type of generation which includes panels which themselves cannot be "turned off". As long as sun is shinning on the modules, DC current can flow to concentrators or combiner boxes, and/or inverters. Therefore, it is very important to identify it's impacts on residential transformer loading.

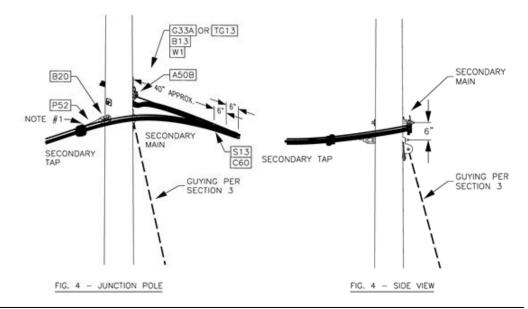

RI	RESIDENTIAL TRANSFORMER LOADING									
		PAGE NUMBER	ISSUE							
ppl	OVERHEAD CONSTRUCTION STANDARD	10-11	7/20							

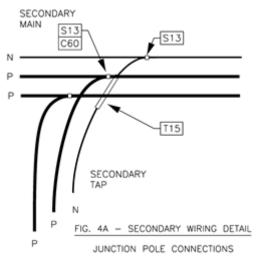

Doc. # ST. 10.00.002

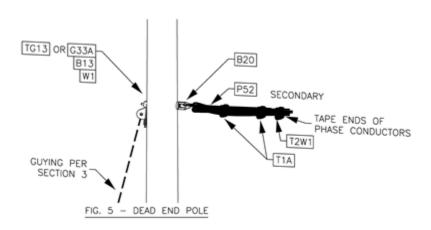

This page intentionally left blank.

SECONDARIES			
ISSUE	PAGE NUMBER		WHZ.
7/20	10-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

CU = PR1STS	Sec. Clamp
CU = PR1SSA	Sec. Clamp Angle
CII - PR1SSA2	Sec DF Angle 61°-90°

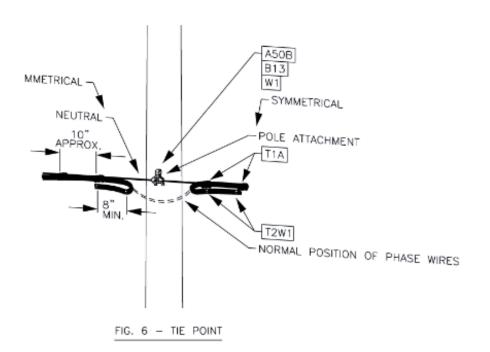

NOTE:

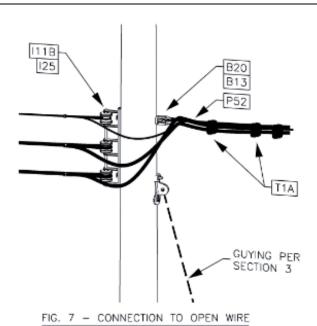

1. TRAIN CABLES NEATLY AND KEEP APPROXIMATELY 2" AWAY FROM POLE.


AMAZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	10-100	7/17

Doc. # ST. 10.00.003

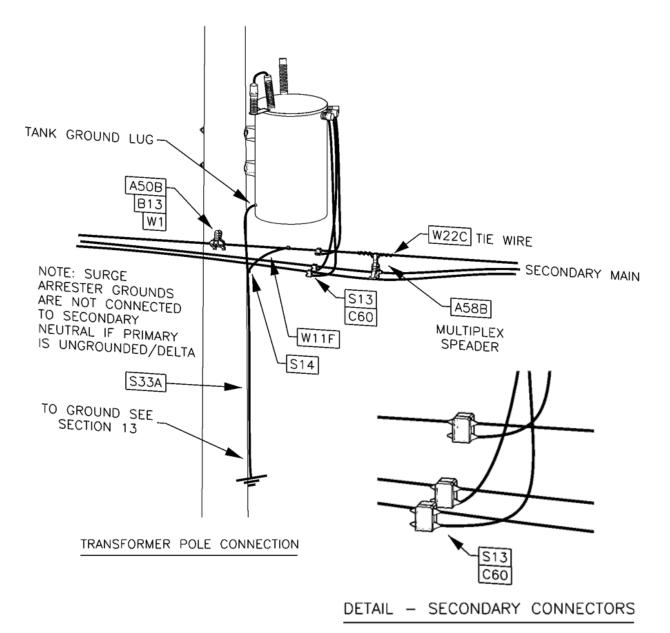
CU = PR1STAP	Deadend Sec. Tap
CU = PR1SSADE	Deadend Sec.




	ATTACHMENT TO POLES			
	ISSUE	PAGE NUMBER		AM772
usi	ness Use	10-101	OVERHEAD CONSTRUCTION STANDARD	ppl

CU = CNCUT	Sec. Crib Cut/Splice	PR1STS	Sec. Clamp 0° - 60°
CU = PR3SS	3-Spool Sec. Rack	PR1STRAP	Sec. Tap Triplex Bolteye
CU = CCTPS	Reconnect Sec. Taps		

PROCEED AS FOLLOWS:


- 1. TAPE TRIPLEX CABLE IN PLACE AT TWO POINTS EACH SIDE OF POLE BEFORE CUTTING PHASE CABLE.
- 2. CUT PHASE CABLES AT EACH SIDE OF POLE.
 3. TAPE ENDS AND BEND BACK APPROXIMATELY TO POSITION SHOWN.

VERTICAL RACK ILLUSTRATED

	AMIZZ		PAGE NUMBER	ISSUE
se	ppl	OVERHEAD CONSTRUCTION STANDARD	10-102	7/17

CU = CSTQS Sec. Multiplex Spacer

NOTE:

- 1. FOR ELECTRICAL WIRING DIAGRAMS SEE TRANSFORMERS SECTION 14 DRAWINGS.
- 2. COPPER TAP CONDUCTOR SHALL BE PLACED IN CONNECTOR BOTTOM POSITION.

Figure 8 - Transformer Pole Connection

	ATTACHMENT TO POLES			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/18 ness Use	10-103	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 10.00.003

Version	Date	Modification	Author(s)	Approval by (Name/Title)
7	7/20	Added verbiage on 10-11		
6	7/18	Cleared up blurry drawing on page 10-103.		
5	7/17	 Added Figure 2a on page 10-100. Updated drawings to 3-D on pages 10-100 through 10-103. 		
4	7/16	 Revised 10.0.30(D) and 10.0.70 to eliminate taping connectors option. Corrected paragraph numbering of 10.0.60 through 10.0.90. 		
3	7/12	Added paragraph 10.0.70 – Secondary Cable Dimensions		
2	7/10	 Updated Std Item #s on Drawings 10-100 and 10-101. Added side view of Figure 4 on Drawing 10-101 to show elevation difference between two bolts. Added Section 10.6 		
1	07/09	General revision of entire section.Added CUs to drawings/figures.		

SUMMARY OF RECENT CHANG	SES	
	PAGE NUMBER	ISSUE
OVERHEAD CONSTRUCTION STANDARD	10-NOTES	7/20

Doc. # ST. 10.00.003

	SECONDARIES			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/20 ness Use	10-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 11.00.001

SECTION	PAGE
• 11.0 GENERAL	11-1
11.1 CONDUCTORS	11-1 THRU 11-2
11.2 CONNECTIONS TO SECONDARIES	11-2
11.3 CONNECTIONS TO BUILDINGS	11-2
 11.4 CLEARANCES FROM GROUND, SWIMMING POOLS AND STRUCTURES 	11-2
11.5 SURGE ARRESTERS	11-3
11.6 GUYING	11-3
11.7 GROUNDING AND BONDING	11-3
 11.8 TYPICAL 100 AMPERE OVERHEAD TEMORARY SERVICE STRUCTURE WHERE SERVICE DROP DOES NOT CROSS OVER A HIGHWAY 	11-3
CONSTRUCTION DRAWINGS	
 SERVICE CONDUCTOR SAG & TENSION 	11-61
 SERVICE CONDUCTOR DATA 	11-62
 MULTIPLEX SECONDARY AND SERVICE TAPS FROM MULTIPLEX SECONDARIES 	11-115
 MIDSPAN SERVICE TAP 	11-115A
 MULTIPLEX SERVICE BUILDING ATTACHMENT 	11-121
 INSTALLATION OF CONVENIENCE OUTLET ON DISTRIBUTION POLE WITH SECONDARY 	11-122
 400 A AND 800 A MULTIPEX SERVICE POLE AND TRANSFORMER CONNECTION 	11-141
 TYPICAL 100 A OVERHEAD TEMPORARY SERVICE STRUCTURE 	11-151
 DISTRIBUTION SUPPLY-TRANSMISSION SWITCH MOTOR CONTROL 	11-161

	SERVICES INDEX		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	11-i	7/21

Business Use

Doc. # ST. 11.00.001

		SERVICES INDEX	
ISSUE	PAGE NUMBER	NMD_{x}	
1/06	11-ii	OVERHEAD CONSTRUCTION STANDARD	ppl

11.0 GENERAL

These standards cover overhead services of less than 600 V and only that portion of each service that is to be installed by PPL. See Section 10, Secondaries, for sizing conductors and transformers. Normally, overhead secondary services shall be offered in the following voltages:

120/240 V Single Phase - 3 wire (for load not exceeding 100 kVA)

208Y/120 Three Phase - 4 wire (for non-residential only)

480Y/277 Three Phase - 4 wire (available by special arrangement and approval only)

240 V and 480 V delta services are not available for new installations

The <u>Service Drop</u> or <u>Lateral</u> is the overhead conductor between the last pole or other aerial support on the primary line and the first point of attachment to a building. The <u>Service Entrance</u> is the conductor between the service drop/lateral and the service entrance switch.

The Company will attach the service drop/lateral to the Customer's structure at the service bracket (supplied by and installed by the customer). See the "**Specifications for Electric Installations**" for metering and details of the Customer's installation.

CAUTION: 18 inches of clearance should be maintained between any gas regulator vent and the socket of an electric meter.

11.1 CONDUCTORS

11.1.10 Selection of Conductors

Aluminum multiplex conductors shall be installed for all new and replacement overhead services unless otherwise noted. For new construction, conductor size selected from Table 1 below will be determined by the Customer service entrance rating. Use triplex conductors for single-phase services and quadruplex for 3-phase, 4-wire services. Aluminum service cable #2 and 1/0 triplex and 1/0 and 336.4 kcmil quadruplex shall be used in accordance with information below and the standards that follow in this section. In general, #2 triplex cable shall be used for dwellings up to and including three family where the service load could be supplied by a 15 kVA transformer. This will include all but a very few large "all electric" homes. 1/0 Triplex service cable shall be used for large residential services where #2 cable is inadequate. Cable loads should be within limits shown on Table 2 on Page 11-2. If the length of service is such that the voltage drop may exceed 1%, a larger conductor should be used.

When a customer upgraded a service, the existing service cable can stay in service unless voltage drop or flicker will affect the customer.

SERVICE ENTRANCE RECOMMENDED CONDUCTOR **TYPE** MAX. AMPACITY **SIZE AND TYPE** STD. ITEM **ITEM ID** 100 A.1 #2 TRIPLEX W15B 4003306 SINGLE 150 or 2 100 A. #2 TRIPLEX W15B 4003306 **PHASE** 200 A.4 W15C 1/0 TRIPLEX 4003310 336.4 QUADRUPLEX2, 6 W16E 400 A. 4004436 1/0 QUADRUPLEX W16C 150 A. 4004410 THREE 400 A. 336.4 QUADRUPLEX W16E 4004436 800 A.3 **PHASE** (2) 336.4 QUADRUPLEX2 W16E 4004436

(8) #4/0 CU.2

TABLE 1

Notes:

800 A.

- 1. New single-phase service entrances shall have a capacity of not less than 100 A for a single meter or not less than 150 A for more than one meter.
- 2. #4/0 CU (W33C) may be substituted for 336.4 kcmil multiplex for short runs directly from transformer to service entrance.

W33C

4020111

	SERVICES				
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	11-1	7/18		

- 3. See Page 11-141 for 400 A and 800 A services.
- 4. If loads are likely to exceed 25 kW, use 336.4 kcmil quadruplex.
- 5. Quadruplex cable shall be used for 240 V and 480 V delta services.
- 6. When using quadruplex cable for a single phase service, leave the extra phase conductor and at each end, bend the end back and tape it to itself.

TABLE 2

SIZE AND	CAP	ACITY IN AM	IPERES	
LIVE LEG	MESSENGER	SINGLE CONDUCTOR	TRIPLEX	QUADRUPLEX
#4 Solid AAC*	#4 - 7 Strand AAAC	150	130	115
#2 – 7 Strand AAC	#2 - 7 Strand AAAC or ACSR	200	175	150
1/0 – 7 Strand AAC	1/0 – Strand AAAC or ACSR	270	245	210
4/0 – 7 Strand AAC*	4/0 – 7 Strand AAAC	415	380	•
336.4 – 19 Strand AAC	4/0 – 7 Strand AAAC or ACSR	550	515	445
795 – 37 Strand AAC*	336.4 - 19 Strand AAC	935	900	825
350 – 37 Strand CU		705	-	-
500 – 37 Strand CU		890	-	-

*Nonstandard – Values are given for comparison and special installations
The above is based on 100°F/37.7°C ambient and 194°F/90°C continuous operation with 3 feet per second wind velocity – also standard cable with cross-linked polyethylene insulation. The values should be reduced 20% for polyethylene insulation.

11.1.20 Sag

Sag service wire to the values shown on Page 11-61. It is often necessary to make some variations in sags to balance loads on service wires. Good judgment shall be used when making such variations.

▲11.2 CONNECTIONS TO SECONDARIES

Taps from multiplex secondaries should be located approximately 3 feet from the pole as shown on Page 11-115 (to minimize pole congestion). Taps may also be made elsewhere in the span if there are right-of-way or clearance problems. Balance the service wire tension at each tap when practicable.

See Section 5, Connectors, for service/secondary connectors and splices.

See Section 48 (Underground – Risers)) for connection to underground service laterals. Use compression type connectors for service connections whenever possible. Cover connections on covered conductors.

11.3 CONNECTIONS AT BUILDINGS

See 11-121 for multiplex service attachments at the building.

11.4 CLEARANCE FROM GROUND, SWIMMING POOLS, AND STRUCTURES

Adequate clearances shall be maintained. See Section 7 and the "**Specifications for Electric Installations**". Where it is necessary, an intermediate pole or a riser on the building shall be installed. Reference should be made to the above handbooks for a division of cost for such supports, or for long service drops/laterals on private property. Adjacent buildings not on property being served shall not be used to support service wire.

Services should not be installed over swimming pools or surrounding areas extending 25 feet horizontally from the pool edge. If crossing cannot be avoided, see Section 7 for clearance.

			SERVICES	
	ISSUE	PAGE NUMBER		WIII
si	7/19 ness Use	11-2	OVERHEAD CONSTRUCTION STANDARD	ppl

11.5 SURGE ARRESTERS

Surge arresters shall not be installed on services. Where customers desire protection against induced lightning surges, they may install an arrester in the service entrance box on the load side of the meter.

11.6 GUYING

It is recommended that guys be installed on poles with heavy unbalanced services, particularly when all services are taken off from the same side of a line of poles.

11.7 GROUNDING AND BONDING

The messenger of multiplex cables shall be connected to the grounded secondary neutral at the pole. It shall also be connected to the Customer's neutral for 120/240 V, 120/208 V, or other grounded neutral service. The messenger shall be bonded to the metal mast or riser at the building.

One of the three insulated conductors of a 240 V delta service may be grounded at the pole and at the service entrance box.

11.8 <u>TYPICAL 100 AMPERE OVERHEAD TEMPORARY SERVICE STRUCTURE WHERE SERVICE DROP</u> DOES NOT CROSS OVER A HIGHWAY

11.8.10 Application

The following are details for a 100 A, 120/240 V, single phase overhead temporary service. Temporary service is considered a service that will generally be in use for less that one year. Use of this installation as a permanent service basis shall not be permitted. Additional clearances per latest National Electrical Safety Code (NESC) must be incorporated with this design should a communication company attach to this structure.

11.8.20 <u>Division of Responsibility</u> (See Page 11-151)

Location of temporary service shall be specified by the Company.

The CUSTOMER and CONTRACTOR shall:

- A. Furnish, install, maintain, and remove:
 - 1. Wood structure, braces, and stakes as shown.
 - 2. Weatherproof meter socket and disconnect including waterproof entrance fittings.
 - 3. GFCI protected polarized receptacles.
 - 4. SE cable, staples and weatherhead
 - 5. Ground rods, ground conductor, ground molding, staples and ground rod connector.
 - 6. Obtain inspection and approval from local wire inspector.

The Company shall:

- A. Furnish, install, maintain and remove:
 - 1. Overhead service drop from pole to temporary service structure.
 - 2. Overhead service drop connectors and attaching hardware.
 - 3. Secondary meter.

SERVICES				
SMIZZ	AMIZ		ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	11-3	7/18	

11.8.30 <u>Notes</u>

- A. Where it is necessary to cross a roadway or highway with the overhead service drop conductors, distribution line construction as specified by the Company shall be used.
- B. Service drop conductors shall meet all overhead clearance requirements of the latest issue of the NESC.
- C. Service drop conductors shall be installed in accordance with sag/tension tables within these construction standards.
- D. All post, brace, and stake wood members shall be "nominal", and those routinely available from lumber yard stock. Pressure treated lumber is recommended.
- E. The customer, or the customer's contractor, shall meet all clearances and construction requirements set forth in the latest edition of the National Electrical Code (NEC) and as required by local authorities and the local Wire Inspector.

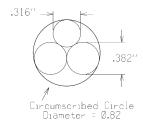
	SERVICES			
	ISSUE PAGE NUMBER			
Busi	1/06 ness Use	11-4	OVERHEAD CONSTRUCTION STANDARD	ppl

		INITIAL SAG (INCHES)			
	SPAN (FEET)	#2 AAC TRIPLEX (W15B)	1/0 AAC TRIPLEX (W15C)	1/0 AAC QUADRUPLEX (W16C)	336.4 AAC QUADRUPLEX (W16E)
	50	3	8	9	14
32°F	60	6	12	14	20
32	70	10	18	19	27
OF	80	15	24	26	34
	90	21	31	34	43
TEMP.	100	27	39	42	53
lμ	110	34	47	52	64
	120	43	57	62	76
	50	5	10	11	16
€0°F	60	8	15	16	22
09	70	13	20	22	28
OF	80	18	26	28	36
	90	24	33	36	45
TEMP.	100	30	41	44	55
H	110	37	50	54	66
	120	45	59	64	78
	50	7	12	13	17
900F	60	11	17	18	23
	70	16	22	24	30
OF	80	21	28	30	38
	90	27	35	38	47
TEMP.	100	33	43	46	57
1	110	40	52	60	68
	120	49	62	66	80

		FINAL SAG (INCHES) @MAXIMUM DESIGN TENSION			
	SPAN (FEET)	#2 AAC TRIPLEX (W15B) 650 LBS	1/0 AAC TRIPLEX (W15C) 650 LBS	1/0 AAC QUADRUPLEX (W16C) 680 LBS	336.4 AAC QUADRUPLEX (W16E) 1,000 LBS
	50	10	14	14	18
∃ ₀ 06	60	14	19	19	24
6	70	19	24	25	31
Ю	80	24	30	32	39
<u> </u>	90	30	37	40	48
TEMP.	100	36	45	48	58
₽	110	43	54	58	69
	120	52	64	68	81

SERVICE CONDUCTOR SAG & TENSION

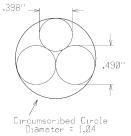
OVERHEAD CONSTRUCTION STANDARD


PAGE NUMBER ISSUE 11-61 1/06

Supersedes 01/06 Issue – Revised circumscribed circle dimensions.

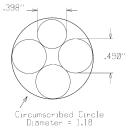
#2 AWG Triplex Service Cable - "SHRIMP/XLP" (W15B)

One - #2 AWG, 6201-T81, 7 strand AAAC Messenger Diameter = .316 inches Two - #2 AWG, 1350-H19, 7 strand AAC Phase Conductor Diameter with 45 mils of XLP = .382 inches


LOADING			
DEADEND	650 LBS		
TRANSVERSE	.590 LBS./FT.		
VERTICAL	1.04 LBS./FT.		
TOTAL	1.496 LBS./FT.		
SWING ANGLE	57.0°		

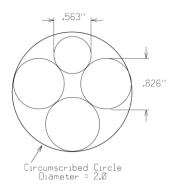
1/0 AWG Triplex Service Cable - "GAMMARUS/XLP" (W15C)

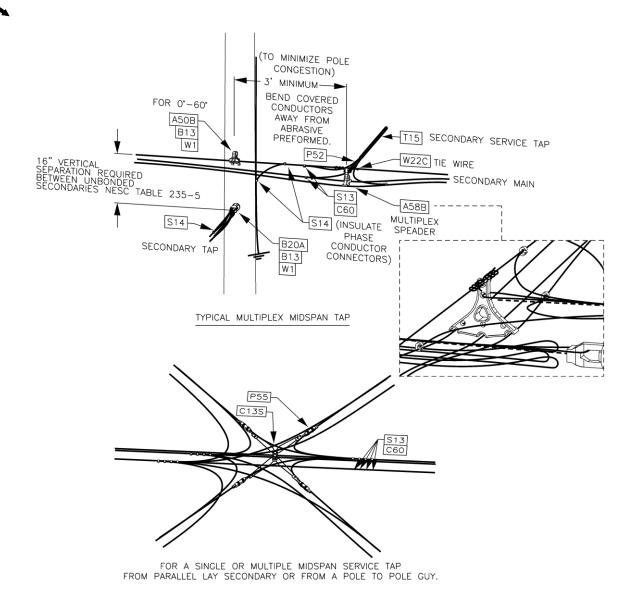
One - 1/0 AWG, 6201-T81, 7 strand AAAC Messenger Diameter = .398 inches Two - 1/0 AWG, 1350-H19, 7 strand AAC Phase Conductor Diameter with 60 mils of XLP = .490 inches


LOADING			
DEADEND	650 LBS		
TRANSVERSE	.666 LBS./FT.		
VERTICAL	1.318 LBS./FT.		
TOTAL	1.774 LBS./FT.		
SWING ANGLE	51.0°		

1/0 AWG, Quadruplex Service Cable - "SHETLAND/XLP" (W16C)

One - 1/0 AWG, 6201-T81, AAAC Messenger Diameter = .398 inches Three - 1/0 AWG, 1350-H19, AAC Phase Conductor Diameter with 60 mils of XLP = .490 inches


LOADING			
DEADEND	680 LBS		
TRANSVERSE	.707 LBS./FT.		
VERTICAL	1.568 LBS./FT.		
TOTAL	2.020 LBS./FT.		
SWING ANGLE	45.0 ⁰		


336.4 KCMIL Quadruplex Service Cable - "EXMOOR/XLP" (W16E)

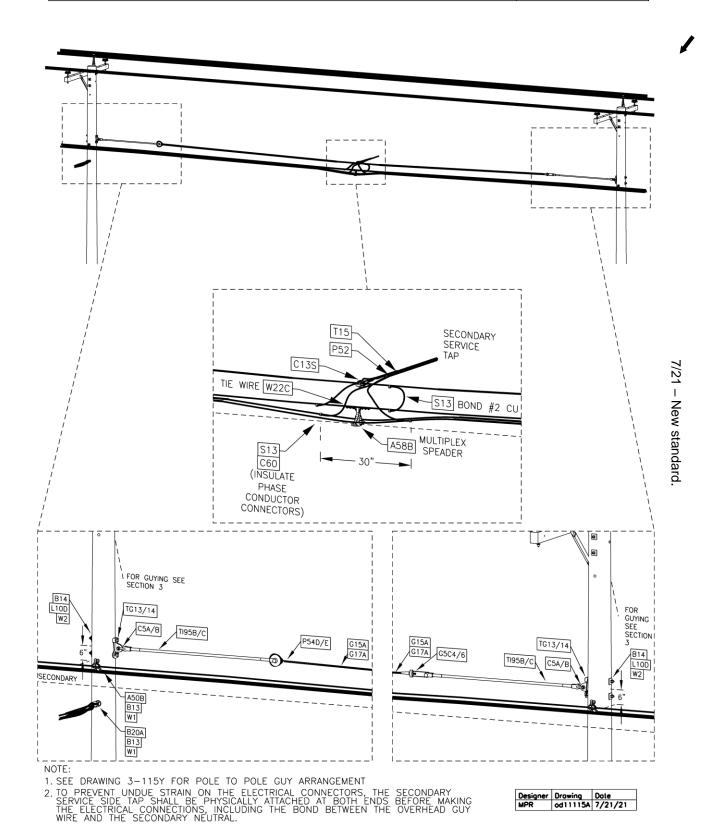
One - 4/0 AWG, 6201-T81, 7 strand AAAC Messenger Diameter = .563 inches Three – 336.4 KCMIL, 1350-H19, 19 strand AAC Phase Conductor Diameter with 80 mils of XLP = .826 inches

LOADING		
DEADEND	1,000 LBS	
TRANSVERSE	.973 LBS./FT.	
VERTICAL	3.00 LBS./FT.	
TOTAL	3.452 LBS./FT.	
SWING ANGLE	32.5 ⁰	

SERVICE CONDUCTOR DATA			
ISSUE	PAGE NUMBER		SMIZZ
07/12	11-62	OVERHEAD CONSTRUCTION STANDARD	ppl

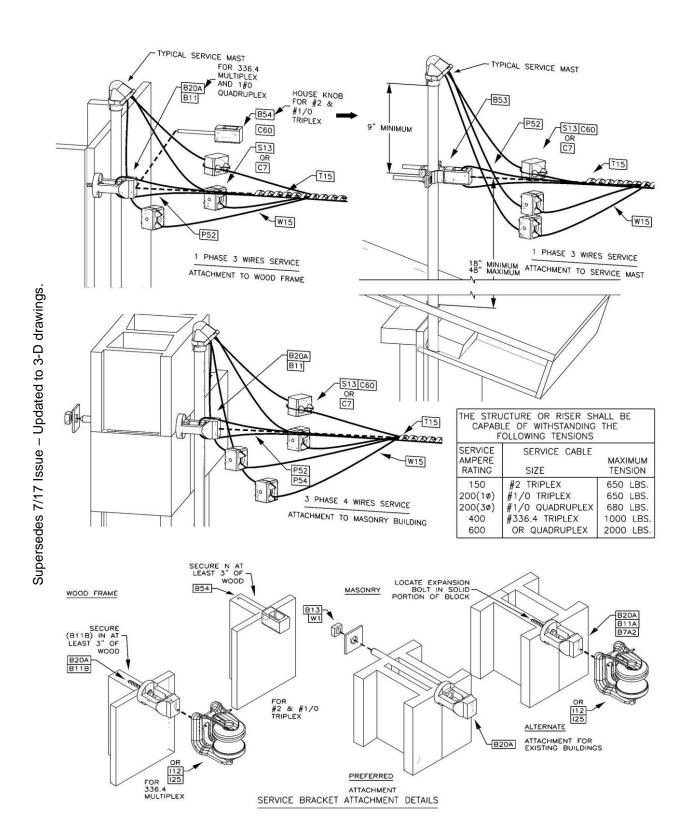
NOTE:

- 1. MULTIPLEX SPREADER (A58B) IS HELD INTO PLACE BY TIE WIRE (W22C), ATTACHED THROUGH TOP SPACER HOLE AND WIRED TO THE MESSENGER
- TOP SPACER HOLE AND WIRED TO THE MESSENGER.
 2. SEE PAGE 11-1 FOR CONDUCTOR SIZE SELECTION.
- 3. SEE SECTION 5 FOR CONNECTOR DETAILS.
- 4. INSULATE ALL COVERED CONDUCTOR CONNECTIONS.
- 5. ALWAYS POSITION COPPER CONDUCTORS BELOW ALUMINUM IN CONNECTORS.
- 6. REFER TP PAGE 11.2 FOR NOTES ON LOCATION AND BALANCING OF TAPS.
- 7. SEE GUYING STATEMENT ON PAGE 11-3.
- 8. TO AVOID EXCESSIVE SECONDARY CABLE OFFET DUE TO AN UNBALANCED MID—SPAN SERVICE, INSTALL A POLE TO POLE GUY, ATTACH THE MID—SPAN CLAMP (C13S) TO THE GUY AND BOND THE SECONDARY NEUTRAL TO THE POLE TO POLE GUY. SEE PAGE 11-115A

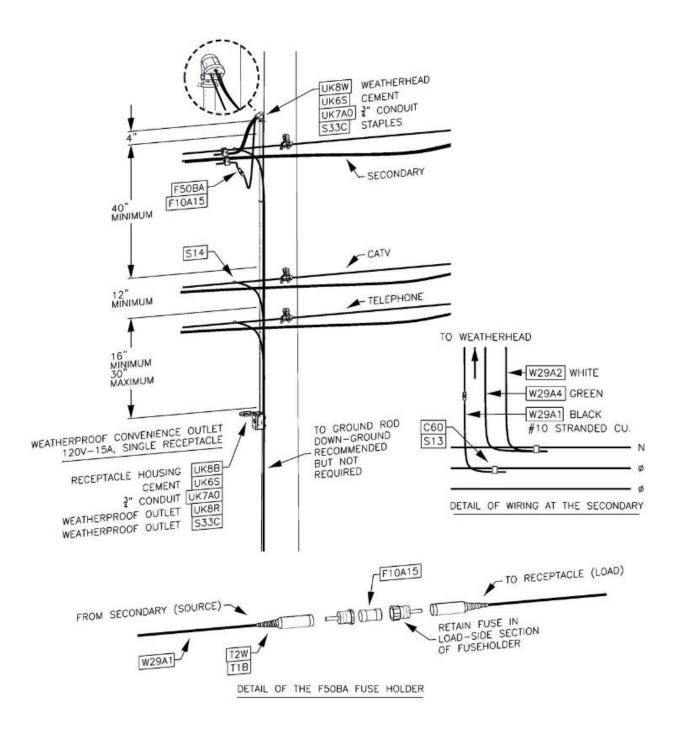

Designer	Drawing	Date
MPR	od11115	7/19/21

MULTIPLEX SECONDARY AND SERVICE TAPS FROM MULTIPLEX SECONDARIES

OVERHEAD CONSTRUCTION STANDARD

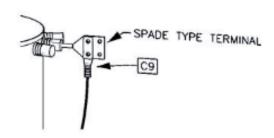

PAGE NUMBER ISSUE 11-115 7/21

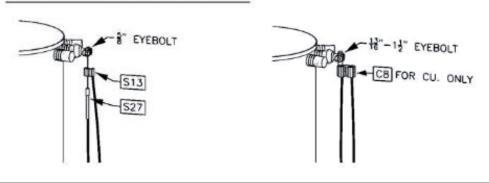
MAINTENANCE BACKYARD CONSTRUCTION ONLY

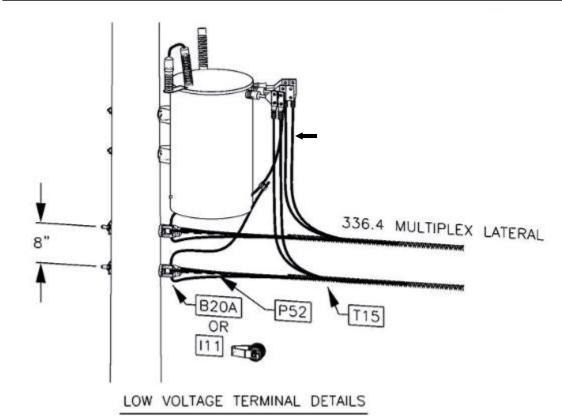

			MIDSPAN SERVICE TAP	
	ISSUE	PAGE NUMBER		AM72
Busi	7/21 ness Use	11-115A	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 11.00.004

MULTIPLEX SERVICE BUILDING ATTACHMENT OVERHEAD PAGE NUMBER ISSUE CONSTRUCTION STANDARD 11-121 7/21

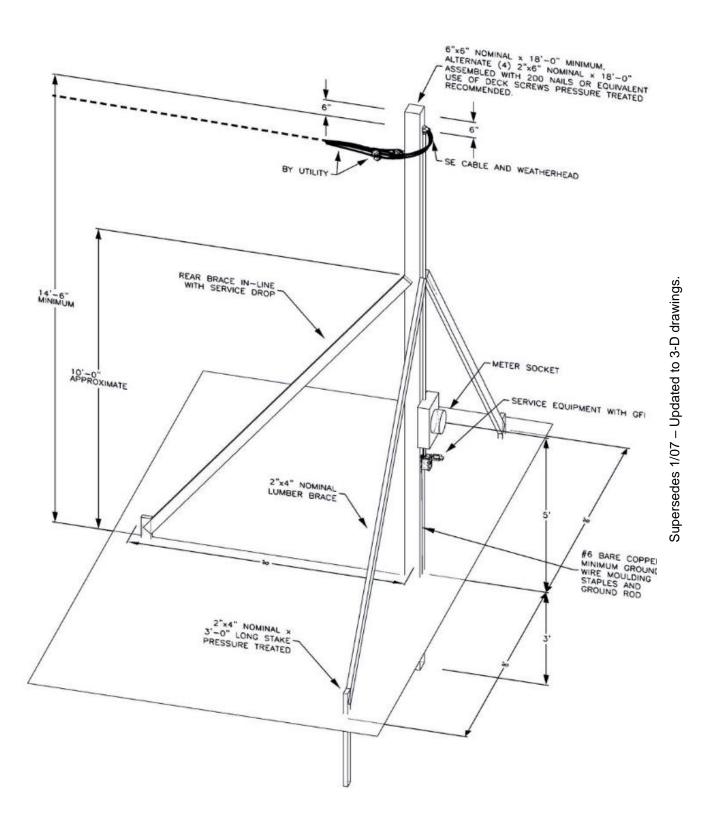

Business Use

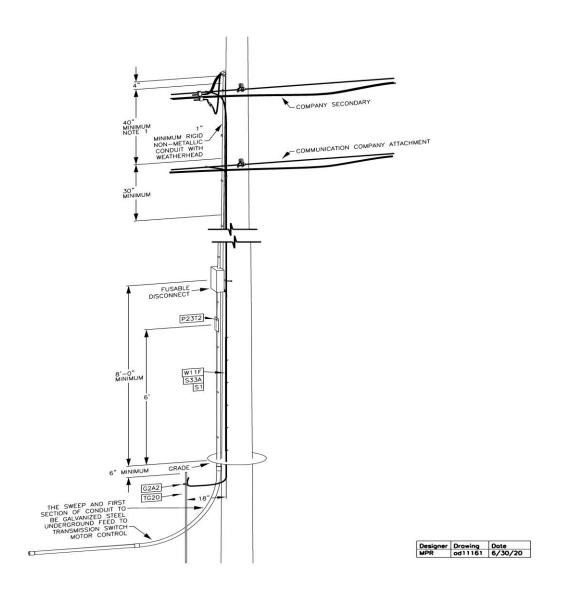

	INSTALLATION OF CONVENIENCE OUTLET ON DISTRIBUTION POLE WITH SECONDARY						
	ISSUE PAGE NUMBER						
Busi	7/21 11-122 CONSTRUCTION STANDARD PPI						


Supersedes 1/07 Issue - Updated to 3-D drawings

167KVA TRANSFORMERS

100KVA TRANSFORMERS AND BELOW


400A AND 800A MULTIPLES SERVICE POLE AND TRANFORMER CONNECTION


OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 11-141 7/21

Doc. # ST. 11.00.004

	TYPICAL 100A OVERHEAD TEMPORARY SERVICE STRUCTURE					
	ISSUE	PAGE NUMBER		WHI.		
Busi	7/21 ness Use	11-151	OVERHEAD CONSTRUCTION STANDARD	ppl		

NOTES:

- 1. This arrangement is representative of a typical installation near a transmission structure. Additional poles and overhead construction by Distribution Line Department may be required to reach and supply riser pole
- 2. Environmental permitting for this type of construction is the responsibility of Transmission Line Services
- 3. Riser pole shall be located at the edge of the right of way near the transmission structure.
- Underground conduit and conductors from the secondary riser to the transmission structure and connection of motor control are the responsibility of Transmission Line Services
- 5. Riser conduit, if metallic, shall be bonded to system neutral or a down ground
- 6. Fusible disconnect to be fused at 30A for a 120V service to the motor control

	DISTRIBUTION SUPPLY – TRANSMISSION SWITCH MOTOR CONTROL					
			PAGE NUMBER	ISSUE		
5	ppl	OVERHEAD CONSTRUCTION STANDARD	11-161	7/21		

Doc. # ST. 11.00.004

Version	Date	Modification	Author(s)	Approval by (Name/Title)
8	7/21	Add new page 11-115A Midspan service tap		
7	7/20	Add new Page 11-161 Distribution Supply to Transmission Switch Motor Control		
6	7/19	Revised Section 11.2 (page 11-2) to eliminate deadended at the pole.		
5	7/18	Add new Note 6 in Table 1 about the use of quadruplex cable in single phase services.		
4	7/17	Updated drawings 11-115, 11-121, 11-122, 11-141, and 11-151 to #-D.		
3	7/16	Revised Section 11.2 (page 11-2) and drawing 11-121 to eliminate the option of taping secondary service connectors.		
2	7/12	Revised circumscribed circle dimensions on page 11-62.		

	SUMMARY OF RECENT CHANGES					
	ISSUE PAGE NUMBER					
7/21 11-NOTES CONSTRUCTION STANDARD PP						

SECTION	PAGE
12.0 GENERAL	12-1
12.1 FUSE RATING	12-1 THRU 12-2
12.2 CONTINUOUS RATING	12-2
12.3 DISCONNECT RATING	12-2
12.4 INTERRUPTING RATING	12-2 THRU 12-4
12.5 SELECTION GUIDE	12-4 THRU 12-15
12.6 FAULT CIRCUIT INDICATORS (FCI'S)	12-16 THRU 12-17
12.7 INSTALLATION – CUTOUTS & DISCONNECTING DEVICES	12-17
o K Fuse Link Selection Guide For Overhead Transformers	12-18
o T Fuse Link Selection Guide For Overhead Transformers	12-19
K Fuse Link Selection Guide For Overhead Capacitors	12-20
o K Fuse Link Coordination For Single Phase CSP Transformers	12-21
CONSTRUCTION DRAWINGS	
 Current Limiting Fuse Installation (Retrofitting) On CSP Transformer 15 kV 	12-127
 Current Limiting Fuse Installation On Conventional Transformer 15-35 kV 	12-128
o 1Φ Primary With 1Φ Fused Tap 15-35 kV	12-129
о 3Ф Primary With 1Ф Fused Tap 15-35 kV	12-130
 3Φ Primary Sectionalizing 5 kV (Maintenance Only) 	12-131
 1Φ Primary Sectionalizing 15-35 kV 	12-132
 3Φ Primary Sectionalizing 15-35 kV 	12-133A THRU 12-133B
о 3Ф Primary With 3Ф Fused Tap 15-35 kV	12-134
 Underslung Disconnect Switch Tangent Line Angles 0°-10° - 15-35 kV 	12-135A
 Underslung Disconnect Switch Tangent Line Angles 11°- 20° - 15-35 kV 	12-135B
 Underslung Disconnect Switch Tangent Line Angles 21°-60° - 15-35 kV 	12-136
 Vertical Disconnect Switch Tangent Line Angles 0°-20° - 15-35 kV 	12-137A
 Vertical Disconnect Switch Tangent Line Angles 0°-20° - 15-35 kV 	12-137B
o Installation of In-Line Switches 15-35 kV	12-138
 Underslung Disconnect Switches – On Switcharms 15-35 kV 	12-139
Vertical Disconnect Switches – On Switcharms 15-35 kV	12-140
 3Φ Primary Sectionalizing - Loadbreak Switch Below Crossarm Installation 15-35 kV 	12-141
 3Φ Primary Sectionalizing – Conductor Deadend On Loadbreak Switch Installation 15-35 kV 	12-142
 3Φ Primary Sectionalizing – Loadbreak Switch with Shunt Cutouts Installation 15-35 kV 	12-143
 3Φ Primary Sectionalizing – Hook Stick Loadbreak Switch Below Crossarm Installation 15kV 	12-144
 3Φ Primary Sectionalizing – Hook Stick Loadbreak Conductor Deadend On Switch Installation 15kV 	12-145
 3Φ Primary Sectionalizing – Hook Stick Loadbreak Switch with Shunt Cutouts – 15kV 	12-146

PROTECTION INDEX OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 7/19

OFOTION		DA 05
SECTION		PAGE
0	Single Phase Vacuum Operated Cutout Mounted Recloser – Single Phase Tap Inline –Tangent and Deadend. Installations	12-328
0	Single Phase Vacuum Operated Cutout Mounted Recloser Installation – Single Phase Tap Installation.	12-329
0	Single Phase Vacuum Operated Cutout Mounted Recloser – Three	12-330
	Phase Tap Installation.	
0	Single Phase Vacuum Operated Cutout Mounted Recloser – Three Phase Inline Tangent. Installation	12-331
0	Single Phase Vacuum Operated Cutout Mounted Recloser – Three Phase Deadend Inline Installation	12-332
0	3Φ Recloser Effectively Grounded Installation 15-35 kV	12-333
0	3Φ Recloser Installation Wiring Details and Noneffectively Grounded Circuit Grounding 15-35 kV	12-334
0	3Φ Recloser Installation 5-35 kV Effectively Grounded, Non-Effectively Grounded, & Delta Systems	12-335
0	3Φ Recloser Installation 15-35 kV Distributed Generation PCC 5-35KV	12-335A
0	3Φ Recloser Installation Wiring Details 5-35kV Radial Applications	12-336
0	3Φ Recloser Effectively Grounded Installation 12.47 kV, 13.2 kV, 13.8 kV Applications with Frame Mounted PT's	12-338
0	3Ф Recloser Installation 12.47 kV, 13.2 kV, 13.8 kV Applications with Frame Mounted PT's DG PCC	12-338A
0	3Φ Recloser Installation Wiring Detail 12.47 kV, 13.2 kV, 13.8 kV Radial Applications with Frame Mounted PT's	12-339
0	1Φ Recloser Effectively Grounded Installation 15-35kV	12-341
0	Eaton NOVA NX-T 3φ Recloser Effectively Grounded Installation 5KV, 12.47KV, 13.2KV, 13.8KV Applications with Frame Mounted PT's	12-350
0	Eaton NOVA NX-T 3φ Recloser Installation Wiring Details 5-15 KV Radial Applications	12-351
0	Notes for Drawings 12-335, 12-335A, 12-338, 12-338A, 12-350 and 12-360	12-352
0	3Ф Recloser Installation 15 KV On Spacer Cable with External Mounted PTs	12-360
0	Indicator – Fault Circuit – Distribution	12-650A
0	Smart Indicator – Fault Circuit – Distribution	12-650B
0	Protection – Overhead Subtransmission Section	12-900
0	Indicator – Fault Circuit – Sub-Transmission	12-905A
0	Smart Indicator – Fault Circuit – Sub-Transmission	12-905B
0	Sub-Transmission - 23-34.5kV Horizontal Upright Loadbreak	12-911A
0	Sub-Transmission - 46kV Horizontal Upright Loadbreak	12-911B
0	Sub-Transmission - 46kV Side Break Loadbreak	12-912
0	Sub-Transmission - 23-34.5kV Phase over Phase Loadbreak	12-913A
0	Sub-Transmission – 23-34.5kV Loadbreak Switch for 795 kCMIL & 1113 kCMILConductors	12-914
0	Sub-Transmission – 35 KV max Inline Switches	12-938
0	Sub-Transmission – 35 KV Sectionalizer	12-950
0	Sub-Transmission 35 KV Recloser Installation Distributed Generation PCC	12-950A
0	3Ф Sub-Transmission 35 KV Sectionalizer Installation Wiring Details	12-951
0	3Φ Sub-Transmission 35 KV Sectionalizer Installation Wiring Details with External Mounted PTs	12-952
0	Eaton NOVA NX-T 3φ Recloser Installation 38KV with External Mounted PT's	12-960
0	Eaton NOVA NX-T 3φ Recloser Installation Wiring Details 38KV with External Mounted PT's	12-961

	PROTECTION INDEX					
ISSUE	PAGE NUMBER		SMIZ			
7/21	12-ii	OVERHEAD CONSTRUCTION STANDARD	ppl			

12.0 GENERAL

Short circuits, the uncontrolled flow of electricity from energized conductors or equipment to a neutral or ground, occur in power systems when insulation fails or is bypassed due to; system overvoltages caused by lightning, switching surges, insulation contamination, mechanical failures, conductive materials crossing conductors, or other natural causes. These are also referred to as "faults" and the current flow is referred to as "fault current". The number of short circuits and the magnitude of the current flow can be minimized with proper design, operation, and maintenance of overhead distribution systems.

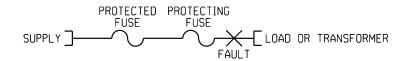
12.1 FUSE RATING

Type K expulsion fuse links (F1K), per ANSI C37.42, are the standard fuse links for use in enclosed and open type fuse cutouts on the Company system. K link fuses provide improved coordination with station equipment and a greater range of coordination between fuses. All of these tin element links will carry continuous current up to 1½ times their nominal rating; above 1½ times, or 150% the "Minimum Melt" threshold, melting of the fuse link will start to occur with eventual blowing of the fuse, or weakening of the fuse link causing unpredictable operation in the future. Fuse links rated up to and including 100K or 100T shall only be used in cutouts rated 100 A. Fuse links rated above 100K or 100T up to 200K or 200T shall only be used in cutouts rated 200 A.

12.1.10 Fuse Sizes For Transformers

In general, transformer installations are fused for short circuit rather than overload protection. Three-phase fusing is based on motor loads with incidental lighting, with no motor having a horsepower rating greater than 50% of the total transformer bank capacity in kVA. Special cases, such as exceptionally large motors, may require the next size primary fuse to withstand excessive current drawn during start up.

Recommended fuse sizes are shown on Page 12-17 & 12-18. In addition, CSP transformers shall be considered as conventional transformers and fused per Page 12-17 & 12-18 which may aid in increased sectionalization opportunities.


12.1.20 Fuse Sizes For Capacitors

In selecting fuse sizes for capacitors, links with adequate continuous overcurrent ratings were chosen to provide roughly, a minimum capacity of 135% of the group total and to carry excessive currents caused by overvoltage, harmonics, and inrush. Recommended fuse sizes for capacitors are given on Page 12-19.

12.1.30 Fuse Sizes For Line Coordination

Where two adjacent fuses operate in series, the "protected fuse" is on the supply side and the "protecting fuse" is on the load side. If a fault develops beyond the protecting fuse, it should clear before the protected fuse has reached 75% of its melting time. This condition can be realized only for most values of short circuit current. Large fuses with high coordinating values are used near the supply end of distribution feeders and must coordinate properly with station protective devices. Transformer fuses always are protecting fuses. Table 1 below shows coordination that can be expected between standard K link fuse sizes.

PROTECTION					
SMIZ.		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	12-1	7/17		

© 2022 PPL Corporation. All rights reserved.

Doc. #ST. 12.00.002

Table 1

Protecting	Protected Fuse Size					
Fuse Size	15	25	40	65	100	140
	Maxii	mum F	ault Cu	rrent fo	r Coordi	nation
10	430	840	1350	2200	3900	5800
15		500	1350	2200	3900	5800
20			1200	200	3900	5800
25			700	2200	3900	5800
30				1800	3900	5800
40				1300	3900	5800
50					3500	5800
65					2400	5800
80						4500
100						2000

Special fuses and fuseholders should generally be avoided. However, it may be necessary to specify them for certain applications. For example, at locations where fault current is in excess of 16,000 amperes asymmetrical, the use of standard item C47A will need to be used. If there are a number of applications, the power fuses and holders will be kept in Stores.

12.2 CONTINUOUS RATING

All devices have a continuous rating for current carrying capacity in the closed position. This rating is not to be interpreted as the disconnecting rating.

Devices used for line fuses, disconnects, and primary services shall be selected so that the anticipated load will not exceed the continuous current rating of the device. It is recommended in those areas exhibiting a past pattern of growth that the device be selected so that its initial loading will not exceed two-thirds of the continuous rating, thereby permitting a margin for growth.

12.3 DISCONNECTING RATING

The ability to disconnect load is dependent upon operating voltage, separation of contacts, power factor, atmospheric conditions, the exact instant of break point in respect to the 60 cycle wave, and other factors beyond the control of the operator.

There is no official recognition that cutouts, fused or solid blade, have the ability to disconnect load (ANSI C37.40). All cutouts and disconnects include loadbuster hooks for the use of the loadbuster tool. When the loadbuster tool is used, loads up to the continuous rating of the device, but not to exceed 600 A, may be interrupted.

Cutouts shall be selected so that they will not be required to open loads in excess of the values shown in Table 2 on Page 12-3, except cutouts for capacitor applications.

12.4 <u>INTERRUPTING RATING</u>

12.4.10 Cutout

The maximum fault current that a cutout can successfully perform circuit interruption is known as the interrupting rating of the cutout. It is expressed in root mean square (rms) asymmetric amperes.

	PROTECTION					
	ISSUE	PAGE NUMBER		SMI		
Busi	1/06 ness Use	12-2	OVERHEAD CONSTRUCTION STANDARD	ppl		

Proper application of fused cutouts require selection of an interrupting rating greater than the available fault current at the given location. Interrupting ratings of cutouts are shown in Table 2 below.

The available fault current, which a fused device is required to interrupt, is dependent upon many factors including:

- 1. Impedance at the fault.
- 2. Available fault current at the substation bus.
- 3. Size, type, and configuration of conductor supplying the fault.
- 4. Distance from the substation bus.
- 5. Point on voltage wave at the instant of the fault,
- Fault duration.

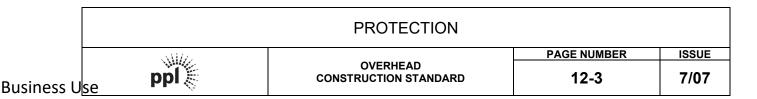
Short circuit analysis is used for determining available fault current values.

Table 2

	CUTOUT & DISCONNECT SELECTION & RATING TABLE								
				RAT	INGS				
PRIMARY			CONTINUOUS		UPTING AMPS	DISCON. AMPS			
CIRCUIT VOLTAGE	RCUIT STANDARD		AMPS	SYM	ASSYM	EXPERIENCE BASED			
5kV CIRCUITS ONLY	C41B1 C41D1 C41D2 D1C	H.D. enclosed cutout – fused EHD enclosed cutout – fused Enclosed cutout w/ solid blade Enclosed disconnect switch	50 100 200 600	4000 8000 	5000 10000 	15 20 20 35			
0-15kV CIRCUITS	C43S10 C43S20 C43S30 C47A D5D	Open type cutout w/ 100A fuse tube Open type cutout w/ 200A fuse tube Open type cutout w/ 300A solid blade EHD open type cutout Open disconnect switch	100 200 300 200 600	7500 8600 12500* 	10000 12000 12000M 20000	 			
25&35kV CIRCUITS	C43S41	Open type cutout w/ 100A fuse tube	100	5100	8000				

^{* -} Based on X/R ratio of 20

M - Momentary Rating


12.4.20 Partial Range Current Limiting Fuses (CLFs)

In areas of high fault currents, an energy limiting device may be required to limit let-through short circuit current to a level that will minimize disruptive failures to transformers and other distribution equipment. High fault currents can exceed the interrupting capabilities of standard overhead protective devices (cutout fuse link or CSP internal fuse).

The add-on partial limiting CLFs (F7A), when properly matched and used in series with overhead protective devices (cutout fuse links or CSP internal fuses), will operate only at the higher fault currents ensuring a successful interruption (up to 50,000 A symmetrical).

CLFs will activate within the first 1/2 cycle during high current faults, and they will limit the overcurrent let-through to allow fuse links or internal fuses to operate concurrently.

The cutout fuse link will operate normally upon low current faults and current-limited faults. The size of the fuse link cannot be larger than the rating of the CLF, which requires proper coordination.

The CLF may become weakened by the lower magnitude faults that normally cause operation of standard fuse links. Replacing the current limiting device in conjunction with the transformer protective link may prevent a later outage that would be caused when a weakened CLF completes its internal meltdown under normal load.

CLFs shall be installed on 15, 25, and 35 kV circuits where the calculated symmetrical fault current warrants such installations.

12.4.30 Reclosers

Reclosers shall be selected so that the calculated symmetrical fault current will not exceed the nameplate interrupting rating of the recloser. Vacuum reclosers with increase fault current capabilities can be purchased for particular installations.

12.5 <u>SELECTION GUIDE</u>

Cutouts, CLFs, and disconnecting devices shall be selected as follows:

12.5.10 <u>Line and Riser Cutouts</u>

A. On all Feeders

Open-type cutouts (C43S) with loadbuster hooks shall be used as line and riser fuses where the calculated symmetrical fault current is less than 7500 A, and where it is anticipated to remain less than 7500 A for at least 5 years. For high fault current line installations, see Section 12.5.10.B.

B. In High Fault Current Areas (Above 7500 A)

Heavy-duty power-fuse cutouts (C47) shall be used on all circuits where the calculated symmetrical fault current is 7500 to 12,500 A, and where fusing above 40 A (e.g. line fuses) may be needed. On circuits where calculated symmetrical fault current exceeds 7500 A, but fusing requirements will not exceed 40 A (e.g. transformers), a standard open-type cutout (C43S) shall be used in series with a coordinated CLF (F7A).

At junction pole locations where sectionalizing is necessary, line fuses can be installed on the first pole in or at the junction pole depending upon existing clearances and construction involved.

12.5.20 Overhead Transformer Cutouts

A. Conventional Transformers

Cutouts for overhead transformers should be selected in accordance with Table 2 on Page 12-3. Transformer cutouts can be located at the tap pole for fuse coordination or bucket accessibility purposes provided they feed a single transformer.

B. <u>Conventional Transformers in High Fault Current Areas (Above 7500 A)</u>

New installations and conversions involving transformers thru 167 kVA on feeders where calculated symmetrical fault current exceeds 7500 A shall be equipped with a cutout (C43S) mounted in series with a coordinated CLF (F7A). Reclosers or special fuses may be required for very large banks.

C. <u>CSP Transformers in High Fault Current Areas (Above 3500 A)</u> All existing installations or conversions involving CSP transformers on 15 kV feeders where calculated symmetrical fault current exceeds 3500 A shall be equipped with CLFs.

PROTECTION						
ISSUE	PAGE NUMBER		SMI			
7/07	12-4	OVERHEAD CONSTRUCTION STANDARD	ppl			

12.5.30 Overhead Capacitor Cutouts

A. Capacitors

Cutouts for overhead capacitors should be selected in accordance with Table 2 on Page 12-3.

B. 100 kVAR Units and Above in High Fault Current Areas (Above 5000 A)

New installations on feeders where calculated symmetrical fault current exceeds 5000 A shall be equipped with a cutout (C43S) mounted in series with a coordinated CLF (F7A).

C. 50 kVAR Units and Below in High Fault Current Areas (Above 4000 A)

New installations on feeders where calculated symmetrical fault current exceeds 4000 A shall be equipped with a cutout (C43S) mounted in series with a coordinated CLF (F7A).

12.5.40 <u>Line Switches - Single Blade</u>

Open-type cutouts with a solid blade (C43S) are recommended for 5 kV circuits. Open-type cutouts or disconnect switches (C43S or D5D) depending upon load characteristics with loadbuster hooks shall be used on 15 kV circuits or 5 kV circuits that will be converted in the near future. In-line disconnect switches as shown on Page 12-138, are recommended where clearances will not allow switch installation on crossarms.

In order to provide superior customer service, avoid the single-phasing of loads, and minimize the possibility of ferroresonance when energizing unloaded transformer banks, individually operated, single phase line switches should not be used on three phase lines.

12.5.50 Loadbreak Switches - Group Operated

In order to provide superior customer service, eliminate the effects of ferroresonance, improve upon interruption duration indexes and simplify operating requirements on critical feeder sections, the use of group operated loadbreak switch devices is recommended on three phase lines.

Generally, the appropriate use of three phase reclosers at major feeder bifurcation points and beyond critical loads should adequately segment the feeder load into reasonable load groups, 2.5MVA or less. Group operated loadbreak switch devices should be used in the following circumstances:

- A. Normally open tie points between feeders fed from two sources.
- B. Long three phase underground and/or delta circuits.
- C. Critical load (e.g. hospitals, prisons, shopping centers, ect.) that can be fed from two alternative sources with normally open ties.
- D. Key tie points that are frequently utilized (two or more times a year).
- E. First switch away from substation riser pole.
 - F. On the delta side of a floating wye-delta step-down bank.

Operating mechanism shall be locked in the open or closed position.

1

All new Loadbreak Switch installations are to be installed on a Class H1 pole with a Fiberglass double deadended crossarm or adjacent poles must be upgraded to meet the Requirements of Section 4 – Storm Hardening. Refer to Standards 12-141 to 12-145.

SMZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	12-5	7/14

12.5.60 Regulator By-pass Switch

A non-loadbreak, sequenced, make-before-break switch, designed to by-pass and safely disconnect a regulator from the line once the regulator is in the neutral position. See Section 15 for construction details.

12.5.70 Line Breakers

A. Three Phase Reclosers

Line reclosers enhance safety, improve customer reliability, and offer load side fault protection. Their general function is to sense and interrupt fault current, re-energize the line if the fault is of a temporary nature, and sectionalize non self-clearing faulted sections of distribution circuits. They may also be installed in loop sectionalizing applications or be supervisory controlled to improve distribution system reliability.

The SEL-651R control is specified for use with the G&W Viper-S recloser head. There is one SEL-651R control that can be applied to: radial installations; sectionalizing and tie reclosers in loop scheme configurations; and automatic source transfer applications. Separate controls are no longer needed for different system applications. Recloser control cabinets shall include proper identification including documentation on the inside door and appropriate labeling on the outside door.

All new 3 Phase Reclosers are to be installed on a Class H1 pole or adjacent poles upgraded to H1 poles with fiberglass double deadends to meet the requirements of Section 4 – Storm Hardening

1. Radial Recloser Applications

Radial reclosers operate as overcurrent protective devices. Radial applications require a 120 V supply from the source side for control and closing functions. In addition, the control can also accommodate a 120 V supply from the load side for AC transfer capability. The load side supply shall be connected when practical or as required (e.g. back-feeds, reliability). The 120 V supplies shall be connected to the X1 leg to assure correct 3 phase power analog values.

General 15kV and 35kV class recloser packages are furnished by the manufacturer as pre-wired, site ready units. These recloser packages require Company supplied transformation to meet the recloser and control power requirements. If Company owned secondary exists on a structure where a radial recloser is to be installed, the existing secondary may be used to meet the power requirements. If a possibility of backfeed exists, control requires both source and load side single phase secondary supplies. Therefore, the secondary crib must be split at the recloser structure. Both source and load side secondary supplies can be fed from any phase; however, phasing must be noted and accounted for in the control settings. It is not necessary for these 120 V secondary supplies to be in phase due to the break-before-make nature of the AC transfer switch.

Voltage specific recloser packages are available for 12.47 kV, 13.2 kV and 13.8 kV applications. These packages are furnished by the manufacturer as pre-wired, site ready units and include two frame mounted potential transformers to meet the recloser and control power requirements. As such, voltage specific recloser packages do not require additional Company supplied transformation.

Figure 1 shows a typical application for radial recloser controls.

PROTECTION						
ISSUE	PAGE NUMBER		Wills			
7/15	12-6	OVERHEAD CONSTRUCTION STANDARD	ppl			

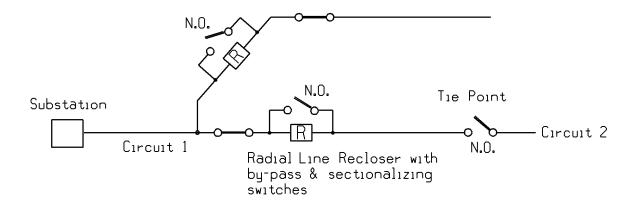


Figure 1 - Radial Application

2. Loop Scheme Recloser Applications

Loop scheme reclosers protect against overcurrent and automatically isolate the faulted section of a feeder, minimizing the outage duration for customers not directly affected. Reconfiguration is done based on loss of voltage detection, and it does not require any type of remote communications to function. These applications automatically isolate a faulted section of a feeder and restore power to the unaffected sections of the feeder, normally within one minute. Since most faults are transient in nature, loop sectionalizing applications must be programmed to only function when the substation breakers or line reclosers trip to lockout indicating a permanent fault has occurred.

The SEL-651R control requires a 3 phase 120 V supply for the control and closing functions on both sides of the tie recloser and on the source side of the sectionalizing recloser. In addition, the sectionalizing recloser requires 120 V supply on the load side.

General 15kV and 35kV class recloser packages are furnished by the manufacturer as pre-wired, site ready units. Loop scheme sectionalizing recloser applications require dedicated Company supplied three phase, source side transformation for both voltage sensing and control power. In addition, the sectionalizing recloser requires a single phase 120 V supply on the load side. This load side secondary supply can be fed from any phase; however, phasing must be noted and accounted for in the control settings. Loop scheme tie recloser applications require dedicated Company supplied three phase transformation on both the Source 1 ("line") and Source 2 ("load") sides of the recloser.

Voltage specific recloser packages are available for 12.47 kV, 13.2 kV and 13.8 kV applications. These packages are furnished by the manufacturer as pre-wired, site ready units and include two frame mounted potential transformers to meet the recloser and control power requirements, as well as three phase integrated voltage sensing on the Source 1 ("line"), horizontal bushings. As such, these voltage specific recloser packages do not require additional Company supplied transformation for loop scheme sectionalizing applications. However, a tie recloser application requires additional Company supplied three phase transformation on the Source 2 ("load") side to accommodate voltage sensing capability on both sides of the device.

Figure 2 shows a typical application for loop recloser controls.

		PROTECTION		
	.NHz.		PAGE NUMBER	ISSUE
e	ppl	OVERHEAD CONSTRUCTION STANDARD	12-7	6/10

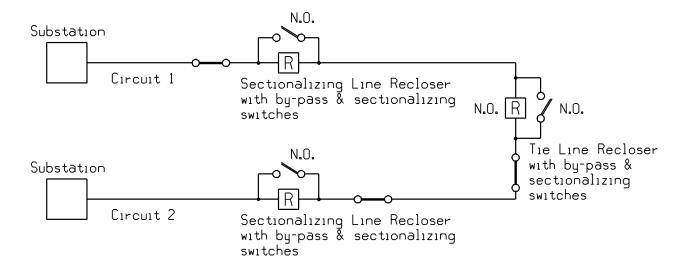


Figure 2 - Loop Application

Note: Alternate controls in-service may differ from current standard. Some include Cooper DC Nova, Cooper 3A, Cooper 4C, Cooper F5, Cooper F6, Joslyn Faultmaster, and Schweitzer 351R. The operation of all these alternatives achieves the same result.

3. Recloser Junction Box

The junction box is supplied pre-wired and includes Source 1 and Source 2 120 V input cables as well as a 19-position AC supply cable and 14-position control cable for bringing the signals to the control cabinet and recloser head. All power and control cables are provided and shall be connected as shown in the drawings. The junction box wiring diagrams indicate connections for radial, sectionalizing, and tie recloser applications, which require 120 V supply for control and closing. Radial applications that utilize single phase 120 V for control and closing, shall have 2-conductor Source 1 and Source 2 secondary supply cables where the black (120 V) and the white (neutral) wires shall be connected to the 120 V supply or supplies. General loop scheme applications shall have 4-conductor Source 1 and Source 2 secondary supply cables and may not require that all four conductors be connected on the Source 2 side (e.g., sectionalizing applications). Therefore, the red conductor should be connected and the unused black and orange conductors taped back at the supply cable breakout coming from the junction box.

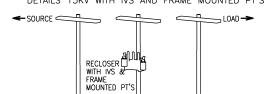
B. Sectionalizers

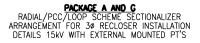
Use of sectionalizers on the Company distribution system is not recommended. They shall be restricted to those few locations where coordination of a recloser cannot be obtained.

Sectionalizers are designed to isolate permanent faults involving primary circuits while allowing an upstream device to clear transient faults. The sectionalizer detects loss of line voltage and will either open or close, as required, after a programmed outage interval.

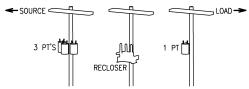
PROTECTION						
ISSUE	PAGE NUMBER		SMIZ			
6/10	12-8	OVERHEAD CONSTRUCTION STANDARD	ppl			

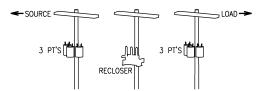
G&W Vipe	G&W Viper Recloser Application Table						
Application	Type	Requirements	Std Item				
Radial	General Recloser Package	120V 1P supply from the line side for control and closing functions. Optional: load side 120V 1P supply for back-feeds and reliability.	R50AA R50FF R50FS				
Substation N.O. Tie Point Circuit 2	Voltage Specific Package	12.47/13.2/13.8kV have 2 frame mtd PT's- requires no Company supplied transformation.	R50A1, R50A2, R50A3				
Loop Scheme Sectionalizing Substation N.O. N.	General Recloser Package	Requires dedicated Company supplied 3 phase line side transformation for voltage sensing and control power. Requires Company supplied 120 volt 1P supply on the load side.	R50EE R50GG R50GS				
Substation N.G.	Voltage Specific Package	12.47/13.2/13.8kV have 2 frame mtd PT's and 3 phase Integrated Voltage sensing on the Line side. No Company supplied transformation required.	R50E1, R50E2, R50E3				
Loop Scheme Tie	General Recloser Package	Requires dedicated Company supplied 3 phase line side and load side transformation for voltage sensing and control power.	R50EE R50GG R50GS				
Circuit 1 N.O. R N.O. R N.O. Circuit 2	Voltage Specific Package	12.47/13.2/13.8kV have 2 frame mtd PT's and 3 phase Integrated Voltage sensing on the on the line side. Company supplied 3P transformation on the load side is required. Requires an additional 15' - 4 conductor cable (R52D or R52C).	R50E1, R50E2, R50E3				
Sub T Sectionalizer	35kV Recloser Package	35kV with 3 phase Integrated Voltage sensing on the line and load side. Requires Company supplied 120 volt 1P supply on the line and load side for the control.	R50HA				

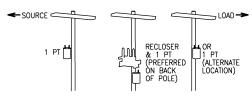

PROTECTION							
	SMIZ.		PAGE NUMBER	ISSUE			
Jse	ppl	OVERHEAD CONSTRUCTION STANDARD	12-9	7/19			

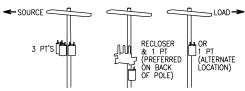

G&W VIPER RECLOSER APPLICATION GUIDE

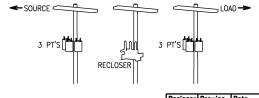
NGRID SYSTEM VOLTAGES	OLD STD ITEMS	CT RATIO	PACKAGE	MECHANISM STD ID	CT RATIO	PACKAGE	MECHANISM STD ID	RADIAL MIDLINE LOOP SCHEME	RADIAL MIDLINE LOOP	PCC PHYSICAL	PCC WIRING	PCC ONE LINE NY	PCC ONE LINE NE
3,740GRDY/2160 4,160GRDY/2,400	R50AA / R50EE R50AA / R50EE	1000/500:1	D	R50S15B	-	-	-	PHYSICAL	WIRING	12-338A	12-339	12-11	12-11A
12,470GRDY/7,200 13,200GRDY/7,600 13,800GRDY/7,960	R50A1 / R50E1 R50A2 / R50E2 R50A3 / R50E3	1000/500:1	С	R50S15C	400/200:1	F	R50S15C1	12-338	12-339	12-338A	12-339	12-11	12-11A
24,940GRDY/14,400 34,500GRDY/19,900 23,000Y 34,500Y		1000/500:1	E	R50S38A	400/200:1	н	R50S38A1	12-950	12-951	12-950A	12-951	12-12	12-12A
2,400	R50AA / R50EE R50AA / R50EE R50AA / R50EE R50AA / R50EE R50AA / R50EE R50AA / R50EE R50AA / R50EE	1000/500:1	А	R50S15A	400/200:1	G	R50S15A1	12-335	12-336	12-335A	12-336	12-10	12-10A
23,000 Δ 34,500 Δ	R50FS / R50GS R50FS / R50GS	1000/500:1	В	R50S38B	400/200:1	J	R50S38B1	12-950	12-952	12-950A	12-952	12-13	12-13A


PACKAGE C D F


GENERAL ARRANGEMENT FOR 30 RECLOSER INSTALLATION
DETAILS 15KV WITH IVS AND FRAME MOUNTED PT'S






PACKAGE E AND H GENERAL ARRANGEMENT FOR 30 RECLOSER INSTALLATION DETAILS 38kV WITH IVS AND EXTERNAL MOUNTED PT'S

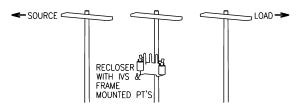
PACKAGE B AND J
RADIAL/PCC/LOOP SCHEME SECTIONALIZER
ARRANGEMENT FOR 30 RECLOSER INSTALLATION
DETAILS 38kV WITH EXTERNAL MOUNTED PT'S

Designer Drawing Date MPR od1209A 7/15/19

PROTECTION

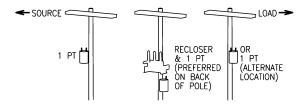
ISSUE	PAGE NUMBER
7/19	12-9A

7/20 - New page


Business Use

COOPER/EATON NOVA NX-T RECLOSER APPLICATION GUIDE

NGRID SYSTEM VOLTAGES	CT RATIO	PACKAGE	MECHANISM STD ID	PHYSICAL	WIRING
3,740GRDY/2160 4,160GRDY/2,400	1000/500:1	Р	R50SE15B	12-350	12-351
12,470GRDY/7,200 13,200GRDY/7,600 13,800GRDY/7,960	1000/500:1	Q	R50SE15C	12-350	12-351
24,940GRDY/14,400 34,500GRDY/19,900 23,000Y 34,500Y	1000/500:1	R	R50SE38A	12-960	12-961


PACKAGE P Q

GENERAL ARRANGEMENT FOR 30 RECLOSER INSTALLATION DETAILS 15KV WITH IVS AND FRAME MOUNTED PT'S

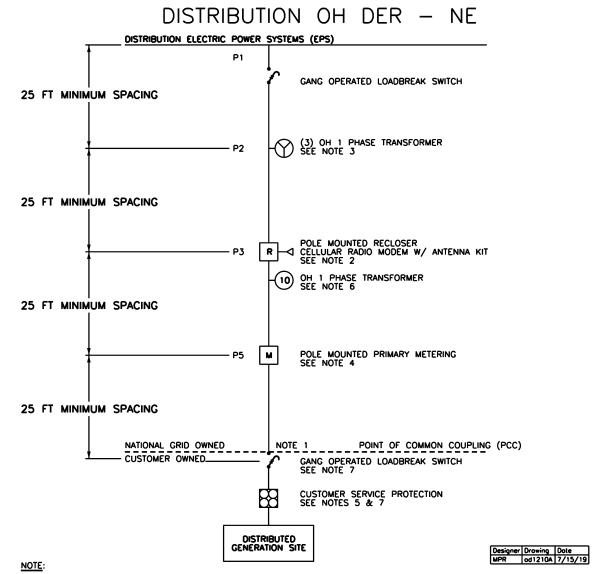
PACKAGE R

GENERAL ARRANGEMENT FOR 30 RECLOSER INSTALLATION DETAILS 38kV WITH IVS AND EXTERNAL MOUNTED PT'S

Designer	Drawing	Dale			
MPR	od1209B	4/17/20			

	PROTECTION		
SMZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	12-9B	7/20

© 2022 PPL Corporation. All rights reserved.


Doc. # ST. 12.00.002

C. <u>Distributed Generation Installations</u>

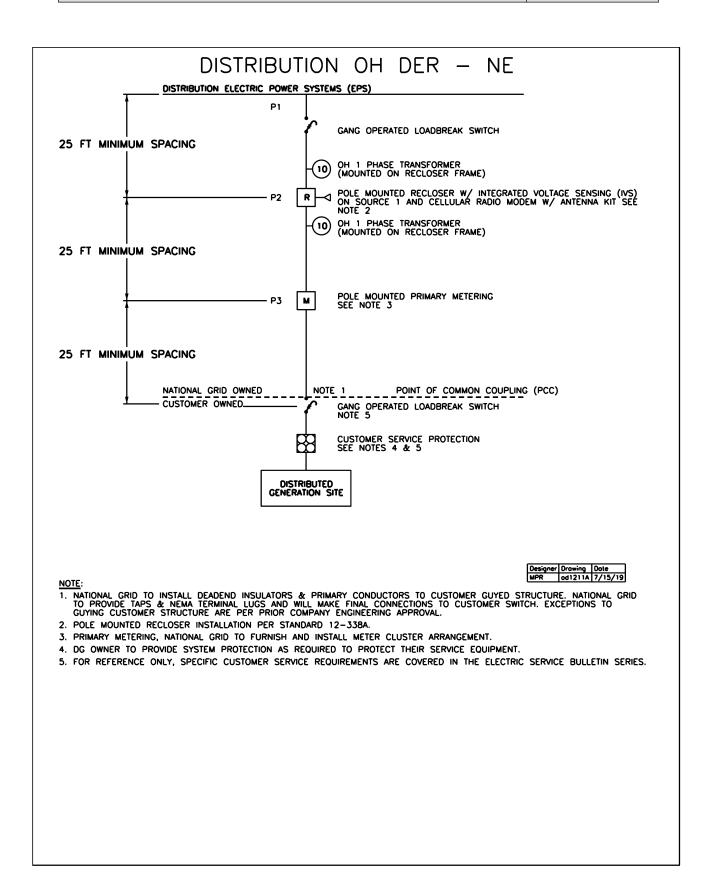
TYPICAL LARGE DISTRIBUTED GENERATION INTERCONNECTION DESIGNS

This page left intentionally blank.

ISSUE	PAGE NUMBER		SMI
7/19	12-10	OVERHEAD CONSTRUCTION STANDARD	ppl

- NATIONAL GRID TO INSTALL DEADEND INSULATORS & PRIMARY CONDUCTORS TO CUSTOMER GUYED STRUCTURE. NATIONAL GRID TO PROVIDE TAPS & NEMA TERMINAL LUGS AND WILL MAKE FINAL CONNECTIONS TO CUSTOMER SWITCH. EXCEPTIONS TO GUYING CUSTOMER STRUCTURE ARE PER PRIOR COMPANY ENGINEERING APPROVAL.
- 2. POLE MOUNTED RECLOSER INSTALLATION PER STANDARD 12-335A.
- 3. UTILITY SOURCE SIDE REQUIRES THREE (3) SEPARATE TRANSFORMERS. THESE TRANSFORMERS WILL REQUIRE MOUNTING ON AN SEPARATE POLE. TO MINIMIZE EQUIPMENT INSTALLATIONS, MOUNTING THE TRANSFORMERS ON THE NEAREST EXISTING ADJACENT POLE IS DESIRED. TRANSFORMERS SHOULD BE MOUNTED ON THE LOAD SIDE OF THE GANG OPERATED SWITCH.
- 4. PRIMARY METERING, NATIONAL GRID TO FURNISH AND INSTALL METER CLUSTER ARRANGEMENT. THE CUSTOMER MUST PROVIDE SUFFICIENT CONDUCTOR TO ALLOW THE COMPANY TO MAKE FINAL CONNECTIONS AT THE METER POLE. THE COMPANY WILL PROVIDE FINAL CONNECTION OF THE CUSTOMER CONDUCTORS TO THE COMPANY METER. PRIMARY METERING, STRUCTURE/ POLE OWNED BY NATIONAL GRID.
- 5. DG OWNER TO PROVIDE SYSTEM PROTECTION AS REQUIRED TO PROTECT THEIR SERVICE EQUIPMENT.
- 6. TRANSFORMER MAY BE MOUNTED ON BACK OF RECLOSER STRUCTURE WITH OPERATIONS APPROVAL. WHERE MOUNTING ARRANGEMENT CANNOT BE INSTALLED, AN ADDITIONAL POLE WITH 25'-0" MINIMUM SPACING WILL BE REQUIRED (NOT SHOWN).
- 7. FOR REFERENCE ONLY, SPECIFIC CUSTOMER SERVICE REQUIREMENTS ARE COVERED IN THE ELECTRIC SERVICE BULLETIN SERIES.

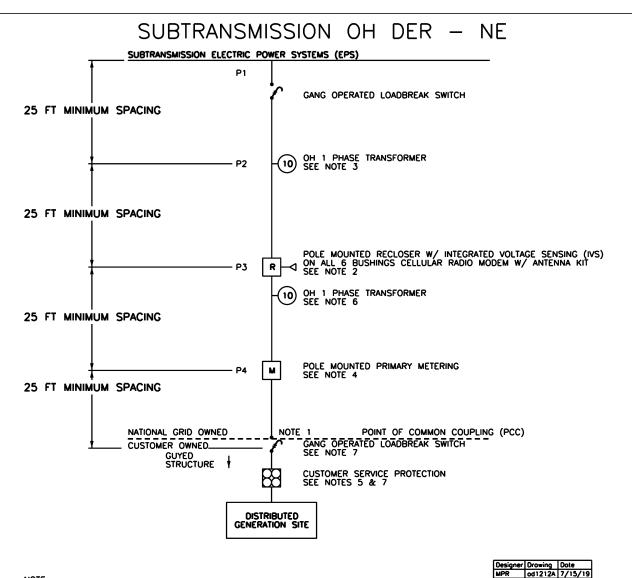
DISTRIBUTION OH DER - EXTERNAL MOUNTED PTs


OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER **ISSUE** 12-10A 7/19

Doc. # ST. 12.00.002

This page left intentionally blank.

	ISSUE	PAGE NUMBER	
Busi	7/19 ness Use	12-11	


DISTRIBUTION OH – IVS AND FRAME MOUNTED PTS OVERHEAD OVERHEAD CONSTRUCTION STANDARD 12-11A 7/19

Doc. # ST. 12.00.002

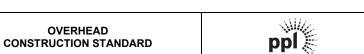
This page left intentionally blank.

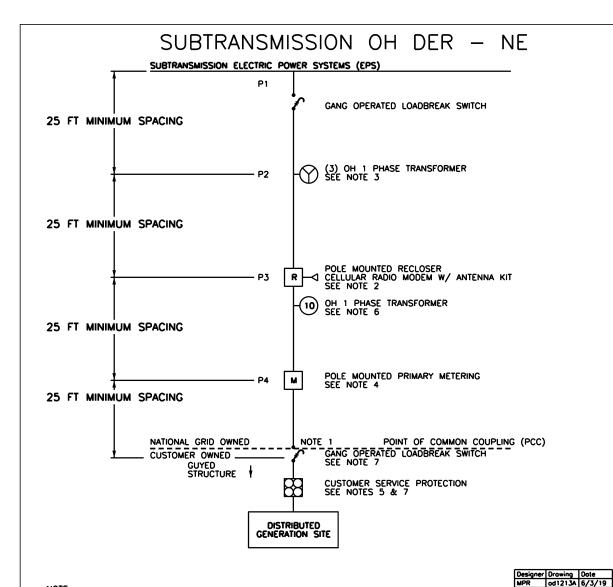
	ISSUE	PAGE NUMBER
Busi	7/19 ness Use	12-12

NOTE:

- 1. NATIONAL GRID TO INSTALL DEADEND INSULATORS & PRIMARY CONDUCTORS TO CUSTOMER GUYED STRUCTURE, NATIONAL GRID TO PROVIDE TAPS & NEMA TERMINAL LUGS AND MAKE FINAL CONNECTIONS TO CUSTOMER SWITCH. EXCEPTIONS TO GUYING CUSTOMER STRUCTURE ARE PER PRIOR COMPANY ENGINEERING APPROVAL.
- 2. POLE MOUNTED RECLOSER INSTALLATION PER STANDARD 12-950A.
- 3. UTILITY SOURCE SIDE REQUIRES ONE (1) EXTERNAL TRANSFORMER (34500 GRD Y/19920=120/240). THE UTILITY SIDE TRANSFORMER WILL REQUIRE MOUNTING ON A SEPARATE POLE. TO MINIMIZE EQUIPMENT INSTALLATIONS, MOUNTING THE TRANSFORMER ON THE NEAREST EXISTING ADJACENT POLE IS DESIRED. IDEALLY THE TRANSFORMER WOULD BE MOUNTED AS TO BE WITHIN THE RECLOSER ZONE OF ISOLATION, ALTHOUGH THIS IS NOT NECESSARY AS THE TRANSFORMER CAN BE ISOLATED VIA FUSE HOLDER.
- 4. PRIMARY METERING, NATIONAL GRID TO FURNISH AND INSTALL METER CLUSTER ARRANGEMENT.
- 5. DG OWNER TO PROVIDE SYSTEM PROTECTION AS REQUIRED TO PROTECT THEIR SERVICE EQUIPMENT.
- 6. IT IS ENGINEERING PREFERENCE TO MOUNT TRANSFORMER ON BACK OF RECLOSER STRUCTURE WITH OPERATIONS APPROVAL. WHERE MOUNTING ARRANGEMENT CANNOT BE INSTALLED, AN ADDITIONAL POLE WITH 25'-0" MINIMUM SPACING WILL BE REQUIRED (NOT SHOWN).
- 7. FOR REFERENCE ONLY, SPECIFIC CUSTOMER SERVICE REQUIREMENTS ARE COVERED IN THE ELECTRIC SERVICE BULLETIN SERIES.
- 8. MINIMUM POLE SPACING IS 25' ALONG A CENTERLINE WITH A 37.5' RIGHT OF WAY ON EACH SIDE.

SUBTRANSMISSION OH DER - NE WITH IVS AND EXTERNAL MOUNTED PTs


OVERHEAD CONSTRUCTION STANDARD


PAGE NUMBER	ISSUE
12-12A	7/19

Doc. # ST. 12.00.002

This page left intentionally blank.

ISSUE	PAGE NUMBER
7/19	12-13

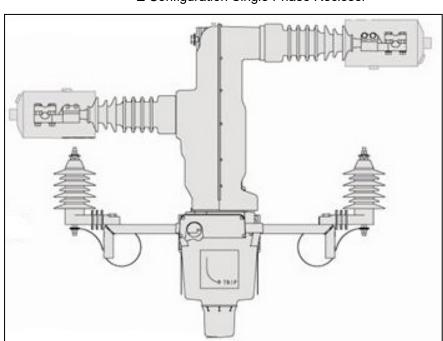
NOTE:

- NATIONAL GRID TO INSTALL DEADEND INSULATORS & PRIMARY CONDUCTORS TO CUSTOMER GUYED STRUCTURE. NATIONAL GRID TO PROVIDE TAPS & NEMA TERMINAL LUGS AND MAKE FINAL CONNECTIONS TO CUSTOMER SWITCH. EXCEPTIONS TO GUYING CUSTOMER STRUCTURE ARE PER PRIOR COMPANY ENGINEERING APPROVAL.
- 2. POLE MOUNTED RECLOSER INSTALLATION PER STANDARD 12-950A.
- 3. UTILITY SOURCE SIDE REQUIRES THREE (3) SEPARATE TRANSFORMERS. THESE TRANSFORMERS WILL REQUIRE MOUNTING ON AN SEPARATE POLE. TO MINIMIZE EQUIPMENT INSTALLATIONS, MOUNTING THE TRANSFORMERS ON THE NEAREST EXISTING ADJACENT POLE IS DESIRED. TRANSFORMERS SHOULD BE MOUNTED ON THE LOAD SIDE OF THE DISCONNECT SWITCH.
- 4. PRIMARY METERING, NATIONAL GRID TO FURNISH AND INSTALL METER CLUSTER ARRANGEMENT.
- 5. DG OWNER TO PROVIDE SYSTEM PROTECTION AS REQUIRED TO PROTECT THEIR SERVICE EQUIPMENT.
- 6. IT IS ENGINEERING PREFERENCE TO MOUNT TRANSFORMER ON BACK OF RECLOSER STRUCTURE WITH OPERATIONS APPROVAL. WHERE MOUNTING ARRANGEMENT CANNOT BE INSTALLED, AN ADDITIONAL POLE WITH 25'-0" MINIMUM SPACING WILL BE REQUIRED (NOT SHOWN).
- 7. FOR REFERENCE ONLY, SPECIFIC CUSTOMER SERVICE REQUIREMENTS ARE COVERED IN THE ELECTRIC SERVICE BULLETIN SERIES.
- 8. MINIMUM POLE SPACING IS 25' ALONG A CENTERLINE WITH A 37.5' RIGHT OF WAY ON EACH SIDE.

SUBTRANSMISSION OH DER - NE WITH EXTERNAL MOUNTED PTs

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER	ISSUE
12-13A	7/19


© 2022 PPL Corporation. All rights reserved. Doc. # ST. 12.00.002

D. Single Phase Radial Recloser

Single Phase Radial reclosers operate as overcurrent protective devices for locations where the Cutout Mounted Recloser is not an option such as high fault current areas or single phase loads over 100 amps.

The recloser is designed for automatic or manual operation providing overcurrent protection for up to 15kV single phase systems, 110 kV BIL, 800A continuous current, and 12.5kA rms symmetrical interrupting.

The Single Phase Recloser requires a Schweitzer SEL-351RS Kestrel control mounted on the pole. The control requires a 120 V supply from the source side for control and closing functions. Units are shipped Site-ready with all accessories including bracket, arresters and control with control and power wiring. A 200amp cutout shall be used as a bypass. Cutout body shall be stapled to the pole when not in bypass mode. A sectionalizing switch shall be installed on an adjacent source side pole or inline.

Z Configuration Single Phase Recloser

PROTECTION ISSUE PAGE NUMBER OVERHEAD CONSTRUCTION STANDARD PDI

E. Cutout-Mounted Recloser

The cutout mounted recloser is a self-powered, electronically controlled, single phase, vacuum fault interrupter mounted with the included factory shipped fuse cutout. The sole approved manufacturer requires the unit to be mounted in an MacLean Power Systems Type XS fuse cutout mounting (Poly type - factory shipped with the unit)

Application:

- 15kV and below circuits (Single phase or Three Phase fuse taps)
- Basic Insulation Level (BIL) of 110kV.
- The maximum continuous current carrying capability is 100 amperes.
- Symmetrical Interrupting rating is 6300 amperes.
- To be installed on single crossarms or a C35 bracket.
- Tag Holder to be installed on pole.

Operating Sequence:

- All units are factory programmed for seven fuse size curves 40K, 65K, 100K with one reclose.
- The opening interval between operations is 5 seconds. The interrupter resets 2 seconds after dropping open. The operator can then reclose the unit back into the mounting.
- The device must be opened manually with a Loadbuster tool.

NOTE: Limited amounts of the original cutout-mount recloser may still be installed in isolated areas. They do not have the LED indicator screen that indicates the status of life left for operation. When they have reached their limit they will not close and can be replaced with the current available cutout-mount recloser.

Location, Application and Setup of this device must be done under direction of Electric Operations Engineering.

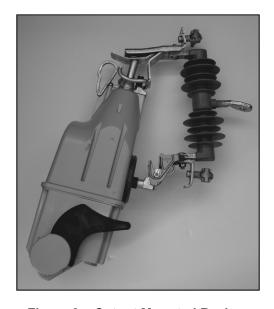


Figure 3 – Cutout Mounted Recloser

PROTECTION								
SM/W.	OVERHEAD	PAGE NUMBER	ISSUE					
ppl	OVERHEAD CONSTRUCTION STANDARD	12-15	7/20					

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 12,00.002

12.6 FAULT CIRCUIT INDICAT

Automatic reset type Fault Circuit Indicators (FCI) are available and are used in an attempt to reduce operating call out time by helping to pinpoint circuit faults. If a fault occurs, a target on the indicator appears or changes color. The Fault Indicators have an automatic load leveling with load memory that enables the unit to automatically set the fault trip threshold in relation to the peak load current.

There are various types of FCIs installed onto the Company's overhead distribution system, which operate as follows:

<u>Automatic Reset</u> - If there is a fault, the red indicating target gives the device a strikingly different appearance. When the line is re-energized with the fault removed, the red indicating target will reset instantaneously.

<u>Time Delay Reset</u> - If there is a fault, the red and yellow indicating targets give the device a strikingly different appearance. When the line is re-energized, with the fault removed, the red indicating target will reset while the yellow indicating target resets within a prescribed time delay. The time delay is identified on the unit and is not adjustable.

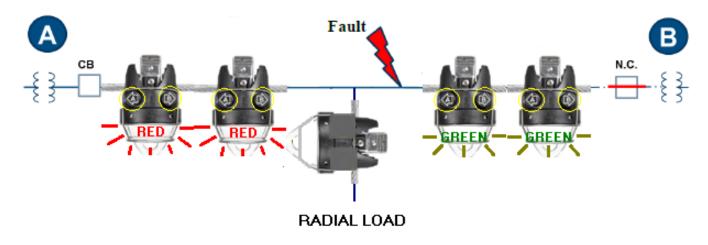
<u>Manual Reset</u> - If there is a fault, the red indicating target gives the device a strikingly different appearance. When the line is re-energized, with the fault removed, the red indicating target will remain until it is manually reset with the magnetic reset tool (F2T) by the line worker.

12.6.10 Radial Applications

FCI's should be used at selected locations such as:

- A. Unfused 3 phase lines.
- B. Unfused single phase lines.
- C. Load side of 3 phase switches.
- D. Load side of 3 phase sectionalizers.
- E. Locations not easily accessible by line worker personnel (e.g. rights-of-way, campgrounds, etc.)

Note: When the time delay reset type FCIs are first installed, and there is more current then the minimum trip setting, the FCI needs to adjust and then will begin to flash. The red LEDs will turn off within 1 minute if there is no fault current, and the yellow LEDs will turn off in 4, 8 or 24 hour (depending on time reset).


		PROTECTION	
ISSUE	PAGE NUMBER		.MHz.
7/19	12-16	OVERHEAD CONSTRUCTION STANDARD	ppl

Directional Fault indicators are to be used on "Network" circuits with multiple Fault Indicator site installations. The Source A and Source B must be determined. All of the indicators must be oriented such that the "A" marking faces toward the Source A and the "B" marking faces toward the Source B. Failure to properly orient the indicators will result in false readings during a fault. Engineering will create a "Fault Indicator Guide" identifying the locations of the Fault Indicators on each feeder to assist with locating the fault on "Network" feeders.

EXAMPLE OF A NETWORK APPLICATION

Proper installation of Directional Fault indicators (Note the A & B indicators on the units should be pointing to the source).

Fault location can be identified between the Red and Green blinking indicators on a "Network" circuit.

12.6.30 <u>Smart Indicators – Fault Circuit</u>

Smart Indicators can be used as a stand-alone device on circuits up to 161 kV or can be integrated into an existing Smart Grid System leveraging various communications environments for OMS and SCADA Applications. Requires the use of a collector box to collect and manage data from the Smart Indicators via a local RF connection, as an access point into a communication network. Up to 12 Smart Indicators can communicate to one collector box within 100' line of sight.

12.7 INSTALLATION - CUTOUTS & DISCONNECTING DEVICES

Typical installations are shown on Pages 12-127 through 12-333. Cutouts should be turned toward the pole for easier opening. Disconnect switches should be installed so that normally the blade opens away from the circuit source. In addition, the location of all disconnecting devices shall be chosen to minimize the possibility of an arc flaring up, or being blown into other circuits.

All mainline switching devices shall be properly numbered and located per construction drawing requirements.

Conductors inserted into the terminals of cutouts and disconnects shall be copper or electrically equivalent aluminum. Hyseal plugs (S27H or S27J) are available for terminating aluminum conductors in cutouts.

PROTECTION									
SMI		PAGE NUMBER	ISSUE						
ppl	OVERHEAD CONSTRUCTION STANDARD	12-17	7/20						

7/20 Added Smart Indicators

CONVENTIONAL TRANSFORMER FUSING – SINGLE PHASE INSTALLATIONS															
					E	/CH.	TRANS	SFORM	IER T	ANK K	VA SIZ	ZE			
PRIMARY CIRCUIT VOLTAGE	10	15	25	37	50	75	100	150	167	200	250	333	500	667	833
				Αl	NSI T	YPE_	K FUS	E LIN	K AMF	PERE F	RATING	3 (F1K	()		
2400 delta 2400/4160 Grd. Y	10	15	25	40	40	65	65	100	100		140				
4160 Ungrd. Y	6	10	15	25	25	40	40	65	65		100	140			
4800 delta 4800/8320 Grd. Y	6	10	15	25	25	40	40	65	65		100	140			
7200 delta 7200/12470 Grd. Y 7620/13200 Grd. Y 7970/13800 Grd. Y	3	6	10	10	15	25	25	40	40		65	65	100	140	200
12000 delta 13200 Ungrd. Y 13800 Ungrd. Y 13200/22860 Grd. Y 13800/23900 Grd. Y 14400/24900 Grd. Y	3	3	3	6	10	15	15	25	25		40	40	65	100	
23000 delta 19920/34500 Grd. Y	3	3	3	6	6	10	10	15	15		25	25	40	65	65

CONVENTIONAL TRANSFORMER FUSING – THREE PHASE INSTALLATIONS															
PRIMARY CIRCUIT VOLTAGE					E	ACH T	RANS	FORM	ER TA	NK K	VA SIZ	E.			
	10	15	25	37	50	75	100	150	167	200	250	333	500	667	833
		ANSI TYPE_K FUSE LINK AMPERE RATING (F1K)													
2400 delta	15	25	40	65	65	100	100	140	140	200	200				
2400/4160 Grd. Y 4160 Ungrd. Y	10	15	25	40	40	65	65	100	100	140	140	200			
4800 delta	10	15	25	40	40	65	65	100	100	100	140	140			
4800/8320 Grd. Y	6	10	15	25	25	40	40	65	65	65	100	140			
7200 delta 7200/12470 Grd. Y 7620/13200 Grd. Y 7970/13800 Grd. Y 12000 delta 13200 Ungrd. Y 13800 Ungrd. Y	3	6	10	10	15	25	25	40	40	40	65	65	100	140	200
13200/22860 Grd. Y 13800/23900 Grd. Y 14400/24900 Grd. Y 23000 delta	3	3	3	6	10	15	15	25	25		40	40	65	100	
19920/34500 Grd. Y	3	3	3	6	6	10	10	15	15		25	25	40	65	65

- 1. For open delta or Scott connections, fuse individual transformers the same as for single phase.
- 2. All fuses in standard three phase (3Φ) banks (same kVA ratings) shall be of the same rating maintaining consistent operating characteristics. Three phase (3Φ) transformers (T-T winding) are fused the same as an equivalent transformer bank of three single-phase transformers.
- 3. For non-standard banks (unlike kVA ratings) ONLY, fuse as follows:
 - a. For wye or open delta, fuse individual transformers the same as for single phase.
 - b. For closed delta banks, the two fuses feeding the larger transformer shall be fused for the size and voltage rating of the larger transformer. The fuse common to the smaller transformers shall be fused for the size and voltage rating of the smaller transformer.

Non-standard Company application. If necessary, consult Standards Engineering

ŀ	K FUSE LINK SELECTION GUIDE FOR OVERHEAD TRANSFORMERS									
ISSUE	PAGE NUMBER		SMIZ.							
7/19	12-18	OVERHEAD CONSTRUCTION STANDARD	ppl							

CONVENTIONAL TRANSFORMER FUSING – SINGLE PHASE INSTALLATIONS															
					EA	CH T	RANS	FORM	IER T	ANK P	(VA S	IZE			
PRIMARY CIRCUIT VOLTAGE	10	15	25	37	50	75	100	150	167	200	250	333	500	667	833
	ANSI TYPE_T FUSE LINK AMPERE RATING (F1T)														
2400 delta 2400/4160 Grd. Y	6	10	15	25	40	40	65	100	100						
7200 delta 7200/12470 Grd. Y 7620/13200 Grd. Y 7970/13800 Grd. Y	3	3	6	10	10	10	15	25	25		40	65	100		

CONVENTIONAL TRANSFORMER FUSING – THREE PHASE INSTALLATIONS															
					EA	СНТ	RANS	FORM	IER T	ANK Ł	(VA S	IZE			
PRIMARY CIRCUIT VOLTAGE	10	15	25	37	50	75	100	150	167	200	250	333	500	667	833
	ANSI TYPE_T FUSE LINK AMPERE RATING (F1T)														
2400/4160 Grd. Y	6	10	15	25	40	40	65	100	100						
7200 delta 7200/12470 Grd. Y 7620/13200 Grd. Y 7970/13800 Grd. Y	3	3	6	10	10	10	15	25	25		40	65	100		

- 1. For open delta or Scott connections, fuse individual transformers the same as for single phase.
- 2. All fuses in standard three phase (3Φ) banks (same kVA ratings) shall be of the same rating maintaining consistent operating characteristics.
- 3. Three phase (3Φ) transformers (T-T winding) are fused the same as an equivalent transformer bank of three single-phase transformers.
- 4. For non-standard banks (unlike kVA ratings) ONLY, fuse as follows:
 - c. For wye or open delta, fuse individual transformers the same as for single phase
 - d. For closed delta banks, the two fuses feeding the larger transformer shall be fused for the size and voltage rating of the larger transformer. The fuse common to the smaller transformers shall be fused for the size and voltage rating of the smaller transformer.

Non-standard Company application. If necessary, consult Standards Engineering

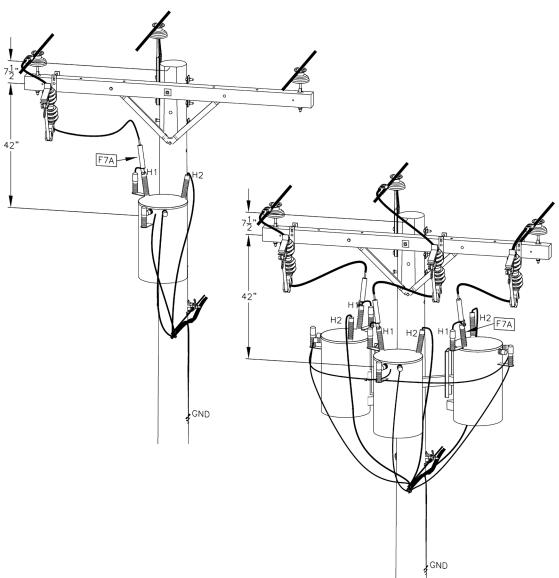

T FUSE LINK SE	T FUSE LINK SELECTION GUIDE FOR OVERHEAD TRANSFORMERS									
WW.		PAGE NUMBER	ISSUE							
ppl	OVERHEAD CONSTRUCTION STANDARD	12-19	7/19							

	CAPACITOR FUSING – 3Φ AND 1Φ PHASE INSTALLATIONS										
			KVAR PER 3Φ/1Φ								
PRIMARY CIRCUIT	CAP	150/50	300/100	450/150	600/200	900/300	1200/400	1800/600	2700/900		
VOLTAGE	(KV)			C	APACITOR	R VOLTAG	E (KV)				
			A٨	ISI TYPE_I	K FUSE LI	NK AMPE	RE RATING	6 (F1K)			
2400 delta	2.4	40	80								
2400/4160 Grd. Y	2.4	20	40	65							
4160 Ungrd. Y	4.16	20	40	05							
4800 delta	4.8	20	40	50	65						
4800/8320 Grd. Y	4.8	10	25	40	40	65					
6900 Ungrd. Y	6.64										
7200 delta	7.2										
7200/12470 Grd. Y	7.6	10	15	20	30	40	65				
7620/13200 Grd. Y	7.9										
7970/13800 Grd. Y											
13200 Ungrd. Y	13.2										
13800 Ungrd. Y	13.8				15	25	40	50	65		
13200/22860 Grd. Y											
13800/23900 Grd. Y	14.4				15	25	40	40	65		
14400/24900 Grd. Y					10						
19920/34500 Grd. Y	19.9					15	25	40	50		
			AN	ISI TYPE_I	K FUSE LI	NK AMPE	RE RATING				
23000 delta	23							50	80		

- Table is applicable for three phase (3Φ) & single phase (1Φ) installations. This See C40 for standard capacitors & C36 for standard capacitor racks 1.
- 2.
- 3. Three phase (3Φ) capacitor units are fused the same as individual units utilizing the kVAR per three phase (3Φ) values above.

Non-standard Company application. If necessary, consult distribution engineering

K FUSE LINK SELECTION GUIDE FOR OVERHEAD CAPACITORS									
ISSUE	PAGE NUMBER		AMIZ.						
7/19	12-20	OVERHEAD CONSTRUCTION STANDARD	ppl						



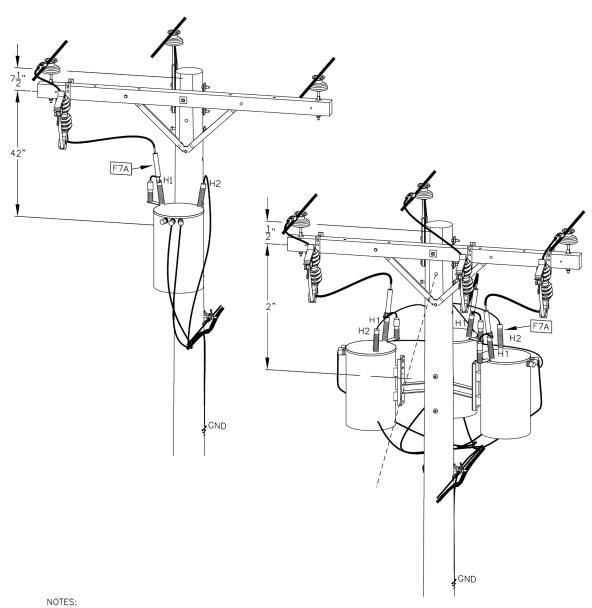
AN	SI TYPE_K FU	JSE LIN	K AMF	ERE R	ATING	(F1K)					
SIZE CSP	LOCATION	2.4/4.	16 KV	4.8	KV	7.6/13	.2 KV				
TRANS.		REC.	MIN.	REC.	MIN.	REC.	MIN.				
5	1	100		100		100					
5	2	65		50		50					
5	3	50		40		40					
5	4	50	40	40	25	40	25				
10	1	100		100		100					
10	2	65		50		50					
10	3	65		40		40					
10	4	65	40	40	25	40	25				
15	1	100		100		100					
15	2	65		65		50					
15	3	65		50		40					
15	4	65	65	50	40	40	25				
25	1	140		100		100					
25	2	100		65		65					
25	3	100		50		50					
25	4	100	100	50	40	40	40				
37.5	1	200		140		100					
37.5	2	200		100		65					
37.5	3	200		100		65					
37.5	4	200	140	100	100	65	65				
50	1-4	200	200	140	140	140	100				
75	1-4	200	200	200	200	140	100				
5-75	M		STATION BREAKER								

If CSP transformers are installed behind minimum size line fuses, there is a calculated risk that a fault in one of the transformers will cause the line fuse to blow.

K FUSE LINK COORDINATION FOR SINGLE PHASE CSP TRANSFROMERS									
SMZ.		PAGE NUMBER	ISSUE						
ppl	OVERHEAD CONSTRUCTION STANDARD	12-21	7/19						

CU = TFC5	25 A Current Limiting Fuse
CU = TFC7	40 A Current Limiting Fuse

- 1. THIS CONFIGURATION IS TYPICAL FOR 10 OR 30 STRAIGHT OR DUAL VOLTAGE CSP TRANSFORMER INSTALLATIONS WHICH HAVE BEEN RETROFITTED WITH FUSED CUTOUTS. ALL STANDARD POLE TOP ARRANGEMENTS ARE APPLICABLE AND CAN BE FITTED IN THE SAME MANNER.


 2. SEE SECTION 12.5.20 FOR CL FUSE SELECTION.

 3. SEE TRANSFORMER SECTION 14 FOR ADDITIONAL TRANSFORMER INFORMATION.

Designer	Drawing	Date
MPR	od12127	7/3/18

CURRENT LIMITING FUSE INSTALLATION (RETROFITTING) ON CSP TRANSFORMER 15KV			
ISSUE	PAGE NUMBER		. MHz.
7/18	12-127	OVERHEAD CONSTRUCTION STANDARD	ppl

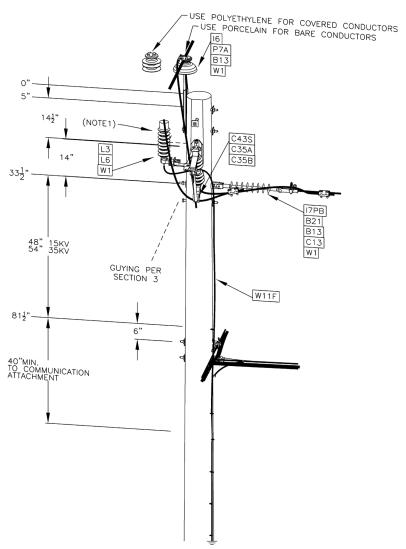
CU = TFC5	25 A Current Limiting Fuse
CU = TFC7	40 A Current Limiting Fuse

- 1. THIS CONFIGURATION IS TYPICAL FOR 10 OR 30 STRAIGHT OR DUAL VOLTAGE CONVENTIONAL TRANSFORMER INSTALLATIONS. ALL STANDARD POLE TOP ARRANGEMENTS ARE APPLICABLE AND CAN BE FITTED IN THE SAME MANNER.

 2. SEE SECTION 12.5.20 FOR CL FUSE SELECTION.

 3. SEE TRANSFORMER SECTION 14 FOR ADDITIONAL TRANSFORMER INFORMATION.

Designer	Drawing	Date
MPR	od12128	7/3/18


	CURRENT LIMITING FUSE INSTALLATION ON CONVENTIONAL TRANSFORMER 15-35KV			
f	SMIZ.		PAGE NUMBER	ISSUE
	ppl	OVERHEAD CONSTRUCTION STANDARD	12-128	7/18

CU = CFLK(P)CU = CFLK35(P)

15 kV Fuse, (P) = Fuse Rating 35 kV Fuse, (P) = Fuse Rating

Cutout Bracket, Crossarm

CU = CC15K(I)	15 kV Cutout & Fuse Holder, (I) = S1-100 A, S2-200 A, S3S-300 A	CU = CFLK(F
CU = CC27KS1	27 kV Cutout & Fuse Holder	CU = CFLK3
CU = CAL(X)K	Arrester, Lightning, (X) = Duty Cycle Rating kV	CU = PBCA
CU = PABCA	Bracket for Cutout/Arrester 1 Position	
CU = PABCA3	Bracket for Cutout/Arrester 3 Position	
CU = CSVGLA	Single Vertical Ground for Lightning Arrester	

NOTES:
1. SEE OH STANDARDS SECTION 13.6 FOR APPLICATION OF SURGE ARRESTERS.

Designer Drawing Date
MPR od12129 7/3118

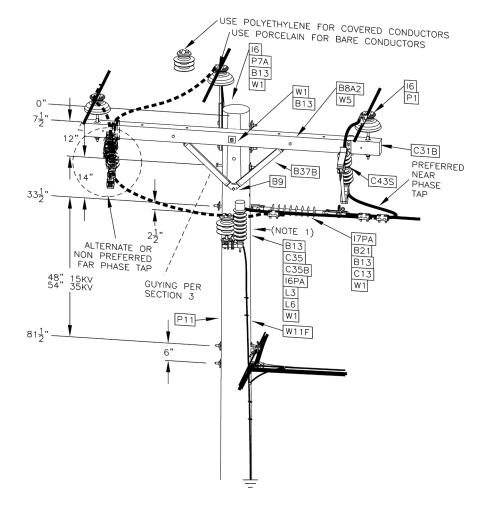
Supersedes 7/17 Issue - Updated Drawing

1Φ PRIMARY WITH 1Φ FUSED TAP 15-35 KV			
ISSUE	PAGE NUMBER		NID.
7/18	12-129	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 12.00.002

CU = CFLK(P)

CU = PBCA

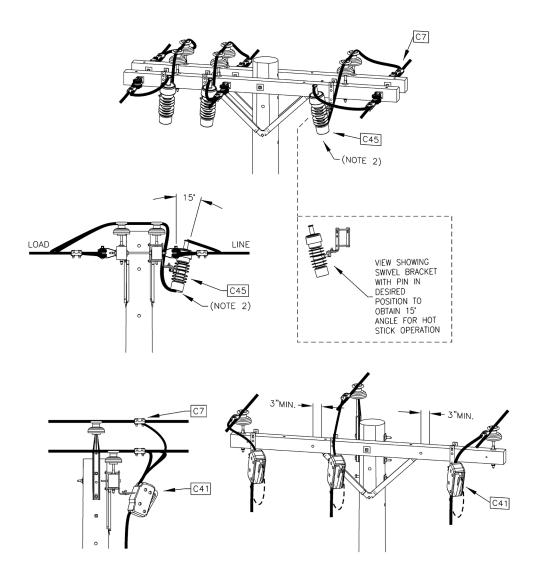

CU = CFLK35(P)

15 kV Fuse, (P) = Fuse Rating

35 kV Fuse, (P) = Fuse Rating

Cutout Bracket, Crossarm

CU = CC15K(I)	15 kV Cutout & Fuse Holder, (I) = S1-100 A, S2-200 A, S3S-300 A
CU = CC27KS1	27 kV Cutout & Fuse Holder
CU = CAL(X)K	Arrester, Lightning, (X) = Duty Cycle Rating kV
CU = PABCA	Bracket for Cutout/Arrester 1 Position
CU = PABCA3	Bracket for Cutout/Arrester 3 Position
CU = CSVGLA	Single Vertical Ground for Lightning Arrester


NOTES:

- SEE OH STANDARDS SECTION 13.6 FOR APPLICATION OF SURGE ARRESTERS. CAN USE 3 POSITION BRACKET (C35A) INSTEAD OF CUTOUT ON ARM.

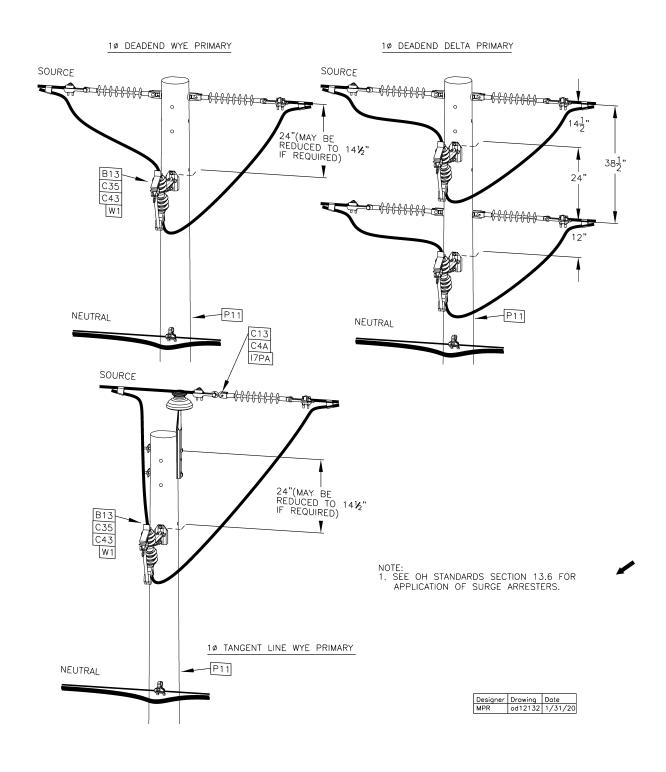
D	esigner	Drawing	Date
М	PR	od12130	7/3/18

3Φ PRIMARY WITH 1Φ FUSED TAP 15-35 KV			
SMA		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	12-130	7/18

CU = CC5KL	5 kV Cutout, $\underline{\mathbf{L}}$ = Cutout Box Size
CU = CFLKP	Fuse Size, $\underline{\mathbf{P}}$ = Fuse Rating

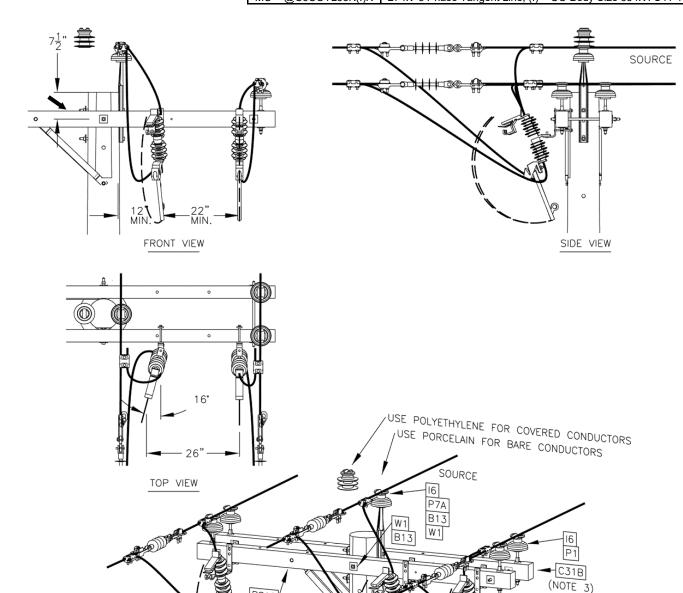
INFORMATION ONLY - USE OPEN-TYPE CUTOUTS

- NOTES:


 1. THE LOCATION OF ALL DISCONNECTING DEVICES MUST BE CHOSEN TO MINIMIZE POSSIBILITY OF AN ARC FLARING UP INTO, OR BEING BLOWN INTO OTHER CIRCUITS.

 2. CONDUCTORS INSERTED INTO THE TERMINALS OF CUTOUTS AND DISCONNECTS SHALL BE COPPER.

Designer	Drawing	Date
MPR	od12131	7/3/18


3Ф PRIMARY SECTIONALIZING 5 KV (MAINTENANCE)			
ISSUE	PAGE NUMBER		ANI/A
7/18	12-131	OVERHEAD CONSTRUCTION STANDARD	ppl

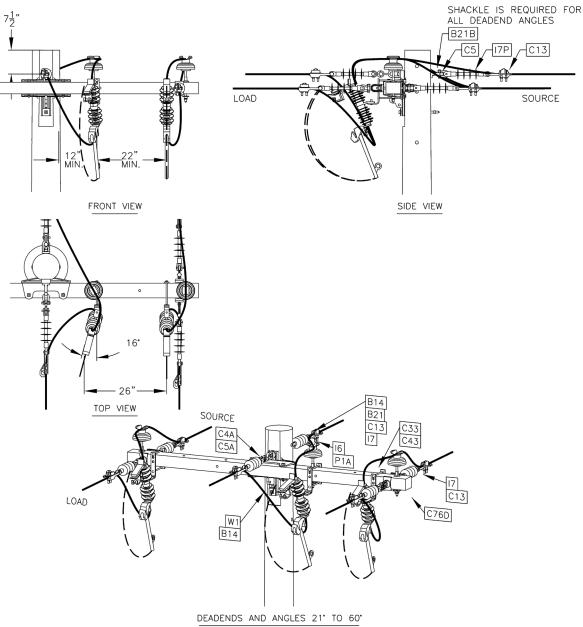
$MU = @C15KCO\underline{\mathbf{P}}$	15 kV Cutout, $\underline{\mathbf{P}}$ = Fuse Rating
MU = @C35KCOP	27 kV Cutout, P = Fuse Rating

1Φ PRIMARY SECTIONALIZING 15-35 KV			
AMZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	12-132	7/21

MU = @C3COTL(I)K	15 kV 3 Phase Tangent Line, (I) = CO Body Size: S1-100, S2-200 K Link
MU = @C3COTI35K(I)K	27 kV 3 Phase Tangent Line (I) = CO Body Size 35 kV: S41-100

TANGENT LINE AND ANGLES 0° TO 20°

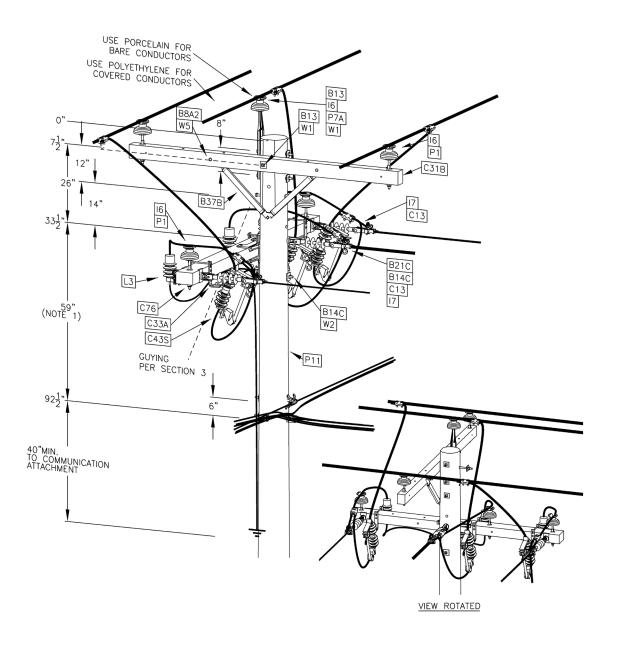

- 1. COVERED-WIRE TAPS MAY REQUIRE STRIPPING TO PROVIDE 6" BARE WIRE FOR OPERATIONAL GROUNDING NEAR THE CUTOUT TERMINALS.
- USE DOUBLE PINS AND INSULATORS ON ARM FOR ANGLES 11°TO 20° AND PUT CONDUCTOR IN SIDE GROOVE.
- 3. USE ITEM C31B (8FT CROSSARM) WITH B37B BRACE FOR 15KV CONSTRUCTION AND ITEM TC10 (10FT CROSSARM) WITH TB60 BRACE FOR 35KV CONSTRUCTION.
- 4. SEE OH STANDARDS SECTION 13.6 FOR APPLICATION OF SURGE ARRESTERS.


B8A2 W5

> B37B B9

Designer	Drawing	Date
MPR	od12133A	3/15/19

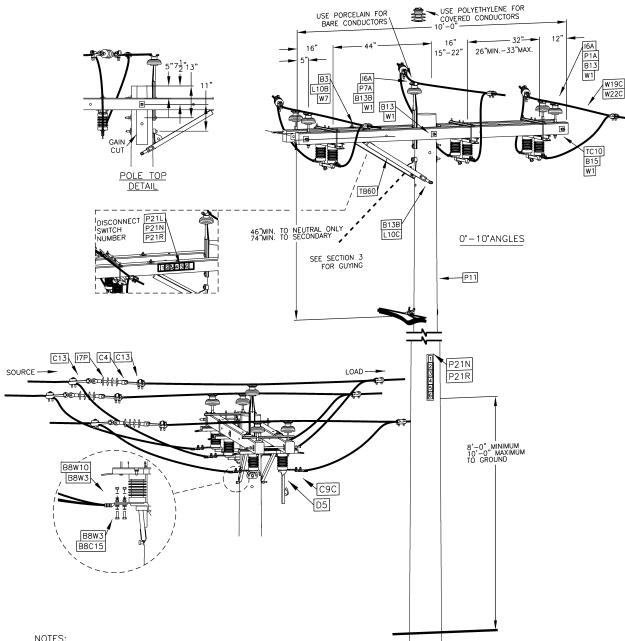
3Φ PRIMARY SECTIONALIZING 15-35 KV ISSUE PAGE NUMBER OVERHEAD CONSTRUCTION STANDARD Ppl OVERHEAD CONSTRUCTION STANDARD



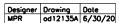
- 1.COVERED-WIRE TAPS MAY REQUIRE STRIPPING TO PROVIDE 6" BARE WIRE FOR OPERATIONAL GROUNDING NEAR THE CUTOUT TERMINALS.
- 2. USE DOUBLE PINS AND INSULATORS ON ARM FOR ANGLES 11 TO 20 AND PUT CONDUCTOR IN SIDE
- 3. USE ITEM TC10 (10FT CROSSARM) WITH TB60 BRACE FOR 35KV CONSTRUCTION.
- 4. SEE OH STANDARDS SECTION 13.6 FOR APPLICATION OF SURGE ARRESTERS.

Designer	Drawing	Date
MPR	od12133B	1/15/21

3 Φ PRIMARY SECTIONALIZING 15-35 KV LINE ANGLES 0°-20° **PAGE NUMBER** ISSUE ppl **OVERHEAD CONSTRUCTION STANDARD** 12-133B 7/21



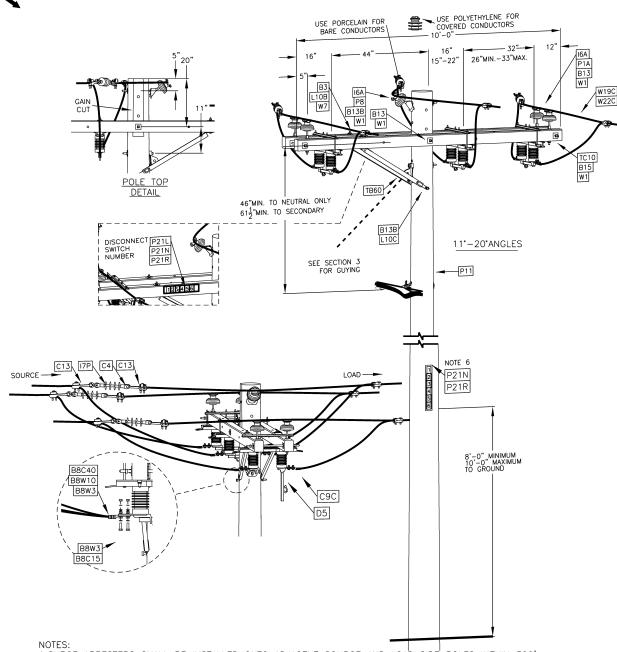
NOTES:
1. FIBERGLASS CROSS ARM TO MEET THE REQUIREMENTS OF SECTION 4 - STORM HARDENING.


Designer	Drawing	Dote
MPR	od12134	7/3/18

3Ф PRIMARY SECTIONALIZING 15-35 KV			
ISSUE	PAGE NUMBER		SMIN
7/18	12-134	OVERHEAD CONSTRUCTION STANDARD	ppl

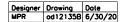
MU = @12-13510D15K 15 kV 3 phase Disconnect 0°-10° MU = @12-13510D35K 35 kV 3 phase Disconnect 0°-10°

- 1.SURGE ARRESTERS SHALL BE INSTALLED ONTO ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
- 2.SEE TABLE 2 FOR DISCONNECT RATINGS. STANDARD PRACTICE IS TO INSTALL SWITCH SO THAT THE BLADE OPENS AWAY FROM THE SOURCE AND IS DE—ENERGIZED WHEN OPEN.
 3.USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 4.0N COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING PURPOSES. USE \$30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED. 5.SEE DRAWINGS 12-139 AND 12-140 FOR SWITCH INSTALLATIONS ON SEPARATE SWITCH ARMS.
- 6.DISCONNECT SWITCH NUMBER MOUNTED VERTICALLY FACING TOWARD ONCOMING TRAFFIC PROVIDING MAXIMUM
- 7.PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30


UNDERSLUNG DISCONNECT SWITCH TANGENT LINE ANGLES 0°-10° 15-35 KV

OVERHEAD
CONSTRUCTION STANDARD

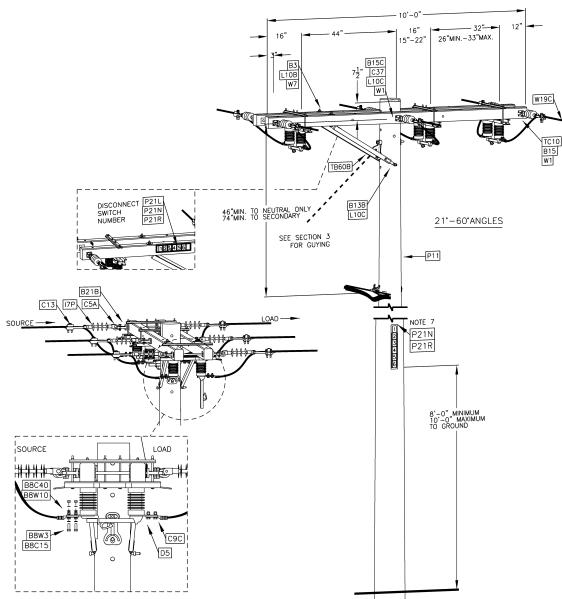
PAGE NUMBER	ISSUE
12-135A	7/20


MU = @12-1351120D15K	15 kV 3 phase Disconnect 11°-20°
MU = @12-1351120D35K	35 kV 3 phase Disconnect 11°-20°

- 1.SURGE ARRESTERS SHALL BE INSTALLED ONTO ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
- 2.SEE TABLE 2 FOR DISCONNECT RATINGS. STANDARD PRACTICE IS TO INSTALL SWITCH SO THAT THE BLADE OPENS AWAY FROM THE SOURCE AND IS DE- ENERGIZED WHEN OPEN.
- 3.USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
 4.ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING
- PURPOSES. USE \$30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.

 5.SEE DRAWINGS 12-139 AND 12-140 FOR SWITCH INSTALLATIONS ON SEPARATE SWITCH ARMS.

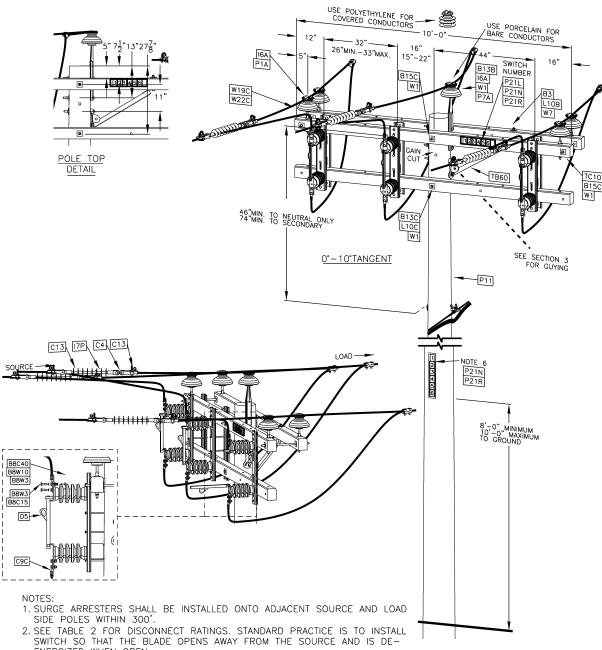
 6.SWITCH IDENTIFICATION NUMBER MOUNTED VERTICALLY FACING TOWARD TRAFFIC PROVIDING MAXIMUM VISIBILITY.
- 7.PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30



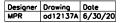
UNDERSLUNG DISCONNECT SWITCH TANGENT LINE ANGLES 11°-20° 15-35 KV

ISSUE	PAGE NUMBER	
7/20	12-135B	OVERHEAD CONSTRUCTION STANDARD

MU = @12-1362160D15K	15 kV 3 Phase Disconnect
MU = @.12-1362160D35K	35 kV 3 Phase Disconnect

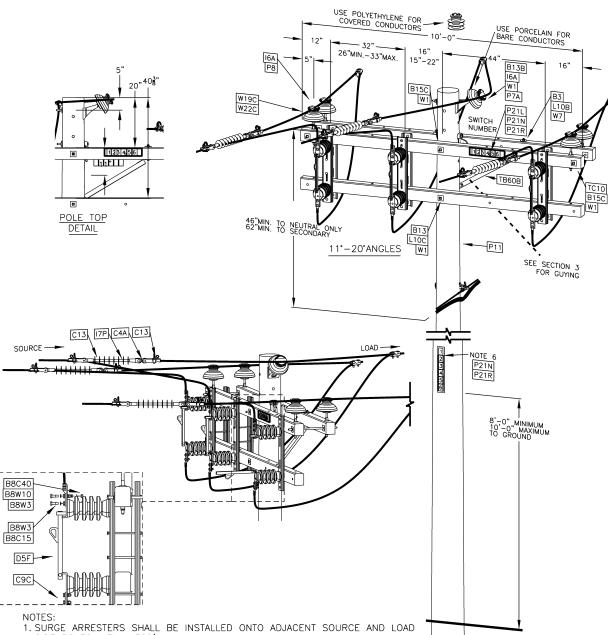

- 1. SURGE ARRESTERS SHALL BE INSTALLED ONTO ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
- 2. SEE TABLE 2 FOR DISCONNECT RATINGS. STANDARD PRACTICE IS TO INSTALL SWITCH SO THAT THE BLADE OPENS AWAY FROM THE SOURCE AND IS DE ENERGIZED WHEN OPEN. 3. USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 4. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING PURPOSES. USE \$30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE
- 5. SEE DRAWINGS 12-139 AND 12-140 FOR SWITCH INSTALLATIONS ON SEPARATE SWITCH ARMS.

- 6. SEE DRAWING 12-135 FOR CONDUCTORS ON PINS AND ANGLES 0° TO 20°.
 7. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TOWARD TRAFFIC PROVIDING MAXIMUM VISIBILITY.
 8. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30 Designer Drawing Date MPR od12136 6/30/20


UNDERSLUNG DISCONNECT SWITCH 3Φ LINE ANGLES 21°-60° - CROSSARM **DEADEND 15 KV**

PAGE NUMBER	ISSUE
12-136	07/20

- ENERGIZED WHEN OPEN. 3. USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 4. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING PURPOSES. USE S30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.
- 5. SEE DRAWINGS 12-139 AND 12-140 FOR SWITCH INSTALLATIONS ON SEPARATE SWITCH ARMS.
- 6. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TOWARD TRAFFIC PROVIDING MAXIMUM VISIBILITY.
- 7. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30



UNDERSLUNG DISCONNECT SWITCH TANGENT LINE ANGLES 0°-10° 15-35 KV

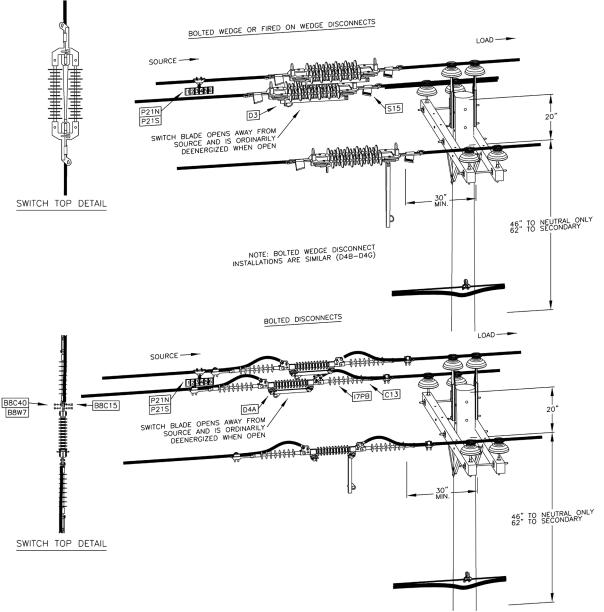
ISSUE	PAGE NUMBER
7/20	12-137A

CU = CDS15KIL | 15 kV In-Line Switch (1)

- SIDE POLES WITHIN 300'.
- 2. SEE TABLE 2 FOR DISCONNECT RATINGS. STANDARD PRACTICE IS TO INSTALL SWITCH SO THAT THE BLADE OPENS AWAY FROM THE SOURCE AND IS DE-ENERGIZED WHEN OPEN.
- 3. USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 4. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING PURPOSES. USE S30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.
- 5. SEE DRAWINGS 12-139 AND 12-140 FOR SWITCH INSTALLATIONS ON SEPARATE SWITCH ARMS.
- 6. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TOWARD TRAFFIC PROVIDING MAXIMUM VISIBILITY.
- 7. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

l	Designer	Drawing	Date
	MPR	od12137B	6/30/20

UNDERSLUNG DISCONNECT SWITCH TANGENT LINE ANGLES 11°-20° 15-35 KV



PAGE NUMBER	ISSUE
12-137B	07/20

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 12.00.002

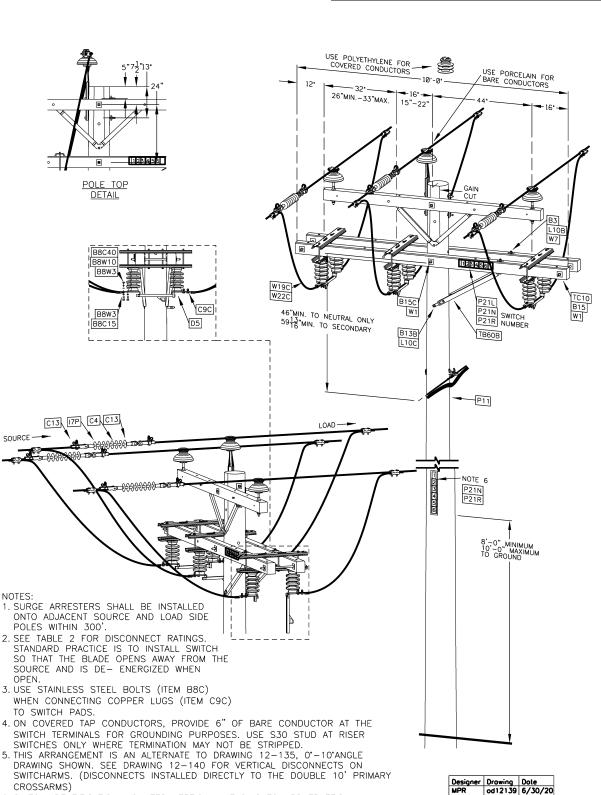
CU = CDS(X)K(Y)AILFired-On Wedge In-Line Switch, (X) = Nominal Voltage, (Y) = Wire Size CU = CDS(X)K(Y)ILBolted In-Line Switch, (X) = Nominal Voltage, (Y) = Wire Size

NOTES:

- 1. SURGE ARRESTERS SHALL BE INSTALLED ONTO ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
 2. USE THE IN-LINE SWITCH ARRANGEMENT ONLY WHEN CLEARANCES WILL NOT ALLOW SWITCH INSTALLATIONS ON CROSSARMS (SEE DRAWINGS 12-135, 136, 137, 139 AND 140).
- 3. THIS ARRANGEMENT MAY BE APPLIED TO OTHER TYPES OF OPEN TYPES OF OPEN WIRE POLE TOPS INCLUDING
- RECLOSER INSTALLATIONS.
 4. FOR POLE TOP CONFIGURATIONS, DOUBLE INSULATOR TIE POINTS ARE REQUIRED TO REDUCE THE STRAIN UNDER SWITCH OPERATION.

 5. SWITCH IDENTIFICATION SHALL BE INSTALLED ON THE CONDUCTOR MIDDLE PHASE USING THE P21S HANGER
- 6. DO NOT INSTALL IN LINE SWITCHES ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20 DEGREES.
- 7. THE PREFERRED BOLTED SWITCH IS THE BOLTED WEDGE STYLE SWITCH (STD ITEMS D4B-D4G). USE THE D4A SWITCH FOR COPPER CONDUCTORS OR CONDUCTOR SIZES THAT ARE OUTSIDE THE RANGE OF D4B-D4G.
- 8. SEE OH STANDARDS SECTION 13.6 FOR APPLICATION OF SURGE ARRESTERS.

Designer	Drawing	Date
MPR	od12138	1/31/20

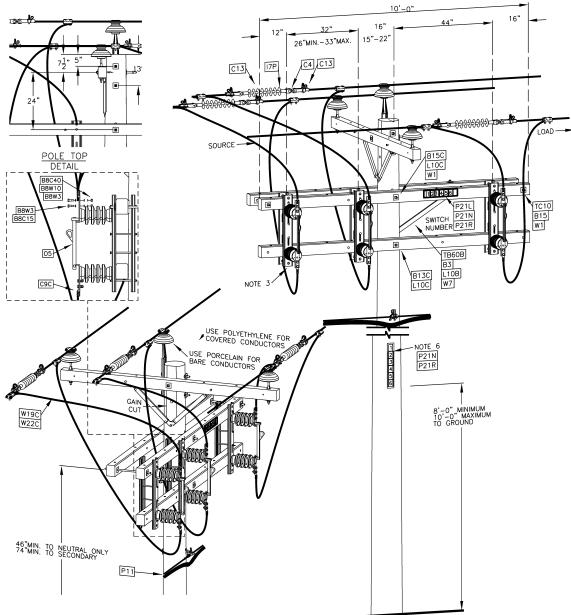

INSTALLATION OF IN-LINE SWITCHES 15-35 KV

ISSUE	PAGE NUMBER
7/21	12-138

MU = @12-13910D15K 15 kV 3 Phase Disconnect Underslung

MU = @12-13910D35K 35 kV 3 Phase Disconnect Underslung

CROSSARMS) 6. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TOWARD TRAFFIC

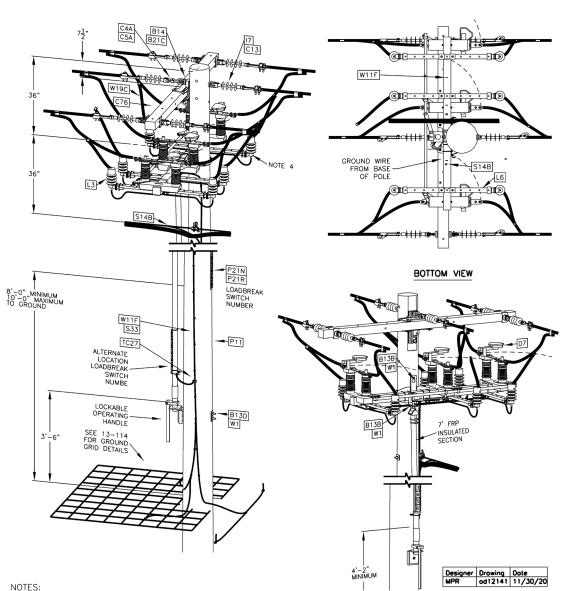

PROVIDING MAXIMUM VISIBILITY.
7. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

UNDERSLUNG DISCONNECT SWITCHES - ON SWITCHARMS 15-35 KV

PAGE NUMBER	ISSUE
12-139	7/20

MU = @12-14010D15K	15 kV 3 Phase Disconnect Vertical
MU = @12-14010D35K	35 kV 3 Phase Disconnect Vertical

- 1. SURGE ARRESTERS SHALL BE INSTALLED ONTO ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
- SEE TABLE 2 FOR DISCONNECT RATINGS. STANDARD PRACTICE IS TO INSTALL SWITCH SO THAT THE BLADE OPENS AWAY FROM THE SOURCE AND IS DE— ENERGIZED WHEN OPEN.
 USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
 ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING


- PURPOSES. USE S30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.

 5. THIS ARRANGEMENT IS AN ALTERNATE TO DRAWING 12–137, 0'-10'ANGLE DRAWING SHOWN. SEE DRAWING 12–139
 FOR HORIZONTAL UNDERHUNG DISCONNECTS ON SWITCH ARMS. SWITCH ARMS ARE ORIENTED PARALLEL TO POLE
 LINE FOR OPERATOR ACCESSABILITY.(DISCONNECTS INSTALLED DIRECTLY TO THE DOUBLE 10' PRIMARY CROSS ARMS)
- 6. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TRAFFIC PROVIDING MAXIMUM VISIBILITY. 7. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

Designer Drawing Date MPR od12140 6/30/20

VERTICAL DISCONNECT SWITCHES - ON SWITCHARMS 15-35 KV **ISSUE PAGE NUMBER OVERHEAD CONSTRUCTION STANDARD** 7/20 12-140

MU = @12-141LBSW15KVWXA 15 kV 3 Phase Loadbreak Switch) MU = @12-141LBSW35KVWXA 35 kV 3 Phase Loadbreak Switch

- 1. SURGE ARRESTERS SHALL BE INSTALLED ONTO THE LOAD BREAK ARRESTOR PROVISIONS PROVIDED OR ONTO ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'. (ARRESTERS MUST BE INSTALLED VERTICALLY AS SHOWN) 2. USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 3. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING PURPOSES. USE \$30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.

 4. PRIMARY CONDUCTORS SHALL NEVER BE INSTALLED TO ONLY ONE SIDE OF THE SWITCH AS MAXIMUM DEADEND
- LOADING WILL BE EXCEEDED.
- 5. DO NOT INSTALL SWITCH ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20°. 0° TO 10°ANGLE DRAWING IS SHOWN.

 6. LIFTING STRAPS SHALL BE REMOVED AFTER INSTALLATION IS COMPLETE.

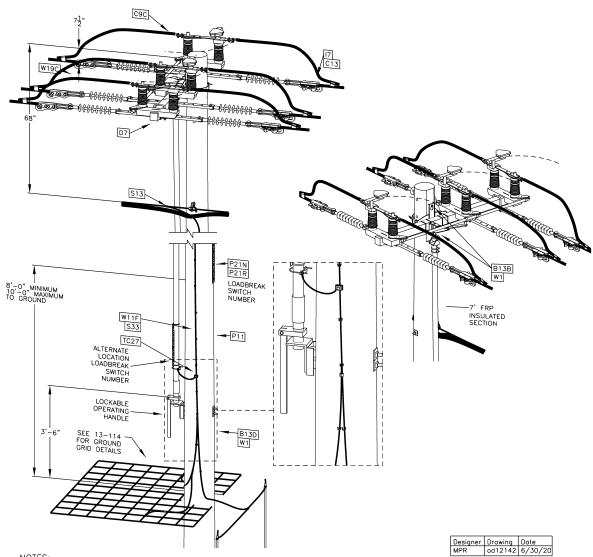
 7. OPERATING MECHANISM SHALL BE LOCKED IN THE OPEN OR CLOSED POSITION.

 8. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TRAFFIC PROVIDING MAXIMUM VISIBILITY.

- 9. ALL LOAD BREAKS TO BE INSTALLED ON A H1 CLASS POLE AND DOUBLE DEAD ENDED ON A FIBERGLASS CROSS ARM PER SECTION 4 STORM HARDENING.
- 10.USE UC5G(500KCMIL CU TAP WIRE) WITH D7G(35KV 1200AMP LOADBREAK). UC5G CAN BE FOUND IN THE UG STANDARDS BOOK.
- 11.PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

34 PRIMARY SECTIONALIZING - LOADBREAK SWITCH BELOW CROSSARM **INSTALLATION 15-35 KV** PAGE NUMBER ISSUE ppl **OVERHEAD CONSTRUCTION STANDARD** 12-141 7/21

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 12.00.002

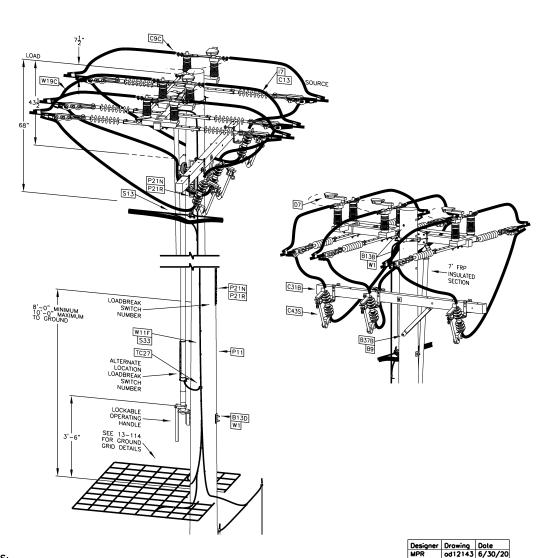

MU = @12-142LBSW1	5KV	15 kV 3 Ph LB Sw	MU = @12-142LBSWUNK15KV	35 kV 3 Ph LB Sw Unk Deg.
MU =	@12-	15 kV 3 Ph LB Sw 11-20		
142LBSW1120D15KV		Deg.		
MU =	@12-	15 kV 3 Ph LB Sw 11-20	MU = @12-142LBSWUNK35KV	35 kV 3 Ph LB Sw Unk Deg.
142LBSW1120D15KV	_	Deg.	_	

3Φ PRIMARY SECTIONALIZING – CONDUCTOR DEADEND ON LOADBREAK			
SWITCH INSTALLATION 15-35 KV			
ISSUE	PAGE NUMBER		
		OVERHEAD	

7/21 12-142

MU = @12-143LBSW15KVWCO	15 kV 3 Phase Loadbreak Switch, Plus Cutout MUs
MU = @12-143LBSW35KVWCO	35 kV 3 Phase Loadbreak Switch, Plus Cutout MUs

- 1. SURGE ARRESTERS SHALL BE INSTALLED ONTO THE ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
- 2. USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 3. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING
- PURPOSES. USE \$30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.
 4. PRIMARY CONDUCTORS SHALL NEVER BE INSTALLED TO ONLY ONE SIDE OF THE SWITCH AS MAXIMUM DEAD END LOADING WILL BE EXCEEDED.
- 5. DO NOT INSTALL SWITCH ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20°. 0° TO 10'ANGLE DRAWING IS SHOWN.
- LIFTING STRAPS SHALL BE REMOVED AFTER INSTALLATION IS COMPLETE.

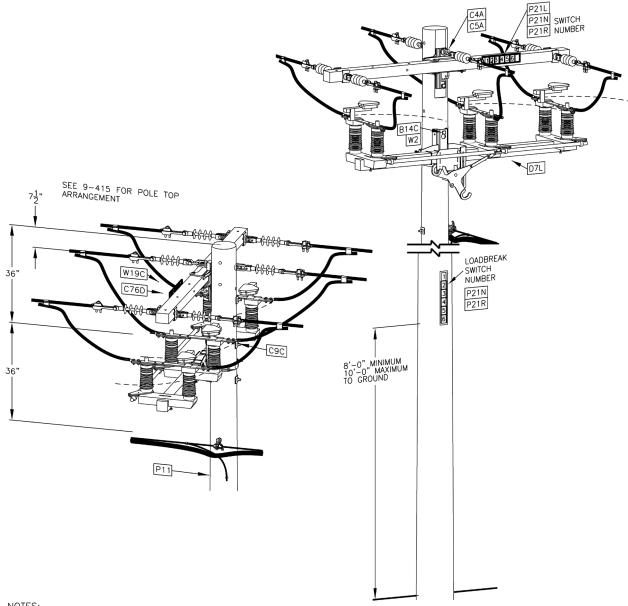

- STANDARD 12-141 IS THE PREFERRED METHOD OVER DEAD ENDING ON THE SWITCH. THIS STANDARD MAY BE USED IF ADJACENT POLES ARE UPGRADED TO A CLASS H1 WITH DOUBLE DEAD -ENDED FIBERGLASS CROSS ARMS PER SECTION 4 STORM HARDENING.
- 10.USE UC5G(500KCMIL CU TAP WIRE) WITH D7G(35KV 1200AMP LOADBREAK). UC5G CAN BE FOUND IN THE UG STANDARDS BOOK.
- 11.PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

3Ф PRIMARY SECTIONALIZING – LOADBREAK SWITCH WITH SHUNT CUTOUTS			
INSTALLATION 15-35 KV			
•		PAGE NUMBER	ISSUE
national grid	OVERHEAD CONSTRUCTION STANDARD	12-143	7/19

MU = @12-143LBSW15KVWCO

15 kV 3 Phase Loadbreak Switch, Plus Cutout MUs

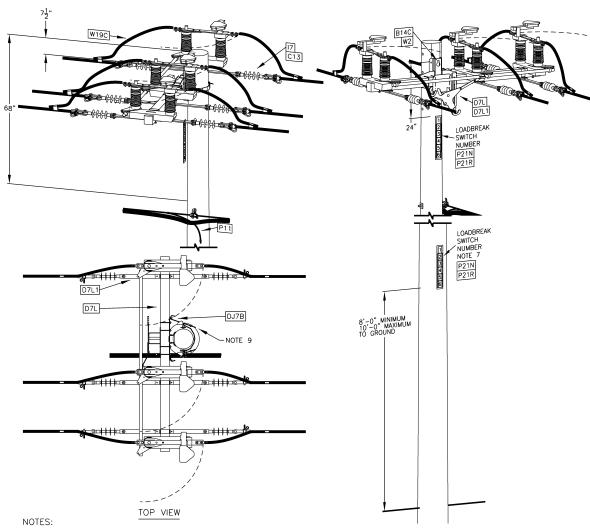
MU = @12-143LBSW35KVWCO 35 kV 3 Phase Loadbreak Switch, Plus Cutout MUs



NOTES:

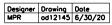
- 1. SURGE ARRESTERS SHALL BE INSTALLED ONTO THE ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
- 2. SHUNT FUSE CUTOUTS SHALL BE INSTALLED BELOW THE LOADBREAK SWITCH ONTO A 8' CROSSARM.
- 3. USE STAINLESS STEEL BOLTS (ITEM BBC) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 4. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING PURPOSES. USE S30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.
 PRIMARY CONDUCTORS SHALL NEVER BE INSTALLED TO ONLY ONE SIDE OF THE SWITCH AS MAXIMUM DEADEND
- LOADING WILL BE EXCEEDED.
- DO NOT INSTALL SWITCH ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20°. 0° TO 10°ANGLE DRAWING IS SHOWN.

- 7. LIFTING STRAPS SHALL BE REMOVED AFTER INSTALLATION IS COMPLETE.
 8. OPERATING MECHANISM SHALL BE LOCKED IN THE OPEN OR CLOSED POSITION.
 9. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TRAFFIC PROVIDING MAXIMUM VISIBILITY.
- THIS STANDARD MAY BE USED IF ADJACENT POLES ARE UPGRADED TO A CLASS H1 WITH DOUBLE DEADENDED FIBERGLASS CROSSARMS PER SECTION 4 STORM HARDENING.
 USE UC5G(500KCMIL CU TAP WIRE) WITH D7G(35KV 1200AMP LOADBREAK). UC5G CAN BE FOUND IN THE UG
- STANDARDS BOOK.
- 12. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30


3Ф PRIMARY SECTIONALIZING – LOADBREAK SWITCH WITH SHUNT CUTOUTS **INSTALLATION 15-35 KV** PAGE NUMBER ISSUE **OVERHEAD** ppl 🎉 **CONSTRUCTION STANDARD** 12-143 7/21

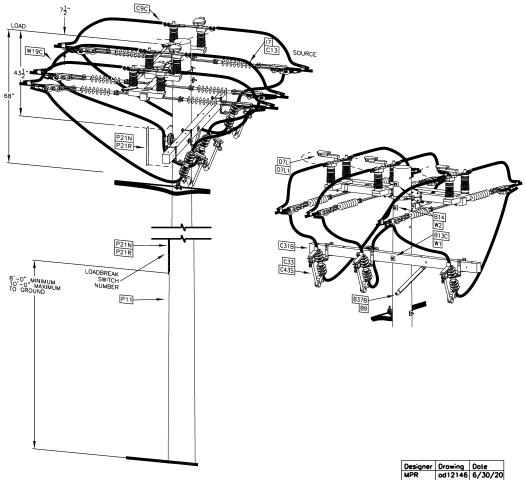
- 1. SURGE ARRESTERS SHALL BE INSTALLED ON ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'. DOWN GROUND AND/OR SURGE ARRESTERS SHALL NOT BE INSTALLED ON THE SAME POLE AS THE SWITCH INSTALLATION.
- 2. USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 3. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING PURPOSES. USE S30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.
- 4. DO NOT INSTALL SWITCH ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20°. 0° TO 10°ANGLE DRAWING IS SHOWN.
- 5. LIFTING STRAPS SHALL BE REMOVED AFTER INSTALLATION IS COMPLETE.
- 6. OPERATING MECHANISM SHALL BE LOCKED IN THE OPEN OR CLOSED POSITION.
- 7. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TRAFFIC PROVIDING MAXIMUM VISIBILITY.
- 8. ALL LOAD BREAKS WITH EXCEPTION TO HOOKSTICK SWITCH TO BE INSTALLED ON A H1 CLASS POLE AND DOUBLE DEAD ENDED ON A FIBERGLASS CROSS ARM PER SECTION 4 STORM HARDENING.
- 9. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

Designer Drowing Date
MPR od12144 11/30/20


3Ф PRIMARY SECTIONALIZING – HOOK STICK LOADBREAK SWITCH BELOW CROSSARM INSTALLATION 15 KV			
ISSUE	PAGE NUMBER		WHA.
7/21	12-144	OVERHEAD CONSTRUCTION STANDARD	ppl

- 1. SURGE ARRESTERS SHALL BE INSTALLED ON ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'. DOWN GROUND AND/OR SURGE ARRESTERS SHALL NOT BE INSTALLED ON THE SAME POLE AS THE SWITCH INSTALLATION.
- 2. USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 3. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING
- PURPOSES. USE \$30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.

 4. PRIMARY CONDUCTORS SHALL NEVER BE INSTALLED TO ONLY ONE SIDE OF THE SWITCH AS MAXIMUM DEADEND LOADING WILL BE EXCEEDED.
- 5. DO NOT INSTALL SWITCH ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20°. 0° TO 10°ANGLE DRAWING IS SHOWN.


- 6. LIFTING STRAPS SHALL BE REMOVED AFTER INSTALLATION IS COMPLETE.
 7. SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TRAFFIC PROVIDING MAXIMUM VISIBILITY.
 8. STANDARD 12-144 IS THE PREFERRED METHOD OVER DEAD ENDING ON THE SWITCH. THIS STANDARD MAY BE USED IF ADJACENT POLES ARE UPGRADED TO A H1 CLASS POLE WITH DOUBLE DEAD ENDED FIBERGLASS CROSS ARMS PER SECTION 4 - STORM HARDENING.
- 9. ALL LOADBREAK SWITCHES COME WITH STANDARD LENGTH J-BOLTS AND POLE BANDS FOR 61#2" TO 14"0 POLES, TO BE USED WHERE DEADENDING CONDUCTORS ON THE SWITCH. EXTENDED LENGTH 201#4" J $^-$ BOLTS ARE AVAILABLE FOR LARGER H1 POLES
- 10. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

34 PRIMARY SECTIONALIZING - HOOK STICK LOADBREAK SWITCH CONDUCTOR DEADEND ON SWITCH INSTALLATION 15 KV

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 12-145 7/21

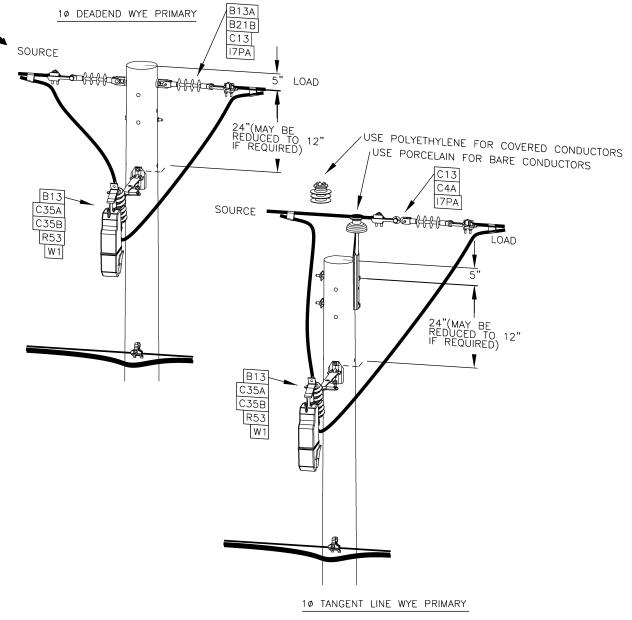
- 1. SURGE ARRESTERS SHALL BE INSTALLED ONTO THE ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
- 2. SHUNT FUSE CUTOUTS SHALL BE INSTALLED BELOW THE LOADBREAK SWITCH ONTO A 8' CROSSARM.
- 3. USE STAINLESS STEEL BOLTS (ITEM BBC) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
 4. ON COVERED TAP CONDUCTORS, PROVIDE 6" OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING
- PURPOSES. USE S30 STUD AT RISER SWITCHES ONLY WHERE TERMINATION MAY NOT BE STRIPPED.

 PRIMARY CONDUCTORS SHALL NEVER BE INSTALLED TO ONLY ONE SIDE OF THE SWITCH AS MAXIMUM DEADEND
- LOADING WILL BE EXCEEDED.

 DO NOT INSTALL SWITCH ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20°. 0° TO 10°ANGLE

- LIFTING STRAPS SHALL BE REMOVED AFTER INSTALLATION IS COMPLETE.

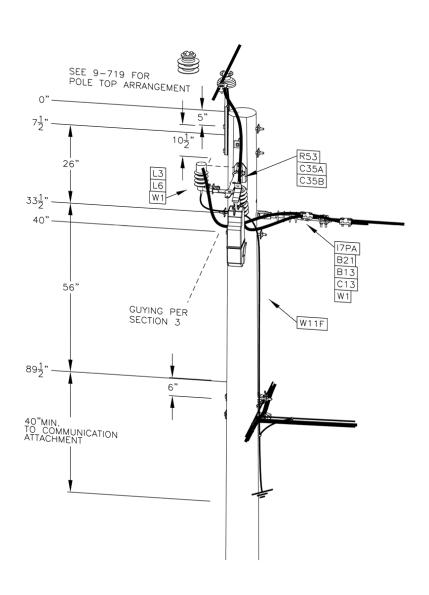
 SWITCH IDENTIFICATION MOUNTED VERTICALLY FACING TRAFFIC PROVIDING MAXIMUM VISIBILITY.


 THIS STANDARD MAY BE USED IF ADJACENT POLES ARE UPGRADED TO A CLASS H1 WITH DOUBLE DEADENDED FIBERGLASS CROSSARMS PER SECTION 4 STORM HARDENING.
- 10. USE UC5G (500KCMIL CU TAP WIRE) WITH D7G(35KV 1200AMP LOADBREAK). UC5G CAN BE FOUND IN THE UG STANDARDS BOOK.
- 11. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

ISSUE DAGE NUMBER	
WITH SHUNT CUTOUTS – 15 kV	
3Ф PRIMARY SECTIONALIZING – HOOK STICK LOADBR	REAK SWITCH

<u>AGE NUMBER</u> 7/21 12-146

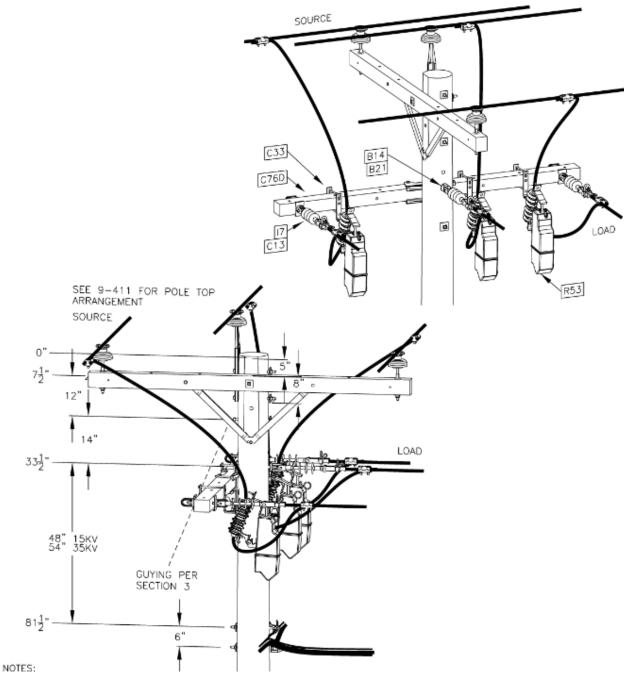
PROTECTION				
	AMA.		PAGE NUMBER	ISSUE
	ppl	OVERHEAD CONSTRUCTION STANDARD	12-BLANK	7/19



- 1. RECLOSERS MUST BE INSTALLED IN A 100AMP MACLEAN POWER SYSTEMS TYPE XS FUSE CUTOUT MOUNTING (INCLUDED WITH UNIT).
- 2. INSTALL TAG HOLDER (STANDARD ITEM P23E) ON POLE 8' UP FROM GROUND LEVEL.
- 3. PROVIDE SUFFICIENT CLEARANCE FOR OPERATION, INSTALLATION AND REMOVAL OF UNIT.
- 4. INSTALL ARRESTERS ON LOAD SIDE OF RECLOSER ON SAME POLE OR ADJACENT POLES WITHIN 300'. (REFER TO SECTION 13.6.40A)
- 5. LOCATION, APPLICATION AND SETUP OF THIS DEVICE MUST BE DONE UNDER THE DIRECTION OF ELECTRIC OPERATIONS ENGINEERING.

SINGLE PHASE VACUUM OPERATED CUTOUT MOUNTED RECLOSER – SINGLE PHASE TAP INLINE TANGENT AND DEADEND INSTALLATIONS 15KV MAX

ISSUE	PAGE NUMBER
7/20	12-328

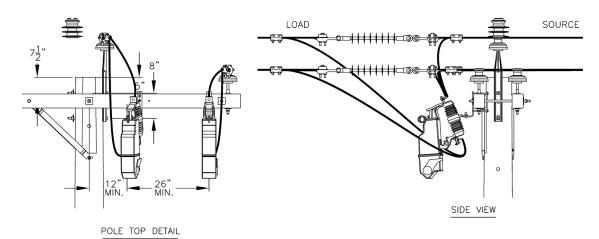

- NOTES: 1. RECLOSERS MUST BE INSTALLED IN A 100AMP MACLEAN POWER SYSTEMS TYPE XS FUSE CUTOUT MOUNTING (INCLUDED WITH UNIT).
- 2. INSTALL TÁG HOLDER (STANDARD ITEM P23E) ON POLE 8' UP FROM GROUND LEVEL.
- 3. PROVIDE SUFFICIENT CLEARANCE FOR OPERATION, INSTALLATION AND REMOVAL OF UNIT.
- 4. INSTALL ARRESTERS ON LOAD SIDE OF RECLOSER ON SAME POLE OR ADJACENT POLES WITHIN 300'. (REFER TO SECTION 13.6.40A)
- LOCATION, APPLICATION AND SETUP OF THIS DEVICE MUST BE DONE UNDER THE DIRECTION OF ELECTRIC OPERATIONS ENGINEERING.

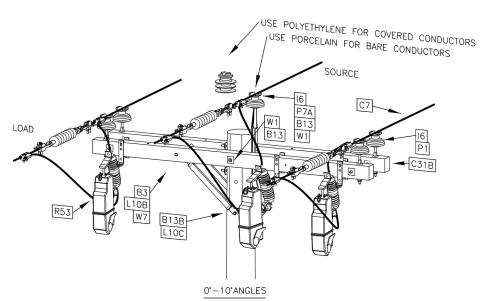
Designer Drawing Date MPR od12329 3/15/19

SINGLE PHASE VACUUM OPERATED CUTOUT MOUNTED RECLOSER SINGLE PHASE TAP INSTALLATION 15KV MAX

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 12-329 7/19

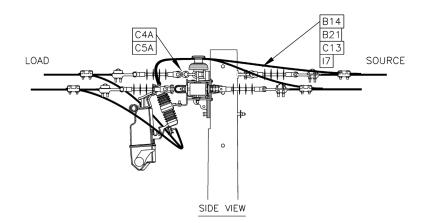
- 1. RECLOSURES MUST BE INSTALLED IN A 100AMP MACLEAN POWER TYPE XS FUSE CUTOUT MOUNTING. (INCLUDED WITH

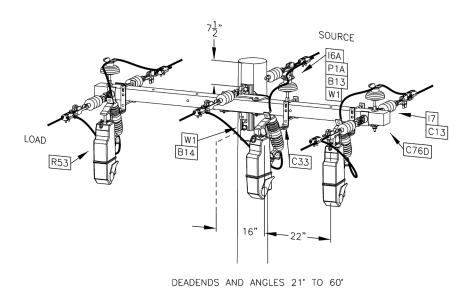

- 2. INSTALL TAG HOLDER (STANDARD ITEM P23E) ON POLE 8' UP FROM GROUND LEVEL.
 3. PROVIDE SUFFICIENT CLEARANCE FOR OPERATION, INSTALLATION AND REMOVAL OF UNIT.
 4. INSTALL ARRESTERS ON LOAD SIDE OF RECLOSER ON SAME POLE OR ADJACENT POLES WITHIN 300'. (REFER TO SECTION 13.6.40A)
- 5. LOCATION, APPLICÁTION AND SETUP OF THIS DEVICE MUST BE DONE UNDER THE DIRECTION OD ELECTRIC OPERATIONS ENGINEERING.
 Designer
 Drawing
 Date


 MPR
 od12330
 1/15/21

SINGLE PHASE VACUUM OPERATED CUTOUT MOUNTED RECLOSER-THREE PHASE TAP INSTALLATION 15kV MAX

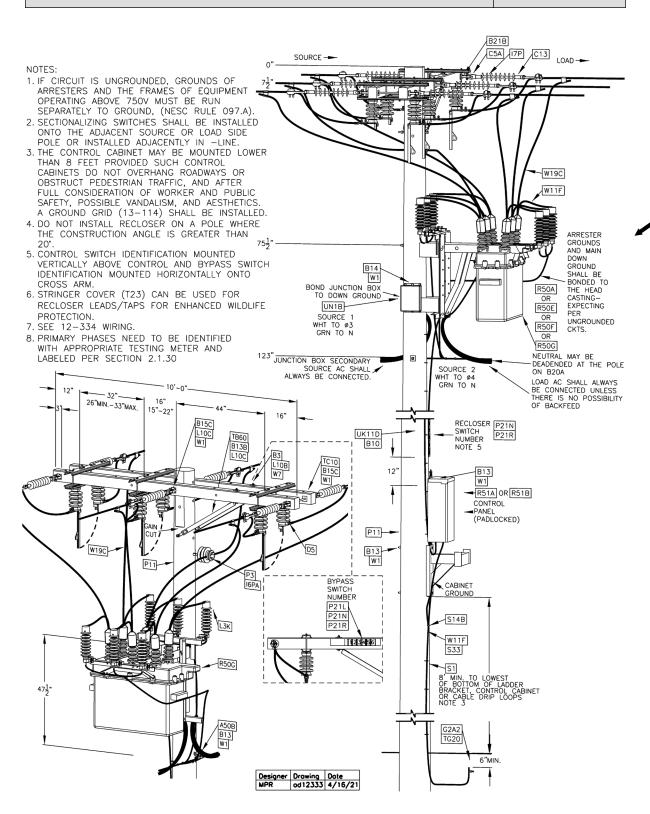
PAGE NUMBER ISSUE **OVERHEAD** 7/21 12-330 **CONSTRUCTION STANDARD**


- 1. RECLOSERS MUST BE INSTALLED IN A 100AMP MACLEAN POWER SYSTEM TYPE XS FUSE CUTOUT MOUNTING. (INCLUDED WITH UNIT)
- 2. INSTALL TAG HOLDER (STANDARD ITEM P23E) ON POLE 8' UP FROM GROUND LEVEL.
- 3. PROVIDE SUFFICIENT CLEARANCE FOR OPERATION, INSTALLATION AND REMOVAL OF UNIT.
 4. INSTALL ARRESTERS ON LOAD SIDE OF RECLOSER ON SAME POLE OR ADJACENT POLES WITHIN 300'. (REFER TO SECTION 13.6.40A)
- 5. LOCATION, APPLICATION AND SETUP OF THIS DEVICE MUST BE DONE UNDER THE DIRECTION OF ELECTRIC
- OPERATIONS ENGINEERING.
 6. USE DOUBLE PINS AND INSULATORS ON CROSS ARMS FOR ANGLES 11*TO 20* AND ATTACH CONDUCTOR TO SIDE GROOVE OF INSULATORS.


	Designer	Drawing	Date
N	I PR	od12331	7/3/18

SINGLE PHASE VACUUM OPERATED CUTOUT MOUNTED RECLOSER THREE PHASE TANGENT INLINE INSTALLATION 15kV MAX

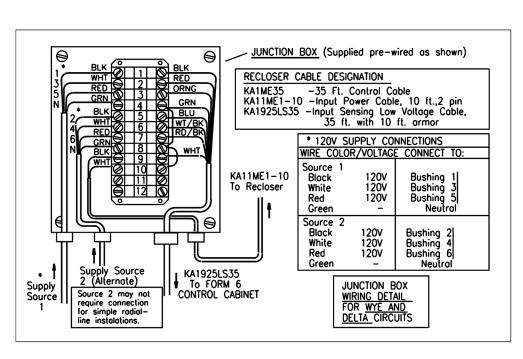
OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 12-331 7/18

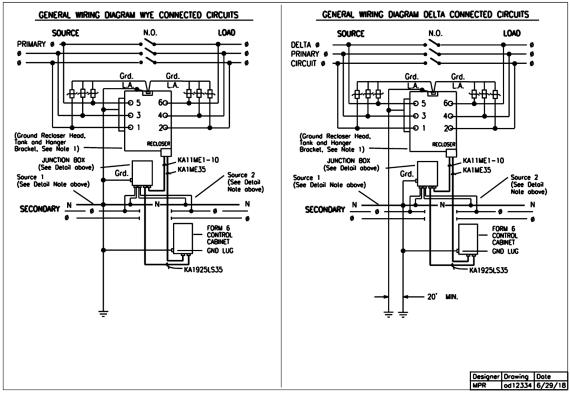

- 1. RECLOSERS MUST BE INSTALLED IN A 100AMP MACLEAN POWER SYSTEM TYPE XS FUSE CUTOUT MOUNTING. (INCLUDED WITH UNIT)
- INSTALL TAG HOLDER (STANDARD ITEM P23E) ON POLE 8' UP FROM GROUND LEVEL.
- 3. PROVIDE SUFFICIENT CLEARANCE FOR OPERATION, INSTALLATION AND REMOVAL OF UNIT.
 4. INSTALL ARRESTERS ON LOAD SIDE OF RECLOSER ON SAME POLE OR ADJACENT POLES WITHIN 300'. (REFER TO SECTION 13.6.40A)
- 5. LOCATION, APPLICATION AND SETUP OF THIS DEVICE MUST BE DONE UNDER THE DIRECTION OF ELECTRIC OPERATIONS ENGINEERING.

Designer	Drawing	Date
MPR	od12332	1 /15 /21

SINGLE PHASE VACUUM OPERATED CUTOUT MOUNTED RECLOSER-THREE PHASE TAP INSTALLATION 15kV MAX

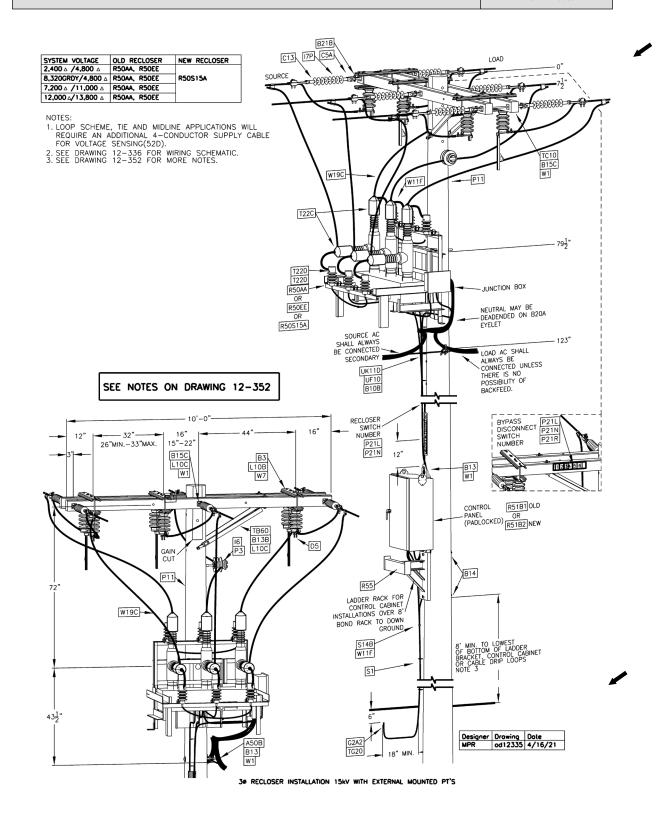
ISSUE	PAGE NUMBER
7/21	12-332




Φ RECLOSER EFFECTIVELY GROUNDED INSTALLATION 15-35 KV

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 12-333 7/21



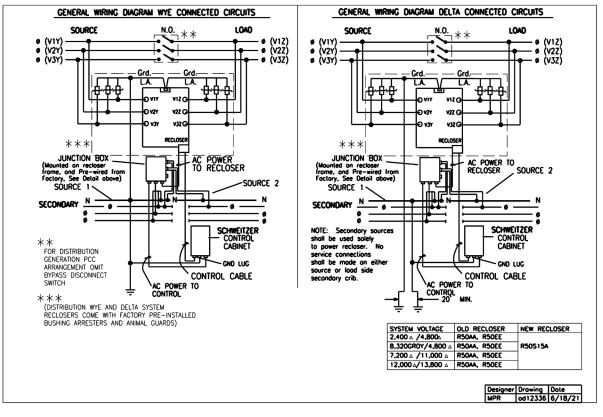
3Ф RECLOSER INSTALLATION WIRING DETAILS AND NONEFFECTIVELY GROUNDED CIRCUIT GROUNDING 15-35 KV

ISSUE	PAGE NUMBER
7/21	12-334

3Ф RECLOSER INSTALLATION 5-35 KV
EFFECTIVELY GROUNDED, NON-EFFECTIVELY GROUNDED, & DELTA SYSTEMS

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 12-335 7/21


	B21B	
SYSTEM VOLTAGE OLD RECLOSER NEW RECLOSER 2,400 \(\triangle /4,800 \triangle \) R50AA, R50EE	C13 I7P C5A	DG SITE
8,320GRDY/4,800 \(\triangle \) R50AA, R50EE 7,200 \(\triangle \) /11,000 \(\triangle \) R50AA, R50EE 12,000 \(\triangle \) /13,800 \(\triangle \) R50AA, R50EE	UTILITY SEEDER TO SEEDER SEEDE	72.
NOTES:		20000000
1. AN ADDITIONAL 4-CONDUCTOR SUPPLY CABLE FOR	\ T	
VOLTAGE SENSING(52C) IS REQUIRED. 2. SEE DRAWING 12-336 FOR WIRING SCHEMATIC. 3. SEE DRAWING 12-352 FOR MORE NOTES.		TC10
	W19C	W11F P11 B15C W1
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	\ \	
		7917"
		JUNCTION BOX
	R50AA OR R50EE	TOU MAY RE
	OR R50S15A	NEUTRAL MADELLA DEADENDED ON B20A EYELET
		LOAD AC SHALL
	SECONDARY SOURCE AC	ALWAYS BE CONNECTED UNLESS THERE IS NO
SEE NOTES ON DRAWING 12-35	SHALL ALWAYS BE CONNECTED	POSSIBILITY OF BACKFEED.
10'-0"-	RECLOSER	
12" 32" 16" 44"— 26"MIN.—33"MAX. 15"—22"	16" SWITCH NUMBER P21L	
31 B15C L10C	P21N 12"	
		UK11D
		B13 W1
		CONTROL R51B1 OLD PANEL (PADLOCKED) R51B2 NEW
GAIN (F)		
CUT P11		
72"	R55	B14
	LADDER RACK FOR	
w _{19C}	INSTALLATIONS OVER 8 BOND RACK TO DOWN GROUNI	
	S14B W11F	8' MIN, TO LOWEST OF BOTTOM OF LADDER BACKET, CONTROL CABINET OR CABLE DRIP LOOPS
	51	BRACKEL DRIP LOOPS OR CABLE DRIP LOOPS NOTE 3
		
43½"	<u>*</u> 6"	-
	G2A2	Designer Drawing Date
<u> </u>	TG20 18"	MPR od12335A 4/16/21
III I		

30 RECLOSER INSTALLATION 15kV WITH EXTERNAL MOUNTED PT'S FOR DISTRIBUTED GENERATION PCC

3Φ RECLOSER INSTALLATION DISTRIBUTED GENERATION PCC 5-35 KV

ISSUE	PAGE NUMBER		AMIZ.
7/21	12-335A	OVERHEAD CONSTRUCTION STANDARD	ppl

WYE AND DELTA CIRCUIT WIRING DIAGRAMS 15kV WITH EXTERNAL MOUNTED PT'S JUNCTION BOX COLOR CODE -JUNCTION BOX PRE-WIRED FROM FACTORY PINS SHALL FUNCTION TERMINAL INPUTS 19 POSTION CONNECTOR BE JUMPERED FROM: PT1 SECONDARY INPUT LINE SIDE WHITE, S1 SECONDARY INPUT BLACK, S2 SECONDARY INPUT WHITE, S2 SECONDARY INPUT BLACK, S1 SECONDARY INPUT 1 TO 5 2 TO 8 3 TO 9 4 TO 12 SOURCE 1 SECONDARY INPUT O 0 LOAD SIDE WHITE W/VIOLET RED W/BLACK LINE SIDE BLUE WHITE W/BLACK PTS SOURCE 2 SECONDAR INPUT VZ LOAD SIDE BLACK RED WHITE W/ORANGE BLUE W/BLACK WHITE W/BLUE PTS AC POWER VZ INPUTS REQUIRED FOR MIDLINE/LOOP SCHEME TIE 120V SUPPLY CONNECTIONS RADIAL/PCC/LOOP SECT. MIDLINE/LOOP SCHEME TIE COLOR/VOLTAGE SOURCE 1 0 0 BUSHING V1Y BUSHING V2Y BUSHING V3Y BUSHING V1Y BLACK 120V RED 120V ORANGE 120V BUSHING V3Y WHITE SOURCE 2 NEUTRA NEUTRAL VY INPUTS REQUIRED FOR RADIAL/PCC/LOOP SECTIONALIZER AC POWER TO RECLOSER BLACK 120V RED 120V ORANGE 120V BUSHING V12 BUSHING V22 BUSHING V32 X1 LEG OF SUPPL AC POWER TO CONTROL NOT USED NOT USED NEUTRAL NEUTRA

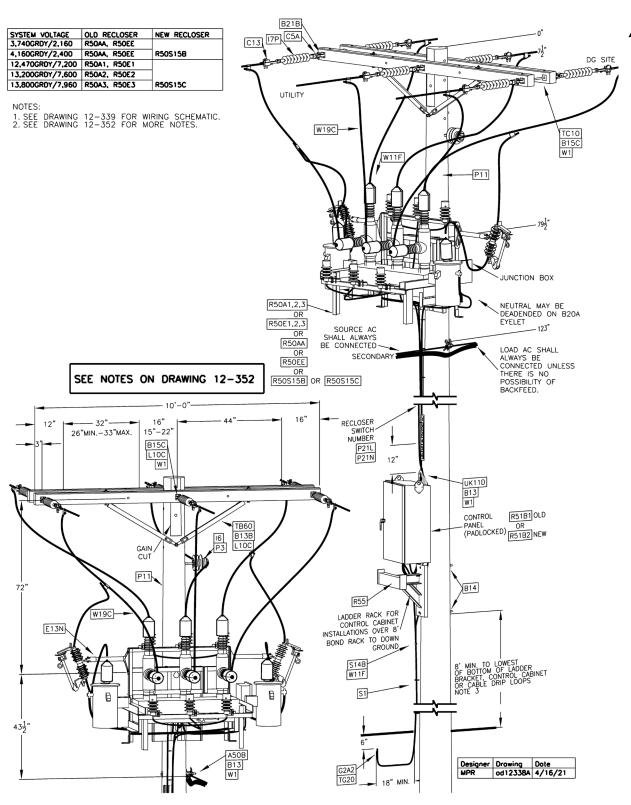
3Φ RECLOSER INSTALLATION WIRING DETAILS 5-35 KV RADIAL APPLICATIONS OVERHEAD CONSTRUCTION STANDARD 12-336 7/21

Supe
upersedes
7/20 ls
ssue –
Upda

MU = @REC-3P,800A,(X)KV,(Y)WPT	Recloser, Three Phase Electronic, 800A, (X)=KV Voltage, (Y)=LP or RD With PTS	
CU = REC-MT,3PH,(X)KV,12-133	Recloser, Mount, Three Phase, (X)=Nominal KV Voltage, 12-133	
MU = @DSWBYPNE	Bypass Switch - NE	
CU = REC-3P,CABLEFORTIER52D	Voltage Sensing Cable For Loop Scheme Tie Application	

			B21B			
SYSTEM VOLTAGE 3,740GRDY/2,160	OLD RECLOSER R50AA, R50EE	NEW RECLOSER	C13 17P C5A	/	-	0"
4,160GRDY/2,400 12,470GRDY/7,200	R50AA, R50EE R50A1, R50E1	R50S15B		100	HT 0	72 LOA
13,200GRDY/7,600	R50A2, R50E2	P50515C	7"_			
NOTES: 1. SEE DRAWING 2. SEE DRAWING	12-339 FOR W 12-352 FOR M	R50S15C IRING SCHEMATIC. ORE NOTES.	R50A1,2,. OR R50E1,2,. OR R50E1,2,. OR R50A	SOURCE AC SHALL ALWAYS		TC10 B15C W1] INSTALL PRIMARY CONNECTOR 24" MIN. FROM GROUNDED OR ENERGIZED PARTS NEUTRAL MAY BE DEADENDED ON B20A EYELET 123"
_			OR R50S158 OR R50S150	SECONDARY		LOAD AC SHALL ALWAYS BE CONNECTED UNLESS THERE IS NO
s	EE NOTES O	N DRAWING 12	-352			POSSIBILITY OF BACKFEED.
12" 26		10'-0" 16" 5"-22" 150 100 100 100 100 100 100 10	14" 16" 16" 183 108 W7 05 05 05 05	RECLOSER SWITCH NUMBER P21L P21N 12"		BYPASS DISCONNECT P21N P21R NUMBER P21R NU
72" W33C E13N E13N 43½"	W19C W19C			LADDER RACK FOR CONTROL CABINET INSTALLATIONS OVER 8' BOND RACK TO DOWN GROUND S14B W11F		MIN. TO LOWEST E BOTTOM OF LADDER RACKET, CONTROL CABINET RACKET RAC

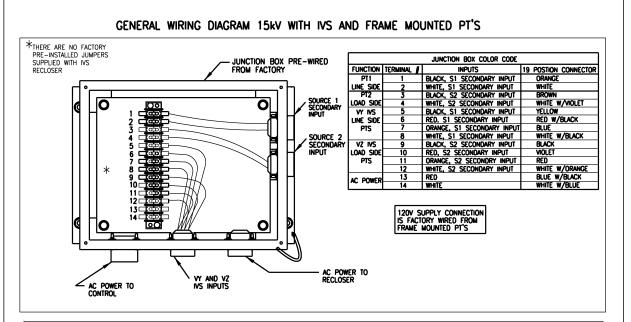
30 RECLOSER INSTALLATION 15kV WITH FRAME MOUNTED PT'S

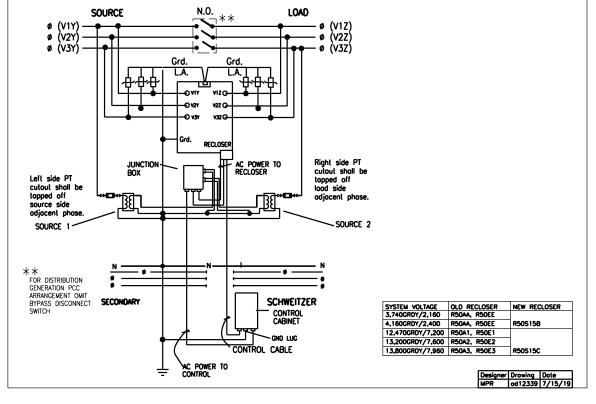

G&W VIPER-S 3Φ RECLOSER EFFECTIVELY GROUNDED INSTALLATION 5 KV, 12.47 KV, 13.2 KV, 13.8 KV APPLICATIONS WITH FRAME MOUNTED PT'S

ISSUE	PAGE NUMBER	
7/21	12-338	

OVERHEAD CONSTRUCTION STANDARD

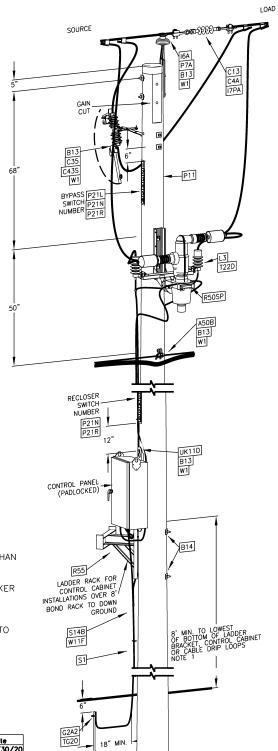
Designer Drowing Date
MPR od12338 4/16/21


30 RECLOSER INSTALLATION 15kV WITH IVS AND FRAME MOUNTED PT'S FOR DISTRIBUTED GENERATION PCC


G&W VIPER-S 3Φ RECLOSER INSTALLATION 5 KV, 12.47 KV, 13.2 KV, 13.8 KV APPLICATIONS WITH FRAME MOUNTED PT'S DISTRIBUTED GENERATION PCC

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 12-338A 7/21



G&W VIPER-S 3¢ RECLOSER INSTALLATION WIRING DETAIL 5 KV, 12.47 KV, 13.2 KV, 13.8 KV

ISSUE	PAGE NUMBER
7/20	12-339

OVERHEAD CONSTRUCTION STANDARD

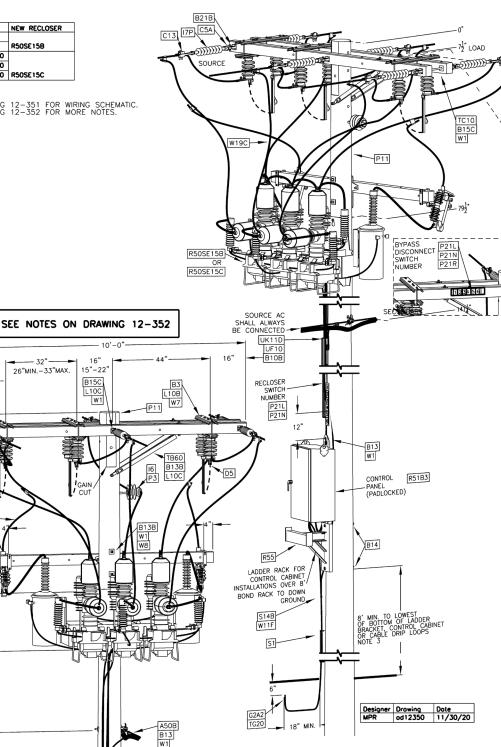
NOTES

- 1. THE CONTROL CABINET MAY BE MOUNTED LOWER THAN 8' PROVIDED SUCH CONTROL CABINETS DO NOT OVERHANG ROADWAYS OR OBSTRUCT PEDESTRIAN TRAFFIC, AND AFTER FULL CONSIDERATION OF WORKER AND PUBLIC SAFETY, POSSIBLE VANDALISM, AND AESTHETICS, A GROUND GRID (13-114) SHALL BE INSTALLED.
- SECTIONALIZING SWITCHES SHALL BE INSTALLED ONTO THE ADJACENT SOURCE SIDE POLE OR INSTALLED ADJACENTLY IN—LINE.
- ADJACENTLY IN-LINE.

 3. CUTOUT FUSE HOLDER OF BYPASS CUTOUT TO BE STAPLED TO POLE WHEN NOT IN BYPASS MODE. CUTOUT TO BE SIZED ACCORDINGLY.

 4. SOME AREAS REQUIRE A (R55) LADDER BRACKET
- 4. SOME AREAS REQUIRE A (R55) LADDER BRACKET WHEN MOUNTING THE CONTROL CABINET ABOVE 8'. THE BOTTOM OF THE LADDER BRACKET TO BE INSTALLED AT 8'.

Designer	Drawing	Dote
MPR	od12341	6/30/20


15KV SINGLE PHASE RECLOSER OVERHEAD CONSTRUCTION STANDARD 12-341 7/20

Doc. # ST. 12.00.002

MU = @REC-5KV.NXT6IVS.PKG-P	Recloser, Three Phase Electronic, 800A, 5KV
- 0	Recloser, Three Phase Electronic, 800A, 15KV
MU = @DSWBYPNE	Bypass Switch - NE

SYSTEM VOLTAGE	NEW RECLOSER
3,740GRDY/2,160	
4,160GRDY/2,400	R50SE15B
12,470GRDY/7,200	
13,200GRDY/7,600	1
13,800GRDY/7,960	R50SE15C

1. SEE DRAWING 12-351 FOR WIRING SCHEMATIC. 2. SEE DRAWING 12-352 FOR MORE NOTES.

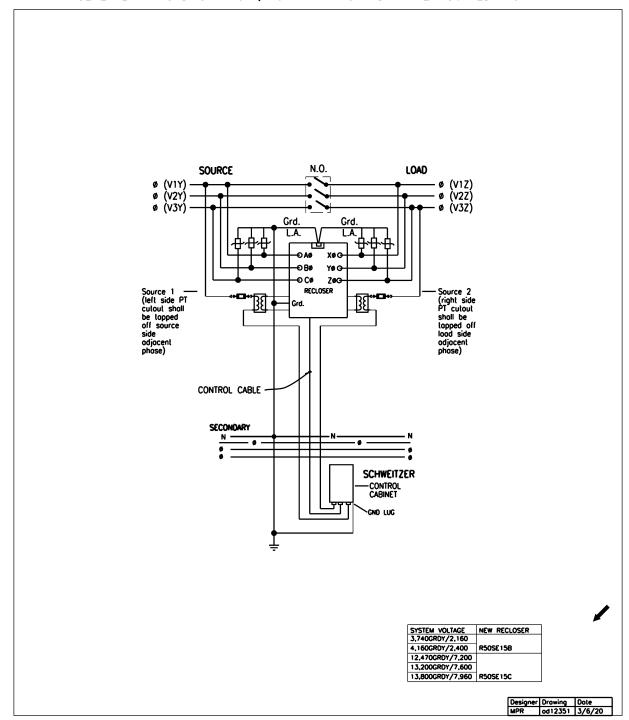
EATON NOVA NX-T 3¢ RECLOSER EFFECTIVELY GROUNDED INSTALLATION 5 KV, 12.47 KV, 13.2 KV, 13.8 KV APPLICATIONS WITH FRAME MOUNTED PT'S

ISSUE	PAGE NUMBER	
7/21	12-350	

W19C

C33 C43S10 C76T

133"


 $25\frac{3}{4}$ "

OVERHEAD CONSTRUCTION STANDARD

30 RECLOSER INSTALLATION 5kV, 15kV WITH FRAME MOUNTED PT'S

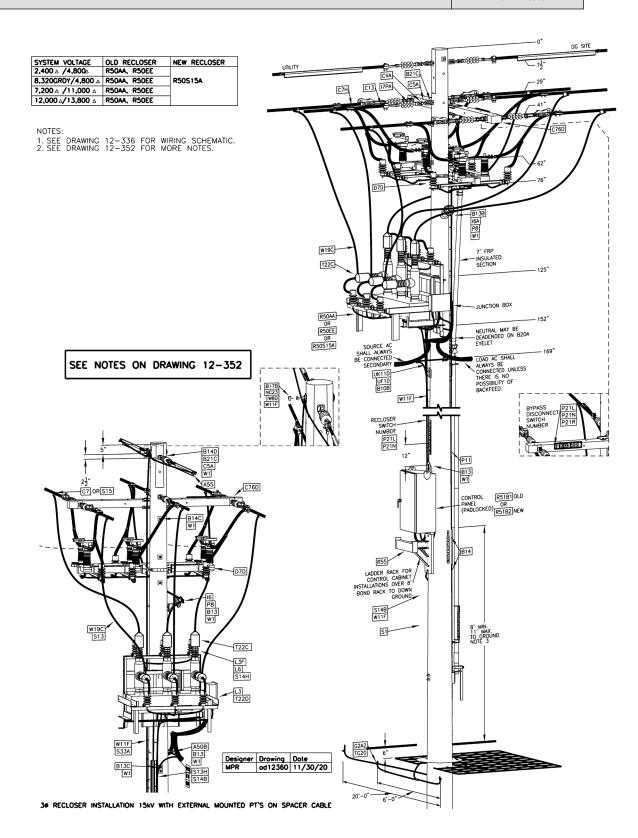
GENERAL WIRING DIAGRAM 5kV, 15kV WITH IVS AND FRAME MOUNTED PTS

Ī	EATON NOVA NX-T 3¢ RECLOSER INSTALLATION WIRING DETAILS 5-35 KV				
	RADIAL APPLICATIONS				
Ī	SMIZ		PAGE NUMBER	ISSUE	
	ppl	OVERHEAD CONSTRUCTION STANDARD	12-351	7/20	

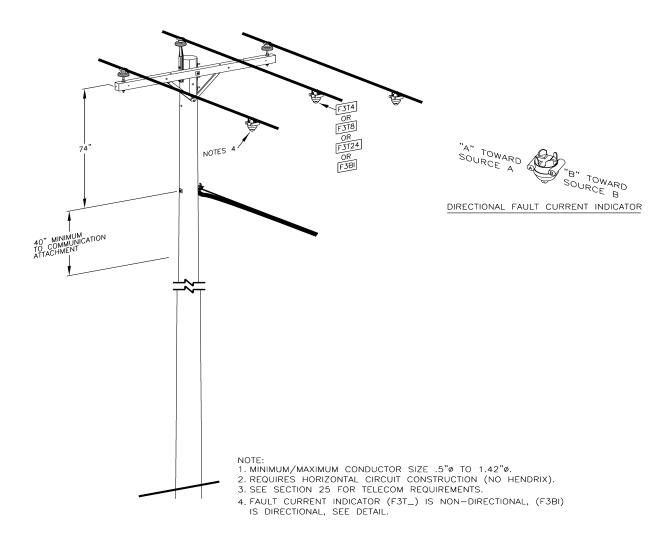
New page – 7/21 Issue.

NOTES FOR RECLOSER DRAWINGS 12-335, 12-335A, 12-338A, 12-338A, 12-350 AND 12-360:

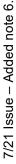
- FOR DELTA CIRCUITS, SECONDARY SOURCES SHALL BE USED SOLELY TO POWER THE RECLOSER, NO SERVICE CONNECTIONS SHALL BE MADE ON EITHER SOURCE OR LOAD SIDE SECONDARY CRIB.
- SECTIONALIZING SWITCHES SHALL BE INSTALLED ONTO THE ADJACENT SOURCE OR LOAD SIDE POLE OR INSTALLED ADJACENTLY IN -LINE.
- 3. THE CONTROL CABINET MAY BE MOUNTED LOWER THAN 8' PROVIDED SUCH CONTROL CABINETS DO NOT OVERHANG ROADWAYS OR OBSTRUCT PEDESTRIAN TRAFFIC, AND AFTER FULL CONSIDERATION OF WORKER AND PUBLIC SAFETY, POSSIBLE VANDALISM, AND AESTHETICS. A GROUND GRID (13-114) SHALL BE INSTALLED.
- 4. DO NOT INSTALL RECLOSER ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20'.
- CONTROL SWITCH IDENTIFICATION MOUNTED VERTICALLY ABOVE CONTROL AND BYPASS SWITCH IDENTIFICATION MOUNTED HORIZONTALLY ONTO CROSS ARM.
- 6. STRINGER COVER (T23) CAN BE USED FOR RECLOSER LEADS/TAPS FOR ENHANCED WILDLIFE PROTECTION.
- 7. SOME AREAS REQUIRE A (R55) LADDER BRACKET WHEN MOUNTING THE CONTROL CABINET ABOVE 8'.
- 8. ALL NEW RECLOSER INSTALLATIONS SHALL BE WOUNTED ON A CLASS H1 POLE OR ADJACENT POLES SHALL BE UPGRADED TO AN H1 POLE WITH DOUBLE DEAD ENDED FIBERGLASS CROSS ARMS AS REQUIRED BY SECTION 4 — STORM HARDENING.
- 9. SEE SECTION 25 FOR TELECOM REQUIREMENTS.
- 10.PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30
- 11.THE U DUCT THAT COVERS THE CONTROL AND POWER CABLES SHALL BE SEALED AT BOTH ENDS WITH EXPANDING FOAM (UF10).

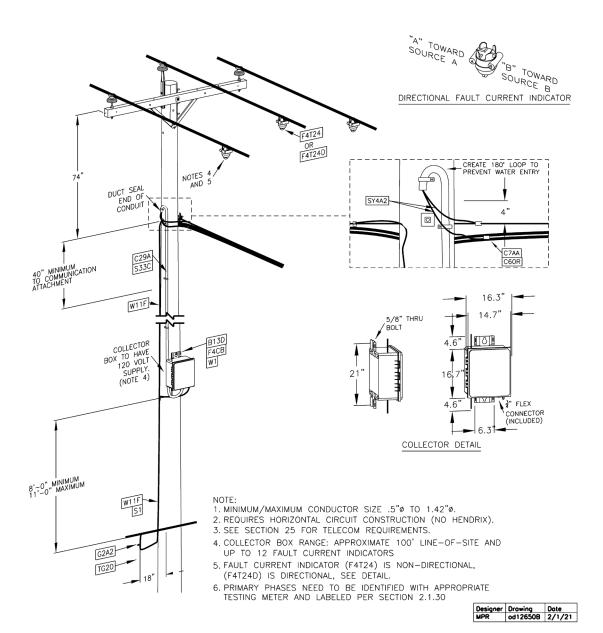

Designer Drowing Date
MPR od12352 7/9/21

NOTES FOR DRAWINGS 12-335, 12-335A, 12-338A, 12-350 AND 12-360


ISSUE	PAGE NUMBER	
7/21	12-352	

OVERHEAD CONSTRUCTION STANDARD

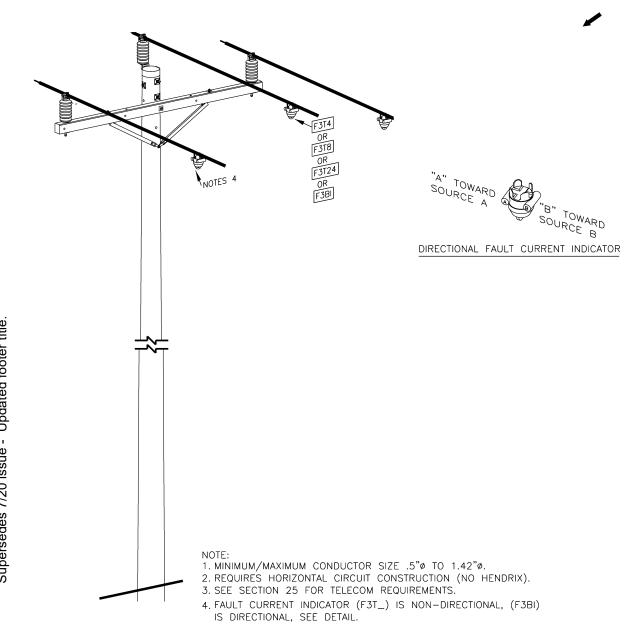



3Ф RECLOSER INSTALLATION 15 KV ON SPACER CABLE WITH EXTERNAL MOUNTED PTs				
Mik			PAGE NUMBER	ISSUE
pp		OVERHEAD CONSTRUCTION STANDARD	12-360	7/21

Designer	Drawing	Dote
MPR	od12650A	6/15/20

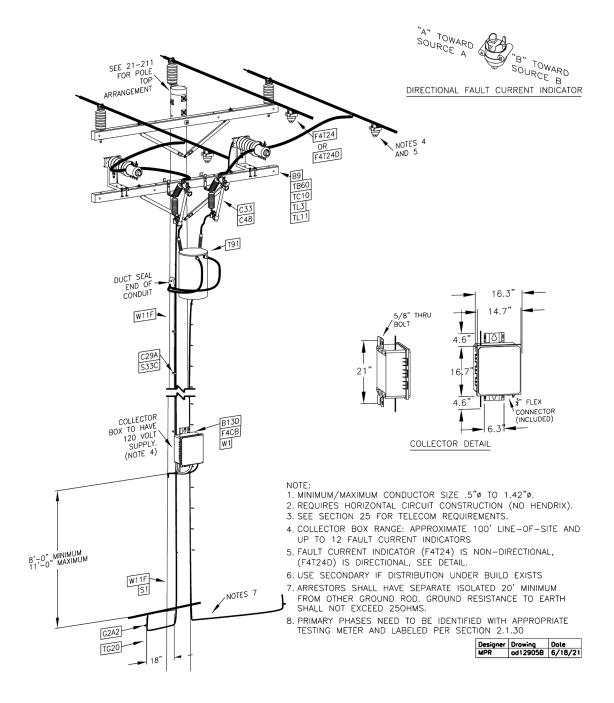
	INDICATOR - FAULT CIRCUIT - DISTRIBUTION		
ISSUE	PAGE NUMBER		SMIZ
7/21	12-650A	OVERHEAD CONSTRUCTION STANDARD	ppl

SMART INDICATOR - FAULT CIRCUIT - DISTRIBUTION

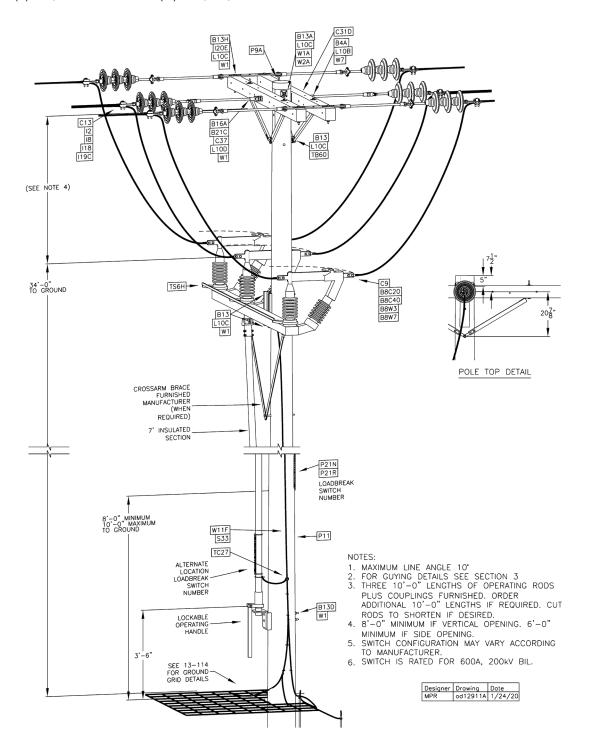

PAGE NUMBER ISSUE

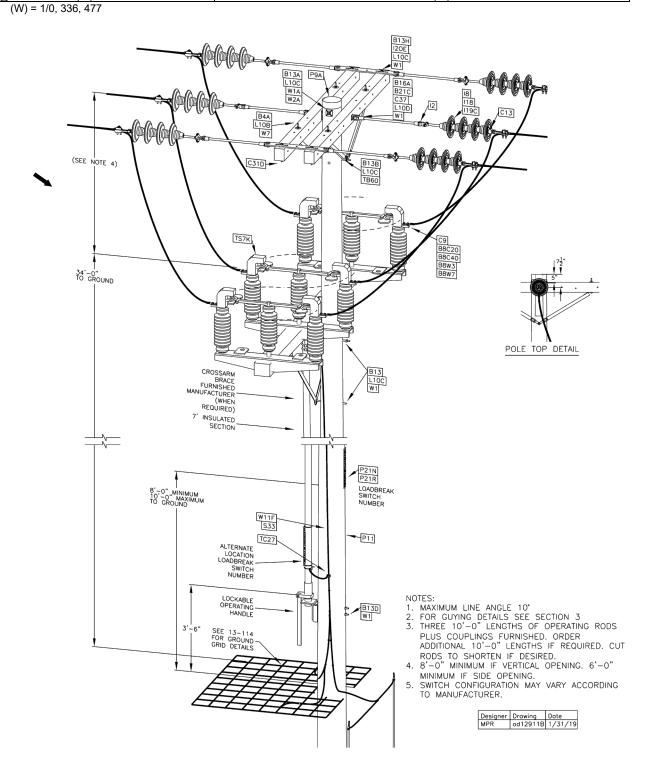
CONSTRUCTION STANDARD 12-650B 7/21

PROTECTION – OVERHEAD SUBTRANSMISSION 25kV, 35kV, 46kV


	PROTECTION – OVERHEAD SUBTRANSMISSION		
ISSUE	PAGE NUMBER		AMIZ.
7/16	12-900	OVERHEAD CONSTRUCTION STANDARD	ppl

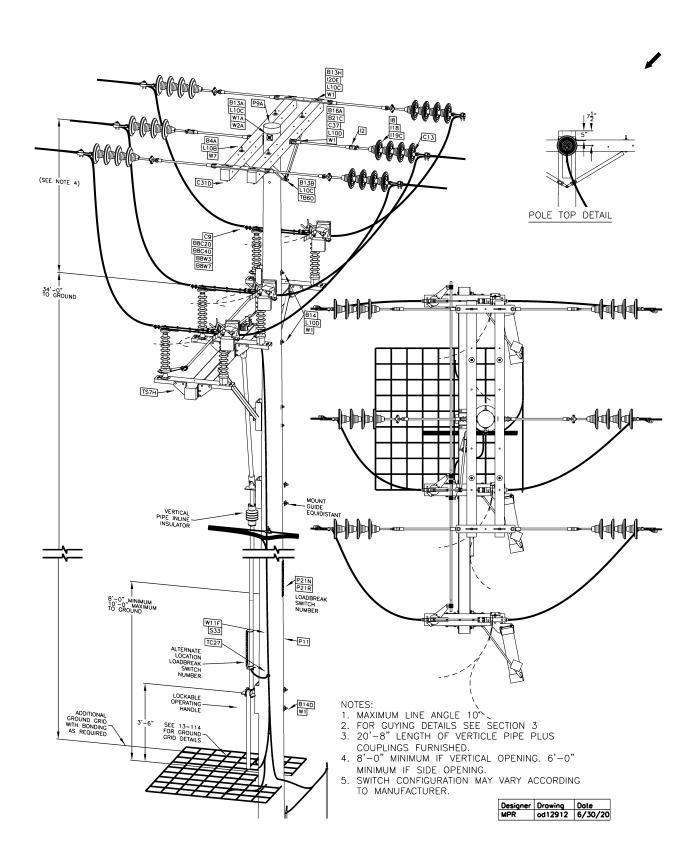
Designer	Drawing	Dote	
MPR	od12905A	6/15/20	


INDICATOR - FAULT CIRCUIT - SUB-TRANSMISSION			
SMIZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	12-905A	7/21


SMART INDICATOR – FAULT CIRCUIT – SUB-TRANSMISSION			
ISSUE	PAGE NUMBER		AMIZ.
7/21	12-905B	OVERHEAD CONSTRUCTION STANDARD	ppl

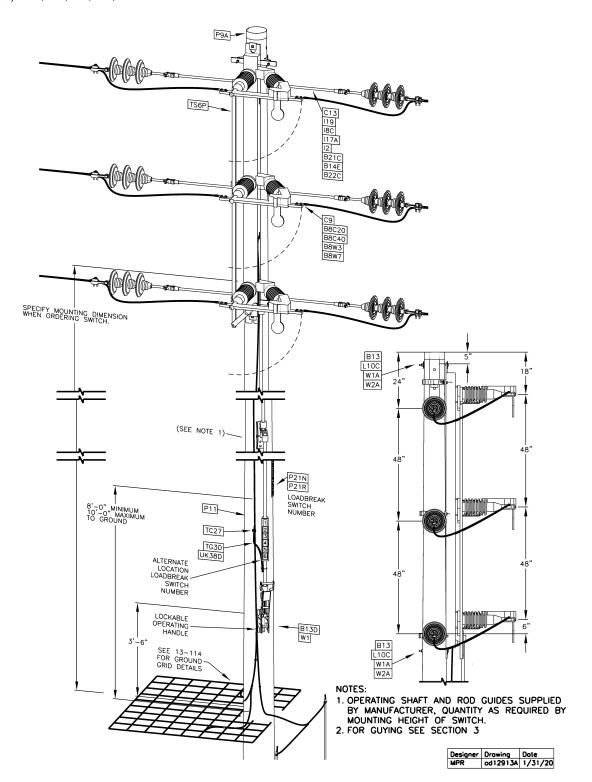
@12-911A(V)KV(W)	POLE SW GANG OP HORZ UPR L/B (V)KV (W)
@12-911A(V)KV(W)DACCT	POLE SW GANG OP HORZ UPR L/B (V)KV (W) WITH DIST ACCOUNTING

(V) = 25, 35 (W) = 1/0, 336, 477


SUB-TRANSMISSION – 23-34.5kV HORIZONTAL UPRIGHT LOADBREAK			
.NII/.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	12-911A	7/21

SUB-TRANSMISSION - 46kV HORIZONTAL DOUBLE-BREAK UPRIGHT LOADBREAK

ISSUE	PAGE NUMBER	
7/21	12-911B	

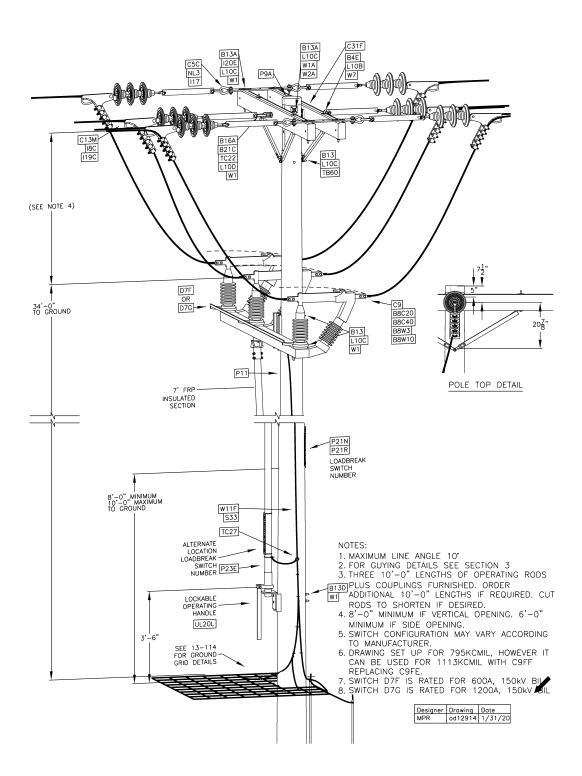

SUB-TRANSMISSION - 46kV LOADBREAK HORIZONTAL MOUNTED			
NHZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	12-912	7/20

	PROTECTION			
ĺ	ISSUE	PAGE NUMBER		SMIZ
	7/19	12-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 12.00.002

@12-913A(V)KV(W) @12-913A(V)KV(W)DACCT POLE SW GANG OP PHASE OVER PHASE L/B (V)KV (W)
POLE SW GANG OP PHASE OVER PHASE L/B (V)KV (W) WITH DIST ACCOUNTING

(V) = 25, 35 (W) = 1/0, 336, 477, 795, 1113

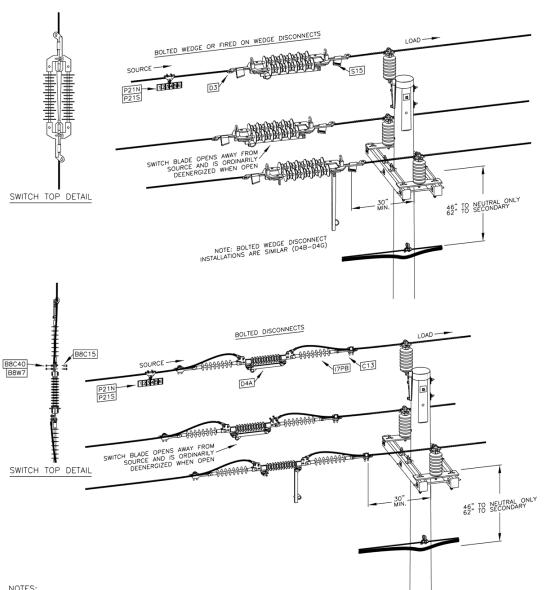

OVERHEAD CONSTRUCTION STANDARD

 PAGE NUMBER
 ISSUE

 12-913A
 7/21

@12-91435KVC(W)	SW LB GANG OP HORIZONTAL 35KV (W) SUB-T
@12-91435KVC(W)DACCT	SW LB GANG OP HORIZONTAL 35KV (W) WITH DIST ACCOUNTING

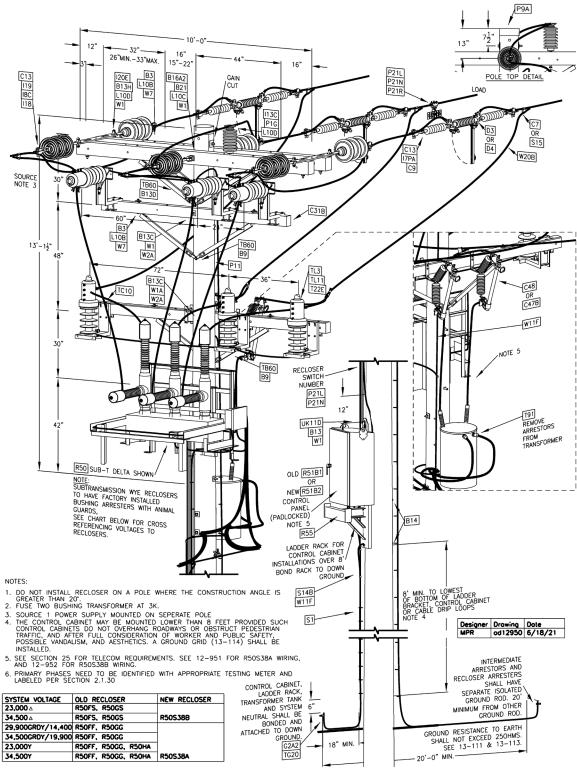
(W) = 795, 1113


	SUB	SUB TRANSMISSION - 23KV-34.5 KV LOADBREAK SWITCH FOR 795 KCMIL & 1113KCMIL CONDUCTORS					
ľ	ISSUE	PAGE NUMBER		.5117.			
Ī	7/21	12-914	OVERHEAD CONSTRUCTION STANDARD	ppl			

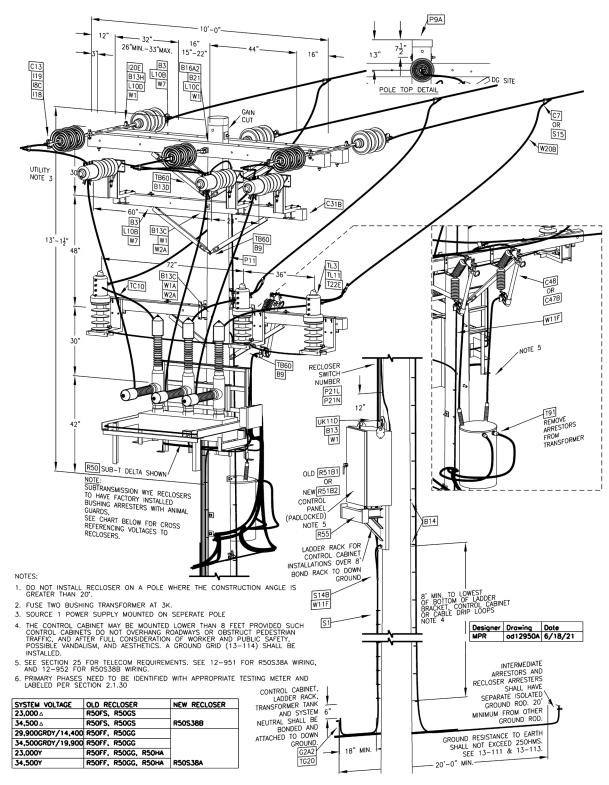
CDS35K(W)AIL	DIS SW 35KV (W) AMPACT IN-LINE D3_
(W) = 1/0, 336, 477	1/0 = D3D, 336 = D3E, 477 + D3C

CDS35K(W)BOLTEDILSUB-T

DIS SW 35KV (W) BOLTED IN-LINE D4A SUB-T

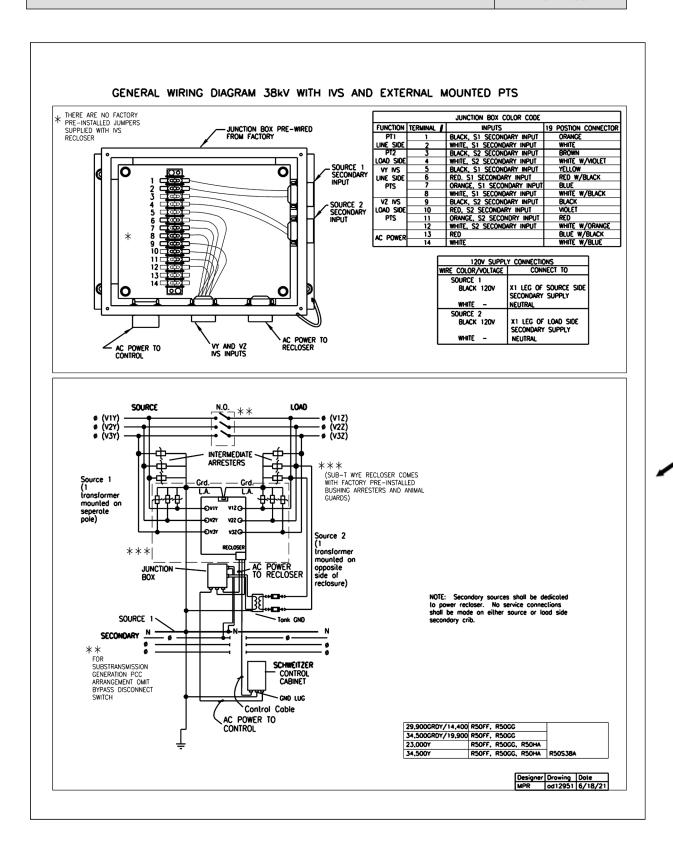

(W) = 1/0CU, 2/0CU, 4/0CU, 477

NOTES:


- 1. USE THE IN -LINE SWITCH ARRANGEMENT ONLY WHEN CLEARANCES WILL NOT ALLOW SWITCH INSTALLATIONS ON CROSS
- 2. THIS ARRANGEMENT MAY BE APPLIED TO OTHER TYPES OF OPEN WIRE POLE TOPS INCLUDING DEAD ENDS.
- 3. FOR POLE TOP CONFIGURATIONS, POST STYLE INSULATORS WITH LINE GUARDS ARE REQUIRED TO REDUCE THE STRAIN UNDER SWITCH OPERATION.
- 4. SWITCH IDENTIFICATION SHALL BE INSTALLED ON THE CONDUCTOR MIDDLE PHASE USING THE P21S HANGER.
- 5. DO NOT INSTALL IN LINE SWITCHES ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20 DEGREES.
- 6. THE PREFERRED BOLTED SWITCH IS THE BOLTED WEDGE STYLE SWITCH (STD ITEMS D4B-D4G). USE THE D4A SWITCH FOR COPPER CONDUCTORS OR CONDUCTOR SIZES THAT ARE OUTSIDE THE RANGE OF D4B-D4G.

	SUB – TRANSMISSION 35 KV MAX INLINE SWITCHES					
PAGE NUMBER						
	ppl	OVERHEAD CONSTRUCTION STANDARD	12-938	7/19		

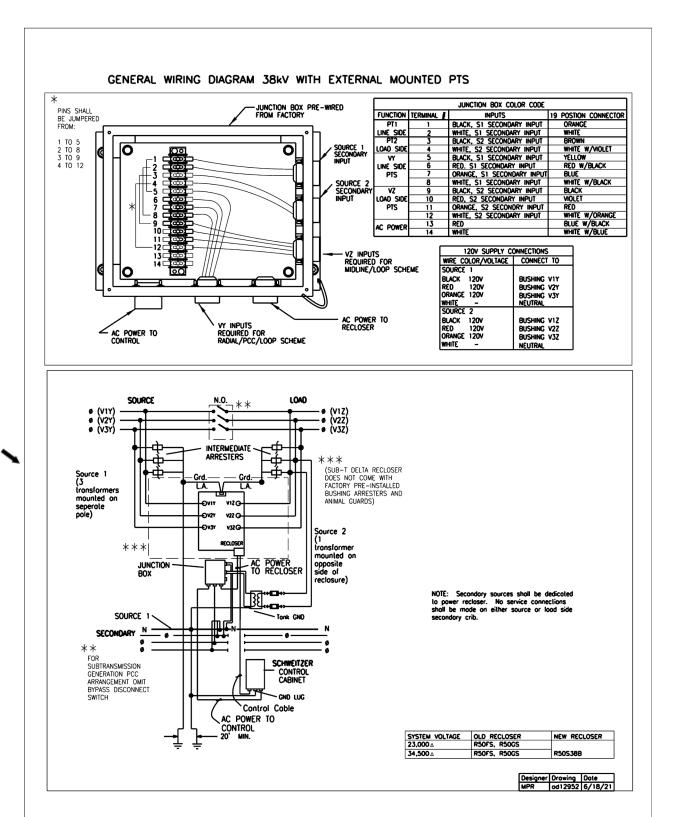
30 RECLOSER INSTALLATION 35kV WITH EXTERNAL MOUNTED PT'S


G&W VIPER-S SUBTRANSMISSION 35kV SECTIONALIZER					
ISSUE PAGE NUMBER AND					
7/21	12-950	OVERHEAD CONSTRUCTION STANDARD	ppl		

30 RECLOSER INSTALLATION 35kV WITH EXTERNAL MOUNTED PT'S FOR DISTRIBUTION GENERATION PCC

G&W VIPER-S SUBTRANSMISSION 35KV RECLOSER INSTALLATION DISTRIBUTED GENERATION PCC OVERHEAD CONSTRUCTION STANDARD 12-950A 7/21

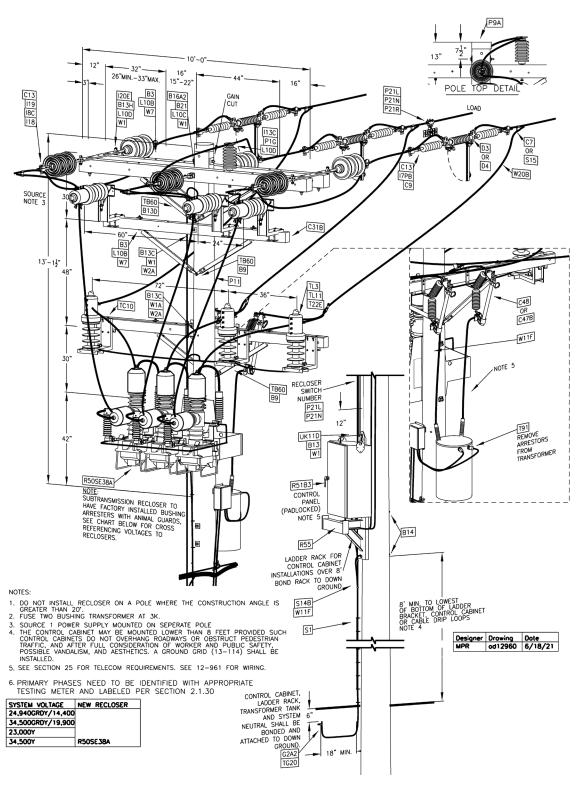
PROTECTION				
ISSUE PAGE NUMBER			AMIZ.	
7/19	12-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl	



G&W VIPER-S 3Φ SUBTRANSMISSION 35KV SECTIONALIZER INSTALLATION WIRING DETAILS

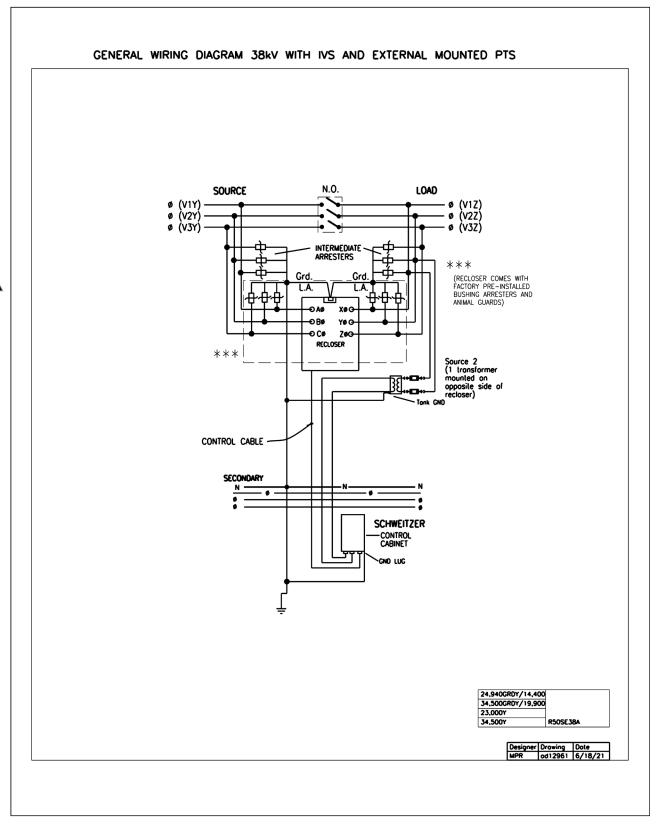
OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 7/21



G&W VIPER-S 34 RECLOSER INSTALLATION WIRING DETAILS 38Kv WITH EXTERNAL MOUNTED PTs ISSUE PAGE NUMBER **OVERHEAD**

7/21 12-952


CONSTRUCTION STANDARD

30 RECLOSER INSTALLATION 35kV WITH EXTERNAL MOUNTED PT'S

EATON NOVA NX-T 3¢ RECLOSER INSTALLATION 38KV WITH EXTERNAL MOUNTED PT'S OVERHEAD OVERHEAD CONSTRUCTION STANDARD 12-960 7/21

EATO	EATON NOVA NX-T 3φ RECLOSER INSTALLATION WIRING DETAILS 38KV WITH					
	EXTERNAL MOUNTED PT'S					
ISSUE	PAGE NUMBER		AMZ.			
7/21	12-961	OVERHEAD CONSTRUCTION STANDARD	ppl			

Version	Date	Modifications	Author(s)	Approval by (Name/Title)
9		 Updated drawings12-133B, 12-138, 12-141, 12-144, 12-330, 12-332, 12-333, 12-335, 12-335A, 12-336, 12-338, 12-350, 12-650B, 12-905B, 12-911B, 12-950, 12-950A, 12-951, 12-952, and 12-960. Added new drawing 12-360. 		
9	7/20	 Updated drawings 12-135A, 12-135B, 12-136, 12-137A, 12-137B, 12-139, 12-140, 12-144, 12-328, 12-333, 12-335, 12-335A, 12-338A, 12-339, 12-341, 12-912,12-950, 12-950A, 12-951, and 12-952 Added new drawings 12-9B, 12-350, 12-351, 12-650A, 12-650B,12-905A,12-905B12-960, 12-961 		
8	7/19	 Added new pages 12-9A, 12-13, 12-13A, 12-146, 12-952. Updated drawings on pages 12-10 through 12-12A, 12-14 through 12-21, 12-132, 12-133A, 12-133B, 12-138, 12-143, 12-145, 12-329, 12-330, 12-332, 12-333, 12-335 through 12-341, 12-911B through 12-912, and 12-914 through 12-952. Deleted pages 12-335B, 12-337 through 12-337B, 12-338B, 12-340 through 12-340 		
7.2	7/18	 Added note in section 12.5 E Corrected tap connection, and standard item ID in Note 6 and CU on 12-338 Added bolted wedge inline switches to 12-138 & 12-938 Several drawings through section have been updated. 		
7.1	7/17	 Updated page references on 12-1 Update to capacitor fuse table 12-19 Added DG one-lines 12-10, 12-11, 12-12 Renumbered pages. Updated all drawings to 3D format. Split 12-135 & 12-137 to 12-135A, 12-135B & 12-137A, 12-137B 		

EATON NOVA NX-T 3¢ RECLOSER INSTALLATION 38KV WITH EXTERNAL MOUNTED PT'S				
WIIV	·			
	· · · · · · · · · · · · · · · · · · ·	12-NOTES-1	7/21	

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 12.00.002

Version	Date	Modifications	Author(s)	Approval by (Name/Title)
7	7/16	 Added Sub T section: 12-900, 12-911A, 12-911B, 12-913A,12-914,12-938,12-950 Added Typical DG Installation 12-10 Updated page references on Page 12-1 Added hanging Switch Identifier to 12-138 Added Directional Fault Indicators Page 12-12-12-13 Renumbered Pages 12-14 to 12-17 Corrected drawing side view on 12-141 and 12-144 		
6	7/15	 12.1.30 added diagram Added new Single Phase Recloser on page 12-341 and 12.5.70 Section C on Page 12-10. Updated Application and Operating Sequence for Cutout Mounted Reclosers on Page 12-11 Under 12.5.70 Changed Section C to Single Phase Radial Reclosers and moved Cutout Reclosers to Section D. Updated Drawing 12-134 		
5	7/14	 Under 12.5.50 - Changed the requirement to use Loadbreak switches on all wye-delta stepdown banks and added the requirement to build all loadbreaks to meet the new Storm Hardening criteria. Under 12.5.70 - Added the requirement to build all new reclosers on class H1 poles to meet the new Storm Hardening criteria. Under 12.6 - added additional information on FCI's. 12-141 - 12-145 added Storm Hardening criteria note. 12-335, 12-338 added ladder rack detail and Storm Hardening criteria note. 		
4	7/13	 Added section 12.5.70 C. – Cutout Mounted Recloser Added 12-328 -12-332 New Standard - 1 Phase Vacuum operated cutout mounted recloser. 12-134– Updated to match 9-435 Added G&W Recloser Application Table Appended Note 1 on 12-141 		

SUMMARY OF RECENT CHANGES					
ISSUE	PAGE NUMBER		AMIZ.		
7/21	12-NOTES-2	OVERHEAD CONSTRUCTION STANDARD	ppl		

Version	Date	Modifications	Author(s)	Approval by (Name/Title)
3	7/12	 12-134 – Updated to match 9-435 Cutouts on top crossarm. Added note to use 10' crossarms for 35kV 12-133- Added note to use 10' crossarms for 35kV 		
2	7/11	 12-144 - New Standard - 3Ф PRIMARY SECTIONALIZING – HOOK STICK LOADBREAK SWITCH BELOW CROSSARM INSTALLATION 15 KV 12-145 - New Standard - 3Ф PRIMARY SECTIONALIZING – HOOK STICK LOADBREAK CONDUCTOR DEADEND ON SWITCH INSTALLATION 15 KV 		
1	6/10	 Under 12.5.70, Edited section to reflect 800A radial and LS recloser configurations, Removed 'Radial Recloser Control' section. Revised notes on 12-129, 12-130, 12-134 Added new Standards drawings 12-335, 12-336, 12-337, 12-338, 12-339, 12-340 		

	SUMMARY OF RECENT CHANGES					
İ	AMZ.	PAGE NUMBER	ISSUE			
	ppl	OVERHEAD CONSTRUCTION STANDARD	12-NOTES-3	7/21		

Doc. # ST. 12.00.002

BLANK			
ISSUE	PAGE NUMBER		AM7.
7/21	12-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

SECTION	PAGE
• 13.0 GENERAL	13-1 THRU 13-2
13.1 WHAT TO GROUND	13-2
13.2 HOW TO GROUND	13-2 THRU 13-4
13.3 BONDING	13-4 THRU 13-6
13.4 EFFECTIVELY GROUNDED PRIMARY NEUTRAL	13-6
13.5 COMMON NEUTRAL	13-6
13.6 LIGHTNING PROTECTION	13-6 THRU 13-10
13.7 SURGE ARRESTER APPLICATION TABLE	13-11
CONSTRUCTION DRAWINGS	
 Grounding For Neutrals And Equipment 	13-111
 Grounding For Overhead Transformers 	13-112
 Grounding For Overhead Equipment Control Cabinets 	13-113
 Grounding Grid For Manually Operated Switch Handles 	13-114
 Typical Arrester Grounding And Down Ground Bonding 	13-115
 Stolen Ground Wire Replacement – Armored Ground Wire 	13-116

This page left intentionally blank.

GROUNDING INDEX			
ISSUE	PAGE NUMBER		WIN
7/08	13-ii	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 13.00.002

13.0.10 Grounding

Grounding is an essential component of the overhead electric distribution system. Grounding certain types of circuits serve to protect workers and the public from being exposed to dangerous voltage levels. Grounding aids fuses and relays in system protective schemes to clear faulted circuits, and it also helps drain high voltage lightning surges from overhead distribution lines.

Grounding is usually accomplished by establishing an adequate connection to a driven ground rod, or rods, and then connecting to a continuous common neutral system if accessible.

Multiple grounds may be required to assure a low resistance connection to Earth. Driven grounds with connections to a continuous neutral are designed into an effectively grounded system. Driven grounds are also required on not effectively grounded (e.g. 4.8 kV) circuits through the secondary neutral, which effectively ties together all customer-owned grounds. Neutral secondary systems of not effectively grounded primary circuits shall not be electrically interconnected to effectively grounded circuit neutrals. An open section using a deadend insulator shall be provided between these two systems. This is to prevent transfer of neutral-to-Earth voltage onto the not effectively grounded secondary system from the effectively grounded system neutral. (The general bonding to communication company messengers may circumvent efforts to isolate some systems.)

When cutting over a not effectively grounded circuit to an effectively grounded circuit, a grounded neutral system shall be established.

While all low voltage circuits shown in these standards are grounded, some existing 480 V or 600 V not effectively grounded circuits are not solidly grounded. Certain circuits used in the oil industry, in tunnels, and other special applications are also ungrounded. Work on such circuits shall be done under the direction of persons who are familiar with the safety and lightning protection problems involved.

13.0.20 **Bonding**

Bonds are installed to limit the potential between two or more grounded systems. Bonds also improve lightning protection and general effectiveness of each system through multiple ground connections. Bonds are required between the Company's system neutral and grounded communication messengers on the same poles in grounded wye systems and between the Company's secondary neutral and grounded communication messengers on the same poles in delta and uni-grounded systems. There are some cases where a utility may desire an independent secondary grounding system, to limit stray voltage (in delta and uni-grounded system) but, the grounded communication messengers must be bonded to the grounded system neutral where one exists.

13.0.30 Lightning Protection – General

Surge arresters provide a low resistance path across equipment when exposed to lightning or switching surges. This reduces the probability of insulation flash-over, or otherwise damaging equipment or lines. Arresters serve to drain the excess charge from lines, thereby reducing the probability of conductor burn down due to overvoltages that result. A metal oxide varistor (MOV) has very low resistance to the current of a high voltage surge and very high resistance to normal 60 Hz voltages. Once the voltage level returns to normal (below the maximum continuous operating voltage [MCOV]), negligible leakage current flows through the arrester.

GROUNDING				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	13-1	7/09	

Riser type, intermediate type, and station type arresters have lower discharge characteristics and therefore provide better equipment overvoltage protection. However, distribution type arresters do limit voltages from lightning strikes below the basic impulse level (BIL) of the equipment used on distribution circuits.

On effectively grounded systems, the arrester down-ground lead to a driven ground rod is always bonded to the system neutral and any available communication messengers, as shown on Page 13-115. On not effectively grounded primary systems, some special problems can be avoided by not interconnecting the arrester down-ground to the messengers of the other utilities.

13.1 WHAT TO GROUND

- **13.1.10** The following equipment and circuits shall be grounded:
 - A. Neutrals & Secondaries of Distribution Transformers
 - 1. The neutral wire of each 120 V single phase, 2 wire circuit
 - 2. The neutral wire of each 120/240 V single phase, 3 wire circuit
 - 3. The neutral wire of each 208Y/120 V single phase, 3 wire circuit
 - 4. The neutral wire of each 208Y/120 V or 480Y/277 V 3 phase, 4 wire circuit
 - 5. One phase wire of each 240 V three phase circuit (has been general practice)

Each of the above secondary systems shall have at least one ground (composed of one or more driven ground rods) for each transformer, exclusive of ground connections at customers' service points.

- B. Secondaries of Metering
- C. Neutrals of Effectively Grounded Primary Circuits
- D. Ground Terminals of Surge Arresters
- E. Metallic Cable Sheaths or Concentric Neutral Conductor on Riser Poles and Metal Conduits Containing Non-Metallic Sheathed Cables
- F. Spacer Cable and Lashed Cable Sheaths and Messenger Strands
- G. The Cases or Frames of:
 - 1. Apparatus such as capacitors, reclosers, regulators, transformers, etc.
 - Any piece of equipment that is within 8 feet of the Earth. (See Sections 13.2.20B and 13.2.30B)
 - 3. Metering transformers and housing equipment.
 - 4. Metal operating handles of switches that can be manually operated.

13.2 HOW TO GROUND

13.2.10 **General**

The circuits and equipment specified in Section 13.1 shall be grounded to a driven rod or rods or to another suitable connection to Earth as discussed below. Driven ground rods shall be installed in undisturbed Earth and extend at least 8 feet below grade.

On effectively grounded primary neutral systems that have at least four ground connections per rolling mile of neutral, all ground connections and bonds may be made to a single #4 or larger copper wire that is connected to a driven ground rod. Copper compression connectors shall be used for ground conductor bonds and taps. All surge arresters shall be connected to the grounding conductor through a flexible grounding lead (L6) as shown on Page 13-115.

	GROUNDING			
	ISSUE	PAGE NUMBER		WIN
Busi	7/15 ness Use	13-2	OVERHEAD CONSTRUCTION STANDARD	ppl

On not effectively grounded primary systems, the surge arrester grounding conductor and the secondary neutral grounding conductor shall be run separately to two ground rods. The two rods shall be separated by a minimum distance of 20 feet as per NESC Rule 97. To accomplish this, the secondary neutral grounding conductor can be extended to the next available pole, assuming no other grounding conductor is located on that pole, and connected to a down ground installed at that location.

A #4 soft drawn copper conductor with 45 mils HDPE cover (W11F) shall be used for most ground connections on distribution poles.

A ½ inch flexible molding shall be installed over all distribution down ground installations from finished grade up to 8 feet, for mechanical protection.

13.2.20 Effectively Grounded Systems

A. Grounding the Common Neutral

Effectively grounded common neutral systems utilize the large number of parallel connected grounds to ensure an effective low resistance to ground the common neutral. Therefore, the installation of one 8 foot rod at each required location shall be sufficient. No resistance test is required.

B. Grounding Equipment Accessible to the Public (within 8 feet of grade)

When any metal part, frame or case of the equipment listed below is installed within 8 feet of grade, such equipment shall be connected to a ground rod at the pole and the ground wire shall be connected to the common neutral. Items 1, 2, and 3 below shall also have a ground grid (see Page 13-113) when any portion is within 8 feet of grade.

- 1. Primary instrument transformer cabinets and primary meter housings,
- 2. Manually operated switch handles,
- 3. Control cabinets*,
- 4. Metal riser pipes,
- 5. Transformers, and
- 6. Regulators.
- * Control cabinets should be mounted with the lowest component (e.g. drip loop, control cable or ladder bracket) between 8 feet and 11 feet above grade. Worker access to control cabinets, including identifying locations where ladders or bucket trucks may be set up to allow worker access, shall be considered when selecting poles for the installation of equipment requiring control cabinets. After consideration of public and worker safety, potential vandalism and aesthetics, control cabinets may be mounted within 8 feet of grade with a ground rod at the pole and a ground grid (see Page 13-113). Control cabinets mounted at any height shall neither overhang roadways nor obstruct pedestrian traffic.

13.2.30 Not Effectively Grounded Systems (Delta, Ungrounded Wye or Uni-grounded Wye)

A. Grounding Secondary Neutrals or Equipment Not Accessible to the Public (8 feet or more above grade)

Not effectively grounded primary systems are dependent on individual grounds to ensure effective low resistance grounding. Where practical, individual ground resistance to earth shall not exceed 25 ohms. If the earth resistance of a single ground rod exceeds 25 ohms or is not tested, a second ground rod shall be installed, connected in parallel and at least 6 feet away from the first ground rod.

	GROUNDING				
	AMZ		PAGE NUMBER	ISSUE	
se	ppl	OVERHEAD CONSTRUCTION STANDARD	13-3	7/10	

B. Grounding Equipment Accessible to the Public (within 8 feet of grade)

When the installation of any metal part, frame or equipment within 8 feet of grade is planned in a not effectively grounded system, installation and testing of ground rods prior to the installation of the equipment is recommended. This allows installation of the equipment 8 or more feet above grade to be considered before the installation of the equipment or ground grid, when required.

When any metal part, frame or case of the equipment listed below is installed within 8 feet of grade, such equipment shall be connected to a ground at the pole tested to 25 ohms or below. Items 1, 2, and 3 below shall also have a ground grid (see Page 13-113) when any portion is within 8 feet of grade. If after the installation of one ground rod and the ground grid, where required, the ground resistance is 25 ohms or below, no additional work is required. If the ground resistance is above 25 ohms, (i) install additional ground rods (each at least 6 feet away from each of the other ground rods) until the tested ground resistance is 25 ohms or below or (ii) move the equipment 8 or more feet above grade.

- 1. Primary instrument transformer cabinets and primary meter housings.
- 2. Manually operated switch handles,
- 3. Control cabinets*,
- 4. Metal riser pipes**
- 5. Transformers, and
- Regulators.
- * Control cabinets should be mounted with the lowest component (e.g. drip loop, control cable or ladder bracket) between 8 feet and 11 feet above grade. Worker access to control cabinets, including identifying locations where ladders or bucket trucks may be set up to allow worker access, shall be considered when selecting poles for the installation of equipment requiring control cabinets. After consideration of public and worker safety, potential vandalism and aesthetics, control cabinets may be mounted within 8 feet of grade with a ground at the pole tested to 25 ohms or below and a ground grid (see Page 13-113). Control cabinets mounted at any height shall neither overhang roadways nor obstruct pedestrian traffic.
- ** Because metal riser pipes cannot be moved 8 or more feet above grade, they must have a tested ground resistance of 25 ohms or below. If, after installing 4 ground rods (each at least 6 feet away from each of the other ground rods), the tested ground resistance is above 25 ohms, contact Standards Engineering for additional options.

13.3 BONDING

13.3.10 Bonding Between Different Parts of the Distribution System

Except as noted in Section 13.0.10 for not effectively grounded system secondaries, all grounded parts of the distribution system should be bonded together through connections to the system neutral; the effectively grounded secondary neutrals, spacer cable or lashed cable messengers; or through other grounded conductors. Guy wires on effectively grounded systems shall also be bonded to the system neutral or the effectively grounded secondary neutrals. In addition, spacer cable messengers shall be bonded to the system neutral at every pole. All messenger and phase conductor supports and fuse cutout brackets of spacer cable installations shall be bonded to the pole equipment grounding conductor.

The bonds shall be established at intervals along the line, at each location of driven ground rods which are installed not less than 4 per each rolling mile of line and at; transformers, arresters, capacitors, regulators or any other pole with a vertical grounding conductor installed.

		GROUNDING	
ISSUE	PAGE NUMBER		WIA
7/10	13-4	OVERHEAD CONSTRUCTION STANDARD	ppl

13.3.20 Bonding Between Different Systems of the Company

The system neutral and the messengers of spacer cable or lashed cables on the distribution system shall normally be bonded or connected to station grounds at all stations feeding the distribution lines. They shall also be connected to the vertical ground of transmission lines where they occupy the same pole.

13.3.30 Bonding Between the Company and Other Grounding Systems

The Company system neutral shall be bonded to the grounding system of other utilities that occupy the same pole. Such bonds shall be made only after consultation with other utilities. Where isolation of primary and secondary neutrals is done to minimize the effects of neutral-to-Earth voltages on customer facilities, separate neutrals must be established for these two systems. The communication messengers must be bonded only to the primary neutral at these locations.

13.3.40 Bonding Between Communication Company and the Company Grounding Systems

Bonds shall be installed between power company vertical grounding conductors connected to the system neutral in a multi-grounded wye system and to the secondary neutral in other types of systems and grounded communication company messengers. Page 13-115 shows typical installations. Communication messengers shall not be bonded to electric equipment or arrester ground wires that are not connected to an electric system neutral (separate equipment and arrester grounds are common in delta or uni-grounded systems). Caution should be used when line workers of either company removes their facilities and the associated bonds. Communication lines and Communication Company messengers include (by NESC definition) all lines used for public or private signal or communication service. Included are telephone, telegraph, railroad signal, fire and police alarms, cable television, and various other non-electrical supply lines.

Responsibility for bonding communication cable support messengers is as follows:

- Communication Company Attaching to Pole With an Existing Downground: The communication company bonds its support messenger to an existing downground on a pole (with an existing downground that is connected to: a system neutral on a multigrounded wye system or a secondary neutral in other types of systems). This installation of the bond is done by the communication company at the communication company's expense. This includes bonding when existing communication company messengers and cables are transferred to replacement poles.
- PPL Installs a Downground on Existing Pole With Communication Attachment(s): When a down ground (connected to a system neutral on a multi-grounded wye system or a secondary neutral in other types of systems) is installed by PPL on an existing pole, PPL bonds the existing communication messenger(s) to the new downground wire. This downground installation and bonding of communication company support messenger(s) is done by PPL at PPL's expense.
- Communication Company Requires a Bond at Pole Without an Existing Downground: When newly installed communication support messengers are attached to an existing pole, must be bonded to the electric neutral at that pole, and the pole does not have an existing downground, the communication company attaches a bond wire to its newly installed support messenger and leaves it coiled up in the communication space. PPL will bring the coiled tail (bond wire) up to the supply space and bond it to the electric neutral. As shown above, the communication support messengers must be bonded to the system neutral on a multi-grounded wye system or to the secondary neutral (and not to arrester,

PAGE NUMBER ISSUE OVERHEAD CONSTRUCTION STANDARD 13-5 7/10		GROUNDING		
OVERNEAD	SMIZZ		PAGE NUMBER	ISSUE
1,0			13-5	7/10

equipment or transformer downgrounds) in other types of systems. This bond to the electric neutral in the supply space is done by PPL at the communication company's expense. Invoicing the communication company for this bonding is done by the engineering department as part of the work order design.

13.4 <u>EFFECTIVELY GROUNDED PRIMARY NEUTRAL</u>

The neutral conductor of all new distribution circuits shall be effectively grounded. Where this neutral grounding has not already been accomplished, the change from not effectively grounded to effectively grounded shall be made in connection with all new construction and large maintenance jobs.

The effectively grounded system neutral shall always follow the same route as the primary conductors and be physically located on the same pole line. The system neutral must not be opened.

On any effectively grounded section of a feeder, there shall be a minimum of four grounds per rolling mile.

The effectively grounded neutral shall be installed at the secondary level on the pole. An existing phase conductor of a single phase line on crossarms may, however, be left on 5 kV insulators and converted to an effectively grounded neutral. Where secondaries exist, the secondary neutral should be grounded at the transformer pole and bonded to the effectively grounded neutral at each end of the secondary net/crib.

Similarly, an existing conductor on a vertical or "armless" type pole top may be left on 5 kV insulators and converted to an effectively grounded neutral if there are no transformers or secondaries on the pole. If a transformer is installed on a vertical or armless pole, or if a secondary is installed on any pole, the effectively grounded neutral shall be relocated to the secondary position.

13.5 COMMON NEUTRAL

Common neutral exists wherever the same conductor serves as the neutral for both the primary and secondary circuits. Only one vertical ground wire should be installed on a pole with a common neutral.

The Common neutral shall meet the size requirement in Section 9.1.3. A common neutral shall not be used as the grounded phase conductor of a not effectively grounded secondary. It shall, however be bonded to this conductor. The secondary grounded neutral of a not effectively grounded primary circuit shall be isolated from any effectively grounded system neutral as stated above in Section 13.0.10.

Every effort should be made to preserve the continuity of the system neutral and to establish the best possible connections between the neutral and Earth. It shall meet the grounding requirements in Section 13.4 above and shall be bonded to grounded equipment whenever practicable.

13.6 LIGHTNING PROTECTION

13.6.10 <u>General</u>

Surge arrester protection shall be provided for capacitors, reclosers, regulators, transformers, and other equipment as prescribed in section 13.6.30 below. Surge arresters are also used to improve system reliability as prescribed in section 13.6.40 below.

When any silicon carbide (SiC) porcelain arrester is replaced with an MOV polymer arrester in a cluster mount or riser pole configuration, all SiC porcelain arresters are to be removed and replaced with MOV polymer arresters.

To obtain the proper equipment protection and arrester operation, the following practices are recommended:

- A. Surge arresters shall be installed on the same pole with the equipment to be protected.
- B. Surge arresters shall be connected to a driven ground at the same pole as the arrester.

	GROUNDING			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/10 ness Use	13-6	OVERHEAD CONSTRUCTION STANDARD	ppl

- C. Both the line side and the ground side arrester leads shall be kept as short and as straight as possible. Long leads will significantly reduce the margin of protection provided by the arrester. For the combined line and ground lead length, normal practice is to add 1.6 kV per foot to the specified arrester discharge voltage at the discharge current level selected for coordination.
- D. When installing MOV arresters, the ground lead shall be connected first. Since MOV arresters continuously conduct a small amount of current, a slight arc may be drawn when connecting the line side of the arrester.
- E. When disconnecting MOV arresters, always disconnect the ground lead last. An MOV arrester should have the line end touched to the pole ground to discharge it immediately after removal since it can retain a small electrical charge for a few minutes. After removing a MOV arrester with an intact disconnector from service a restraining device should be installed to comply with U.S. Department of Transportation regulations.
- F. **WARNING:** A failed arrester with a blown disconnector shall be treated as energized at full line potential at both ends of the arrester.
- G. One should avoid dropping an MOV arrester. The internal charge in the disconnector could be discharged.

13.6.20 Selection Criteria

It is necessary to select the proper arrester and install it in the correct location. An improperly selected or applied arrester will not provide the desired protection to the distribution system and can lead to arrester failure and poor reliability performance. For proper selection, it is necessary to determine the following:

- A. Operating voltage of the circuit
 - **Note:** No part of the circuit with connected surge arresters should normally experience voltages greater than 1.05 per unit of the nominal circuit operating voltage.
- B. Basic impulse level of the equipment to be protected
- C. Connection of equipment to the circuit
 - **WARNING:** Some equipment may be utilized on circuits of the same voltage class but with those voltage classes having different degrees of grounding. Be sure that the arresters specified or supplied with the equipment are of the correct rating for the specified circuit.
- D. Circuit grounding type Determine whether the circuit is effectively grounded or not effectively grounded. Engineering shall confirm circuit grounding if necessary. Effectively grounded circuits have an X0/X1 ratio of 3 or less while not effectively grounded circuits have an X0/X1 ratio of greater than 3. If, via permanent field switching, equipment has the potential to lose its effective grounding and remain energized from a not effectively grounded circuit, equipment BIL requirements and arrester application should be reviewed.


After determining the above criteria, select the proper arrester from Table 1 in Section 13.7.

13.6.30 Protecting Equipment With Surge Arresters

To protect equipment MOV surge arresters shall be installed in accordance with the following, utilizing properly rated arresters from Table 1, in Section 13.7. Actual physical arrester locations on circuits and equipment are shown in specific standard sections for the construction involved.

A. Primary Wire Transitions

Arresters are required at all junctions from bare conductors to anything other than bare conductor. This includes transitions from bare conductor to covered wire, tree wire or spacer cable. For purposes of this requirement, fabric-covered conductors (sometimes called "weatherproof" conductors) shall be considered bare conductors. These arresters protect the insulation on the covered conductor, tree wire or spacer cable from damage.

These arresters shall be placed at the pole with the wire transition and should be as close to the wire transition as possible.

Surge arresters are not required because of transitions between conductors of different materials (aluminum to copper). Surge arresters are not required because of transitions between different types or thicknesses of covering on conductors.

B. Primary Risers

Riser type surge arresters shall be installed at the transition from underground cable to open wire (bare or tree wire) or spacer cable circuits. Arresters shall be installed on the termination side of the closed disconnects immediately adjacent to the riser termination. The grounding conductor from the arrester shall be bonded to the concentric neutral or metallic sheath of the underground cable as close to the termination as possible, and to a driven ground at that pole. On grounded wye circuits, it shall also be connected to the system neutral of the overhead circuit.

C. Lashed Aerial Cables

Riser type surge arresters shall be installed at the transition from lashed aerial cable to open wire (bare or tree wire) or spacer cable circuits. Arresters shall be installed on the termination side of the closed disconnects immediately adjacent to the riser termination. The grounding conductor from the arrester shall be bonded to the concentric neutral or metallic sheath of the underground cable as close to the termination as possible, and to a driven ground at that pole. On grounded wye circuits, it shall also be connected to the system neutral of the overhead circuit.

D. Transformers

All overhead transformers shall be protected by surge arresters. Surge arrester location, and grounding and bonding methods, for overhead transformers installed on standard effectively grounded and not effectively grounded circuits are shown on Page 13-112. The arrester shall be connected to the transformer side of the primary fused cutout for conventional transformers.

EXCEPTION – Floating wye - delta connected transformer banks shall not use tank mounted arresters. Surge arresters shall be crossarm mounted on the same pole as the transformer bank and connected to the source side of the fused cutouts. This connection avoids exposure of the arresters to possible overvoltages when a fuse cutout is open.

In grounded wye systems, the transformer tank and arrester ground leads shall be connected to the common neutral. In other systems, including delta systems, the transformer tank and arrester ground leads shall be isolated from the secondary neutral.

Step-down and step-up transformers, shall have surge arresters installed on all phase conductors on both the high voltage and low voltage sides of the unit. When the arresters are mounted separately (not installed on the transformers), they shall be connected between the fused cutouts or disconnect switches and the transformer bushings, as close to the transformer bushing as practical.

EXCEPTION – Floating wye - delta connected transformer banks shall not use tank mounted arresters. Surge arresters shall be crossarm mounted on the same pole as the transformer bank and connected to the source side of the fused cutouts. This connection avoids exposure of the arresters to possible overvoltages when a fuse cutout is open.

GROUNDING			
ISSUE	PAGE NUMBER		SMIZZ
7/10	13-8	OVERHEAD CONSTRUCTION STANDARD	ppl

E. Regulators

Regulators shall have tank mounted surge arresters installed on the source and load bushings. The manufacturer may also provide a bypass arrester between the source and load bushings depending upon design.

F. Primary Metering Equipment

Primary metering equipment shall be protected with surge arresters.

G. Capacitors

Capacitors shall have surge arresters. Arresters shall be connected between the fused cutouts or other switch and the capacitor bushings. Arrester connections should be made as short and as straight, and as close to the bushings, as possible. New capacitor banks are supplied with arresters already mounted on the capacitor frame.

13.6.40 <u>Improving Reliability With Surge Arresters</u>

Arresters are generally required at open points in the system and at switching points that may become open point under some operating conditions. Open points in lines become reflection points for lightning surges, producing a voltage doubling of the surge at that location. This will frequently cause insulation flashovers and result in poor reliability.

A. Cutouts with Fuses or Cutout Mounted Reclosers (Tripsavers)

For new construction, arresters are required on n the load side of cutouts with fuses or cutout mounted reclosrs. Where the cutout is installed on a new pole, these arresters shall be installed on that pole. Where the cutout is being installed on an existing pole, this arrester requirement may be met in the following ways listed in order of preference:

- Existing arresters on the load side of the cutout on any pole within 300' of the cutout will fulfill the requirement,
- New arresters may be installed on the pole with the cutout, and
- New arresters may be installed on an adjacent pole on the load side of the cutout within 300' of the cutout.

B. Airbreak and Loadbreak Switches

Surge arresters are required on all phase conductors on both sides of the switches.

For new installations, phases should be deadended above the switch frame with the arresters mounted on the switch frame. Where phases are deadended on the switch frame, arresters shall be installed on the next pole on the source and load side of the switch. If there are already surge arresters installed on all phase conductors within 300 feet of the switch, additional surge arresters on that side of the switch are not required.

When installing arresters at an adjacent pole, crossarm mounting is preferred. Where crossarm mounting of the arresters is not possible, mount arresters on a three phase fiberglass equipment mount.

It is important to install surge arresters on all three phases so that all phases experience the same level of protection. Otherwise, flashover of the lightly protected phases might occur.

	GROUNDING		
CMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	13-9	7/15

Note: For existing normally closed airbreak or loadbreak switches without arresters, install arresters on both sides of the switch when the switch is to become normally open. If arrester installation is not convenient at the switch pole location, arresters should be installed on all phase conductors on the adjacent poles.

C. Disconnect Switches

Surge arresters are required on all phase conductors on both sides of the disconnect switches.

Arresters shall be installed on the next pole on the source and load side of the disconnect switches. If there are already surge arresters installed on all phase conductors within 300 feet of the disconnect switches, additional surge arresters on that side of the disconnect switches are not required.

When installing arresters at an adjacent pole, crossarm mounting is preferred. Where crossarm mounting of the arresters is not possible, mount arresters on a three phase fiberglass equipment mount.

It is important to install surge arresters on all three phases so that all phases experience the same level of protection. Otherwise, flashover of the lightly protected phases might occur.

Note: For existing normally closed disconnect switches without arresters, install arresters on both sides of the disconnect switches when the disconnect switches are to become normally open. If arrester installation is not convenient at the disconnect switch pole location, arresters should be installed on all phase conductors on the adjacent poles.

D. Line Reclosers and Sectionalizers

Line reclosers and sectionalizers shall have arresters installed on both the source and load side using the mounting provisions provided. New line reclosers are supplied with arresters already installed on the recloser. Surge arrester connections should be made as short, straight and close to the bushings as possible.

E. End of Line

Arresters shall be installed on each phase at end of line deadends. Where there is equipment with surge arresters on that pole, additional surge arrester(s) are not required for any phase that already has a surge arrester at that pole.

13.6.50 <u>Miscellaneous</u>

A. Customer Equipment

Surge arrester protection for customer owned equipment served at the distribution voltage is the customer's responsibility. The customer shall be advised of the degree of surge protection that may be incidentally provided by the Company, but shall be responsible for arranging and installing any additional protection requirements.

B. Generators

Any generators connected to the distribution system may impact arrester application. This connection must undergo a Company engineering review.

GROUNDING				
ISSUE	PAGE NUMBER		SMI	
7/10	13-10	OVERHEAD CONSTRUCTION STANDARD	ppl	

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 13.00.002

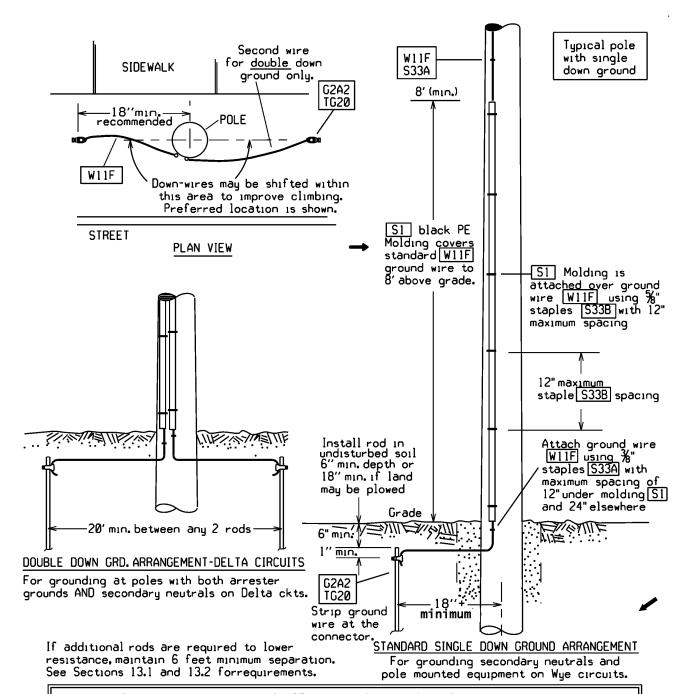
13.7 SURGE ARRESTER APPLICATION TABLE

Surge arresters shall be selected based upon the application criteria below.

Table 1

PRIMARY CIRCUIT VOLTAGE	ARRESTER DUTY CYCLE RATING (kV)	MAX. CONTINUOUS OPERATING VOLTAGE	STANDARD ITEM NUMBER (HEAVY DUTY TYPE)	STANDARD ITEM NUMBER (RISER TYPE)
2400 Delta 4160 Grd Y/2400	3	2.55 kV	L3A	
4160 Delta 4800 Delta 8320 Grd Y/4800 7200 Delta	10	8.40 kV	L3D	L3DR
12470 Grd Y/7200 13200 Grd Y/7620 13800 Grd Y/7960 11000 Delta	12	1 0. 2 kV	L3E	L3ER
11500 Delta 12000 Delta 13200 Delta 13800 Delta	15	12.7 kV	L3F	L3FR
22900 Grd Y/13200 23900 Grd Y/13800 24940 Grd Y/14400	21	17 . 0 kV	L3G	L3GR
34500 Grd Y/19900 22900 Delta 23000 Delta 23900 Delta 34500 Delta	27	22 . 0 kV	L3J	L3JR

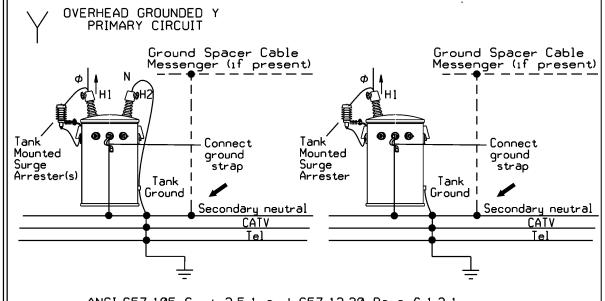
Supersedes 7/09 Issue - Page numbering updated.


		GROUNDING		
	SMA		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	13-11	7/10

© 2022 PPL Corporation. All rights reserved.

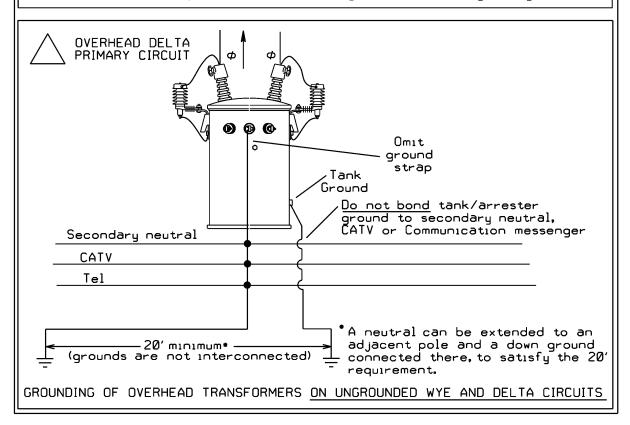
Doc. # ST. 13.00.002

THIS PAGE LEFT INTENTIONALLY BLANK.

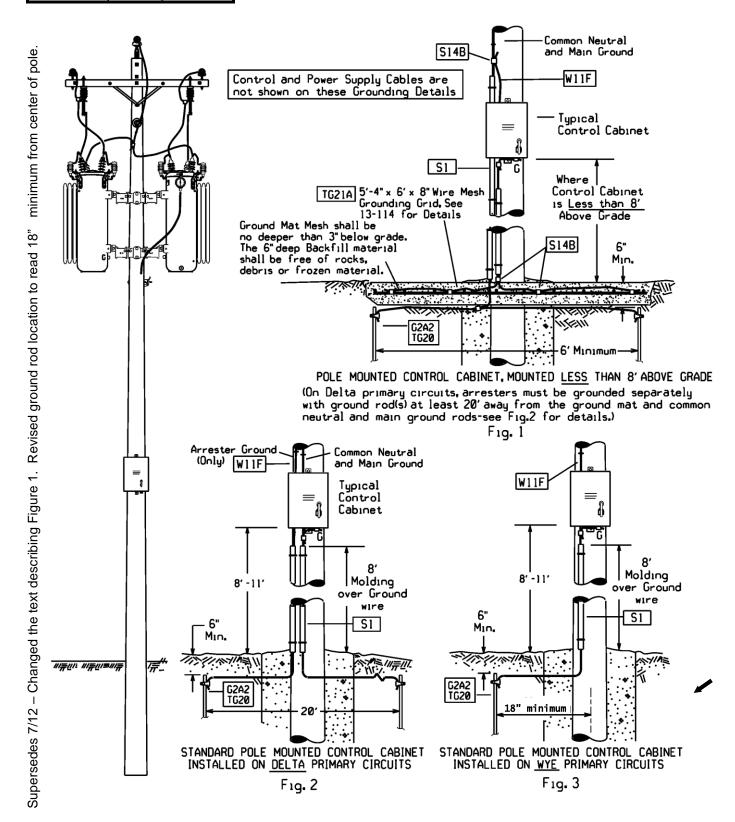

GROUNDING				
SMIZZ.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	13-BLANK	7/15	

NOTES: 1. Cover down ground with (S1) PE Molding for the first 8' above grade.

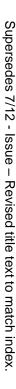
- 2. Use ground rod driving head when installing ground rods.
- 3. Install rods into undisturbed soil and maintain 6' min. spacing between any 2 rods.
- 4. Only one 8' driven ground rod is required if the ground wire is interconnected to a multigrounded neutral and the pole has no equipment within 8' of grade (see 13.2.10).
- 5. For typical overhead transformer grounding, see Drawing 13-112.

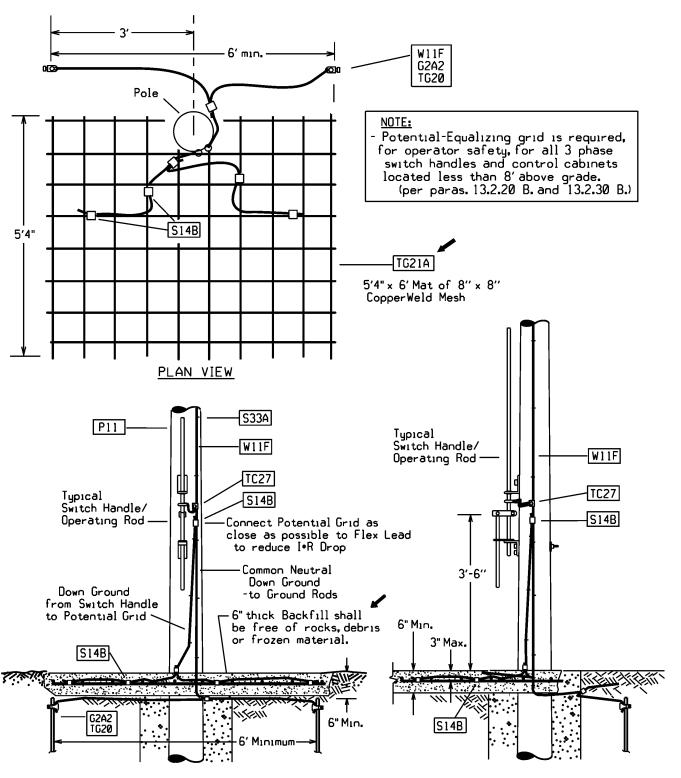

GROUNDING FOR NEUTRALS AND EQUIPMENT				
Wille		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	13-111	7/20	

per ANSI C57.105 Sect. 2.5.1 and C57.12.20 Para. 6.1.3.1 convention is to consider the H2 bushing as the grounded bushing (or winding terminus).

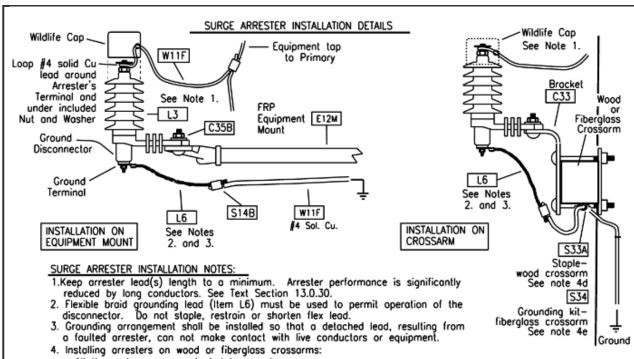

GROUNDING OF OVERHEAD TRANSFORMERS ON GROUNDED WYE CIRCUITS

(Except 3¢ Delta Secondary Services -1.e.Fig. 4, Dwg. 14-304)




	GROUNDING FOR OVERHEAD TRANSFORMERS			
	ISSUE	PAGE NUMBER		SMIZE
Busi	7/08 ness Use	13-112	OVERHEAD CONSTRUCTION STANDARD	ppl

CU = CSVG	Single Vertical Ground
CU = CDVG	Double Vertical Ground
CU = CDVGG	Grounding Grid

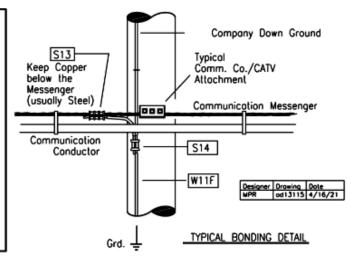


GROUNDING FOR OVERHEAD EQUIPMENT CONTROL CABINETS				
AMZ		PAGE NUMBER	ISSUE	
OVERHEAD CONSTRUCTION STANDARD 13-113 7				

	GROUNDING GRID FOR MANUALLY OPERATED SWITCH HANDLE			
	ISSUE	PAGE NUMBER		WWW
Busine	ss 7/20	13-114	OVERHEAD CONSTRUCTION STANDARD	ppl

a. All three phases are protected by arresters: Arrester ground leads should be attached to the bottom of the crossarm to restrain blown disconnectors. A ground wire should be attached under the crossarm between arrester ground leads to connect all of the arresters to the down ground.

b. Two phases are protected by arresters: Arrester ground leads should be attached to the bottom of the crossorm to restrain blown disconnectors. Maintain 20" of wood insulation between the arrester ground leads attached to the crossorm and metal hardware supporting insulators of the phase not protected by an arrester. This may require floating all or port of the lead to the down ground.


c. One phase is protected by an arrester:

The arrester ground lead should be attached to the bottom of the crossarm to restrain a blown disconnector. Maintain 20" of wood insulation between the arrester ground lead attached to the crossarm and metal hardware supporting insulators of either of the other two phases. This may require floating all or part of the lead to the down ground.
d. Attach arrester ground leads to wood crossarms using staples (S33A).
e. Attach arrester ground leads to fiberglass crossarms using grounding kit (S34).

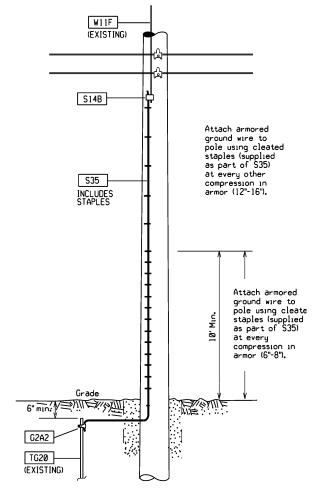
5. CAUTION: The Top and bottom connections of arresters are limited to 20 ft-lbs torque. DO NOT OVERTIGHTEN.

GENERAL BONDING NOTES:

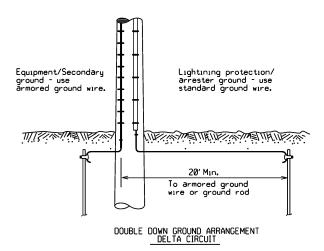
- 1. The NESC currently requires the bonding of communications messengers and effectively grounded system neutrals.
- Communication mesenger strand shall not be bonded to vertical ground conductor unless that conductor is connected to the electric neutral or messenger.
- Bond spacer cable messenger to common neutral at each support pole and to a driven ground at frequent points, not more than 800' aport.
- Bond the messenger of primary lashed aerial cable to secondary or common neutral at each transformer, at ends of each secondary and elsewhere to provide a bond at every fourth pole.
- Bolted connectors should not be used to splice or bond ground wires.

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER ISSUE** 13-115 7/21

APPLICATION NOTES:


- The armored down ground kit (S35) shall be used to replace stolen ground wires on distribution poles.
 The kit may be used for new ground wires in areas where ground wire theft has been a problem.
- The armored down ground kit (S35) may not be used on poles where connections to the down ground wire below communication wire level are required. Examples would be poles with steel riser sweeps or pipes and poles with switch handles or control cabinets.

<u>DELTA AND OTHER NON-EFFECTIVELY GROUNDED</u> SYSTEMS:


- In delta and other non-effectively grounded systems, with two ground wires on a pole, at least one must use a standard insulated ground wire – only one of the ground wires at these poles may use the armored ground wire.
- 2. Use the standard insulated ground wire for the lightning arrester ground.
- 3. The isolated grounds must be separated by at least 20' of soil. The ground rod connected to the insulated ground wire must be at least 20' from the other ground rod or any portion of the armored ground wire in the soil. Install new ground rod(s) as required to maintain the required separation.
- 4. As an alternative, the lightning arrester and secondary neutral grounds may be placed on different poles using the armored ground wire kit at each pole. The arrester ground must be on the pole with the arrester(s) and the secondary neutral may be grounded at an adjacent pole.

INSTALLATION NOTES:

- Ground wire molding is not required over armored ground wire.
- The armored down ground kit (S35) includes an 18' piece of the armored ground wire with pre-stripped ends and cleated staples.
- 3. At ground rod, use a new standard ground rod clamp (G2A2).
- At top of armored ground wire (below communications), use a new compression connector (S14B) to connect new ground wire to existing ground wire on pole.
- It is not necessary to replace existing connections to existing ground wire for communication messengers. Install new connections to existing ground wires for communication messengers where existing ground wire passes communication messenger and no connection is present – use #4 copper SD covered wire (W11F) and new compression connectors (S14B).

TYPICAL POLE WITH SINGLE DOWN GROUND

	\	
	1871DE DEDI 86 EKIEKI	
OLOCEN GROOND	WINE REFLACEIVIEIN -	 ARMORED GROUND WIRE

7/14 13-116

OVERHEAD CONSTRUCTION STANDARD

Version	Date	Modification	Author(s)	Approval by (Name/Title)
10	7/21	Added information for arrester grounding leads on fiberglass crossarms.		,
9	7/20	 Drawing 13-115: Added detail showing upper arrester connection. Revised title text of drawings 13-111 & 13-114 to match index. 		
8	7/17	Drawing 13-115: Added Note 5 on torque limits on arresters to Surge Arrester Installation notes. Revised Note 5 on use of bolted connectors in bonding to General Bonding Notes.		
7	7/15	 Section 13.1.10A – Clarified grounding requirement. Section 13.1.10G – Updated references to 13.2.20B and 13.2.30B. Section 13.6.40 – added requirement for arresters on load side of cutout mounted reclosrs. 13-111 – Revised distance for ground rod to pole. 13-113 – Revised note on Fig. 1 & revised distance for ground rod to pole. 		
6	7/14	Added new page 13-116 with armored ground wire for use for stolen ground wire replacement.		
5	7/12	Revised ground mat size on pages 13-113 and 13-114.		
4	7/11	Added Note 4 to top drawing on page 13-115, clarifying requirements for restraining arrester ground leads.		
3	7/10	 Revised 13.2.20 and 13.2.30 to clarify testing requirements for grounds in delta systems. Replaced 13.6.30 with new sections 13.6.30 through 13.6.50 to clarify arrester application requirements. 		

SUMMARY OF RECENT CHANGES				
AM722		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	13-NOTES-1	7/21	

Version	Date	Modification	Author(s)	Approval by (Name/Title)
2	7/09	 Under 13.0.20, clarified communication messenger bonding requirement. Under 13.3.40, communication messenger bonding information modified. Required additional staples for theft prevention on bottom 8 feet of downground on page 13-111. Modified arrester and tank grounds for grounded-wye transformers on page 13-112. 		
1	07/08	 Under 13.3.40, communication messenger bonding information modified. Under 13.6.30.A.3, clarified application of surge arresters on existing fused taps. Under 13.6.30.B.5, location of arresters at capacitors corrected. Added ground lead from arrester to transformer tank on page 13-112. Corrected page title on page 3-114. Modified communication bonding requirements on page 3-115. 		

	SUMMARY OF RECENT CHANGES			
	ISSUE	PAGE NUMBER		AMIZ.
Busine	ss 7/315	13-NOTES-2	OVERHEAD CONSTRUCTION STANDARD	ppl

SECTION	PAGE
• 14.0 GENERAL	14-1
14.1 LOCATION	14-1
14.2 SIZING AND LOADING	14-1
14.3 INSTALLATION	14-1
14.4 CONNECTIONS	14-2
14.5 SELECTION OF TRANSFORMERS	14-3
14.6 GROUNDING OF TRANSFORMERS	14-3
14.7 STEP-DOWN/STEP-UP TRANSFORMERS	14-3 THRU 14-6
14.8 PHASING TRANSFORMERS	14-6
14.9 SPECIAL CONNECTIONS	14-7 THRU 14-8
14.10 HANDLING RETURNED TRANSFORMERS	14-8 THRU 14-9
PHYSICAL DATA CODE	14-50 THRU 14-61
 SECONDARY CONNECTIONS AND POLARITY – SINGLE PHASE TRANSFORMERS 	14-74 THRU 14-76
 RECOMMENDED TRANSFORMERS FOR STANDARD 1Φ AND 3Φ OVERHEAD CIRCUITS 	14-77 THRU 14-79
 STANDARD SINGLE PHASE OVERHEAD TRANSFORMERS 5-15 kV PHYSICAL DATA 	14-80
MACRO & COMPATIBLE UNIT VARIABLES	14-81
CONSTRUCTION DRAWINGS	
 Mounting Detail 1Φ Transformer Installation 	14-121
 Installation Detail - 3 - 1Φ Transformer Cluster Arrangement 	14-131
 Cluster Mounts For Banking - 3 – 1Φ Transformers 	14-132
⊙ 3Ф Secondary Connections 10 – 75 kVA – Top View	14-171
 3Ф Secondary Connections 100 – 167 kVA – Top View 	14-172
 3Ф Transformer Connection 10 – 100 kVA 1Ф Transformers 3Ф 4 Wire 208Y/120 V Service 	14-173
 3Ф Transformer Connections 167 kVA 1Ф Transformers 3Ф 4 Wire 208Y/120 V Service 	14-174
 3Ф Transformer Connections 25 – 167 kVA 277/480Y 1Ф Transformers 3Ф 4 Wire 480Y/277 V Service 	14-175
 3Ф Transformer Connections 10 – 100 kVA 1Ф Transformers 3Ф 240 V Delta Service 	14-176
 3Ф Transformer Connections 10 – 100 kVA 1Ф Transformers Open- Wye Aand Open-Delta 	14-177
 Transformer Installation 1Φ Conventional Single Or Dual Voltage 15 kV Effectively Grounded Circuits 	14-204
 1Φ Conventional Transformer Installation All 5 kV Wye Circuits 	14-212
 1Φ Transformer Installation 50 – 167 kVA 5 kV Delta To 15 kV Step-Up Installation 	14-247
 1Ф Transformer Installation 50 – 167 kVA 15 kV To 5 kV Delta Step-Down Installation 	14-248

TRANSFORMERS INDEX				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	14-i	7/20	

SECTION		PAGE
0	1Φ Transformer Installation 50 – 167 kVA 5 kV Wye To 15 kV	14-249
0	Step-Up Installation 1Φ Transformer Installation 50 – 167 kVA 15 kV To 5 kV Wye	
	Step-Down Installation	14-250
0	1Ф Conventional Transformer Installation 5 kV Delta Or Ungrounded Wye	14-252
0	Conversion Of Dual-Voltage CSP Transformers From 5 kV To 15 kV	14-263
0	Isolated Neutral Transformer Connection For Customers Affected By Neutral To Earth Potential Wye Circuits	14-264
0	1Ф Conversion Of Dual-Voltage Transformers All 15 kV Delta Circuits	14-271
0	General Notes – Installation Of Transformers In Three Phase Banks	14-301
0	3Ф Conventional Transformer Bank Deadend Construction 5–15 kV	14-304
0	3Ф Conventional Transformer Bank Deadend Construction	14-305
0	3Ф Conventional Transformers Installation All 5 kV Wye Circuits	14-312
0	3Ф Conventional Dual-Voltage Transfomers Installation 5 kV Wye Circuits	14-326
0	3Ф Step-Up/Step-Down Wiring Diagram Delta (LV): Wye (HV) Additive Transformers (200 kVA And Under)	14-343
0	3Ф Step-Up/Step-Down Wiring Diagram Wye (LV): Wye (HV) Additive Transformers (200 kVA And Under)	14-344
0	3Ф Step-Up/Step-Down Wiring Diagram Delta (LV): Wye (HV) Subtractive Transformers (250 kVA)	14-345
0	3Ф Step-Up/Step-Down Wiring Diagram Wye (LV): Wye (HV) Subtractive Transformers (250 kVA)	14-346
0	3Ф Transformer Bank 5 kV To 15 kV Step-Up Installation	14-347
0	3Ф Transformer Bank 15 kV To 5 kV Step-Down Installation	14-348
0	3Ф Conventional Transformer Installation 5 kV Delta	14-352
0	1Ф Conventional Single Or Dual Voltage Transformer Installation All 5 – 15 kV Delta Circuits	14-371
0	3Ф Step-Up/Step-Down Bank (Platform Mount) 5 – 15 kV 333 And 500 kVA Transformers	14-373
0	3Ф Step-Up/Step-Down Bank (Platform Mount) 5 – 15 kV 333 And 500 kVA Transformers (Subtractive)	14-374
0	3Ф Step-Up/Step-Down Bank 5 kV Wye To 15 kV Wye Wiring Diagram 333 And 500 kVA Transformers	14-375
0	3Ф Step-Up/Step-Down Bank Transformer Installation 333 And 500 kVA Platform Mounted 15:5 kV And 5:15 kV – Wye-Delta	14-377
0	3Ф Step-Up/Step-Down Transformer Installation 333 And 500 kVA Pole Mounted 15:5 kV And 5:15 kV	14-378
0	3Ф Step-Up/Step-Down Bank Transformer Installation 333 And 500 kVA Platform Mounted 15:5 kV And 5:15 kV – Wye-Wye	14-379

TRANSFORMERS INDEX				
ISSUE	PAGE NUMBER		WIN	
7/15	14-ii	OVERHEAD CONSTRUCTION STANDARD	ppl	

14.0 GENERAL

This section covers the details of installing and connecting transformers. It also provides guidance on selection of dual voltage rated versus single voltage rated transformers. While conventional transformers are the standard transformer, completely self protected (CSP) transformers will be covered for maintenance purposes. The selection of transformer size and loading is covered in Section 10-Secondaries. Details of fusing, grounding, and lightning protection are covered in Section 12-Fuses and Section 13-Grounding.

In general, conventional ANSI Standard Distribution Transformers will be purchased and considered as the "Standard" transformers for the overhead system. However, existing transformers in good condition shall be used or reused whenever practical.

Normal transformer design life is derived from projected material heat aging of its internal components. The nameplate kVA rating of the transformer is the load at which the unit can be continuously operated in severe (high temperature) conditions without loss of service life. Generally, transformers may, for limited periods, be loaded above nameplate. See Page 10-10.

14.1 LOCATION

The location of transformers is discussed in Section 10-Secondaries. In general, transformers shall be placed as near to the center of the load served as possible.

Transformers shall be installed only on sound poles with a life expectancy of at least 10 years. Placement on corners, junctions, or other congested poles should be avoided. Banks should be located to minimize exposure to traffic when practicable.

When transformers are placed on poles carrying joint construction or street lighting fixtures, special care must be taken to provide required clearances. Where extra pole height can be avoided by turning the transformer to permit the secondary to pass by the case at higher level, such method should be used as shown on Page 14-121.

14.2 **SIZING AND LOADING**

Transformer size and loading is discussed in Section 10-Secondaries.

14.3 **INSTALLATION**

Details for installing overhead transformers in 3 phase applications are shown starting at Page 14-301. The recommended maximum sizes shown on these drawings are based on modern transformers mounted on standard poles. When the poles are already heavily stressed by wire loading, heavy down guys, or by unbalanced angle or service pulls, pole strength should be checked. Transformers heavier than recommended maximum may be used with approval of Standards Engineering. (See Page 14-80 for approximate weights of transformers).

Clearances and crossarm pole top designs for the various standard size and types of transformers and voltages are shown on Pages 14-200 thru 14-300. Consult Section 14-Transformer Index for specific applications. **Note:** See Section 16-Aerial/Spacer Cable for additional designs of transformer installations on spacer cable.

TRANSFORMERS			
SMA		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	14-1	7/11

14.4 CONNECTIONS

14.4.10 <u>Secondary Connections</u>

Secondary connections for overhead transformers are shown in Section 10. Transformers shall not normally be banked (multiple banks on the same secondary net) on the secondary side. Polyethylene or other covered copper conductors are recommended transformer leads with sizes as shown in Table 1 and 2. Equivalent aluminum conductors with compression type aluminum to copper transition terminals may be substituted.

Use the following copper conductors for secondary in air.

Table 1 Table 2

FOR 3 PHASE BANKS				
Transformer	L.V. Copper Co	onductor Size		
kVA Size	208Y/120 V	480Y/277 V		
(Each Tank)	Secondary Secondary			
10 & 15	#2 (W13E)	#2 (W13E)		
25	#4/0 (W19C)	#2 (W13E)		
37½ & 50	#4/0 (W19C)	#4/0 (W19C)		
75	500 kcmil (UC9G)	#4/0 (W19C)		
100	Double 4/0	#4/0 (W19C)		
167	Double 500 kcmil	500 kcmil (UC5G)		

FOR 1 PHASE TRANSFORMERS				
Transformer kVA Size	L.V. Copper Conductor Size 120/240 V			
5 – 25	#2 (W13E)			
37½ – 75	#4/0 (W19C)			

Note: Double #4/0 may be substituted for single 500 kcmil above.

14.4.20 Primary Connections

Primary connections and grounding details are shown on the installation drawings starting on Page 14-204. No connection diagrams are shown for unigrounded neutral circuits. When transformers are installed, such circuits shall be converted to the multigrounded systems as discussed in Section 13-Grounding.

Connection diagrams are not shown for Open Wye or Open Delta banks or for Scott connections. Also, omitted are connections for 4,160 V Delta, 6,900 V, 11,000 V, and other special circuits. If such installations are essential, details shall be furnished by Engineering Design.

The use of distribution transformers as voltage boosters is not recommended.

Use the copper conductors shown on Table 3 for connections of the transformer high-voltage bushing to the primary circuit. Due to breakage concerns, #2 Cu AWG is the minimum recommended conductor size.

Table 3

PRIMARY WIRING FOR OVERHEAD TRANSFORMERS						
Description	Description Size & Bushing Conductor Std. Item Item ID					
Standard Secondary Transformers	10 – 167 kVA	H.V.	#2 Str. Cu.	W13E	4004042	
Primary Dual	50 – 167 kVA	H.V. & L.V.	#2 Str. Cu.	WISE	4001042	
Voltage/Step-Down	250 – 500 kVA	H.V.	#2 Str. Cu.			
Transformers	250 – 500 KVA	L.V.	#4/0 Str. Cu.	W33C	4020111	

	TRANSFORMERS					
ISSUE	PAGE NUMBER		SMI			
7/10	14-2	OVERHEAD CONSTRUCTION STANDARD	ppl			

© 2022 PPL Corporation. All rights reserved.

14.5 SELECTION OF TRANSFORMERS

Conventional transformers are to be used for all new installations. When existing CSP transformers are replaced, conventional transformers with external fusing shall be used. Where space is limited, consider a pole top extension or replace the existing pole with a taller pole. If a single CSP transformer in a 3 phase bank needs to be replaced because it has failed, external fusing shall be used for all three transformers in the bank. Anytime a CSP transformer is taken out of service for routine maintenance or emergency repairs, it shall have an open style fused cutout (s) installed. The CSP transformers shall be fused as a conventional transformer. **WARNING: Never** use CSP transformers for 3 phase banks on Delta secondary systems (an open CSP secondary breaker would result in undesirable voltage imbalances and reduces load capability).

Doc. # ST. 14.00.002

Normally, a new 3 phase service will not be made available for a residential service. Non-residential loads greater than 100 kVA shall be supplied by 3 a phase service. New 3 phase services requiring larger than 3-100 kVA, 208Y/120 (3-167 kVA if 480Y/277) transformers shall be supplied by non-pole mounted equipment.

Single bushing transformers shall not be used for Wye-Delta connections. See Page 14-78 for recommended transformers for most common distribution circuits. Refer to Section 22-Material Catalog for a listing of standard transformers.

14.5.10 Protection

For cutout fuse selection for conventional transformers, and current limiting fuse selection for conventional and CSP transformers, see Section 12-Protection.

14.6 GROUNDING OF TRANSFORMERS

See Section 13-Grounding for details on grounding transformers

14.7 <u>STEP-DOWN/STEP-UP TRANSFORMERS</u>

Certain branch lines may be supplied through step-down/step-up transformers for the following reasons:

- A. Where immediate conversion is not economically justified.
- B. To relieve load from a lower voltage distribution feeder.

Conversely, certain branch feeders requiring immediate conversion to a higher voltage, where conversion of the entire area is not justified, may be supplied through step-up transformers.

14.7.10 Step-down/step-up Transformer Connections

Table 1 shows what transformers to use for step-down/ step-up transformers. Engineering Design will issue the phasor connection diagram(s) when the branch line that is supplied from a step-down/step-up transformers, may be phased to either another feeder or branch of the same feeder of equal voltage rating.

TRANSFORMERS				
WW.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	14-3	7/15	

Table 1

	Secondary Feeder – 3 Phase			
	For 3 Phase, 3 Wire Feeders of 2400 or 4800 Volts Delta		3 Phase, 4 Wire of 4160, 8320, 12470, 13200 or 13800 Volts Wye	
Primary Feeder – 3 Phase	Transformer Primary Voltage Rating	Transformer Connection	Transformer Primary Voltage Rating	Transformer Connection
12470 Volts Wye 4 Wire	7200/12470Y	Wye-Delta	7200/12470Y	Wye-Wye
13200 Volts 3 Wire	13800/23900Y (At 95% Taps)	Delta-Delta	13800/23900Y (At 95% Taps)	Delta-Wye
13200 Volts Wye 4 Wire	7620/13200Y(1) 13800/23900Y(2) (At 95% Taps)	Wye-Delta Delta-Delta	7620/13200Y(1) 13800/23900Y(2) (At 95% Taps)	Wye-Wye Delta-Wye
13800 Volts 3 Wire	13800/23900Y (At 100% Taps)	Delta-Delta	13800/23900Y (At 100% Taps)	Delta-Wye
13800 Volts Wye 4 Wire	7970/13800Y 13800/23900Y(2) (At 100% Taps)	Wye-Delta Delta-Delta	7970/13800Y 13800/23900Y(2) (At 100% Taps)	Wye-Wye Delta-Wye
23000 Volts 3 Wire	22900	Delta-Delta	22900	Delta-Wye
23000 Volts Wye 4 Wire	13800/23900Y (At 100% Taps)	Wye-Delta	13800/23900Y (At 100% Taps)	Wye-Wye
34500Volts Wye 4 Wire	-	-	19920/34500Y	Wye-Wye

14.7.20 Neutral Connection

Wye-Delta connections shall have the high side neutral not connected.

Wye-Wye connection shall have both the high and low side neutrals connected together and to the system and connected to a driven ground.

Delta-Wye connection shall have the low side neutral connected to the low side feeder neutral and to a driven ground.

14.7.30 <u>Floating Wye/Delta Step-down/Step-up Transformer Installation/Operation</u> Recommendations

A. Installation

- Consistency in installations and conformance with the construction standards needs to be followed.
- 2. Proper secondary load balancing can improve the voltage supply quality during normal and abnormal events significantly reducing overvoltages from occurring. The maximum allowable current unbalance should not be greater than 25%, which has been determined through experience and independent research. The current unbalance is determined by measuring the current of each of the three legs and then calculating the percent current unbalance using the following formula

TRANSFORMERS					
ISSUE	PAGE NUMBER		SMIZZ		
7/11	14-4	OVERHEAD CONSTRUCTION STANDARD	ppl		

Percent Current Unbalance = Any

Maximum current difference in any leg from average current x 100 Average current

- 3. Single-phase line-to-neutral load shall not be installed between the high side single-phase fuse cutout/disconnect and the step-down/step-up bank.
- 4. For new construction, a solid blade cutout shall be installed between the floating high side neutral bushings and the common neutral and/or ground. The cutout blade should be removed and secured to the pole. This cutout will be used to temporarily ground the floating Wye neutral for routine switching of the high side fuses/disconnects or main line single phase switching that feeds the step-down/step-up transformer(s). This cutout shall be closed prior to any routine switching being performed to energize or de-energize the transformers. The cutout shall be open for normal operations with the blade removed and secured to the pole.
- 5. For existing installations where a solid blade grounding cutout has not been installed between the floating high side neutral bushings and the common neutral and/or ground, a solid blade cutout shall be installed between the floating high side neutral bushings and the common neutral and/or ground. This cutout will be used to temporarily ground the floating Wye neutral for routine single phase switching of the high side fuses/disconnects or main line single phase switching that feeds the step-down/step-up transformers. This cutout shall be closed prior to any routine single phase switching being performed to energize or de-energize the transformers. The cutout shall be open for normal operations with the blade removed and secured to the pole.
- 6. High side arresters shall be installed on the source side of fused cutouts/disconnects. Low side arresters can remain on the transformers.
- 7. Fault locators can be installed on the low side of the step-down/step-up transformer to help identify failures quickly.
- 8. Fuse only the high side of step-down transformers.
- 9. There may be specific instances where a high side 3 phase circuit interrupter may be required. Each feeder will need to be evaluated to determine if such a device is necessary due to inadequate protection from fuses on the high side of the bank.
- 10. A low side gang operated loadbreak switch may be required if the bank is a dedicated supply to an aerial cable or underground cable. This will eliminate the possibility for ferroresonent conditions developing.
- 11. Group operated loadbreak switch devices should be used on the delta side of a floating wye-delta step-down bank.

14.7.40 Protection

The step-down/step-up transformers shall be protected by one of the following methods:

- A. Conventional fusing
- B. Conventional fusing with current limiting fuses
- C. Recloser

The choice would depend on the relative importance, load, short circuit current available, and exposure of the branch.

	TRANSFORMERS					
	SMIZZ		PAGE NUMBER	ISSUE		
se	ppl	OVERHEAD CONSTRUCTION STANDARD	14-5	7/22		

Surge arresters shall be installed on the primary and secondary sides and connected to a driven ground on same pole.

Surge arresters on the Wye side of a floating Wye-Delta installation shall be connected on the source side of the fuses. When a high side fuse blows, there is a neutral shift that causes the voltage on load side of the fuse device to rise above the maximum withstand voltage of the lightning arrester. The arrester will experience thermal runaway, overheat, and then fail.

14.8 PHASING TRANSFORMERS

In Rhode Island, there are several phase rotations utilized throughout the system. Each installation is unique and must be addressed with Engineering Design.

14.8.10 <u>Step-down/Step-up Transformers</u>

When step-down/step-up transformers are installed, they establish new voltages and phase rotations (Systems). It is desirable to identify phases on these systems and to understand the phase rotation and position so they may be paralleled with others of the same voltage.

If two such systems are to be paralleled, the voltage, rotation, and phase position must be the same.

Do not load larger (over 100 kVA) step-down/step-up transformers over 100% of nameplate rating. Overloading will significantly reduce the service life of the transformers.

Feeder protection at primary step-down/ratio bank installations, as shown on standard installation drawings in this Section, shall be provided by fused disconnects (cutouts) on the source side of the bank. Solid blade disconnecting devices may additionally be used on the load side of the bank so bank isolation can be accomplished.

14.8.20 Three Phase Distribution Banks

The drawings for normal distribution transformer banks are arranged for the most convenient wiring of the secondary. They should be followed exactly wherever this is practical. If two overhead transformer banks are to be paralleled, the wiring on each should be identical. If a standard transformer bank is to be paralleled with a 3 phase transformer (padmount or power/station unit type), it may have to be rewired so that phasing is correct.

TRANSFORMERS					
ISSUE	PAGE NUMBER		WIN		
7/15	14-6	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 14.00.002

14.9 SPECIAL CONNECTIONS

14.9.10 Open-Wye and Open-Delta Connected Banks for 3 Phase Services Only

- A. Limit application to the use of 25 kVA transformers or smaller on 2400 Delta, 4160 Wye, 4800 Delta and 8320 Wye volt feeders. 50 kVA transformers or smaller may be used on 12,470 Wye; 13,200 Delta or Wye; 13,800 Delta or Wye; 23,000 Delta or Wye; and 34,500 Wye volt feeders.
- B. Open-Wye and Open-Delta connected transformer banks can be used for the emergency operation of either Delta-Delta or Wye-Delta connected banks when one of the units becomes inoperative. These banks can also be used to supply 3 phase, 4 wire delta loads composed of a large single phase load in conjunction with a small 3 phase load.
- C. When these connections are used to operate purely Delta connected loads under emergency conditions or when one unit out of a Wye-Delta or Delta-Delta bank becomes inoperative, loading of the bank is reduced. If the bank in question is to be connected Open-Wye, the Wye must be grounded. The reduced loading on these banks is equal to 57.7% of the original three unit bank or 86% of the combined kVA of the two units connected.
- D. This transformer connection can be used to supply 3 phase, 4 wire Delta connected loads, composed of large single phase loads in conjunction with small 3 phase Delta loads. This application usually involves the use of different sized (kVA) transformers, with the larger single phase load taken off of the larger of the two transformers.

The selection of correct transformer size (kVA) is dependent on both the connected 3 phase and single phase load. The calculation of the load expected on each transformer is as follows:

 kVA_L = load on larger transformer (both 3 phase and single phase)

kVA_T = load on small transformer (small 3 phase delta)

T = kVA load 3 phase

S = kVA load single phase

Where

$$kVA_L = (S^2 + T^2/3 + ST)^{1/2}$$

$$kVA_T = \frac{\sqrt{3}}{3}T$$

The aforementioned equations assume unity power factor for both single and 3 phase loads.

For example, assume in the course of converting a 5 kV feeder to 15 kV, a customer is encountered with both a 60 A, 240 V Delta service and a 200 A, 120/240 V single phase service. Presently, the customer is being supplied from both a 15 kVA 3 phase Delta pole type transformer and a 25 kVA single phase pole type transformer. Furthermore, the customer is not willing to upgrade his service to 208Y/120 V. Average demand on the customer's 3 phase service is found to be less than 15 kVA and that of the single phase load is found to be 30 kVA. With this information, an Open-Wye bank can be sized to fit the customer's service requirements.

T = kVA load 3 phase = 15 kVA

S = kVA load single phase = 30 kVA

$$kVA_L = (30^2 + 15^2/3 + (30)(15))^{1/2}$$

$$kVA_L = (1425)^{1/2} = 38kVA$$

$$kVAT = \frac{\sqrt{3}}{3}(30) = 17kVA$$

In this case, the customer's present three-phase and single-phase service requirements could be handled by an Open-Wye connected bank composed of both a 50 kVA and 15 kVA transformer. The single phase load must be taken from the 50 kVA transformer.

14.10 HANDLING RETURNED TRANSFORMERS

14.10.10 Procedures

The following guideline outlines procedures for handling returned distribution transformers, including overhead, pad-mounted, subsurface, and subway types.

14.10.20 When To Junk Transformers

Transformers shall be junked under the following conditions:

- A. Transformers 7.5 kVA and below.
- B. Non-usable ratings declare surplus before junking.
- C. Cast iron cases.
- D. Nonstandard mounting.
- E. Repair parts not available.
- F. Primary Codes 035 and 095.
- G. Tap Codes 77, 78, 83 and 89.
- H. PCB transformers (500 ppm and above). **WARNING:** Transformers containing PCB fluid require special handling.
- I. Transformers manufactured during or before 1970 unless the unit is required for assurance/back-up.
- J. Pole type single phase transformers manufactured by Cooper Power Systems at Nacogdoches, Texas during or before January, 2012.

TRANSFORMERS					
ISSUE	PAGE NUMBER		WIN		
7/13	14-8	OVERHEAD CONSTRUCTION STANDARD	ppl		

14.10.30 When To Return Transformers To Stock For Reissue

Return transformers to stock for reissue, without electrical testing, if all of the following apply:

- A. Transformer has non-PCB label.
- B. Transformer was removed on routine change-out or due to new construction.
- C. Transformer bushings, terminals, protective coatings, and other accessory equipment are in good condition.
- D. Single phase transformer with secondary voltage rating of 120/240 or 240/480 (E/2E) with internal secondary connections set up for three wire operation. This applies to transformers with three low voltage terminals 100 kVA and below.

In addition:

- A. Assign new physical data code to transformer if not already assigned.
- B. Inspect condition of transformer markings and replace if necessary.
- C. Remove bottom portion of "Transformer On Stock Status" tag.
- D. Transfer transformer to stock.

© 2022 PPL Corporation. All rights reserved.

Supersedes 7/08 Issue - Added Type Code 42; fixed footer.

<u>**DESCRIPTION**</u> – Code numbers specify five basic items regarding transformers as follows:

00	000	00	00	00
Type Code	Primary Code	Secondary Code	Tap Code	Fuse & Switch Code
(Table 1)	(Table 2)	(Table 3)	(Table 4)	(Table 5)

TABLE 1 – TYPE CODE

	KEY		
OA – Mineral Oil-Filled, Air Cooled LF – Less Flammable-Filled, Air Cooled			
10	Overhead – OA		
11	Overhead – OA w/Stainless Steel Tank		
13	Overhead – LF		
17	Overhead – CSP – OA – with Built In Overload Tripout		
18	Pole type Pad Mounted Deadfront		
20	Auto-Transformer – OA		
30	Pad-mounted – Loop Feed – Dead Front – OA		
31	Pad-mounted – Loop Feed – Dead Front – OA w/Stainless Steel Tank		
32	Pad-mounted – Loop Feed – Live Front – OA		
34	Pad-mounted – Loop Feed – Dead Front – LF		
40	Subway – OA		
41	Subway – OA – Low Profile		
42	Subway – LF – Walk-In Vault		
50	Pad-mounted – Radial Feed – Dead Front – OA		
52	Pad-mounted – Radial Feed – Live Front – OA		
54	Pad-mounted – Radial Feed – Dead Front – LF		
56	Pad-mounted – Radial Feed – Dead Front – Dry		
60	Network – OA		
62	Network – LF		
65	Network – Pad-mounted – LF		
70	Subsurface – Radial Feed – OA		
72	Subsurface – Loop Feed – OA		
80	Self-Regulated – OA		
90	Station Type		
99	Other – Not Listed		
Note:	Transformer types listed above may or may not have surge arresters.		

	PHYSICAL DATA CODE			
		D	ISTRIBUTION TRANSFORMERS	
	ISSUE	PAGE NUMBER		WILL
Business U	se 7/08	14-50	OVERHEAD CONSTRUCTION STANDARD	ppl

Supersedes 7/13 Issue – Corrected footer.

TABLE 2 - PRIMARY CODE

KEY:

(-) Voltage Nomenclature

E₁ √3 E

Any Value of E Other Than E, E₁, or 2E E_2

- * One Primary Bushing Single Phase Overhead Transformers
 ** Two Primary Bushings Single Phase Overhead
 *** Junk Codes

SINGLE PHASE TRANSFORMERS (001 - 500)

001 – 025	E **
005	480
007	600
010	11500
011	12000
012	13800
013	22000
014	13200
015	22900
017	34400
018	34500
022	11000
023	14400

026 - 050	E/2E **
035	2300/4600 ***
040	11000/22000
042	11550/23100

076 – 088	E X 2E **
080	1200 X 2400
082	2400 X 4800
085	11000 X 22000
086	11500 X 23000

089 – 100	E X E ₂ **
095	22000 X 33000 ***

101 – 150	E/E ₁ Y **
108	2160/3740Y
109	2400/4160Y
112	4160/7200Y
114	4800/8320Y
116	6930/12000Y
118	7200/12470Y
119	7620/13200Y
120	7970/13800Y
125	11500/19900Y
126	12000/20780Y
127	12470/21600Y
129	13200/22860Y
131	13800/23900Y
133	14400/24940Y
140	19920/34500Y

151 - 200	E ₁ Grounded Y/E *
155	3740 Grounded Y/2160
157	4160 Grounded Y/2400
159	8320 Grounded Y/4800
165	12470 Grounded Y/7200
167	13200 Grounded Y/7620
169	13800 Grounded Y/7970
175	22860 Grounded Y/13200
177	24940 Grounded Y/14400
178	34400 Grounded Y/19860
180	34500 Grounded Y/19920

	PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS		
SMD		PAGE NUMBER	ISSUE
Business Use ppl	OVERHEAD CONSTRUCTION STANDARD	14-51	7/13

Supersedes 7/08 Issue - Corrected footer.

TABLE 2 - PRIMARY CODE (Continued)

SINGLE PHASE TRANSFORMERS (001 – 500) (Continued)

201 – 250	E/E Grounded Y **
217	13200/22860 Grounded Y
220	14400/24940 Grounded Y

251 – 300	E/E ₁ Y x E/E ₁ Y **
255	2160/3740Y x 7620/13200Y
257	2400/4160Y x 4800/8320Y
258	2400/4160Y x 7200/12470Y
259	2400/4160Y x 7620/13200Y
260	2400/4160Y x 7970/13800Y
263	2400/4160Y x 13800/23900Y
264	4160/7200Y x 7620/13200Y
265	4160/7200Y x 7970/13800Y
267	4160/7200Y x 12470/21600Y
269	4160/7200Y x 13800/23900Y
271	4160/7200Y x 14400/24900Y
272	4800/8320Y x 7200/12470Y
273	4800/8320Y x 7620/13200Y
275	4800/8320Y x 7970/13800Y
277	4800/8320Y x 14400/24940Y
280	7200/12470Y x 19920/34500Y
281	7620/13200Y x 19920/34500Y
282	7970/13800Y x 19920/34500Y

301 – 350	E1 Grd Y/E x E1 Grd Y/E *
310	3740 GrdY/2160 x 13200 GrdY/7620
315	4160 GrdY/2400 x 12470 GrdY/7200
316	4160 GrdY/2400 x 13200 GrdY/7620
317	4160 GrdY/2400 x 13800 GrdY/7970
325	8320 GrdY/4800 x 12470 GrdY/7200
326	8320 GrdY/4800 x 13200 GrdY/7620
327	8320 GrdY/4800 x 13800 GrdY/7970
330	12470 GrdY/7200 x 34500 GrdY/19920
331	13200 GrdY/7620 x 34500 GrdY/19920
332	13800 GrdY/7970 x 34500 GrdY/19920
333	13800 GrdY/7970 x 23900 GrdY/13800

401 – 425	(E/E ₁ Y x E/E ₁ Y x E/E ₁ Y **
405	2400/4160Y x 7200/12470Y x 7620/13200Y
408	2400/4160Y x 7620/13200Y x 7970/13800Y
415	2400/4160Y x 7200/12470Y x 14400/24940Y
419	4800/8320Y x 7620/13200Y x 7970/13800Y
420	2400/4160Y x 7200/12470Y x 7970/13800Y

426 – 450	E ₁ Grd. Y/E x E ₁ Grd. Y/E x E ₁ Grd. Y/E *
432	4160 GrdY/2400 x 13200 GrdY/7620 x 13800 GrdY/7970

451 – 460	E ₁ Grd. Y/E x E ₁ Grd. Y/E x E ₁ Grd. Y/E x E ₁ Grd. Y/E **
453	2400/4160Y x 7200/12470Y x 7620/13200Y x 7970/13800Y

461 - 475 E₁ Grd Y/E x E₁ Grd Y/E x E₁ Grd Y/E x E₁ Grd Y/E *

500	Other		•

	PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS			
	ISSUE	PAGE NUMBER		SMIZE
ı	7/08 14-52		OVERHEAD CONSTRUCTION STANDARD	ppl

Supersedes 7/13 Issue – Added Code 695.

TABLE 2 - PRIMARY CODE (Continued)

THREE PHASE TRANSFORMERS (501 – 999) (Continued)

501 – 550	E	501 – 550	E
505	480	532	12470
507	600	533	13200
515	2400	534	13500
520	4160	535	13800
523	4800	537	14400
525	8320	540	22900
529	11000	542	23900
530	11500	545	34500

551 – 575	E₁Y

576 – 600	E x 2E
580	2400 x 4800
592	11500 x 23000

601 – 635	ExE ₂
605	2400 x 4160
610	2400 x 13200
612	2400 x 13800
614	3740 x 13200
616	4160 x 12470
617	4160 x 13200
619	4160 x 13800
621	4800 x 8320
622	4800 x 13200
623	4800 x 13800
624	8320 x 12470
630	13800 x 22860

636 – 650	E/E ₁ Y
640	2400/4160Y

651 – 675	E ₁ Y/E
652	4160Y/2400

676 – 725	E ₁ Grd Y/E
682	4160 GrdY/2400
684	4330 GrdY/2500
690	12470 GrdY/7200
691	13200 GrdY/7620
693	13800 GrdY/7970
695	22900 GrdY/13220
700	24900 GrdY/14400
705	34500 GrdY/19920

Business Use ppl

I	726 – 740	E/E ₁ Y/E
	730	2400/4160Y/2400

750 - 755	E _{2 X} E ₁ Grd Y/E
750	4800 x 13200 GrdY/7620

826 – 875	E ₁ Grd Y/E x E ₁ Grd Y/E
828	3740 GrdY/2160 x 13200 GrdY/7620
832	4160 GrdY/2400 x 12470 GrdY/7200
833	4160 GrdY/2400 x 13200 GrdY/7620
835	4160 GrdY/2400 x 13800 GrdY/7970
840	8320 GrdY/4800 x 12470 GrdY/7200
841	8320 GrdY/4800 x 13200GrdY/7620
843	8320 GrdY/4800 x 13800 GrdY/7970
860	12470 GrdY/7200 x 34500 GrdY/19920
861	13200 GrdY/7620 x 34500 GrdY/19920
862	13800 GrdY/7970 x 34500 GrdY/19920

876 - 900 E/E₁ Grd Y/E

901 – 925	E/E ₁ Y x E x E ₁ Y/E
905	2400/4160Y x 2400 x 13800Y/7970

926 – 950	E x E ₂ x E ₂
935	4160 x 4800 x 13200

951 – 970	T
951	4160T
955	12470T
957	13200T
959	13800T

971 – 990	TxT
971	4160T x 12470T
973	4160T x 13200T
975	4160T x 13800T
980	4800T x 13200T

990 – 999	Others
997	23000 x 34500
999	Other

PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER	ISSUE
14-53	7/21

Supersedes 7/20 Issue - Addition of new code 57 and 87.

TABLE 3 – SECONDARY CODE

KEY:

(-) E₁ Voltage Nomenclature

√3 E

Any Value of E Other Than E, E₁, or 2E

SINGLE PHASE TRANSFORMERS (01 - 50)

01 – 09	E
01	120
02	240
05	480
07	600
08	14400

21 – 24	E x 2E
21	120 x 240
22	240 x 480
23	292 x 584
24	300 x 600

31 – 40	E/E₁ Y
31	120/208Y
32	265/460Y
33	277/480Y
34	4160/7200Y
35	2400/4160Y
36	4800/8320Y
37	7200/12470Y
38	7620/13200Y
39	7970/13800Y
40	12000/20780

	E/E ₁ Y x E/E ₁ Y
44	2400/4160Y x 4800/8320Y
45	2400/4160Y x 7200/12470Y
46	2400/4160Y x 7620/13200Y

E/2E
120/240
115/230
240/480
292/584

25 – 30	E x E ₂
26	277 x 600
27	300 x 650
28	480 x 600
30	600 x 2400

41 – 43	E₁ Grd Y/E
41	13200 GrdY/7620
42	4160 GrdY/2400

47 – 50	Others
47	120/240/208
48	2400/4160Y x 4160/7200Y
49	120/240/480/600
50	Other

16 – 20	2E/E
16	240/120
17	480/240

THREE PHASE TRANSFORMERS (51 - 99)

51 – 57	E
51	240
52	480
53	600
54	2400
55	4800
56	11500
57	13800

61 – 65	E x 2E
61	240 x 480
63	2400 x 4800

69 – 71	E/E ₁ Y
70	7200/12470Y
71	4360Y/2520

72 – 78	E₁ Y/E
72	216Y/125
73	208Y/120
74	480Y/277
75	4160Y/2400
76	13200Y/7620
77	13800Y/7970
78	600Y/346

79 – 82	E ₁ Grd Y/E
79	4160 GrdY/2400
80	12470 GrdY/7200
81	13200 GrdY/7620
82	13800 GrdY/7970

83 – 85	E/E ₁ Y/E
83	2400/4160Y/2400
86 - 87	E ₁ Grd Y/E
86 - 87 86	E ₁ Grd Y/E 11500 GrdY/6640

90 – 94	T
90	240T
91	208T/120
92	480T/277
93	480T x 240T
94	600T

95 – 99	OTHERS
95	120 x 240/208Y
96	480Y/277 x 208Y/120
97	600 x 2400 x 4800
98	480Y/277 x 600Y/346
99	600 x 2400

	PHYSICAL DATA CODE	
		DISTRIBUTION TRANSFORMERS
ISSUE	PAGE NUMBER	

Business Use 7/21 14-54

OVERHEAD **CONSTRUCTION STANDARD**

Supersedes 7/12 Issue – Updated Tap Code 92; corrected footer.

TABLE 4 – TAP CODE

KEY:

A = Taps Above Primary Nameplate Rating

B = Taps Below Primary Nameplate Rating

- * Codes 14, 21 and 22 replaced actual codes in GIS prior to 5/20/2011 and are only used to reference GIS records preceding that date. All codes are now valid for use in GIS.
- ** Junk Codes (see Section 14.10)

00	None
01	1 - 2½ A
02	2 - 2½ A
04	4 - 2½ A

11	1 - 2½ B
12	2 - 2½ B
13	3 - 2½ B
14	4 - 2½ B
15	5 - 2½ B

21	1 - 2½ A + 3 - 2½ B
22	2 - 2½ A + 2 - 2½ B
23	3 - 2½ A + 1 - 2½ B
27	2 - 2½ A + 4 - 2½ B
29	4 - 2½ A + 2 - 2½ B

31	1 - 5 A
32	2 - 5 A
34	4 - 5 A

41	1-5B
42	2-5B
43	3-5B
44	4 - 5 B

51	1 - 5 A + 2 - 2½ B
53	1-5A+1-5B

61	1 - 10 A
65	1 - 10 B

72	4160 Volt	

Business Use ppl

75	2520/2460/ <u>2400</u> /2340/2280 Volt (Code 22*)
76	4360/4260/4160/4055/3590 Volt (Code 22*)
77	5040/4920/4680/4560 Volt **
78	8720/8520/8100/7900 Volt **
79	11275/ <u>11000</u> /10725/10450/10175 Volt (Code 21*)
80	11800/ <u>11500</u> /11200/10900/10600 Volt (Code 21*)
82	13090/12780/ <u>12470</u> /12160/11850 Volt (Code 22*)
83	13200/12480/11500 Volt **
84	14400/ <u>13800</u> /13200/12870/12540 Volt (Code 21*)
85	13860/13530/ <u>13200</u> /12870/12540 Volt (Code 22*)
86	14400/14100/13800/13500/13200 Volt (Code 14*)
87	14400/14100/ <u>13800</u> /13500/13200 Volt (Code 22*)
88	15600/15000/ <u>14400</u> /13800/13200 Volt (Code 22*)
89	17200/16770/15910/15480 Volt **
90	14100/ <u>13800</u> /13500/13200/12900 Volt (Code 21*)
92	23473/ <u>22900</u> /22328/21755/21183 Volt (Code 21*)
94	36200/35300/ <u>34400</u> /33500/32600 Volt (Code 22*)
96	36225/35363/ <u>34500</u> /33638/32775 Volt (Code 22*)
98	14400/14040/13680/13320/12960 Volt (Code 14*)
99	Others

PHYSICAL DATA CODE
DISTRIBUTION TRANSFORMERS

OVERHEAD CONSTRUCTION STANDARD

10	
PAGE NUMBER	ISSUE
14-55	7/12

TABLE 5 - FUSE & SWITCH CODE (00 - 99)

00	None				
04	Bayonet Fuse Holder (Loadbreak) With Expulsion Link Without Isolation Link Or				
01	Current Limiting Fuse				
02	Bayonet Fuse Holder (Loadbreak) With Expulsion Link And With Isolation Link				
04	Bayonet Fuse Holder (Loadbreak) With Current Limiting Fuse				
0.5	Bayonet Fuse Holder (Loadbreak) With Expulsion Link And With Current Limiti Fuse Under Oil				
05					
07	Bayonet Fuse Holder (Loadbreak) With Expulsion Link Without Isolation Link (
07	Current Limiting Fuse And With Four Position Loadbreak Switch Under Oil				
08	Bayonet Fuse Holder (Loadbreak) With Expulsion Link With Isolation Link And With				
00	Four Position Loadbreak Switch Under Oil				
11	Drywell Cannister (Loadbreak) With Current Limiting Fuse				
12	Drywell Cannister (Non-Loadbreak) With Current Limiting Fuse				
21	Externally Mounted Hinge Type, Current Limiting Fuse				
32	Current Limiting Fuse With Arc-Strangler Loadbreaking Device				
33	Single Current Limiting Fuse (Clip Mounted) And Arc-Strangler Switchblade				
33	(Tandem-Unit Mounting)				
34	Parallel Current Limiting Fuses (Clip Mounted) And Arc-Strangler Switchblade				
	(Tandem-Unit Mounting)				
35	Single Current Limiting Fuse (Hinge Mounted)				
36	Parallel Current Limiting Fuse (Unitized-Hinge Mounted)				
37	Single Current Limiting Fuse (Clip Mounted)				
38	Parallel Current Limiting Fuse (Unitized-Clip Mounted)				
51	Internal Weak Link Fuse Under Oil				
53	Internal Weak Link Fuse Under Oil With Secondary Breaker				
55	Secondary Breaker With No Internal Weak Link Fuse Under Oil				
60	Two Position Loadbreak Switch Under Oil Without Fuse				
61	Four Position Loadbreak Switch Under Oil Without Fuse				
62	Four Position Loadbreak Switch Under Oil With Current Limiting Fuse				
75	Three Position Deadbreak Switch With Two Electrical Interlocks Scheme				
76	Three Position Mag Break Switch With Locked Energized Interlock Scheme				
80	Network Protector				
99	Other				

	PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS				
	ISSUE	PAGE NUMBER		AMIZZ	
Business U	se 1/06	14-56	OVERHEAD CONSTRUCTION STANDARD	ppl	

EXPLANATION OF VOLTAGE RATINGS

KEY:

 $E_1 = \sqrt{3} E$ $E_2 = \text{Any Value Of E Other Than E, } E_1 \text{ or } 2E$

SINGLE PHASE TRANSFORMERS						
Primary Code Numbers	Secondary Code Numbers	Symbol (Voltage)	Typical Rating	Typical Winding	Explanation	
001-025	01 - 09	E	34500	لسساً	Indicates a winding for connection on an E volt system.	
026-050	10 - 15	E/2E	120/240		Indicates a winding for multiple, series or three-wire service.	
051-075	16 - 20	2E/E	240/120		Indicates a winding for 2E volts, two-wire full kVA, or for 2E/E volts three-wire service with one-half kVA available from mid-point to each outside terminal.	
076-088	21 - 24	E x 2E	1200 x 2400		Indicates a winding for multiple or series operation only. (Not for three-wire service).	
089-100	25 - 30	E x E ₂	22000 x 33000			
101-150	31 - 40	E/E ₁ Y	2400/4160 Y	لسسا	Indicates a winding for connection on an E volt system or Y connection on an E ₁ volt system.	

PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS				
SMILE.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	14-57	1/06	

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 14.00.003

EXPLANATION OF VOLTAGE RATINGS (Continued)

		SINGLE F	HASE TRANSFORM	MERS (Continued)	
Primary Code Numbers	Secondary Code Numbers	Symbol (Voltage)	Typical Rating	Typical Winding	Explanation
151-200	41 - 43	E ₁ GrdY/E	124700 GrdY/7200	لسسا	Indicates a winding with reduced insulation at the neutral end. The neutral end may be connected directly to the tank for connection single phase or in Y on an E ₁ volt system with the neutral end of the winding effectively grounded.
201-250	1	E/E₁Grd Y	7620/13200 Grd Y	أسسا	Indicates a winding with reduced insulation for Y connection on an E ₁ volt system with the transformer neutral effectively grounded or for connection on an E volt system.
251-300	44 - 45	E/E ₁ Y x E/E ₁ Y	2400/4160 Y x 7200/12470 Y	luuul	Indicates a winding for connection on an E volt system of Y connection on an E ₁ volt system.
301-350		E ₁ Grd Y/E x E ₁ Grd Y/E	4160 Grd Y/2400 x 12470 Grd Y/7200	لسسا	Indicates a winding with reduced insulation of the neutral end. The neutral end may be connected directly to the tank for connection single phase or in Y on an E ₁ volt system with the neutral end of the winding effectively grounded.
401-425		E/E ₁ Y x E/E ₁ Y x E/E ₁ Y	2400/4160 Y x 7200/12470 Y x 7620/13200 Y	l	Indicates a winding for connection on an E volt system or Y connection on an E ₁ volt connection.

PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS	ISSUE PAGE NUMBER OVERHEAD CONSTRUCTION STANDARD Ppl							
		ISSIIE	DAGE NUMBER		1.17			

Supersedes 1/06 Issue - Corrected footer.

EXPLANATION OF VOLTAGE RATINGS (Continued)

	SINGLE PHASE TRANSFORMERS (Continued)					
Primary Code Numbers	Secondary Code Numbers	Symbol (Voltage)	Typical Rating	Typical Winding	Explanation	
426-450		E ₁ Grd Y/E x E ₁ Grd Y/E x E ₁ Grd Y/E	4160 Grd Y/2400 x 12470 Grd Y/7200 x 13800 Grd Y/7970	لسسا	Indicates a winding with reduced insulation at the neutral end. The neutral end may be connected directly to the tank for connection single phase or in Y on and E ₁ volt system with the neutral end of the winding effectively grounded.	
451-460		E/E ₁ Y x E/E ₁ Y x E/E ₁ Y x E/E ₁ Y	2400/4160 Y x 7200/12470 Y x 7620/13200 Y x 7970/13800 Y	لسسا	Indicates a winding for connection on an E volt system or Y connection on an E ₁ volt system.	
461-475		E ₁ Grd Y/E x E ₁ Grd Y/E x E ₁ Grd Y/E x E ₁ Grd Y/E	3740 Grd Y/2160 x 4160 Grd Y/2400 x 13200 Grd Y/7620 x 13800 Grd Y/7970	لسسا	Indicates a winding with reduced insulation at the neutral end. The neutral end may be connected directly to the tnak for connection single phase or in Y on an E ₁ volt system with the neutral end of the winding effectively grounded.	
		1	THREE PHASE TRA	NSFORMERS		
501-550	51 - 57	E	11500		Indicates a winding permanently connected.	
551-575	58 - 60	E ₁ Y	4160 Y		Indicates a winding permanently Y connected with the neutral isolated.	
576-600	61 - 65	E x 2E	2400 x 4800	الكالكالكا	Indicates a permanently connected winding for multiple or series operation.	

PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS			
WW.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	14-59	1/06

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 14.00.003

EXPLANATION OF VOLTAGE RATINGS (Continued)

		THREE	PHASE TRANSFO	RMERS (Continued)	
Primary Code Numbers	Secondary Code Numbers	Symbol (Voltage)	Typical Rating	Typical Winding	Explanation
601-635	66 - 68	E x E ₂	2400 x 13200		Indicates a winding permanently connected.
636-650	69 - 71	E/E ₁ Y	2400/4160 Y		Indicates a winding for connection E volts or E ₁ Y volts with the neutral isolated.
651-675	72 - 77	E ₁ Y/E	4160 Y/2400		Indicates a winding permanently Y connected with fully insulated neutral available.
676-725	78 - 82	E ₁ Grd Y/E	13800 Grd Y/7970		Indicates a winding having reduced insulation and permanently Y connected with the transformer neutral grounded.
726-740	83 - 85	E/E ₁ Y/E	2400/4160 Y/2400		Indicates a winding for connection E volts or E ₁ Y volts with a fully insulated neutral available.
750	73 - 74	$E_{2X}E_{1}GrdY/E$	4800 x 13200 GrdY/7620		Indicates a winding for connection E ₂ volts or E ₁ Y volts having a reduced insulation and permanently connected with the transformer neutral grounded.

PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS						
ISSUE PAGE NUMBER OVERHEAD						
se 1/07	14-60	CONSTRUCTION STANDARD	ppl			

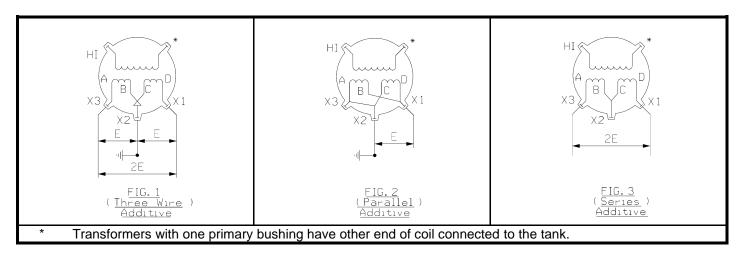
Supersedes 1/07 Issue - Corrected footer.

EXPLANATION OF VOLTAGE RATINGS (Continued)

		THREE I	PHASE TRANSFOR	MERS (Continued)	
Primary Code Numbers	Secondary Code Numbers	Symbol (Voltage)	Typical Rating	Typical Winding	Explanation
826-875		E ₁ Grd Y/E x E ₁ Grd Y/E	4160 Grd Y/2400 x 13800 Grd Y/7970		Indicates a winding having reduced insulation and permanently Y connected with the transformer neutral grounded.
876-900		E/E ₁ Grd Y/E	7970/13800 Grd Y/7970		Indicates a winding having reduced insulation for Y connection on an E ₁ volt system with the transformer neutral grounded, or for connection on an E volt system.
901-925		E/E ₁ Y/E x E ₁ Y/E	2400/4160 Y/2400 x 13800 Y/7970		
926-950		E x E ₂ x E ₂	4160 x 4800 x 13200		Indicates a winding permanently connected.
951-970	90 - 94	Т	13800 T	}	Indicates a primary winding consisting of two windings - the main and a teaser.
971-990		TxT	4160 T x 13800 T	مسكسه	Indicates a primary winding consisting of two windings - the main and a teaser.
991-999	95 - 99	Others -	Those Three Phase Classifications Above	Transformers That Do Not Fall Into	One Of The

PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS				
WIVE		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	14-61	1/06	

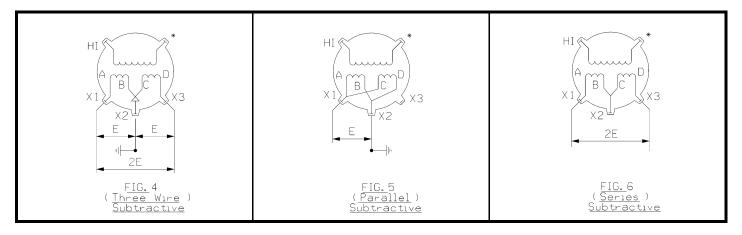
- 1. <u>NOTE VOLTAGE</u> marked on transformer nameplate and transformer tag. All changes to internal connections should be made in the shop.
- 2. <u>POLARITY DESIGNATION</u> Additive has X1 on the right and H1 on the left as viewed from the secondary side. Subtractive has X1 and H1 on the left as viewed from the secondary side. Single phase transformers, 200 kVA and under having high voltage winding rated 8660 volts and below, have additive polarity. All other single phase transformers have subtractive polarity.

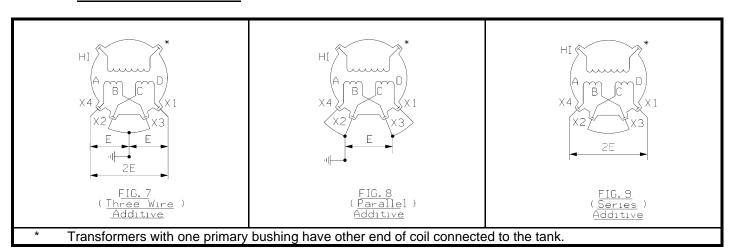

3. SECONDARY CONNECTIONS

- A. 120/240 (E/2E) and 240/480 (E/2E) can be connected for series, parallel or three wire operation. Transformers 100 kVA and below have three low voltage terminals and transformers 167 - 500 kVA have four low voltage terminals. See Figures 1 through 14.
- B. 240/120 (2E/E) can be connected for three wire or two wire operation, but not for parallel operation. Note

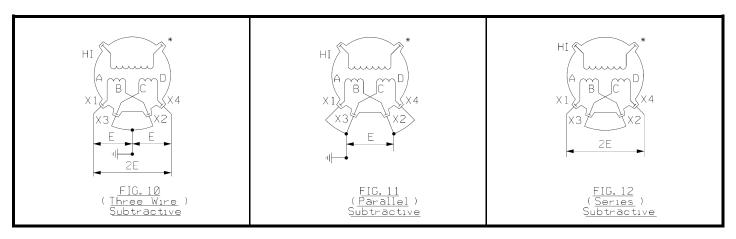
 only one-half of the kVA rating available between center tap terminal and either extreme terminal. Three low voltage terminals are provided on all kVA sizes. See Figures 15 through 18.
- C. 292 x 584 (E x 2E) can be connected for series or parallel operation. Transformers will have four low voltage terminals on all kVA sizes. See figures 8, 9, 11 and 12. This rating must be used with primary taps.
- D. 277/480 Y (E/E₁Y) and 600 (E) transformers have two low voltage terminals on all sizes. See Figures 19 through 21.

New single ratio overhead transformers for existing 600 V customers should be ordered 292 x 584 with primary taps so that 600 V can be obtained from the 584 volt connection. These transformers can also be used at 277 volts. Specify the 600 V rating for dual ratio transformers.

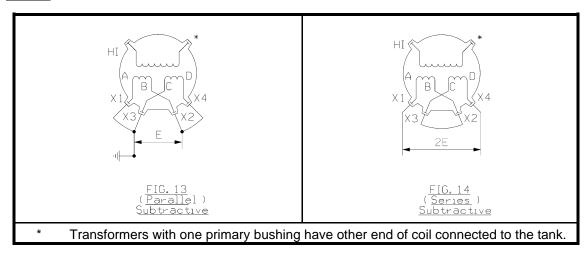

4. 100 kVA AND BELOW WITH E/2E VOLT SECONDARIES - PRIMARY 8660 VOLTS AND BELOW


PHYSICAL DATA CODE DISTRIBUTION TRANSFORMERS				
ISSUE	PAGE NUMBER		WW.	
 1/06	14-74	OVERHEAD CONSTRUCTION STANDARD	ppl	

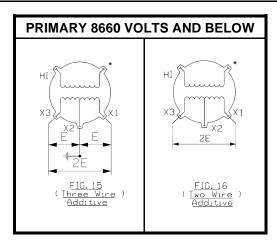
Supersedes 1/06 Issue - Corrected footer.

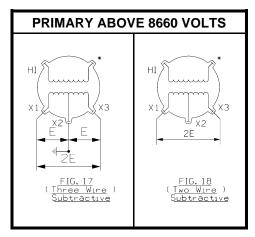

5. 100 kVA AND BELOW WITH E/2E VOLT SECONDARIES - PRIMARY ABOVE 8660 VOLTS

6. <u>167 kVA WITH E/2E AND 167 kVA AND BELOW WITH E X 2E VOLT SECONDARIES – PRIMARY</u> 8660 VOLTS AND BELOW

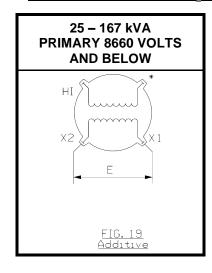


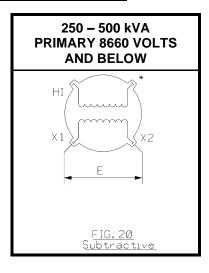
7. 167 kVA WITH E/2E AND 167 kVA AND BELOW WITH E X 2E VOLT SECONDARIES – PRIMARY ABOVE 8660 VOLTS




SECONDARY CONNECTIONS AND POLARITY SINGLE PHASE TRANSFORMERS			
SMI/Z		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	14-75	1/06

8. <u>250 – 500 kVA WITH E/2E AND E X 2E VOLT SECONDARIES – PRIMARY ABOVE AND BELOW 8660 VOLTS</u>




9. 167 kVA AND BELOW WITH 2E/E VOLT SECONDARIES



10. 25 - 500 kVA WITH E OR E₁/Y VOLT SECONDARIES

	SECONDARY CONNECTIONS AND POLARITY SINGLE PHASE TRANSFORMERS							
ISSUE	PAGE NUMBER		WW.					
Use 1/06	14-76	OVERHEAD CONSTRUCTION STANDARD	ppl					

CII	RCUIT VOLTA	GE	PRI.	SEC.	TAP	STD.	TRANSFORMER NAMEPLAT	TE VOLTAGES		3Ø
PRIMARY	SECONDARY	PHASE				ITEM	PRIMARY	SECONDARY	KVA SIZES	DIAGRAM #
	120/240	1Ø ΔY	258 259 260	10 10 10	00 00 00	T91AD T91AF T91AC	2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	120/240	10-100	-
	208Y/120	3Ø ΔY	258 259 260	10 10 10	00 00 00	T91AD T91AF T91AC	2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	120/240	10-100	2
2400 V	480Y/277	3Ø ΔY	258 259 260	33 33 33	00 00 00	T91AE	2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	277/480Y	25-167	2
DELTA 3 WIRE	240 (1) (2)	3Ø ΔΔ	258 259 260	10 10 10	00 00 00	T91AD T91AF T91AC	2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	120/240	10-100	8
	480 (1) (2)	3Ø ΔY (5)	258 259 260	33 33 33	00 00 00		2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	277/480Y	25-167	2 or 4
	600 (1) (2)	3Ø ΔΔ	258 259 260	23 23 23	00 00 00		2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	292 X 584	25-167	8
	120/240	1Ø YY	258 259 260	10 10 10	00 00 00	T91AD T91AF T91AC	2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	120/240	10-100	-
	208Y/120	3Ø YY	258 259 260	10 10 10	00 00	T91AD T91AF T91AC	2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	120/240	10-100	1
4160 V WYE	480Y/277	3Ø YY	258 259 260	33 33 33	00 00 00		2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	277/480Y	25-167	1 or 3
4 WIRE	240 (1) (3)	3Ø YΔ (4)	258 259 260	10 10 10	00 00 00	T91AD T91AF T91AC	2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	120/240	10-100	7
	480 (1) (3)	3Ø YY (5)	258 259 260	33 33 33	00 00 00		2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	277/480Y	25-167	1 or 3
	600 (1) (3)	3Ø YΔ (4)	258 259 260	23 23 23	00 00		2400/4160Y x 7200/12470Y 2400/4160Y x 7620/13200Y 2400/4160Y x 7960/13800Y	292 X 584	10-100	7
	120/240	1Ø ΔΥ	272 273 275	10 10 10	00 00	T91BA T91BC	4800/8320Y x 7200/12470Y 4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	120/240	10-100	
	208Y/120	3Ø ΔΥ	273 275	10 10	00 00		4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	120/240	10-100	2
4800 V DELTA 3 WIRE	480Y/277	3Ø ΔY	273 275	33 33	00 00		4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	277/480Y	25-167	2 or 4
3 WIKE	240 (1) (2)	3Ø ΔΔ	273 275	10 10	00 00		4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	120/240	10-100	8
	480 (1) (2)	3Ø ΔY (5)	273 275	33 33	00 00		4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	277/480Y	10-100	2
	600 (1) (2)	3Ø ΔΔ	273 275	23 23	00 00		4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	292 X 584	25-167	8
	120/240	1Ø YY	272 273 275	10 10 10	00 00 00	T91BA T91BC	4800/8320Y x 7200/12470Y 4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	120/240	10-100	-
	208Y/120	3Ø YY	272 273 275	10 10 10	00 00 00	T91BA T91BC	4800/8320Y x 7200/12470Y 4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	120/240	10-100	1
8320 V WYE	480Y/277	3Ø YY	273 275	33 33	00 00		4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	277/480Y	25-167	1 or 3
4 WIRE	240 (1) (3)	3Ø YΔ (4)	272 273 275	10 10 10	00 00 00	T91BA T91BC	4800/8320Y x 7200/12470Y 4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	120/240	10-100	7
	480 (1) (3)	3Ø YY (5)	273 275	33 33	00 00		4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	277/480Y	25-167	1 or 3
	600 (1) (3)	3Ø YΔ (4)	273 275	23 23	00 00		4800/8320Y x 7620/13200Y 4800/8320Y x 7960/13800Y	292 X 584	10-100	7

SECONDARY CONNECTIONS AND POLARITY SINGLE PHASE TRANSFORMERS

OVERHEAD CONSTRUCTION STANDARD

 PAGE NUMBER
 ISSUE

 14-77
 7/08

CII	RCUIT VOLTA	GE	DDI	SEC.	TAP	STD.	TRANSFORMER NAMEPLA	TE VOLTAGES	STD.	3Ø
PRIMARY	SECONDARY	PHASE	PRI. CODE	CODE		ITEM	PRIMARY	SECONDARY	KVA SIZES	DIAGRAM #
	120/240	1Ø YY	165	10	00	T91DA	12470GRDY/7200	120/240	10-100	-
12470 V	208Y/120	3Ø YY	165	10	00	T91DA	12470GRDY/7200	120/240	10-100	1
WYE	480Y/277	3Ø YY	165	33	00	T91DC	12470GRDY/7200	277/480Y	25-167	1 or 3
4 WIRE	240 (1) (2)	3Ø Y∆ (4)	118	10	00	T91DA	7200/12470Y	120/240	10-100	7
	480 (1) (2)	3Ø YY (5)	165	33	00	T91DC	12470GRDY/7200	277/480Y	25-167	1 or 3
	600 (1) (2)	3Ø YΔ (4)	118	23	00		7200/12470Y	292 X 584	25-167	7
	120/240	1Ø YY	167	10	00	T91DE	13200GRDY/7620	120/240	10-100	-
13200 V	208Y/120	3Ø YY	167	10	00	T91DE	13200GRDY/7620	120/240	10-100	1
WYE	480Y/277	3Ø YY	167	33		T91DEA	13200GRDY/7620	277/480Y	25-167	1 or 3
4 WIRE	240 (1) (3)	3Ø Y∆ (4)	119	10	00	T91DE	7620/13200Y	120/240	10-100	7
	480 (1) (3)	3Ø YY (5)	167	33		T91DEA	13200GRDY/7620	277/480Y	25-167	1 or 3
	600 (1) (3)	3Ø Y∆ (4)	119	23	00		7620/13200Y	292 X 584	10-100	7
	120/240	1Ø ΔY	133	10			14400/24940Y (at 13200 V tap)	120/240	10-100	
	208Y/120	3Ø ΔY	133	10			14400/24940Y (at 13200 V tap)	120/240	10-100	2
13200 V DELTA	480Y/277	3Ø ΔY	133	33			14400/24940Y (at 13200 V tap)	277/480Y	25-167	2 or 4
3 WIRE	240 (1) (2)	3Ø ΔΔ	133	10			14400/24940Y (at 13200 V tap)	120/240	10-100	8
	480 (1) (2)	3Ø ΔY (5)	133	33			14400/24940Y (at 13200 V tap)	277/480Y	10-100	2
	600 (1) (2)	3Ø ΔΔ	133	23			14400/24940Y (at 13200 V tap)	292 X 584	25-167	8
	120/240	1Ø YY	169	10	00	T91EB	13800GRDY/7960	120/240	10-100	-
13800 V	208Y/120	3Ø YY	169	10	00	T91EB	13800GRDY/7960	120/240	10-100	1
WYE	480Y/277	3Ø YY	169	33		T91EBA	13800GRDY/7960	277/480Y	25-167	1 or 3
4 WIRE	240 (1) (3)	3Ø Y∆ (4)	120	10	00	T91EA	7960/13800Y	120/240	10-100	7
	480 (1) (3)	3Ø YY (5)	169	33		T91EBA	13800GRDY/7960	277/480Y	25-167	1 or 3
	600 (1) (3)	3Ø Y∆ (4)	120	23	00		7960/13800Y	292 X 584	10-100	7
	120/240	1Ø ΔY	133	10			14400/24940Y (at 13800 V tap)	120/240	10-100	-
	208Y/120	3Ø ΔY	133	10			14400/24940Y (at 13800 V tap)	120/240	10-100	2
13800 V DELTA	480Y/277	3Ø ΔY	133	33			14400/24940Y (at 13800 V tap)	277/480Y	25-167	2 or 4
3 WIRE	240 (1) (2)	3Ø ΔΔ	133	10			14400/24940Y (at 13800 V tap)	120/240	10-100	8
	480 (1) (2)	3Ø ΔY (5)	133	33			14400/24940Y (at 13800 V tap)	277/480Y	25-167	2
	600 (1) (2)	3Ø ΔΔ	133	23			14400/24940Y (at 13800 V tap)	292 X 584	10-100	8
	120/240	1Ø YY	177	10			24900GRDY/14400 (at 13800 V tap)	120/240	10-100	-
	208Y/120	3Ø YY	177	10			24900GRDY/14400 (at 13800 V tap)	120/240	10-100	1
23000 V WYE	480Y/277	3Ø YY	177	33			24900GRDY/14400 (at 13800 V tap)	277/480Y	25-167	1 or 3
4 WIRE	240 (1) (3)	3Ø YΔ (4)	144	10			14400/24940Y (at 13800 tap)	120/240	10-100	7
	480 (1) (3)	3Ø YY (5)	144	33			14400/24940Y (at 13800 tap)	277/480Y	25-167	1 or 3
	600 (1) (3)	3Ø YΔ (4)	144	23			14400/24940Y (at 13800 tap)	292 X 584	10-100	7
	120/240	1Ø ΔY	015	10	00		22900	120/240	10-100	-
23000 V	208Y/120	3Ø ΔY	015	10	00		22900	120/240	10-100	2
DELTA	480Y/277	3Ø ΔY	015	33	00		22900	277/480Y	25-167	2 or 4
3 WIRE	240 (1) (2)	3Ø ΔΔ	015	10	00		22900	120/240	10-100	8
	480 (1) (2)	3Ø ΔY (5)	015	33	00		22900	277/480Y	25-167	2
	600 (1) (2)	3Ø ΔΔ	015	23	00		22900	292 X 584	10-100	8

			NDED TRANSFORMERS FOR STA O AND 3Φ OVERHEAD CIRCUITS	NDARD
	ISSUE	PAGE NUMBER		WIA.
Business U	se 1/07	14-78	OVERHEAD CONSTRUCTION STANDARD	ppl

CI	RCUIT VOLTA	GE	PRI.	SEC.	TAP	STD.	TRANSFORMER NAMEPLATE VOLTAGES		STD.	STD.	3Ø
PRIMARY	SECONDARY	PHASE		CODE		ITEM	PRIMARY	SECONDARY	KVA SIZES	DRAWING	DIAGRAM #
	120/240	1Ø YY	180	10	00	T91HC	34500GRDY/19920	120/240	10-100		-
0.4500.14	208Y/120	3Ø YY	180	10	00	T91HC	34500GRDY/19920	120/240	10-100		1
34500 V WYE	480Y/277	3Ø YY	180	33	00	T91HD	34500GRDY/19920	277/480Y	25-167		1
4 WIRE	240 (1) (3)	3Ø YΔ (4)	180	10	00	T91HC	19920/34500Y	120/240	10-100		7
4 WIKE	480 (1) (3)	3Ø YY (5)	180	33	00	T91HD	19920/34500Y	277/480Y	25-167		7
	600 (1) (3)	3Ø YΔ (4)	180	23	00		19920/34500Y	292 X 584	10-100		7

Notes:

- 1. Non-standard voltage for maintenance only.
- 2. For Open-Delta connection, see Diagram #10.
- 3. For Open-Wye connection, see Diagram #9.
- 4. Do not ground the primary neutral.
- Company will only supply a 480Y service. Customer must provide protection from ground faults on a 480 V Delta service.

INSTALLATION NOTES:

- Use conventional mineral filled transformers for new installations. Physical Data Code for Type is 10.
- For less flammable filled conventional transformers for special installations, Physical Data Code for Type is 13.
- Use CSP transformers for maintenance only in New York. Physical Data Code for Type is 17.
- Use transformers without taps unless otherwise directed. Physical Data Code for Taps is 00.
- Unless otherwise directed, internal fused or switches are not needed. Physical Data Code for Fuses and Switches is 00
- For other transformer voltages and configurations, refer to the Physical Data Code on Page 14-101.
- Do not use CSP transformers on Delta Secondary Systems. A tripped breaker will result in customer voltage imbalance.
- 167 kVA, 120/120V transformers have 4 low voltage bushings. 277 V transformers have 2 low voltage bushings. All others have 3 low voltage bushings.
- 277 V secondary transformers with primary ± taps can supply existing 265 V customers. Primary taps must be +5% (max. setting) to provide 263 volts secondary.
- Non-directly connected CSP surge arresters (pre-1990 units only) shall be gapped as follows: 2,400 V ½";
 4,800 V ¾"; 7,620 V ½".
- Single bushing transformers shall not be used for Wye-Delta connections.
- For 3Ø Delta connected transformers (ΔΔ, YΔ), use transformers with identical turns ratios (preferable from same manufacturer) on all three phases to guard against capacity loss. A mismatch in turns or mixing low loss type transformers (e.g. "Amorphous Core") with standard types will result in a high circulating current which increases losses and decreases capacity to serve the electric system.

RECOMMENDED TRANSFORMERS FOR STANDARD 1Φ AND 3Φ OVERHEAD CIRCUITS							
SMI//		PAGE NUMBER	ISSUE				
ppl	OVERHEAD CONSTRUCTION STANDARD	14-79	7/08				

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 14.00.003

Note: These weights are approximate and are given as comparative information. Actual Unit weights may be found on the Transformer Nameplate. Refer to Transformer Specifications MS 2523, MS 2526 and MS 2541 (Stepdowns) for additional information.

	imate Weights for 1Φ d Transformers (2004)		Overall Height and Weight LIMITS for Standard 1Φ Overhead Transformers per NGRID Specifications MS 2523 and MS 2541					
kVA	Averaged Lbs. Wt.	Size	Max. Weight	Max. Height				
10	230-280	10 thru 25 kVA	500 (lbs.)	44" (Inches)				
25	320-390	37 & 50 kVA	750	48"				
50	550-640	75 & 100 kVA	2000	50"				
75	850-970	167 &250 kVA	2000					
100	1250	333 & 500 kVA	3000					

kVA		1992	- 1989		1988 – 1980				1979 - 1969			
Dual		15	kV	Dι	ıal	15	kV	Dι	ıal	15	kV	
	Conv.	CSP	Conv.	CSP	Conv.	CSP	Conv.	CSP	Conv.	CSP	Conv.	CSP
10	270	277	193	203	280	278	225	254	266	338	224	235
15	303	347	224	293	347	343	305	335	381	397	297	330
25	400	416	400	384	413	408	378	413	474	456	360	410
37 ½	510	511	540	550	550	560	343	340	541	544	505	555
50	663	720	740	720	686	719	698	675	651	655	650	705
75	895	903	858	895	903	880	870	975	986	1120	1005	1054
100	1054		1129		990	1350	1013	1060	1280	1330	1140	1160
167	1457		1568		1457		1482		1475		1425	
250			1887				1866				1900	
333			2250				2250				2308	
500			2710				2749				3365	

kVA		1968	- 1962		1961	1957	1957 -	- 1946	1946 - 1937	
	Du	ıal	15	kV	5	κV	5 kV		5 kV	
	Conv.	CSP	Conv.	CSP	Conv.	CSP	Conv.	CSP	Conv.	
5			165	200	205	205	200	220	240	
10	255	280	230	250	260	265	260	290	360	
15	305	340	270	290	330	340	340	370	420	
25	420	450	395	400	455	455	480	520	570	
37 ½	570	620	575	620	675	690	720		890	
50	670	710	660	720	750	760	850		1160	
75	920	1020	910	940	975	995	1130		1350	
100	1060	1180	1050	1080	1165	1125	1350		1450	
167	1380		1330		1400	1430				
250			1640							
333			2100							
500			3230							

			IDED TRANSFORMERS FOR STA AND 3Ф OVERHEAD CIRCUITS	NDARD
	ISSUE	PAGE NUMBER		WW.
Business U	se 7/08	14-80	OVERHEAD CONSTRUCTION STANDARD	ppl

Some of the following drawings contain default **Macro Units (MU)** and **Compatible Units (CU)** in the header for quick reference. These default MU's and CU's are shown with some of the characters in parentheses. These parenthetical characters are variables that help define the exact MU or CU required in STORMS. The definitions of these variables and the method of constructing the required MU and/or CU are shown below.

MACRO UNIT VARIABLES

(U) = 3 Phase Transformer Bank kVA

(W) = 1 Phase Transformer kVA

(X) = Primary Physical Data Code (xxx)

(Y) = Secondary Physical Data Code (xx)

(Z) = Tap Physical Data Code (xx)

Example 1:

MU = @WKXPYSZT

(W) for a 100kVA transformer = 100

(X) for a 13200GRDY/7620 Primary = 167

(Y) for a 120/240 V Secondary = 10

(Z) for a transformer with no taps = 00

Complete MU = @100K167P10S00T

COMPATABLE UNIT VARIABLES

(E) = Transformer Description (each tank)

15B = 15kVA and Below

25 = 25kVA

37 = 37½ thru 50kVA

75A = 75kVA thru 100kVA

A100 = Above 100kVA

(F) = Secondary Code (3Ø)

2 = 240V and below

4 = above 240V

(U) = 3 Phase Transformer Bank kVA

(X) = Primary Physical Data Code (xxx)

(Y) = Secondary Physical Data Code (xxx)

(Z) = Tap Physical Data Code (xx)

Example 1:

CU for a Transformer = TVWKXPYSZT

(W) for a 100kVA transformer = 100

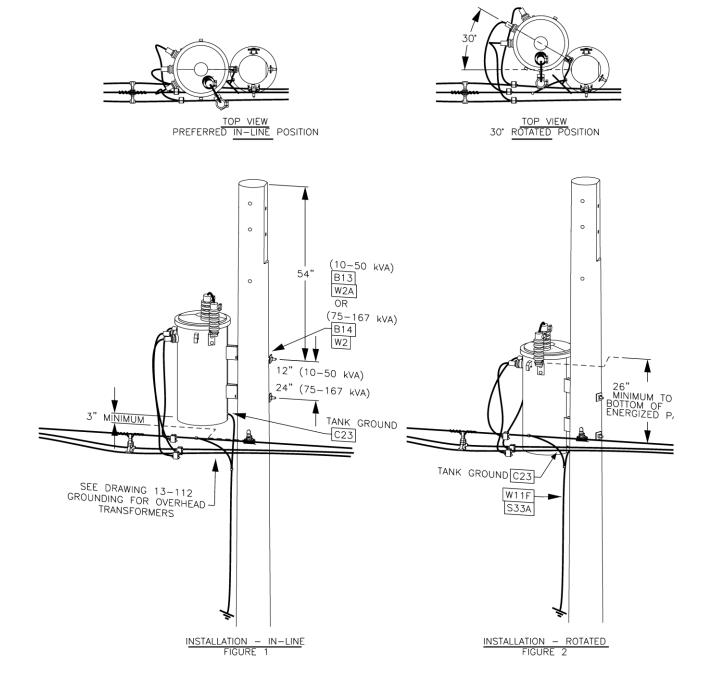
(X) for a 13200GRDY/7620 Primary = 167

(Y) for a 120/240 V Secondary = 10

(Z) for a transformer with no taps = 00

Complete CU = TV167P10S00T

Example 2:


CU for a Cluster Mount = TMEFVS

(E) for a 25kVA Transformer = 25

(F) for a 240V Secondary Voltage = 2

Complete CU = TV252V

	TRANSFORMERS							
WHZ.		PAGE NUMBER	ISSUE					
ppl	OVERHEAD CONSTRUCTION STANDARD	14-81	1/06					

NOTE:

- 1. SEE 14-203 TO 14-271 FOR PRIMARY, SECONDARY AND GROUNDING. 2. SEE PAGE 14-2 FOR PRIMARY AND SECONDARY WIRE SIZE SELECTION. 3. SEE SECTION 17 FOR SPACE ALLOCATION ON JOINT POLES.

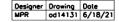
Designer Drowing Dote MPR od14121 6/18/21

	MOUNTING DETAIL 1Φ TRANSFORMER INSTALLATION								
	ISSUE	PAGE NUMBER		WW.					
Busi	7/21 ness Use	14-121	OVERHEAD CONSTRUCTION STANDARD	ppl					

BRACKET SELECTION FOR TRANSFORMERS					
SIZE KVA	MAX. WEIGHT LBS.			CLUSTER	ADAPTER
(EACH TRANSFOMER)	(EACH TRANSFOMER)	TYPE	SPACING	BRACKET *	PLATE *
10 - 50	500	Α	12" (11¼)	T9C	None
75 – 167	2000	В	24"(23¼)	T9D	None
250 - 333	3000	С	24"	T9E	T10
500	2250 - 3000	PLATF (SEE	ORM (36") 14 - 377)	Т6	None

* - REFER TO PAGE 14 - 132 FOR SUPPORT LUGS AND BRACKET DESCRIPTIONS.

NOTES:

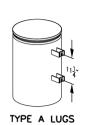

- 1.SEE PAGE 14 121 FOR MOUNTING SINGLE TRANSFORMERS.
- 2.FOR SOFT SOIL CONDITIONS OR TRANSFORMERS WEIGHTING MORE THAN 1,000 LBS. EACH, BACKFILL HOLE AS SHOWN IN FIGURE I.

ALSO USE 8' POLE SETTING DEPTH FOR TRANSFORMERS OF 167 KVA OR LARGER.

(OVER 4500 TOTAL LBS.)

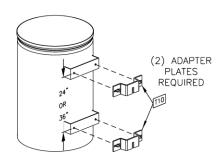
** - THE POLE BUTT DIAMETER OF A
CLASS 3 POLE IS APPROXIMATELY 12" AND A
MINIMUM OF 4" CLEARANCE AROUND POLE
BUTT IS RECOMMENDED FOR PROPER BACKFILLING

- 3.BANKS OF TRANSFOMERS WEIGHTING OVER 2000 LBS. EACH SHALL BE MOUNTED ON PLATFORM (ITEM TMP2) AS SHOWN ON PAGE 14 377 AND THE INSTALLATION SHOULD BE LOCATED OUTSIDE TRAFFIC AREAS OR BARRICADED. USE MINIMUM POLE HEIGHT NECESSARY FOR GROUND CLEARANCE AND AVOID DOWN GUYS.
- 4.SEE PAGE 14 80 FOR TYPICAL TRANSFORMER WEIGHTS.


INSTALLATION DETAIL 3 - 1Φ TRANSFORMER CLUSTER ARRANGEMENT

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 14-131 7/21


STANDARD SUPPORT LUGS ON OVERHEAD DISTRIBUTION TRANSFORMERS AND REGULATORS

10-50KVA TRANSFORMERS
USE %" MOUNTING BOLTS

TYPE B LUGS
75-167KVA TRANSFORMERS
USE 3/4" MOUNTNG BOLTS

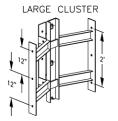
TYPE C LUGS

250-500KVA TRANSFORMERS

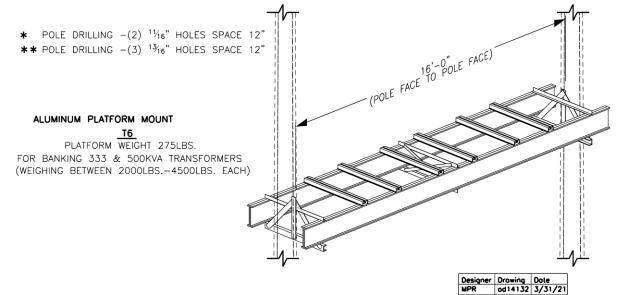
ADAPTER PLATES TO LUGS USE (4) %" BOLTS
ADAPTER PLATES TO POLE USE (2) ¾" BOLTS

TRANSFORMER CLUSTER BRACKETS

SMALL CLUSTER


UP TO 3-25KVA
USE (2) %" THRU BOLTS★
AND 2¼" SQUARE WASHERS

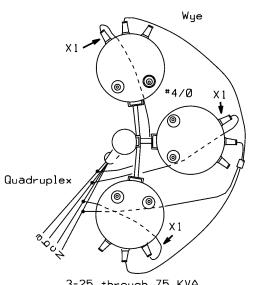
FOR ALL TYPE A LUGS
11¼" SPACING.
500 LBS./POSITION


3-37½KVA TO 3-100KVA
USE (3) ½" THRU BOLTS**
AND 3" CURVED WASHERS

FOR ALL TYPE B LUGS AND MODIFIED TYPE C LUGS WITH 24" SPACING. 2000LBS/POSITION

3-167KVA TO 3-333KVA USE (3) ³/₄" THRU BOLTS** AND 3" CURVED WASHERS

FOR ALL TYPE B LUGS AND MODIFIED TYPE C LUGS WITH 24" SPACING. 3000LBS/POSITION


CLUSTER MOUNTS FOR BANKING 3 - 1Φ TRANSFORMERS

7/21 PAGE NUMBER
14-132

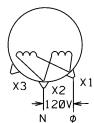
OVERHEAD CONSTRUCTION STANDARD

Delta

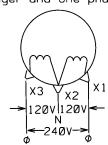
3-25 through 75 KVA Transformers
4W 208Y/120V Wye Service

(19) ·(@) 3-25 through 75 KVA transformers

3W 240 Delta Service


Note:

Secondary voltage test readings (taken with a high-impedence voltmeter) will be inaccurate if low voltage breaker is open on CSP transformers.

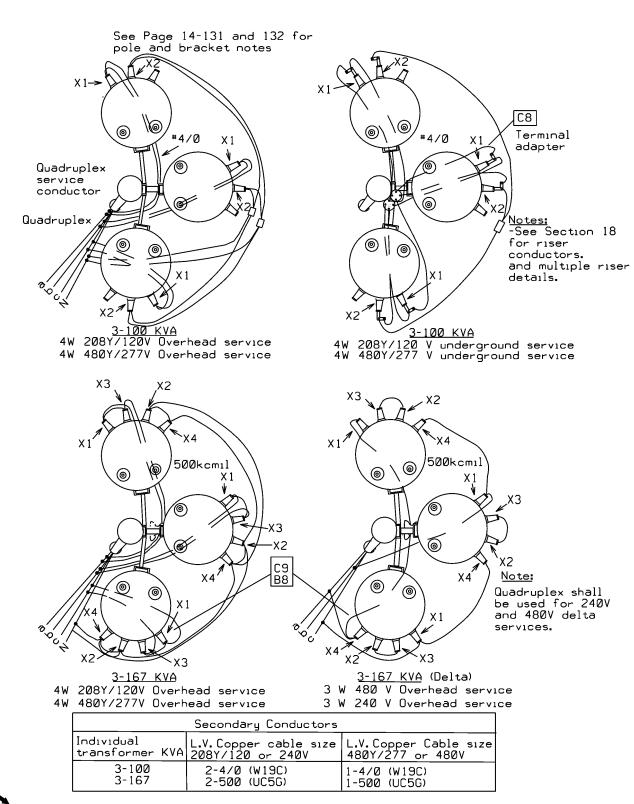

Notes:

No modification of internal taps required for delta sevice

Use quadruplex service conductors, as shown in Section 11, bounding the grounded messenger and one phase conductor together.

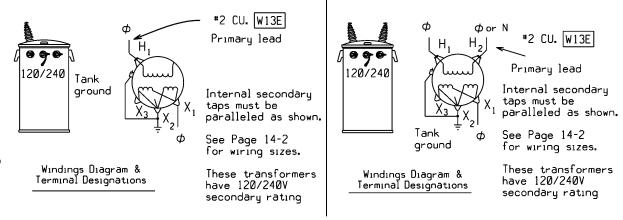
Internal secondary taps require paralleling. X3 bushing is unused

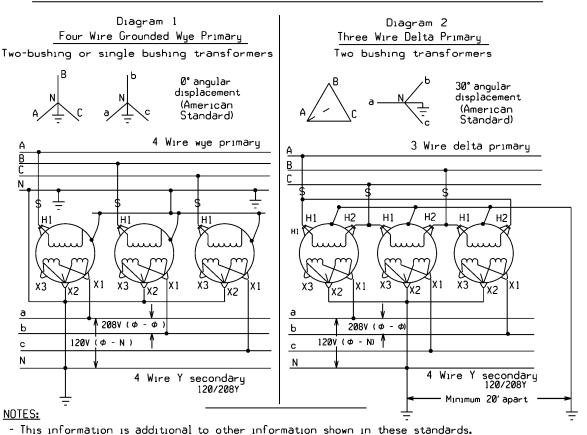
Standard series connection winding


Secondary Conductors				
Individual	208Y/120 o	r * 240 V Service	48ØY/277 or	* 480 V Service
transformer KVA Size	L.V. CU. Tank	Multiplex service conductor	L.V. CU. tank wire	Multiplex Service Conductor
25 50 75	4/0 (W19C)	336.4 (W16E) 336.4 (W16E) double 336.4 (16E)	#2 (W13E) 4/0 (W19C) 4/0 (W19C)	#1/0 (W15C) #336.4 (W16E) #336.4 (W16E)

 $\underline{\text{Note:}}$ Double (W19C) *4/0 CU may be substituted for single 500 kcmil above.

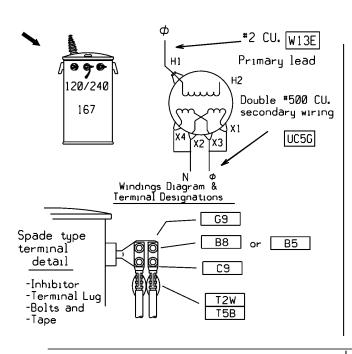
* Shown for information only. This is not a standard service.

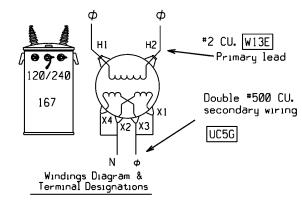

See: Section 11 for service connections to buildings.
Page 14-131& 14-132 for cluster mount selection and details.
Section 13 for grounding details.
Page 14-301-326 for 3 primary wiring.


3Ф SECONDARY CONNECTIONS 10 – 75 kVA – TOP VIEW				
	SMIZE		PAGE NUMBER	ISSUE
C A	ppl	OVERHEAD CONSTRUCTION STANDARD	14-171	7/09

Note: For selection of single or dual secondary conductors per phase, refer to table on this page.

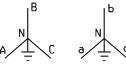
3Ф SECONDARY CONNECTIONS 100 – 167 kVA – TOP VIEW			
ISSUE	PAGE NUMBER		WWZ
7/17	14-172	OVERHEAD CONSTRUCTION STANDARD	ppl

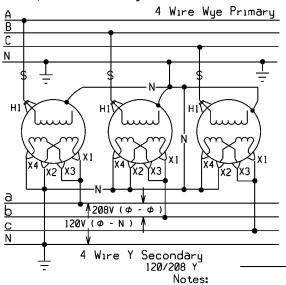




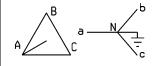
- This information is additional to other information shown in these standards. See 3Φ transformer installation Pages 14-301 through 14-373 for pole top wiring.
- Refer to Pages 13-111 & 112 for transformer grounding details.

 On CSP transformers secondary voltage test readings (taken with a high-impedence voltmeter) will be inaccurate if low-voltage breaker is open on CSP transformers


3Φ TRANSFORMER CONNECTIONS 10 – 100 kVA 1Φ TRANSFORMERS - 3Φ 4 WIRE 208Y/120 V SERVICE			
574 E94 575		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	14-173	7/11



Four Wire Grounded Wye Primary
Two-bushing or single-bushing transformers


0° angular dısplacement (Amerıcan Standard)

Caution: The primary neutral should be tied firmly to the system neutral; otherwise, excessive voltages may develop on the secondary side.

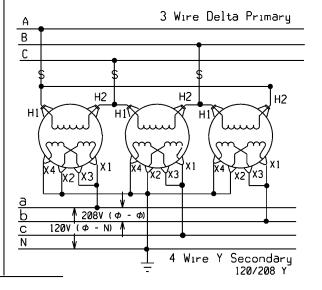
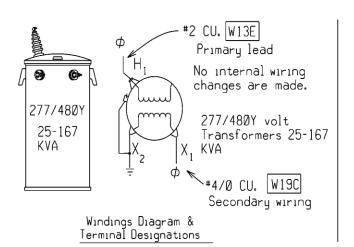
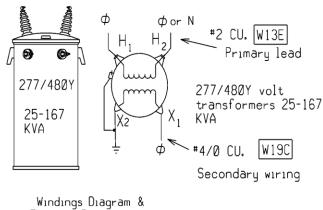


Diagram 4 Three Wire Delta Primary

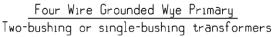
Two-bushing transformers

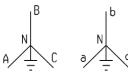
30° angular displacement (American Standard)

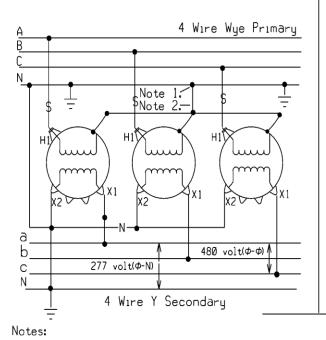



- 3 wire 240V or 480V delta services are not available for new installations.
- This information is additional to other information shown in these standards. See Page 14-172 for more information on secondary wiring.

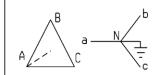
3Φ SECONDARY CONNECTIONS 167 kVA 1Φ TRANSFORMERS - 3Φ 4 WIRE 208Y/120 V SERVICE ISSUE PAGE NUMBER OVERHEAD CONSTRUCTION STANDARD PpI


© 2022 PPL Corporation. All rights reserved.





Terminal Designations



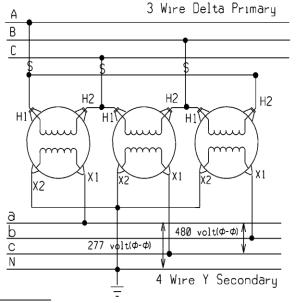
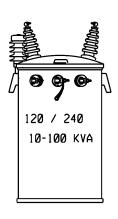
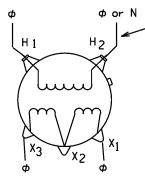

0° angular displacement (American standard)

Diagram 6 Three Wire Delta Primary Two-bushing transformers


30° angular displacement (American standard)



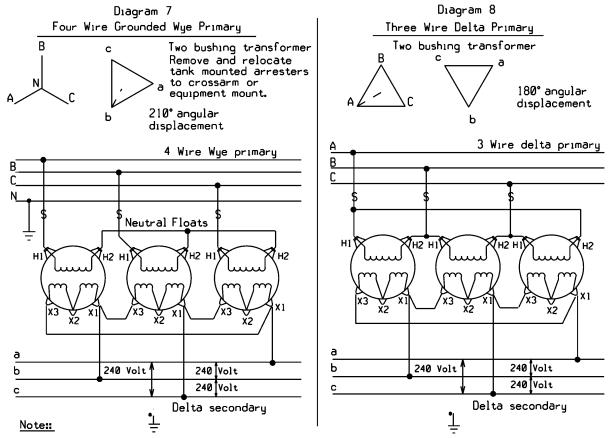
1. The primary neutral should be tied firmly to the system neutral; otherwise, excessive voltages may develop on the secondary side.

3Ф TRANSFORMER CONNECTIONS 25 - 167 kVA 277/480Y 1Φ TRANSFORMERS - 3Φ 4 WIRE 480Y/277 V SERVICE PAGE NUMBER ISSUE

Primary lead See Page. 14-2 for secondary wiring size. Quadruplex conductor

(Item W16) shall be used.

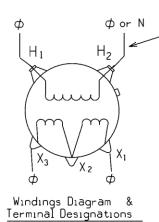
W13E


*2 CU.

Internal secondary taps are not modified (left in series).

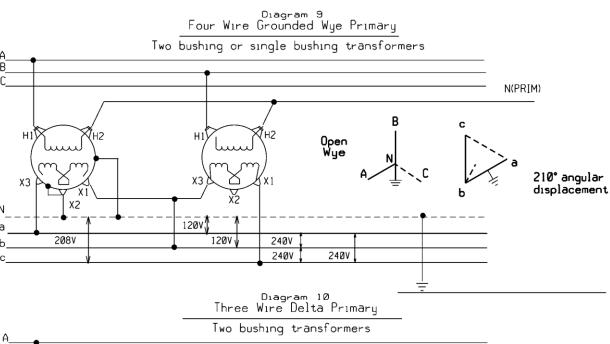
Windings_Diagram Terminal Designations

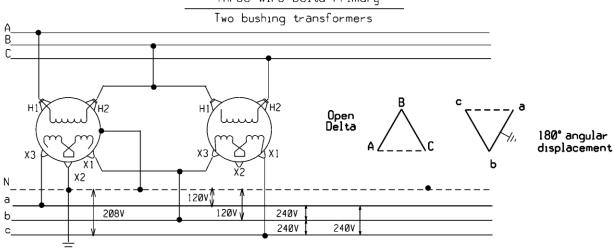
Notes:


- This information is supportive of related information shown in these standards. See installation Pages 14-304 through 14-373 for pole top wiring.
- Do not use CSP transformers for 30 delta secondaries. 240 V & 480 V Delta
- services are not available for new installations. - See Section 13 for transformer grounding details.

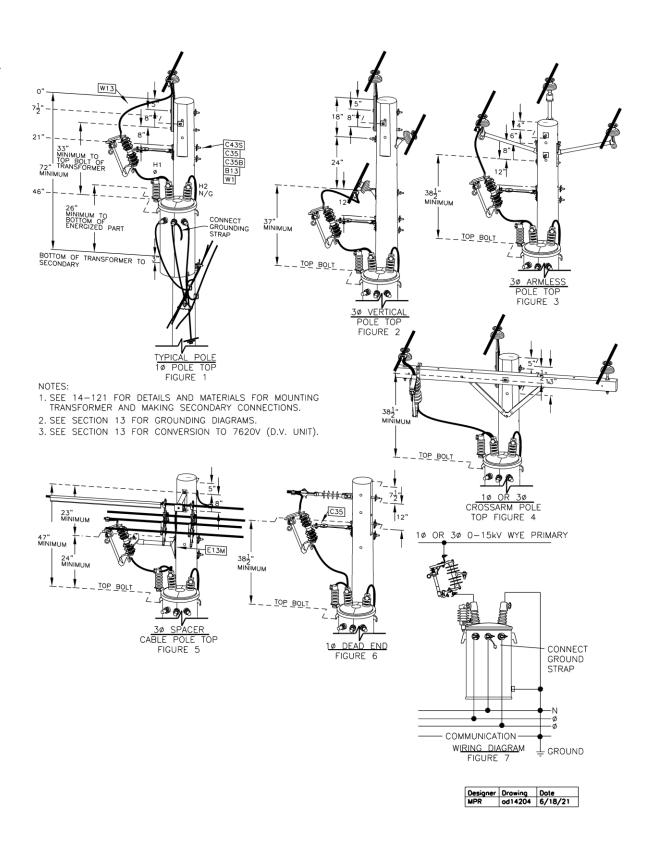
- The grounding of one phase of the delta secondary has been general practice and is shown on the wiring diagrams for these installations - i.e. figure 4, Page 352. = This is not required for performance or safety but may be continued in practice.

3Φ SECONDARY CONNECTIONS 10 – 100 kVA 1Φ TRANSFORMERS - 3Φ 240 V DELTA SERVICE			
ISSUE	PAGE NUMBER		WIN
7/10	14-176	OVERHEAD CONSTRUCTION STANDARD	ppl


#2 CU. W13E Prımary lead


See Page 14-2 for secondary wiring size. Quadruplex conductor (Item W16) shall be used.

Internal secondary taps are not modified (left in series).


Notes:

- See information regarding these connections on Page 14-7.

3Ф TRANSFORMER CONNECTIONS			
10 – 100 kVA 1Φ TRANSFORMERS – OPEN-WYE AND OPEN-DELTA			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD 14-177 7/15		

TRANSFORMER INSTALLATION - 1Φ CONVENTIONAL SINGLE OR DUAL VOLTAGE			
	15 kV EFFECTIVELY GROUNDED CIRCUITS		
ISSUE	PAGE NUMBER		sM/z
ISSUE	_	FFECTIVELY GROUNDED CIRCU	ITS

7/21 14-204 CONSTRUCTION STANDARD PPI

© 2022 PPL Corporation. All rights reserved.


Doc. # ST. 14.00.004

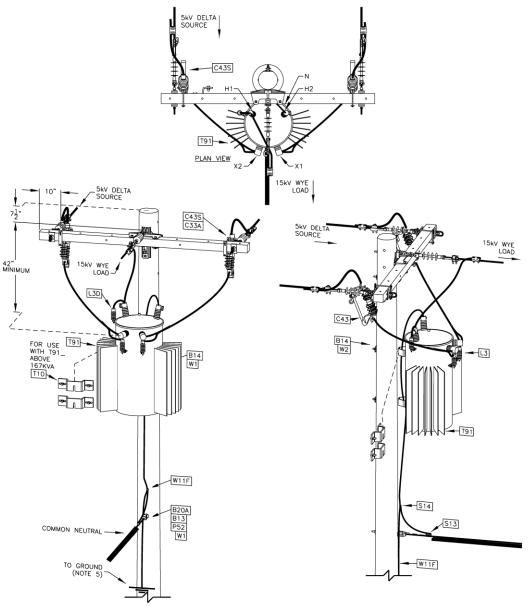
***See Page 14-81 For () Variables

NOTES:

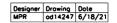
TRANSFORMER AND MAKING SECONDARY CONNECTIONS.

2. SEE SECTION 13 FOR GROUNDING DIAGRAMS. * THESE ARE NOMINAL MINIMUMS FOR 0-25 kVA OLD-STANDARD TRANSFORMERS. ALLOW FOR GREATER SPACING PER 15kV DRAWINGS IF CONVERSION IS LIKELY, OR FOR TRANSFORMERS OVER 25 kVA.

Designer	Drawing	Date
MPR	od14212	6/18/21

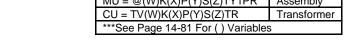

5kV GROUNDED WYE PRIMARY

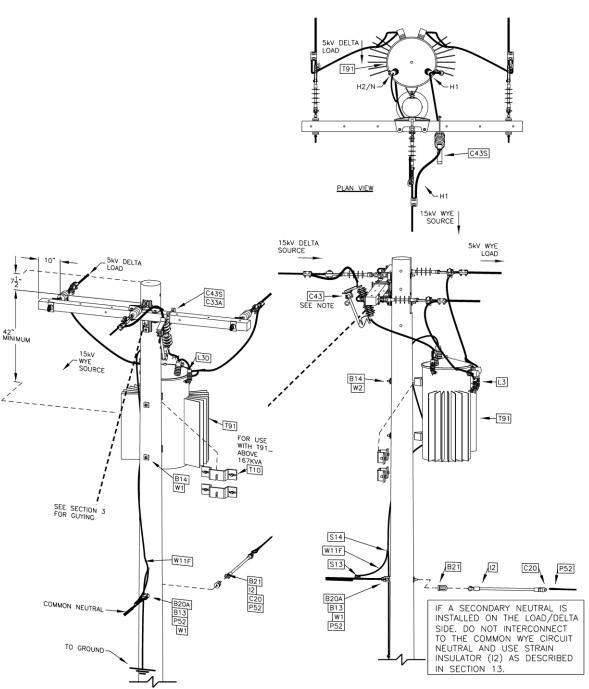
1Φ CONVENTIONAL TRANSFORMER INSTALLATION ALL 5 kV WYE CIRCUITS



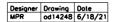
OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 14-212 7/21

MU = @(W)K(X)P(Y)S(Z)TD1PRSU	Assembly
CU = TV(W)K(X)P(Y)S(Z)TR	Transformer
***See Page 14-81 For () Variables	




- NOTES:
- 1. TRANSFORMER IS LOCATED TO FACILITATE CUTOUT OPERATION.
- 2. PLACE CUTOUTS ON SOURCE SIDE. CUTOUTS MAY BE LOCATED ON ADJACENT SOURCE SIDE POLE FOR ADDED SAFETY.
- 3. TOO HIGH IMPEDANCE TRANSFORMERS (OVER 3.75%) IMPAIR GOOD COORDINATION AND TEND TO INCREASE USE OF LINE REGULATING EQUIPMENT.
- 4. SEE SECTION 9 FOR DEADEND DETAILS.
- 5. THE DELTA PRIMARY SYSTEM SURGE ARRESTER GROUNDS MAY BE INTERCONNECTED TO MULTI GROUNDED COMMON NEUTRAL ASSOCIATED WITH GROUNDED WYE PRIMARY CIRCUIT. (REFERENCE NESC RULE 97.B.)

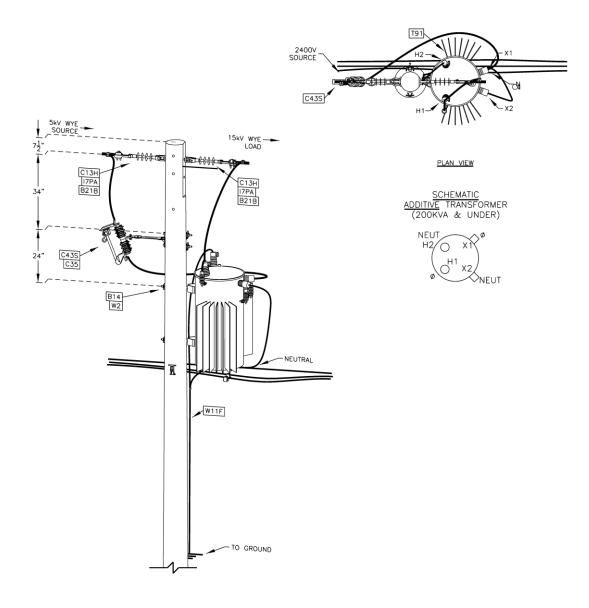
1Φ TRANSFORMER INSTALLATION 5 kV DELTA TO 15 kV GROUNDED WYE STEP-UP INSTALLATION			
ISSUE	PAGE NUMBER		SMIZZ
7/21	14-247	OVERHEAD CONSTRUCTION STANDARD	ppl


MU = @(W)K(X)P(Y)S(Z)TY1PRAssembly CU = TV(W)K(X)P(Y)S(Z)TR

NOTES:

- 1. FOR ADDED SAFETY, CUTOUT (ITEM C43) MAY BE LOCATED ON ADJACENT SOURCE SIDE POLE.
- 2. SEE SECTION 9 FOR DEADENDS DETAILS.
- 3. SEE SECTION 5 FOR CONNECTORS.

1Φ TRANSFORMER INSTALLATION 15 kV GROUNDED WYE TO 5 kV DELTA STEP-DOWN INSTALLATION


OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 14-248 7/21

Supersedes 7/10 Issue - Revise drawing to 3-D.

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 14.00.004

MU = @(W)K(X)P(Y)S(Z)TY1PRSU	Assembly
CU = TV(W)K(X)P(Y)S(Z)TR	Transformer
***See Page 14-81 For () Variables	

NOTES:


- 1. SEE SECTION 9 FOR DEADEND DETAILS.
- 2. SEE SECTION 5 FOR CONNECTORS.

Designer Drawing Date MPR od14249 6/18/21

1Φ TRANSFORMER INSTALLATION 5 kV GROUNDED WYE TO 15 kV GROUNDED WYE STEP-UP INSTALLATION					
ISSUE	PAGE NUMBER				
7/21	14-249	OVERHEAD CONSTRUCTION STANDARD	ppl		

MU = @(W)K(X)P(Y)S(Z)TY1PR	Assembly Transformer
CU = TV(W)K(X)P(Y)S(Z)TR	Transformer

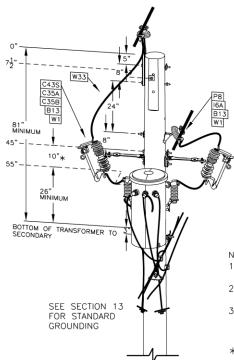
***See Page 14-81 For () Variables

NOTES:

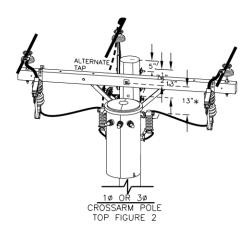
Supersedes 7/10 Issue – Revised drawing to 3-D.

- 1. SEE SECTION 9 FOR DEADEND DETAILS.
- 2. SEE SECTION 5 FOR CONNECTORS.
- 3. FOR ADD SAFETY CUTOUT MAY BE LOCATED ON ADJACENT SOURCE-SIDE POLE.

Designer Drowing Dote MPR od14250 6/18/21

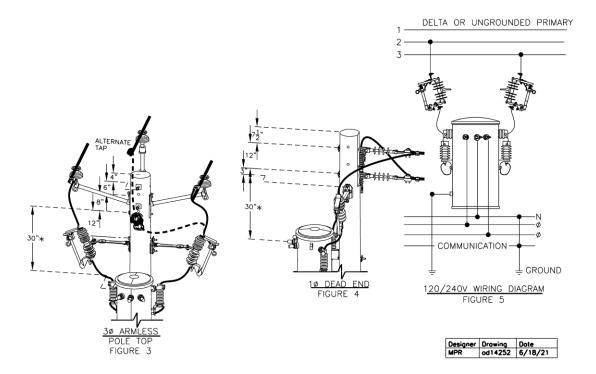


1Φ TRANSFORMER INSTALLATION	
15 kV GROUNDED WYE TO 5 kV GROUNDED WYE STEP-DOWN INSTALLATION	1

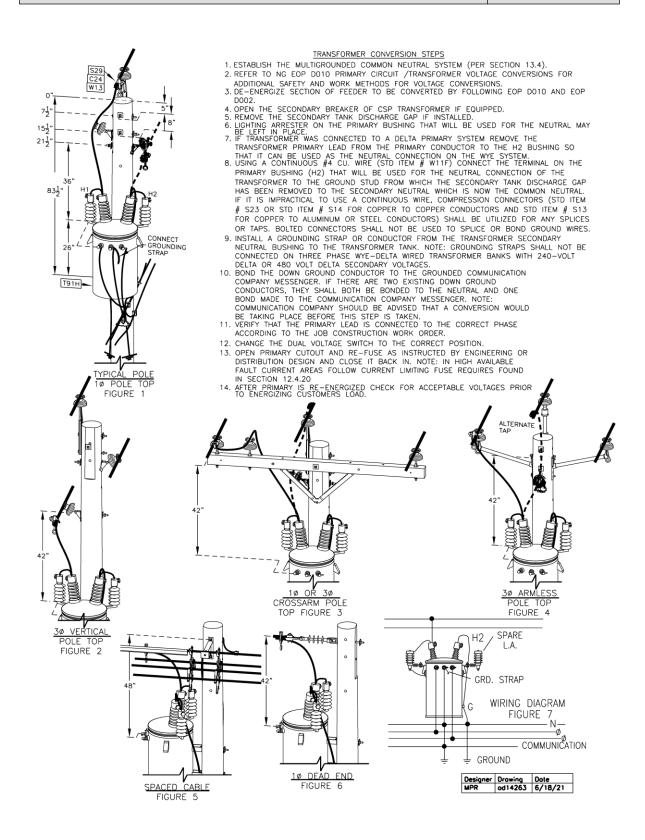

OVERHEAD PAGE NUMBER ISSUE
CONSTRUCTION STANDARD 14-250 7/21

	Assembly
ſ	Transformer

***See Page 14-81 For () Variables


1ø POLE FIGURE

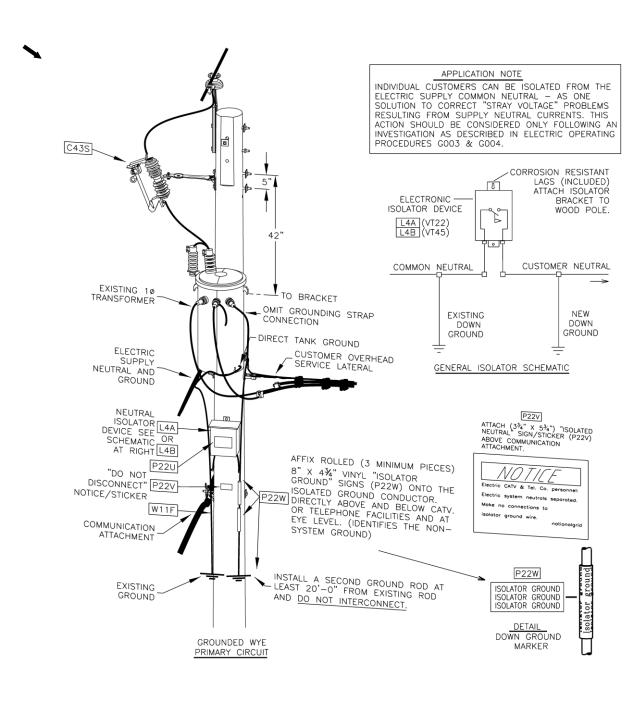
- 1. SEE 14-121 FOR DETAILS AND MATERIALS FOR MOUNTING TRANSFORMER AND MAKING SECONDARY CONNECTIONS.
- 2. SEE SECTION 13 FOR STANDARD OVERHEAD TRANSFORMER GROUNDING DIAGRAMS.
- SROUNDING DIAGRAMS.


 3. SURGE ARRESTERS ARE GROUNDED THROUGH THE TRANSFORMER TANK GROUND AND ISOLATED FROM THE SECONDARY NEUTRAL GROUND BY REMOVING THE GROUNDING STRAP BETWEEN THE SECONDARY NEUTRAL AND THE TANK.

 ** THESE ARE NOMINAL MINIMUMS FOR 0-25kVA OLD-STANDARD TRANSFORMERS. ALLOW FOR GREATER SPACING PER 15kV DRAWINGS IF CONVERSION IS LIKELY, OR FOR TRANSFORMERS OVER 25kVA.

1Ф CONVENTIONAL TRANSFORMER INSTALLATION 5 kV DELTA OR UNGROUNDED WYE				
ISSUE	PAGE NUMBER		: NI// ::	
7/21	14-252	OVERHEAD CONSTRUCTION STANDARD	ppl	

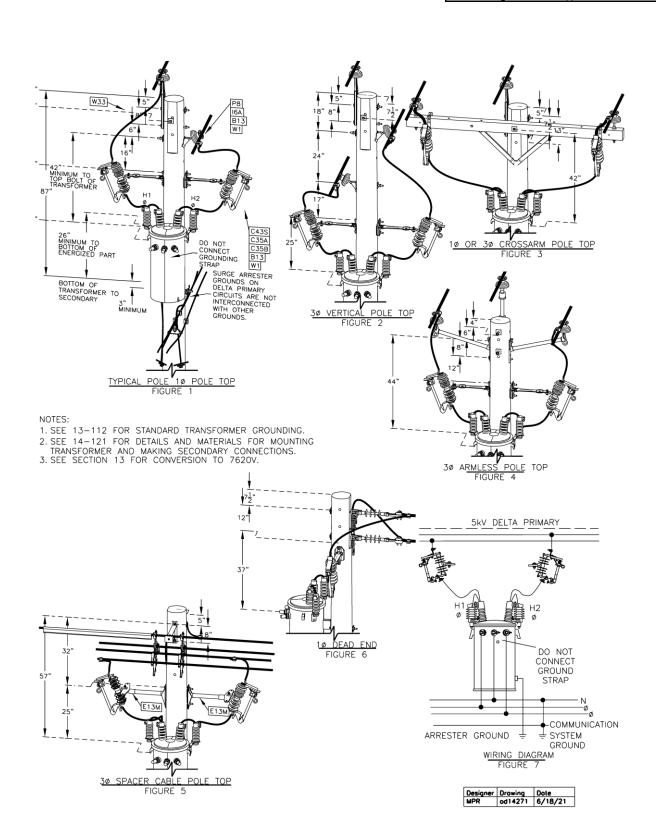
© 2022 PPL Corporation. All rights reserved.



CONVERSION OF DUAL-VOLTAGE CSP TRANSFORMERS FROM 5 kV TO 15 kV

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 14-263 7/21


ſ	Designer	Drawing	Dote
ſ	MPR	od14264	6/18/21

ISOLATED NEUTRAL TRANSFORMER CONNECTION FOR CUSTOMERS AFFECTED BY NEUTRAL TO EARTH POTENTIAL – WYE CIRCUITS

ISSUE	PAGE NUMBER	
7/21	14-264	

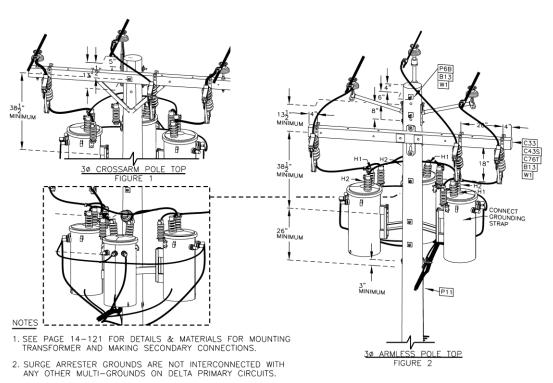
OVERHEAD CONSTRUCTION STANDARD

1Φ CONVERSION OF DUAL-VOLTAGE TRANSFORMERS				
ALL 5 kV DELTA CIRCUITS				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	14-271	7/21	

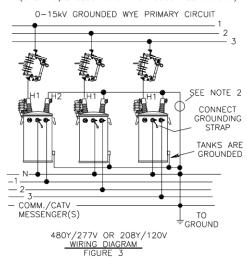
The Drawings on the following pages show Pole Top Details for the Most Common installation of Transformers in three phase banks. Cluster mounts are recommended as the standard installation for individual transformers weighing up to 2,000 pounds each

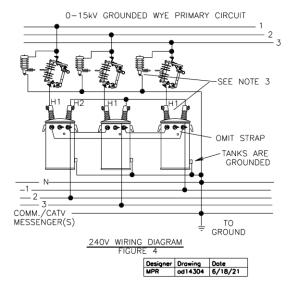
The following Notes apply to the Three-Phase Drawings on Page 14-304 through 14-378:

- 1. For details of Secondary Wiring on three banks, see Page 14-2 and Pages 14-171 & 14-172.
- 2. Transformers exceeding 2000 pounds each should be mounted on a <u>Platform</u> arrangement as shown on 14-377. <u>Typical Weights</u> are given on Page 14-80. Unit weight of any specific transformer can be found on the nameplate.
- 3. One vertical <u>Grounding Conductor</u> shall be installed at each bank (as at every equipment installation). This shall be solidly connected from the driven ground to the Secondary or Common neutral. It shall also be bonded or interconnected to any Communication Messenger present on the pole. It shall be (except as described in Note 4.) connected to the Surge Arrester grounds and to the transformer tanks as indicated on the Drawings.
- 4. A second vertical Grounding Conductor is required for <u>Arrester Grounds on Delta</u> Primary Circuits. This grounding conductor connects the arresters to a second driven ground without any interconnections. The two ground rods shall be separated by 20' or more (6' minimum required) and not bonded together.
- 5. Banks of 300 kVA or more shall be located outside of heavy <u>traffic</u> area. Transformers may be <u>rotated</u> 90° as required.
- 6. Banks <u>should not exceed</u> three 100 kVA transformers for 208Y/120V Services or three 167 kVA transformers for 480Y/277V Services. Services larger than this shall be served by non-pole-mounted installations. Services exceeding 800A are not recommended.
- 7. Additional information pertaining to transformer installations is shown in other Sections of these standards. For <u>Selection of Service Conductors</u> see Section 11. <u>Fusing Selection</u> for Overhead Conventional Transformers is found on Section 12. <u>Standard Grounding</u> arrangements for Overhead Transformers are shown in Section 13 and other Grounding and Bonding notes are found throughout section 13.
- 8. See Section 5 for information on <u>Connectors</u> and Section 10 for Transformer Connections to <u>Multiplex</u> Secondaries.
- 9. <u>Wye-Delta</u> connected transformer installations that require a floating Primary Neutral shall require Double Bushing Transformers. These Floating Wye-Delta connected transformers SHALL NOT have direct-connected tank-mounted arresters.
 - The tank mounted arresters shall be <u>Removed</u> and separately mounted (i.e. Crossarm-mounted) on the same pole and connected at the source-side of the Fused Cutout. Arresters, otherwise, could become subjected to damaging induced overvoltages during operation of the cutout (if located on the load side of cutout).
- 10. For Existing CSP transformer banks, when it is necessary to replace a CSP unit with a conventional unit, <u>Cutouts</u> with appropriate fuse link shall be installed on all units.


GENERAL NOTES – INSTALLATION OF TRANSFORMERS IN THREE PHASE BANKS

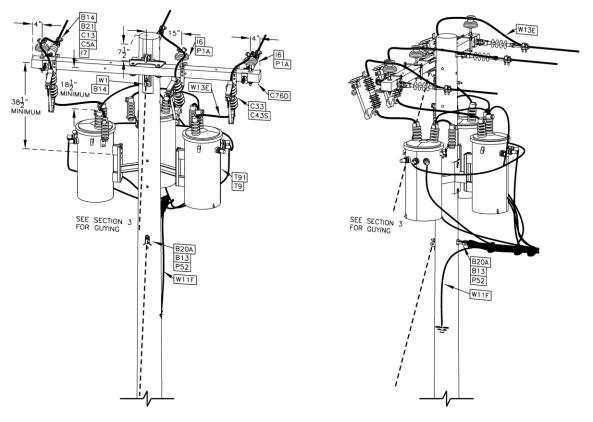
ISSUE	PAGE NUMBER
7/10	14-301





MU = @(U)K(X)P(Y)S(Z)TY	Assembly	
CU = TV9W)K(X)P(Y)S(Z)TC	Transformer	
CU = TMC(E)(F)VSNE	Cluster Mount	
***See Page 14-81 For () Variables		

3. FLOATING WYE DELTA INSTALLATIONS (FIGURE 4) MUST HAVE ARRESTERS REMOVED FROM THE TANK AND RELOCATED AHEAD OF THE CUTOUT ONTO A BRACKET OR CROSSARM FOR PROTECTION OF THE ARRESTER FROM DAMAGING OVER VOLTAGES INDUCED DURING SWITCH OPERATIONS (OPENING/ENCLOSING OF ITS ASSOCIATED CUTOUT).

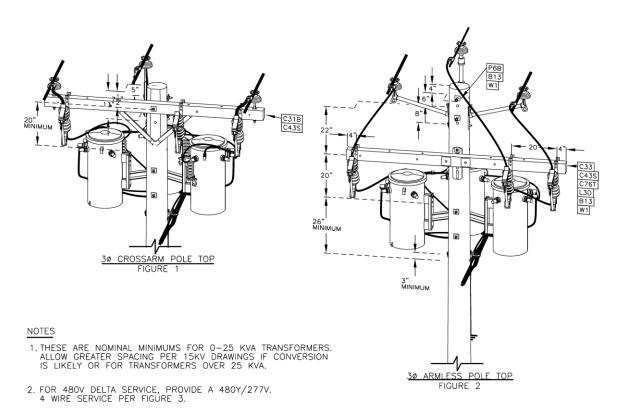


3Φ CONVENTIONAL TRANSFORMER INSTALLATION ALL 15 kV WYE CIRCUITS

OVERHEAD CONSTRUCTION STANDARD

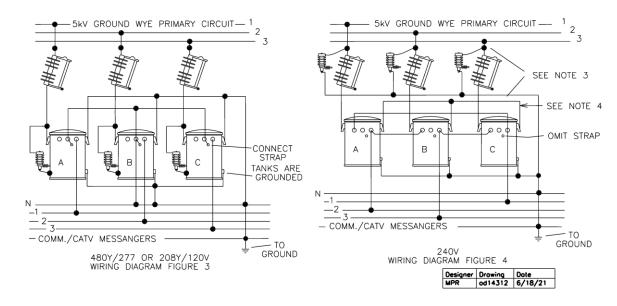
PAGE NUMBER ISSUE 14-304 7/21

NOTES


- 1. INSTALLATIONS ON 15kV GROUNDED WYE CIRCUITS, WHERE FAULT CURRENT 7500A., REQUIRE CURRENT LIMITING FUSES PER SECTION 12
- 2. SEE SECTION 13 FOR GROUNDING DETAILS.
- 3. SEE 14-304, 14-312 AND 14-371 FOR WIRING DIAGRAMS, AND 14-171 AND 14-172 FOR SECONDARY CONNECTIONS.

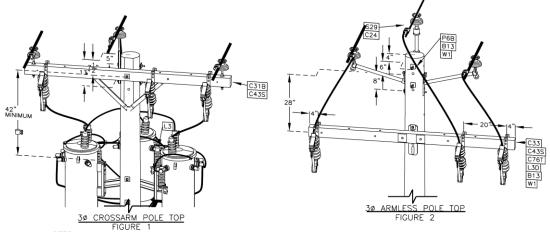
Designer	Drawing	Dote
MPR	od14305	6/18/21

3Ф CONVENTIONAL TRANSFORMER INSTALLATION ALL 15 kV WYE CIRCUITS			
ISSUE	PAGE NUMBER		WWZ
7/21	14-305	OVERHEAD CONSTRUCTION STANDARD	ppl

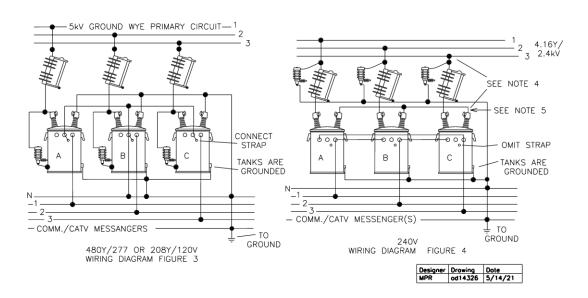

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 14,00.004

MU = @(U)K(X)P(Y)S(Z)TY	Assembly
CU = TV9W)K(X)P(Y)S(Z)TC	Transformer
CU = TMC(E)(F)VSNE	Cluster Mount
***See Page 14-81 For () Variables	

- 3. REMOVE THE TANK—MOUNTED ARRESTERS AND RELOCATE THEM TO A BRACKET OR CROSSARM AND CONNECT TO THE SOURCE SIDE OF THE CUTOUTS.
- 4. NEUTRAL FLOATS ON TRANSFORMERS SUPPLYING DELTA SERVICE FROM WYE PRIMARY.


Business Use

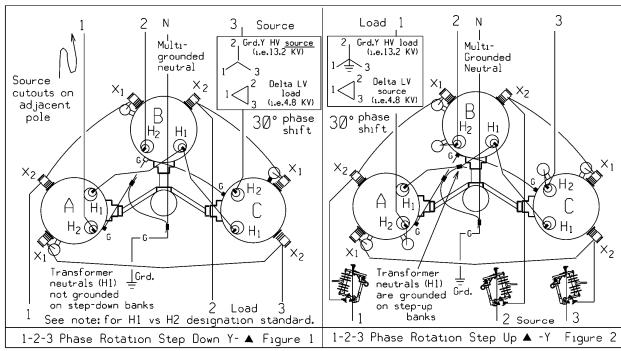
3Φ CONVENTIONAL TRANSFORMER INSTALLATION ALL 5 kV WYE CIRCUITS OVERHEAD CONSTRUCTION STANDARD 14-312 7/21

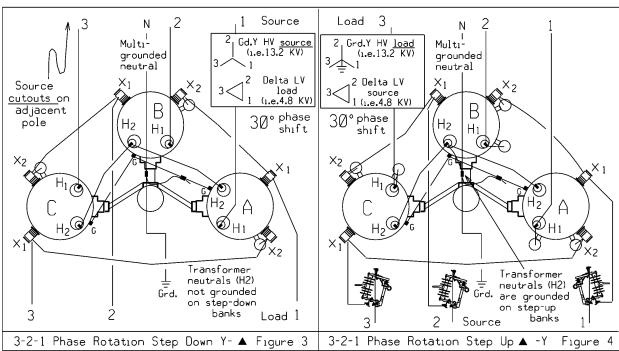

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 14,00.004

MU = @(U)K(X)P(Y)S(Z)TY	Assembly
CU = TV(W)K(X)P(Y)S(Z)TC	Transformer
CU = TMC(E)(F)VSNE	Cluster Mount
***See Page 14-81 For () Variables	

NOTES:

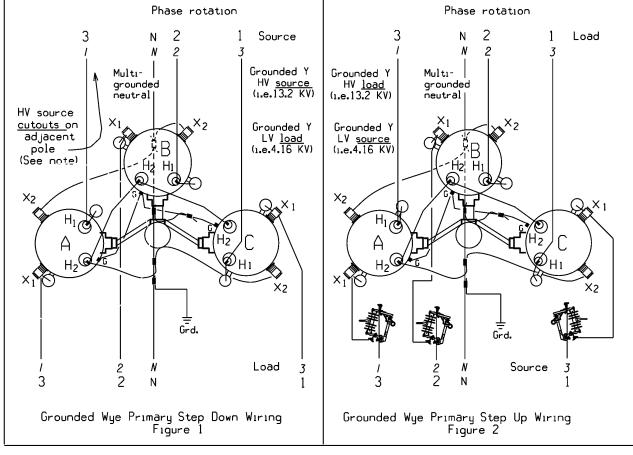
- 1. SEE PAGE 14-131 & 132 FOR MOUNTING TRANSFORMERS AND PAGES 14-173 & 176 FOR WIRING DIAGRAMS.
- 2. SEE SECTION 9 FOR PRIMARY POLE TOPS WHICH MAY TAKE LESS POLE SPACE OR USE ALTERNATE ARRANGEMENTS BELOW FOR REUSING EXISTING 35' POLES, SEE PAGE 14-292 FIGURES FOR CLEARANCES BEFORE CONVERTING.
- 3. FOR 480V DELTA SERVICE, PROVIDE A 480Y/277V, 4 WIRE SERVICE PER FIGURE 3.
- 4. REMOVE THE TANK-MOUNTED ARRESTERS AND RELOCATE THEM TO A BRACKET OR CROSSARM AND CONNECT TO THE SOURCE SIDE OF THE CUTOUTS FOR 240V SERVICE.
- 5. NEUTRAL FLOATS ON TRANSFORMERS SUPPLYING DELTA SERVICE FROM WYE PRIMARY.




3Φ CONVENTIONAL DUAL VOLTAGE TRANSFORMER INSTALLATION 5 kV WYE CIRCUITS

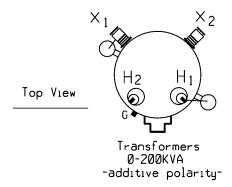
Business Use PAGE NUMBER

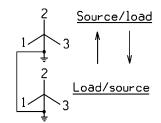
7/21
14-326



Note: -"American standard practice (ANSI C57.105) is to connect the H1 & X1 bushing to phase and to ground the H2 & X2 designated bushing. The H2 & X2 bushings are connected to phase in some of these wiring diagrams, however, where doing so will simplify (shorten) the secondary wiring. Tank mounted surge arresters may require repositioning where phase bushings are switched. Relative feeder phase positions are maintained through the bank installation.

3Ф STEP-UP/STEP-DOWN WIRING DIAGRAM DELTA (LV): WYE (HV) – ADDITIVE TRANSFORMERS (200 kVA AND UNDER)

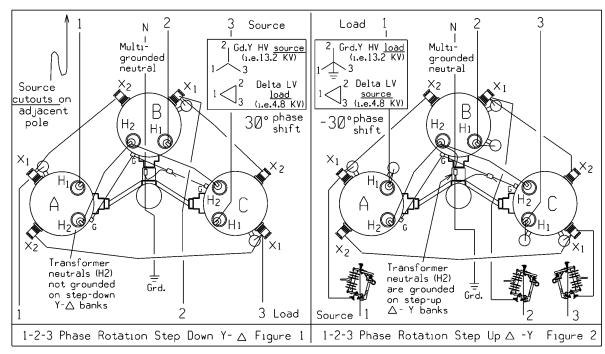


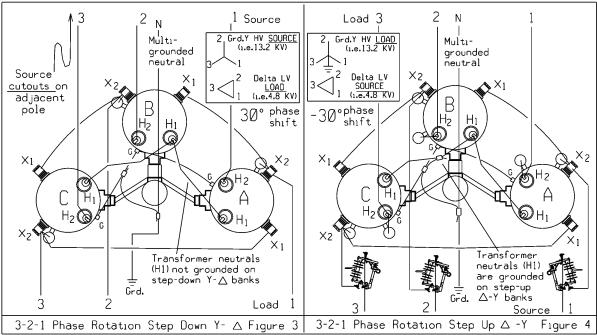


Notes:

Figures 1 and 2 are the same except for placement of the cutouts, which are always located on the source side.

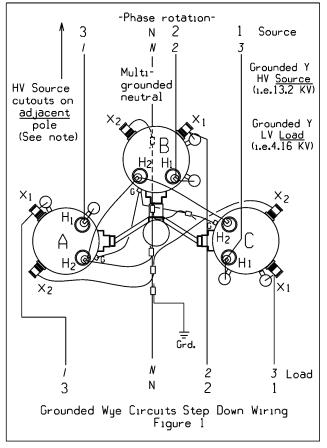
Location of the transformers on the high voltage side of the pole limits available space for the source cutouts on the same pole. These shall be located on an adjacent source-side pole. See Page 14-375 for wiring diagrams for subtractive polarity transformers (250-500KVA).

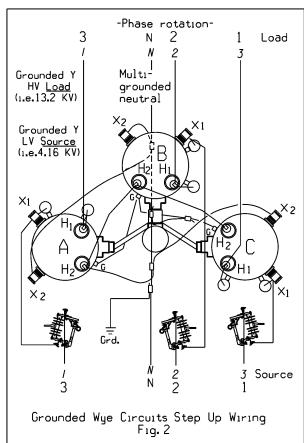



O° Standard phase shift (angular displacement)

	3Ф STEP-UP/STEP-DOWN WIRING DIAGRAM
WYE (LV): \	WYE (HV) – ADDITIVE TRANSFORMERS (200 kVA AND UNDER)

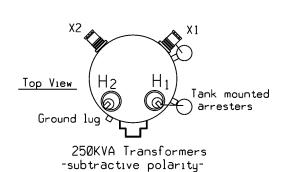
ISSUE	PAGE NUMBER
7/08	14-344

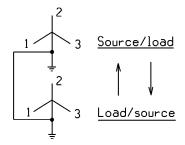

NOTE: - Standard practice (ANSI C57.105) is to connect the H.V. H1 bushing to phase and to ground the H2 designated bushing. The H2 bushing is connected to phase in some of these wiring diagrams where doing so will simplify (shorten) the secondary wiring. - Relative feeder phase positions are maintained through the bank installation.


3Ф STEP-UP/STEP-DOWN WIRING DIAGRAM DELTA (LV): WYE (HV) – SUBTRACTIVE TRANSFORMERS (250 kVA)

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 14-345 7/15





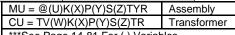
Notes:

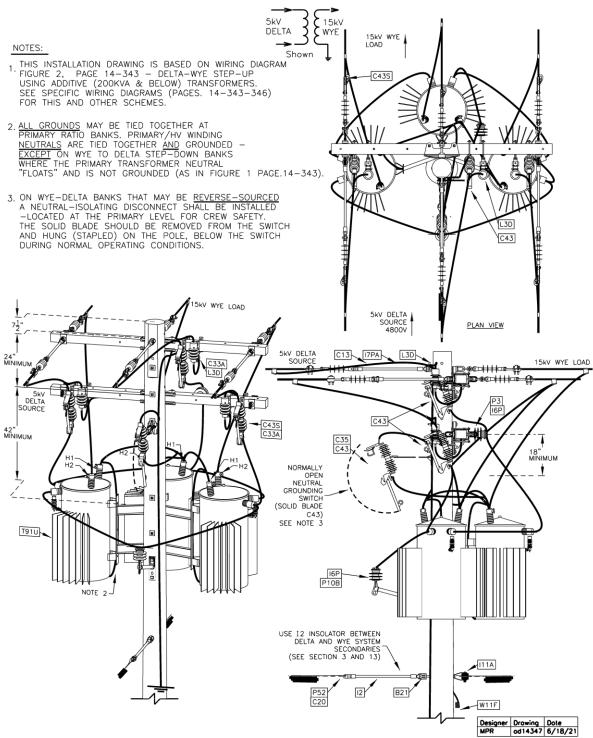
Figures I and II are the same except for placement of the source-side cutouts. Location of the transformers on the high voltage side of the pole limits available space for the source cutouts on the same pole. These shall be located on an adjacent source-side pole.

See Pages 14-345, 14-346 and 14-375 for subtractive polarity transformers (250-500KVA) wiring diagrams.

O° Standard phase shift (Angular displacement)

3Ф STEP-UP/STEP-DOWN WIRING DIAGRAM
WYE (LV): WYE (HV) - SUBTRACTIVE TRANSFORMERS (250 kVA)

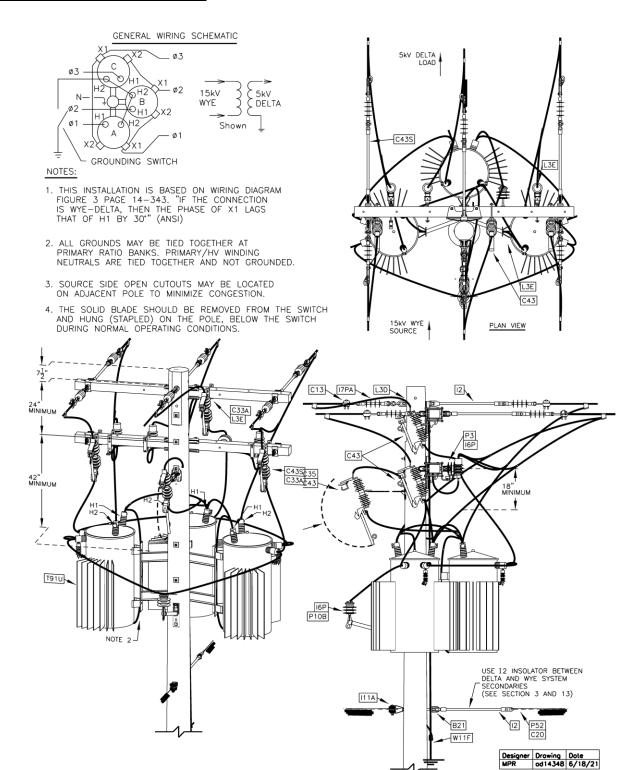

ISSUE	PAGE NUMBER
7/08	14-346



© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 14.00.004

***See Page 14-81 For () Variables

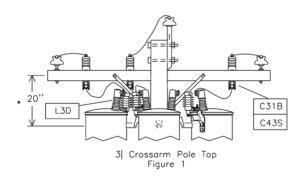

OVERHEAD CONSTRUCTION STANDARD

14-347 7/21

Supersedes 710 Issue – Revised drawing to 3-D.

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 14.00.004

MU = @(U)K(X)P(Y)S(Z)TYR	Assembly
CU = TV(W)K(X)P(Y)S(Z)TR	Transformer
***See Page 14-81 For () Variables	

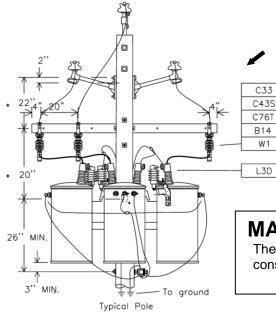


3Ф TRANSFORMER BANK
15 kV TO 5 kV STEP-DOWN INSTALLATION

ISSUE	PAGE NUMBER	
7/21	14-348	

MU = @(U)K(X)P(Y)S(Z)TD	Assembly
CU = TV(W)K(X)P(Y)S(X)TC	Transformer
CU = TMC(E)(F)VSNE	Cluster Mount
***See Page 14-81 For () Variables	

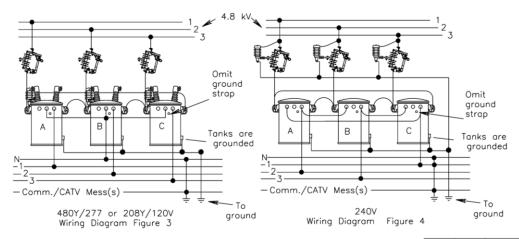
Notes:


See Pages 14-131 & 132 for details and materials for mounting transformers.

See Section 5 for connectors.

See Section 9 for primary pole tops which may take less pole top space if rearranged. Alternate arrangements with slight modifications exist reusing 35' poles.

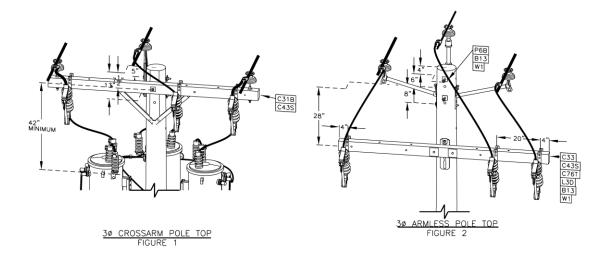
These are nominal minimums for 0-25 kva transformers. Allow greater spacing per 15kV drawings. if conversion is likely or for transformers over 25 kva.


For 480 V delta services, provide a 480Y/277, 4 wire service per Figure 3.

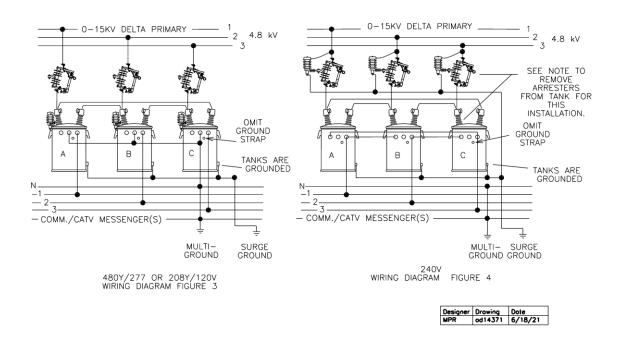
3 Armless Pole Top Figure 2

MAINTENANCE PURPOSES ONLY

The spacings shown in this drawing are not the preferred construction method. For new installations, see Standard Drawing 14-371.

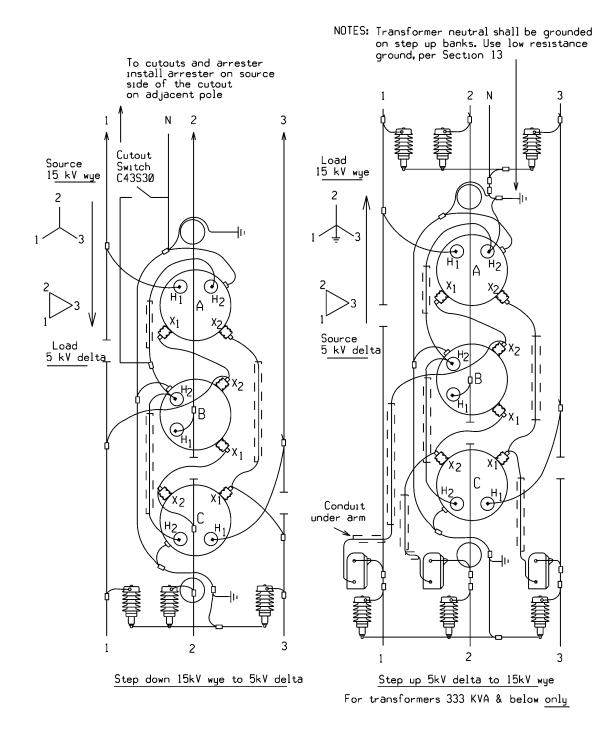

Designer Drawing Date MPR od14352 7/19/18

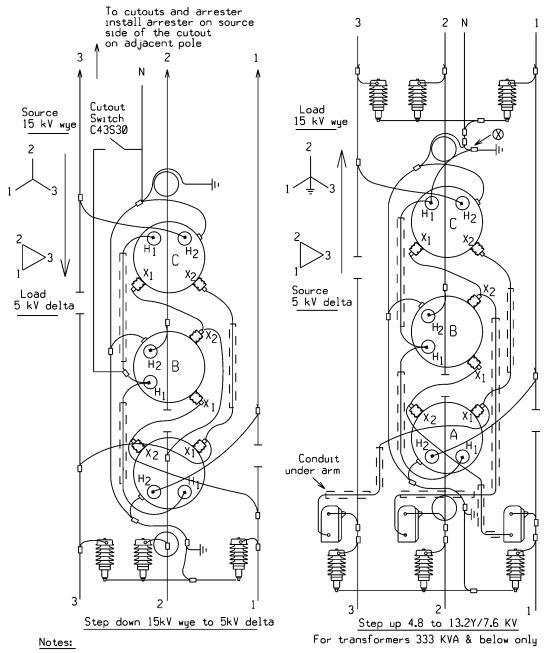
3Ф CONVENTIONAL TRANSFORMER INSTALLATION 5 kV DELTA


OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 14-352

MU = @(U)K(X)P(Y)S(Z)TD	Assembly
CU = TV(W)K(X)P(Y)S(Z)TC	Transformer
CU = TMC(E)(F)VNE	Cluster Mount
***See Page 14-81 For () Vari	ables

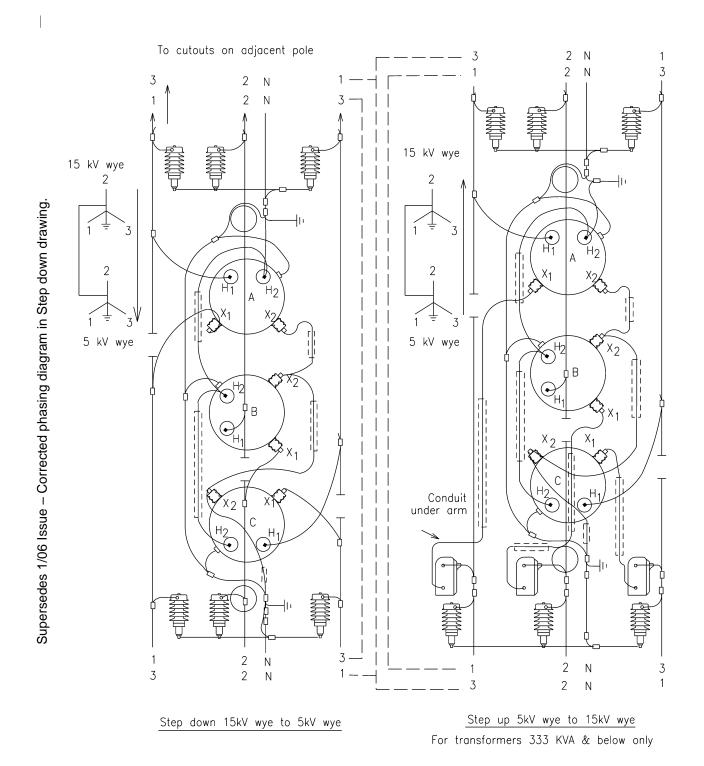
NOTES:


- 1. SEE PAGE 14-173 & 176 FOR WIRING DIAGRAMS.
- 2. SURGE ARRESTER GROUNDS ARE NOT INTERCONNECTED WITH ANY OTHER MULTI-GROUNDS ON DELTA PRIMARY CIRCUITS.
- 3. FLOATING WYE-DELTA INSTALLATIONS (FIGURE 4) MUST HAVE ARRESTERS REMOVED FROM THE TANK AND RELOCATED AHEAD OF THE CUTOUT ONTO A BRACKET OR CROSSARM FOR PROTECTION OF THE ARRESTER FROM DAMAGING OVERVOLTAGES INDUCED DURING SWITCHING OPERATIONS (OPENING/RECLOSING OF ITS ASSOCIATED CUTOUT).


3Φ CONVENTIONAL SINGLE OR DUAL VOLTAGE TRANSFORMER INSTALLATION ALL 5 – 15 kV DELTA CIRCUITS ISSUE PAGE NUMBER

ISSUE	FAGE NUMBER
7/21	14-371

3Ф STEP-UP/STEP-DOWN BANK (PLATFORM MOUNT) 5 - 15 kV - 333 AND 500 kVA TRANSFORMERS (SUBTRACTIVE) - 123 ROTATION PAGE NUMBER ISSUE ppl

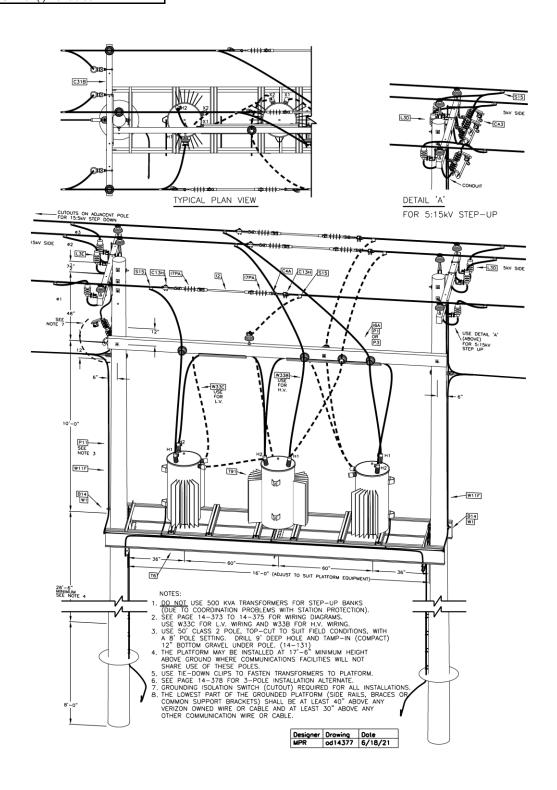

- 🛇 Transformer neutral shall be grounded on step up banks. If this ground connection is made disconnectable on installations which may be operated bi-directionally, that cutout shall be located at the primary level. A single-phase interruption or transformer failure
- during a step-down condition could result in primary voltage at point of opened ground.

 Use low resistance ground see Section 13. Illustrated Neutral is multi-grounded.

 Standard practice (ANSI C57.105) is to connect the H.V. H1 bushing to Phase and to ground the H2 designated bushing. Practical bussing considerations of the Delta L.V. conductors, however, may make other schemes preferable. Relative feeder phase positions are maintained across (through the hard postaliation) are maintained across/through the bank installation.

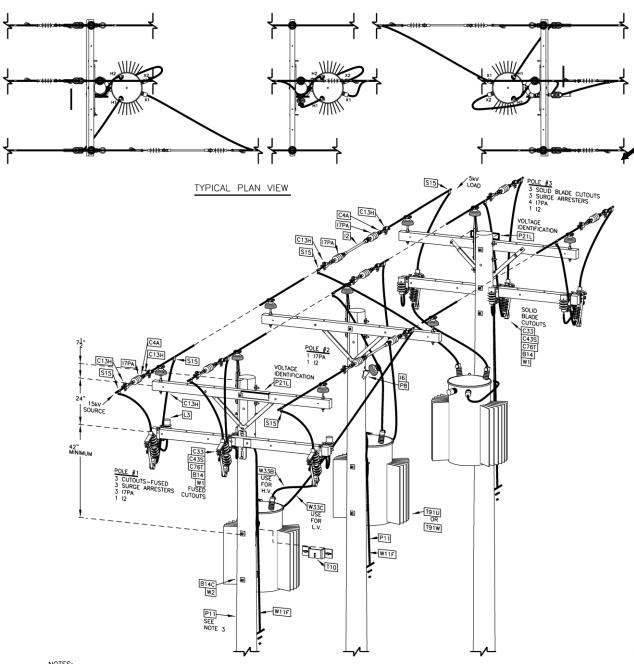
3Ф STEP-UP/STEP-DOWN BANK (PLATFORM MOUNT) 5 – 15 kV – 333 AND 500 kVA TRANSFORMERS (SUBTRACTIVE) – 321 ROTATION			
ISSUE	PAGE NUMBER		WW.
7/11	14-374	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 14.00.004


5 kV WYE TO 15 kV WYE WIRING DIAGRAM - 333 AND 500 kVA TRANSFORMERS

OVERHEAD CONSTRUCTION STANDARD

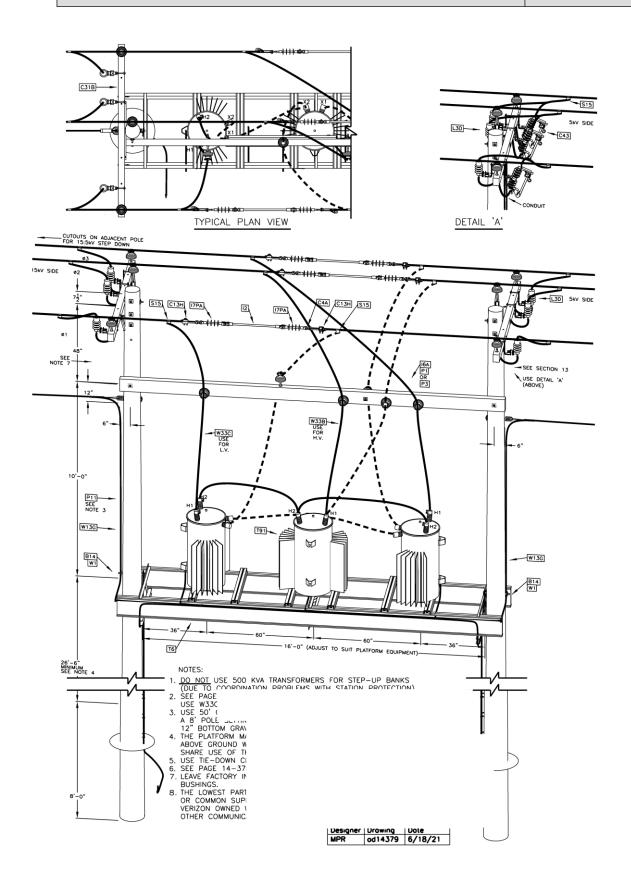
PAGE NUMBER ISSUE 14-375 7/19


MU = @(U)K(X)P(Y)S(Z)TYR	Assembly		
CU = TV(W)K(X)P(Y)S(Z)TR	Transformer		
CU = RMPT6	Cluster Mount		
***See Page 14-81 For () Variables			

3Ф STEP-UP/STEP-DOWN TRANFORMER BANK INSTALLATION	
333 AND 500 kVA PLATFORM MOUNTED - 15:5 kV AND 5:15 kV - WYE-DELTA	١

ISSUE	PAGE NUMBER
7/21	14-377

NOTES:


- 1. COST AND APPEARANCE CONSIDERATIONS MAY PRECLUDE USE OF STANDARD (14-377) PLATFORM ARRANGEMENT.
- 2. THIS DRAWING SHOWS 1500KVA Y-Y, ZERO PHASE-SHIFT, TRANSFORMATION. <u>DO NOT</u> USE 500KVA TRANSFORMERS FOR STEP-UP BANKS (DUE TO COORDINATION PROBLEMS WITH STATION PROTECTION).
- 3. STANDARD NEW OR SOUND EXISTING POLES SHALL BE USED FOR THIS ARRANGEMENT. POLES IN THIS ARRANGEMENT SHALL <u>NOT</u> BE USED FOR OTHER EQUIPMENT SUCH AS A SECONDARY TRANSFORMER FOR EXAMPLE. POLES SHALL BE CONSECUTIVE AND IN-LINE AND PREFERABLY IN-VIEW OF EACH OTHER. DO NOT INSTALL MID-SPAN POLES AND AVOID HEAVY DOWN GUYS.
- 4. POLE/CROSSARM SHALL BE CLEARLY MARKED WITH PRIMARY VOLTAGE INDICATION AS REQUIRED FOR SAFETY.

Designer	Drawing	Date
MPR	od14378	5/14/21

3Ф STEP-UP/STEP-DOWN BANK TRANSFORMER INSTALLATION 333 AND 500 kVA POLE MOUNTED TRANSFORMERS 15:5 kV AND 5:15 kV

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 14-378 7/21

	3Ф STEP-UP/STEP-DOWN TRANFORMER BANK INSTALLATION					
	333 AND 500 kVA PLATFORM MOUNTED – 15:5 kV AND 5:15 kV – WYE-WYE					
	ISSUE	PAGE NUMBER				
Busi	7/21 ness Use	14-379	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 14,00.004

Version	Date	Modification	Author(s)	Approval by (Name/Title)
14	07/21	 Revised drawings to 3-D format: 14-121, 14-131, 14-132, 14-204, 14-121, 14-131, 14-132, 14-204, 14-212, 14-247, 14-248, 14-249, 14-250, 14-252, 14-263, 14-264, 14-271, 14-304, 14-305, 14-312, 14-326, 14-347, 14-348, 14-371, 14-377, and 14-379. Corrected section reference in headers on pages 14-121 through 14-NOTES-2. Add item 11 under 14.7.30A on page 14-5. 		
13	07/20	 Added new secondary codes 56 and 86 to physical data code tables on page 14-54. Added new Type Code 42 on page 14-50. Corrected footers of 14-50 to 14-81. 		
12	07/19	 Corrected phasing diagram for step-down transformer on page 14-375. Added note on pages 14-377 and 14-379 to provide clearance requirements to communication wires and cables. 		
11	07/18	Replaced three-phase equipment brackets with fiberglass crossarms in drawings 14-304, 14-312, 14-326, 14-352, 14-371, and 14-378.		
10	07/17	 Corrected pole spacing for item T6 on page 14-132 Updated drawings and notes on 14-377 and 14-379. 		
9	07/16	Revised 14-379 to correct neutral connection wire size.		
8	07/15	 Revised 14.5 by eliminating requirement to replace all three CSP transformers in a bank when replacing one. Revised 14.7.30, paragraphs 4 and 5 to match EOP D006 requirements for grounding cutout. 14-343 & 14-345 – Added ground to configuration inset drawings in Figures 2 and 4. 14-348 – Corrected connections in lower left view. 14-377 – Modified for Wye-Delta. 14-379 – Added new drawing for Wye-Wye. 		
7	07/14	Corrected low side arrester locations on 14- 348.		
6	07/13	 Minor text edits for 14-5, 14-8, 14-51 and 14-53 Corrected std item ID for 14-377 		
5	07/12	 Corrected date on page 14-204. Revised minimum spacing for transformer installations on pages 14-204, 14-304 and 14-305. 		

SUMMARY OF RECENT CHANGES					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	14-NOTES-1	7/21		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 14.00.004

Version	Date	Modification	Author(s)	Approval by (Name/Title)
4	07/11	 Corrected page reference on Page 14-1 Wording revisions on Pages 14-4 and 14-5 Corrected Std Item # on Page 14-171 Added washer on page 14-211 Added washer and changed crossarm mounting dimension on pages 15-212, 15-331, 15-332, 15-333, 15-334. Corrected incorrect neutral switch wiring on 		
3	07/10	 Pages 14-373 and 14-374. Revised 500kcmil Std Item # Revised PDC Tables on page 14-54. Moved arrester note from top of page to Diagram 7 on page 14-176. Removed note on arrester locations on page 14-177. Added 4W 480Y/277 to 3-167KVA drawing Removed ground strap on page 14-252 Removed note limiting transformer size to 167kVA on pages 14-247, 248, 249 and 250 Revised page title on page 14-301 Revised tank lettering on figure 1 and phaser diagrams on figures 3 & 4 on page 14-345 Corrected error in Notes on Page 14-347. Removed secondary ground straps on Page 14-352 and 14-371. Corrected Std Item # on Page 14-377. Removed "ratio" from sections of the text (correct term is "step-up/step-down"). 		
2	07/09	 Corrected spelling in title on page 14-131 Revised conductor size in table on page 14-171 Revised grounding on Figure 1 & 5 Replaced Figure 1 with correct drawing and revised notes on page 14-312 Revised notes on page 14-326 Revised Figure 1, 2 & 3 on drawing 14-352. Relocated arresters to transformers revised last note. Revised Figure 3 on drawing 14-371. Placed arresters on transformers and deleted note "Do not connect grd. strap" in Figure 3 Removed source side arresters, added cutout/arrester note and added neutral switch to drawing on page 14-373 Removed source arresters, added cutout/arrester note to drawing on page 14-374 Removed source side arresters, added cutout/arrester note to drawing on page 14-377 Updated CUs and MUs on pages 14-248, 14-249, 14-304, 14-312, 14-326, 14-352, 14-371 		

	SU		MMARY OF RECENT CHANGES	
	ISSUE	PAGE NUMBER		SMI
Busi	7/21 ness Use	14-NOTES-2	OVERHEAD CONSTRUCTION STANDARD	ppl

SECTION	PAGE
• 15.0 GENERAL	15-1
15.1 VOLTAGE CONTROL	15-1
15.2 VOLTAGE CORRECTION	15-1
15.3 CAPACITORS	15-2 THRU 15-3
15.4 REGULATORS	15-4 THRU 15-5
15.5 PRIMARY METERING	15-6
15.6 POLE MOUNTED AND LINE MOUNTED SENSORS	15-6 THRU 15-7
CONSTRUCTION DRAWINGS	
 1Φ Regulator Installation Not Effectively Grounded 15 kV 	15-111
 1Φ Regulator Installation Effectively Grounded 15 kV 	15-112
 1Φ Regulator Installation Effectively Grounded 15 kV 	15-113
○ 3Ф Two-Regulator Installation Not Effectively Grounded 15 kV	15-121
 3Φ Regulator Installation Not Effectively Grounded 15 kV 	15-122
о 3Ф Regulator Installation Effectively Grounded 15 kV	15-131
3 Regulator Platform Installation – Effectively Grounded System	15-151
o Regulator Platform Installation Grounding Diagram – MGY System	15-152
o 3 Regulator Platform Installation – Delta System	15-153
o 2 Regulator Platform Installation – Delta System	15-154
 Regulator Platform Delta Installation, 2 or 3 Regulators (Side View) 	15-155
o Regulator Platform Installation Grounding Diagram – Delta System	15-156
 Regulator Sequenced By-Pass Switch Operation 	15-157 THRU 15-158
 In-Line Power Regulator – 120/240V, 50kVA 	15-160
 1Φ Capacitor Installation Effectively Grounded 15 kV 	15-211
 1Φ Capacitor Installation Not Effectively Grounded 15 kV 	15-212
о 3Ф Fixed Capacitor Installation Effectively Grounded 15 kV	15-331
 3Φ Fixed Capacitor Installation Not Effectively Grounded 15 kV 	15-332
○ 3Ф Switched Capacitor Installation Effectively Grounded 15 kV	15-333
 3Φ Switched Capacitor Installation Not Effectively Grounded 15 kV 	15-334
 ⊙ 3Ф Switched Capacitor Installation Not Effectively Grounded 23 kV 	15-334A
 3Ф Switched Capacitor Installation Effectively Grounded 15 kV Class and Below with Current/Voltage Sensor 	15-335 THRU 15- 335A
 3Φ Switched Capacitor Installation Effectively Grounded 35 kV Class and Below with Current/Voltage Sensor 	15-336 THRU 15- 336A
○ 3Ф Fixed Capacitor Installation 15 kV – With 3Ф Units	15-363
 Switched Capacitor Current Control Wiring Diagram – 6 Pin Meter Socket 	15-399
 Switched Capacitor Current Control Installation 	15-400
 Switched Capacitor Current Control Wiring Diagram – Hard Wired 	15-401
 3Ф Switched Capacitor Time Clock/Voltage/Temperature Installation 15 kV 	15-402
 Time Clock/Voltage/Temperature Control Wiring Diagram 	15-403

CAPACITORS/REGULATORS/METERING INDEX

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 7/21

	SECTION	PAGE
0	3Ф Switched Capacitor Radio Control Installation 15 kV	15-404
0	Radio Control Wiring Diagram	15-405
0	Common Neutral Wiring Switched Capacitor Installation Diagram	15-406
0	No Common Neutral Wiring Switched Capacitor Installation Diagram	15-407
0	3Ф Switched Capacitor Installation Effectively Grounded Spacer Cable 15 kV	15-409
0	3Ф Primary Metering – Fused Double Deadend	15-500
0	3Ф Primary Metering – Fused Riser Pole, Tangent	15-501
0	3Ф Primary Metering – Fused Riser Pole, Deadend	15-502
0	3Ф Primary Metering –Fused Delta Circuits	15-503
0	3Ø Primary Meter Secondary Conduit Layout	15-550
0	3Ф Pole Mounted Feeder Monitor 15kV	15-600
0	Typical Installation of Power Line Sensor with Collector Box	15-650

	CAPACITORS/REGULATORS/METERING INDEX						
	ISSUE	PAGE NUMBER		SMILE.			
Busine	ss 7/321	15-ii	OVERHEAD CONSTRUCTION STANDARD	ppl			

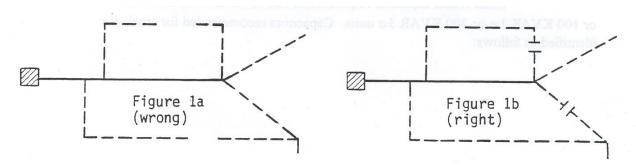
© 2022 PPL Corporation. All rights reserved

Doc. # ST. 15.00.002

15.0 GENERAL

This Section covers the details of installing and connecting distribution voltage regulators, capacitors and primary metering. Step voltage regulators and fixed or switched capacitors are installed on primary distribution feeders to maintain and improve power factor and/or voltage regulation.

15.0.10 New Purchases – Re-use


Distribution regulators and capacitors will be purchased in accordance with Company material specifications MS2821, MS2851, MS2852, and MS2853.

15.1 VOLTAGE CONTROL

Voltage control on distribution feeders shall be maintained through a combination of feeder design, application of capacitors, and the use of regulators.

15.1.10 Feeder Design

Feeder design should consider anticipated loads and future substation sites. Judicial selection of multiple feeder routes can reduce feeder losses as illustrated in Figure 1a and 1b below.

Note: Assuming uniformly distributed loads and constant conductor size.

15.2 VOLTAGE CORRECTION

Normal acceptable voltage at the customer service point is outlined in Section 9-Primary.

If voltage correction is necessary, proper feeder balancing shall first occur which will improve the voltage profile and in many cases resolve voltage complaints. In some cases, feeder balancing may eliminate the need for existing line regulators and/or capacitors. If the feeder is relatively balanced, station settings may need to be re-adjusted and/or additional line regulators and/or capacitors may need to be installed.

CAPACITORS/REGULATORS/METERING						
Wille		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	15-1	7/09			

15.3 CAPACITORS

15.3.10 <u>Distribution Capacitor Application</u>

Capacitors are required on the distribution system to correct voltage drop, improve power factor, reduce losses, and increase system capacity. The capacitor needs of distribution feeders should be evaluated, along with conductor requirements, fusing, etc., whenever a feeder study is made by the Engineering or Planning Department.

A power engineering analysis simulation program should be used to determine the total requirements and location of capacitors. Capacitors should be installed in appropriate locations and sizes to minimize overall losses and investment cost. Proper attention must be given to both peak and light load voltage for excursions outside the allowable voltage limits. Switched banks of capacitors shall not cause a step-voltage rise of more than 3% Switched capacitor banks in some applications are available with an advance control (Std. Item C39A). This requires the use of voltage/current sensors as shown in drawings 15-335 and 15-336. The advanced control will allow features such as voltage, current and power factor; see MS2855 for all of the controls features.

A power engineering analysis simulation program should be used to determine the available short circuit current with consideration being given to ties to adjacent feeders that may increase the available short circuit current.

The actual locating and sizing of capacitor banks on feeders is detailed in the Feeder Management Guidelines. Control settings are discussed in the application guide section of the Feeder Management Guidelines. Refer to Distribution Asset Management document DAM-007, "Reactive Compensation for Distribution Systems". Refer to Table 1 for standard assembled capacitor banks.

15.3.20 Capacitor Installation Details

The mechanical details of installing capacitors in single or three-phase applications are shown on pages 15-211 thru 15-409.

Fuse cutouts, all styles of capacitors shall use cutouts for protection of the device. In areas where the fault current is over 5,000 amps symmetrical (4000 for 50Kvar units and smaller), current limiting fuses are required as well. See Section 12-Protection for selection of recommended fuse size for capacitor groupings.

Lightning protection shall be provided on capacitor installations by using surge arresters suitable for the respective capacitor voltage class. See Section 13-Grounding for surge arrester selection guide, as well as MS 2852 Table II.

Vacuum switches: Switched capacitor banks may come with vacuum switches supplied from ABB in place of Thomas & Betts. The control needs to be in "Motor Op" mode for the ABB vacuum switches to operate.

	CAPACITORS/REGULATORS/METERING				
	ISSUE	PAGE NUMBER		AMZ	
Busi	7/19 ness Use	15-2	OVERHEAD CONSTRUCTION STANDARD	ppl	

Table 1

Individual Capacitor Units								
System Voltage	Bank kVAR	Fixed	Switched	Advanced Switched	Quantity	Size	No. of Bushings	Rack Size
2400 Volt Delta	150 300	X	X X	-	3 3	50 100	2 2	3 Unit 3 Unit
2400/4160 Volt Grd Y	150 300 450	X X X	X X X	X X x	3 3 3	50 100 150	2 2 2	3 Unit 3 Unit 3 Unit
4800 Volt Delta	150 300 450	X X X	,X X X	- - -	3 3 3	50 100 150	2 2 2	3 unit 3 Unit 3 Unit
4800/8320 Volt Grd Y	150 300 450 600	X - X x	X X X		3 3 3 3	50 100 150 200	2 2 2 2	3 Unit 3 Unit 3 Unit 3 Unit
6640/11500 Volt Grd Y	600 900 1200	- - -	- - -	X X X	3 3 6	200 300 200	2 2 2	6 Unit 6 Unit 6 Unit
7200/12470 Volt Grd Y	300 600 900 1200	X X	X X X	X X X	3 3 3 6	100 200 300 200	2 2 2 2	3 unit 6 Unit 6 Unit 6 Unit
7620/13200 Volt Grd Y	300 600 900 1200	X X	X X X	X X X	3 3 3 6	100 200 300 200	2 2 2 2	3 unit 6 Unit 6 Unit 6 Unit
7960/13800 Volt Grd Y	300 600 900 1200	X X	X X X	X X X	3 3 3 6	100 200 300 200	2 2 2 2	3 unit 6 Unit 6 Unit 6 Unit
13800 Volt Delta	1200	-	Х	-	6	200	2	6 Unit
13280/23000 Grd Y	1200	-	Х	-	6	200	2	9 Unit
23000 Volt Delta	1800 2700	-	X X		6 9	300 300	2 2	6 unit 9 Unit
19920/34500 Grd Y	1200 1800	-	X X	X X	6 9	200 200	1 1	6 Unit 9 Unit

CAPACITORS/REGULATORS/METERING

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 15-3 7/19

15.4 REGULATORS

15.4.10 <u>Voltage Regulator Application</u>

Where primary voltage levels cannot be controlled within acceptable limits by capacitors and station regulation, pole mounted feeder regulation is required. The data sources available to perform a review include RAP reports, feeder V/O monthly readings, feeder modeling studies and portable recording voltmeters.

Step type voltage regulators raise or lower the incoming primary voltage by 10% and the regulator tap changers divide the 10% raise or lower voltage into 16 individual steps. Each step on a regulator adds 5/8% of the maximum raise or lower voltage to the primary circuit.

The range of regulation can also be limited and the regulator's normal current rating will increase as follows.

REGULATION NORMAL RATING **CURRENT RATING CURRENT RATING CURRENT RATING RANGE** % NAMEPLATE 76.2 KVA **167KVA** 333KVA % RAISE AND **AMPERES** @ 7620V @ 7620V @ 7620V **LOWER** 10 100 100A 219A 437A 8.75 110A 110 241A 482A 7.5 120 120A 263A 526A 6.25 135 135A 295A 592A 160 350A 668A 5 160A

Table 2

15.4.20 Voltage Regulator Construction Details

Single and 3 phase regulator construction details are shown on Pages 15-111 thru 15-156. The primary connections and grounding details are shown on the installation drawings.

The preferred 3 phase regulator method of installation on effectively grounded circuits is to install each regulator onto a separate pole eliminating unnecessary congestion and allowing for a quicker replacement and re-energization during a contingency condition (e.g. motor vehicle accident).

Single phase regulator installations, depending upon operating preference on effectively grounded circuits, shall be in accordance with Pages 15-112 and 15-113.

The preferred 3 phase regulator method of installation on not effectively grounded circuits (e.g. delta), is to use either three regulators or two regulators. If using two regulators resulting in an open delta connection, the location shall be relatively balanced and the high and low inductive voltage phases shall be determined through a preliminary load/voltage monitoring check and be the phases regulated.

Should there be more than one point of regulation on a single radial 3-phase line, the phases being regulated should be alternated. For example, if the first point of regulation is connected between phases 1-2 and 2-3, then the second point should be connected between phases 2-3 and 3-1, and the third point should be connected between phases 3-1 and 1-3.

Where practical, aluminum platform installations should be oriented with dial indicators and disconnect switches on the road side. Where this is not practical, the dial indicators and

CAPACITORS/REGULATORS/METERING						
ISSUE	PAGE NUMBER		WW.			
7/21	15-4	OVERHEAD CONSTRUCTION STANDARD	ppl			

disconnect switches should be readily accessible by bucket truck. In this case, consideration to the terrain, slope and accessibility of the area behind the regulator installation.

15.4.30 Voltage Regulator Sizing and Schematic

These are the basic steps in determining the size and connection type of the voltage regulator for utility applications:

- 1. Determine the system configuration (i.e. 3-phase, 4-wire multi-grounded wye or 3-phase, 3-wire delta). This will be the basis for the automatic voltage regulator (AVR) connection type.
- 2. Establish the amount of voltage regulation needed (e.g. ±5%, ±10%)
- 3. Determine the system phase voltage on which the AVRs will be connected. Remember that the phase voltage is affected by the system configuration (1).
- 4. Calculate the maximum load current of the feeder or line.
- 5. Multiply the percent voltage regulation (2), system phase voltage (3) and maximum line current (4) to get the required kVA size of the automatic voltage regulator.

For example, compute for the step-voltage regulator size needed by a 3-phase, 4-wire multigrounded feeder with a system voltage of 13800Y/7970 V. The required voltage regulation is 10% and the peak connected load is 6.0 MVA.

- 1. System Configuration is 3-phase, 4-wire, multi-grounded wye means that the voltage regulators shall be connected grounded wye.
- 2. Voltage regulation = 10%
- 3. Phase voltage is the line-to-neutral voltage = 7.97 kV (since it is a 4-wire multi-grounded wye feeder)

4. Load Current =
$$\frac{6.0 \text{ MVA}}{1.732 \times 13.8 \text{ kV}} = 251 \text{ A}$$

5. Voltage Regulator kVA Size = 10×7.97 kV $\times 251$ A = 200 kVA

Use three 32-step voltage regulators, each with a standard rating of 333 kVA, 7970 V, ±10% regulation.

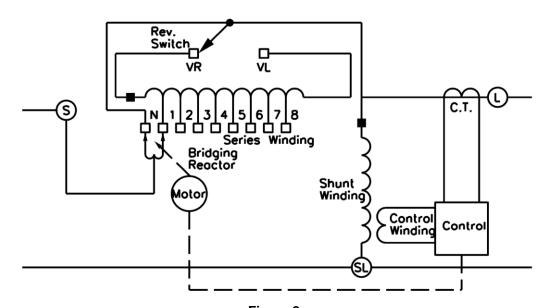


Figure 2
Voltage Regulator Wiring Schematic

CAPACITORS/REGULATORS/METERING						
SMI	NAME PAGE NUMBER ISSUE					
ppl	OVERHEAD CONSTRUCTION STANDARD	15-5	7/21			

15.4.40 Voltage Regulator Bypass Switch

- The voltage regulator bypass switch provides a three step switch sequence with one operation of the switch. The switch helps reduce the Worker's time spent in the primary space during switching events.
- 2. Bypass switches shall be numbered/labeled per drawing requirements

Note: A voltage regulator should never be energized or bypassed while stepped off the neutral position. Doing so can cause dangerous circulating currents to develop causing catastrophic equipment failure. Refer to the appropriate Electric Operating Procedures for voltage regulator operations.

15.5 PRIMARY METERING

This section specifies pole-top primary metering installations using outdoor-type instrument transformers mounted on a pre-fabricated aluminum bracket. For pad-mounted primary metering devices to be used with UG cables, please refer to Section 38 in the UG Construction Standards book.

For installations in the legacy Niagara Mohawk territory, please refer to Electric System Bulletin (ESB) 753.

All Customer-furnished devices shall be approved by the Company and be placed on a Company-approved pole or structure. The Customer shall submit their plans and specifications to the Company before equipment is ordered or before construction has started to ensure that the proposed design for the electric service installation conforms to the Company's requirements.

15.5.10 Primary Metering Accompanied by a Riser

A primary metering device and a riser may be placed on the same pole if the loadbreak device is on an adjacent pole when a loadbreak switch is used as a disconnect point. See the drawings on Pages 15-501 or Page 15-502 for details regarding primary metering and a riser on the same pole.

15.6 POLE MOUNTED AND LINE MOUNTED POWER SENSORS

Applying power sensors on the distribution system supports many key applications that drive benefits, including improved reliability, improved energy efficiency, reduced maintenance costs, improved power quality, and increased operational awareness.

Power Sensors can deliver near revenue grade current and voltage measurement to support a number of applications to improve distribution system reliability and efficiency. In some cases, sensor measurements directly drive analysis and control applications. Power sensors are also fundamental to distribution network state estimation by providing active feedback, which is becoming a prerequisite for smart grid functionality. Sensors have advanced capabilities to capture fault current and harmonics.

15.6.10 <u>Line Post Power Sensor</u>

Line post sensors are approved for use in pole mounted power sensing applications. These sensors must be grounded prior to energization and remain grounded while in service.

15.6.10.1 3 Phase Pole Mounted Feeder Monitor

This monitoring system requires the installation of current and voltage combination line post sensors. The sensors are wired to an advanced control which can be integrated via DNP3 to other utility back-

CAPACITORS/REGULATORS/METERING						
ISSUE	PAGE NUMBER		SMIZZ			
7/21	15-6	OVERHEAD CONSTRUCTION STANDARD	ppl			

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 15.00.002

end systems such as SCADA, data historians, and energy management systems (EMS). See drawing 15-600 for installation details.

15.6.20 Line Mounted Power Sensor

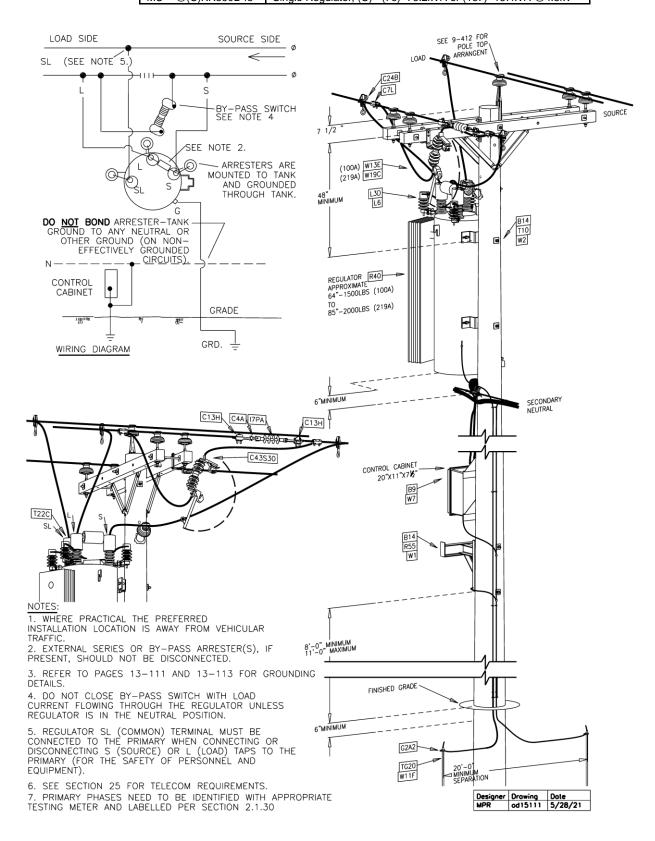
15.6.20.1 Clamp-on style Power Sensor

These sensors are self-powered devices that are directly mounted to phase conductors of distribution lines via hot sticks and communicate back to the pole mounted collector control via an RF link. The sensor uses Rogowski coil technology to measure the current and a capacitive voltage sensor that eliminates the need for a neutral connection to measure the voltage. The sensors can operate continuously on line currents as low as 5 amps and up to 600 amps maximum. The collector control can be integrated via DNP3 to other utility back-end systems such as SCADA, data historians, and energy management systems (EMS). See drawing 15-650 for installation details. The collector can hold up to 30 days of local data. Distribution Control & Integration can be contacted to determine the required communication platform for the proposed installation. All installations must be calibrated with a Check (Calibration) tool before putting into service.

15.6.20.2 Installation Requirements

- A. Ensure Power sensors are at least 10 feet from the nearest power pole.
- B. Ensure no insulation is present on the conductors, the sensors require direct electrical contact.
- C. Ensure no foreign objects (trucks, buckets, hot-sticks, etc.) are within 10 feet of the Power sensors during calibration.
- D. Record serial numbers of each Power Sensor before installation and record the collector control serial number as well. This information is required for configuration of the system after installation is complete.
- E. Mount the sensors with the arrow and antenna facing the direction of the load, also indicated by direction of arrow on body of sensor.
- F. Take care to ensure that the arrow and antenna on the automated setup tool points in the direction of the load.
- G. The check (calibration) tool +should be 10 feet from the sensor on the opposite side of the pole during calibration.
- H. Recalibration may be required if additional circuits are added or the configuration on the pole changes.
- I. Power Sensors must be installed within a 50' radius of the collector control.
- J. Up to 6 Power Sensors can communicate back to each Collector Box.
- K. Min/Max conductor size #2 477kcmil

Voltages 2.4kV to 19.9kV Phase to neutral

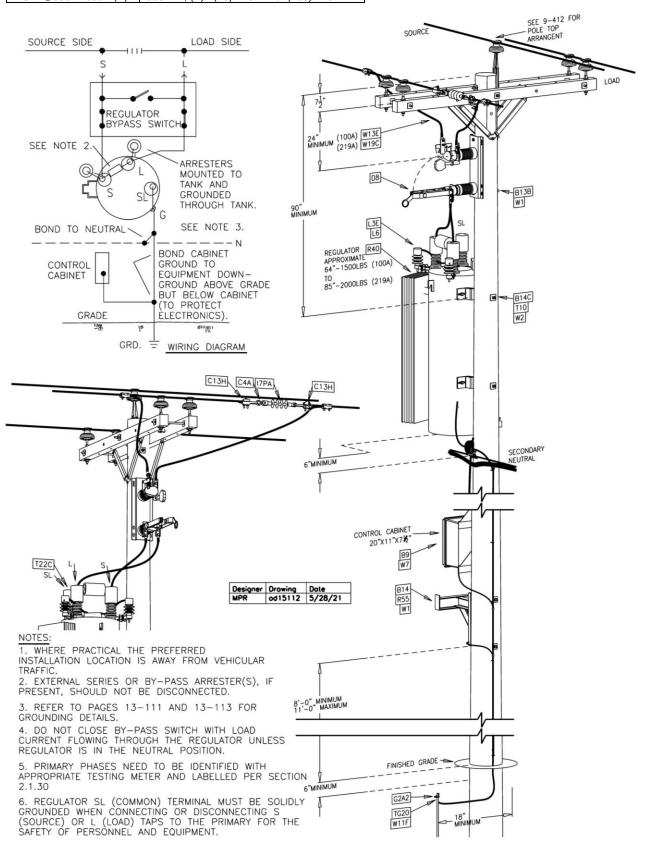

CAPACITORS/REGULATORS/METERING					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	15-7	7/21		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15.00.002

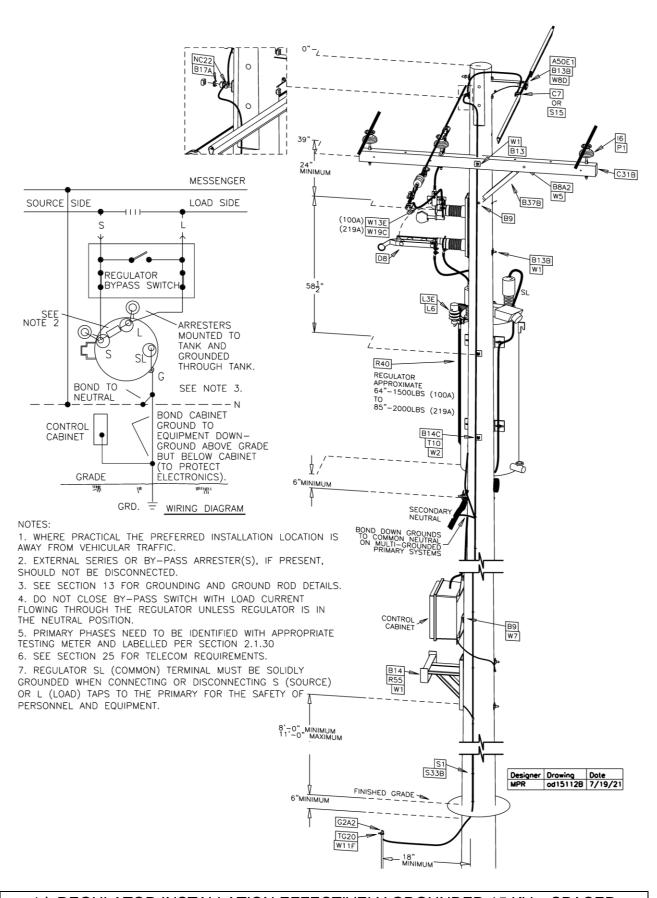
This Page Left Intentionally Blank

CAPACITORS/REGULATORS/METERING					
ISSUE	PAGE NUMBER				
7/19	15-BLANK	OVERHEAD CONSTRUCTION STANDARD	national grid		

MU = @(C)KR590D Single Regulator, (C) =(76)=76.2kVA or (167)=167kVA @4.16kV MU = @(C)KR590D48 Single Regulator, (C) =(76)=76.2kVA or (167)=167kVA @4.8kV



1Ø REGULATOR INSTALLATION - NOT EFFECTIVELY GROUNDED, 15kV

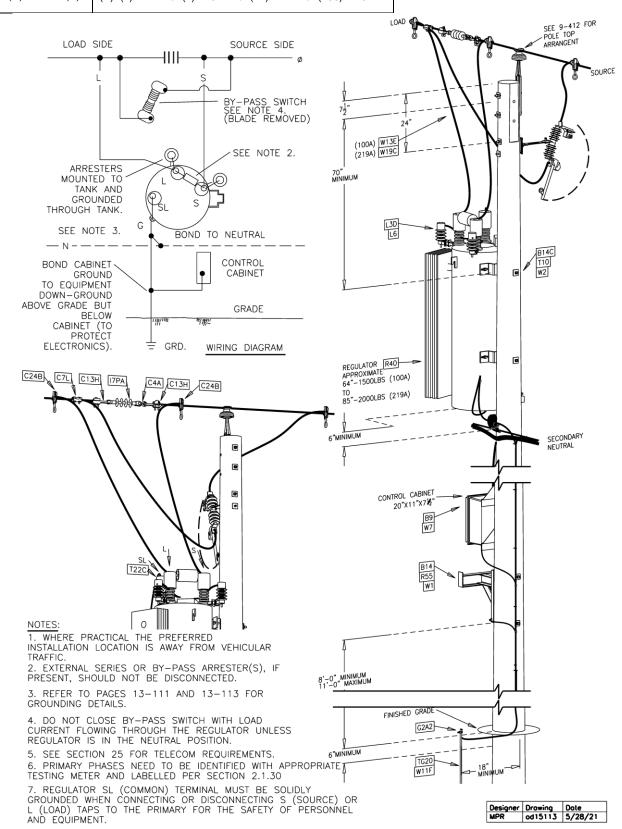


OVERHEAD CONSTRUCTION STANDARD

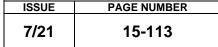
PAGE NUMBER ISSUE 15-111 7/21

1Ø REGULATOR INSTALLATION - EFFECTIVELY GROUNDED, 15kV						
ISSUE	PAGE NUMBER		SMIZZ			
7/21	15-112	OVERHEAD CONSTRUCTION STANDARD	ppl			

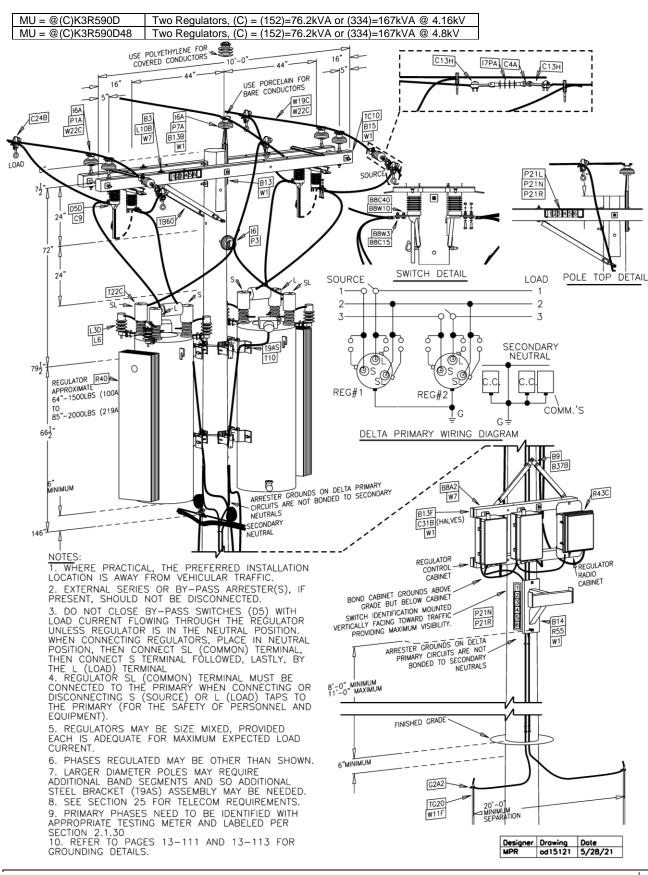
1Φ REGULATOR INSTALLATION EFFECTIVELY GROUNDED 15 KV – SPACER CABLE



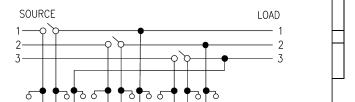
OVERHEAD CONSTRUCTION STANDARD

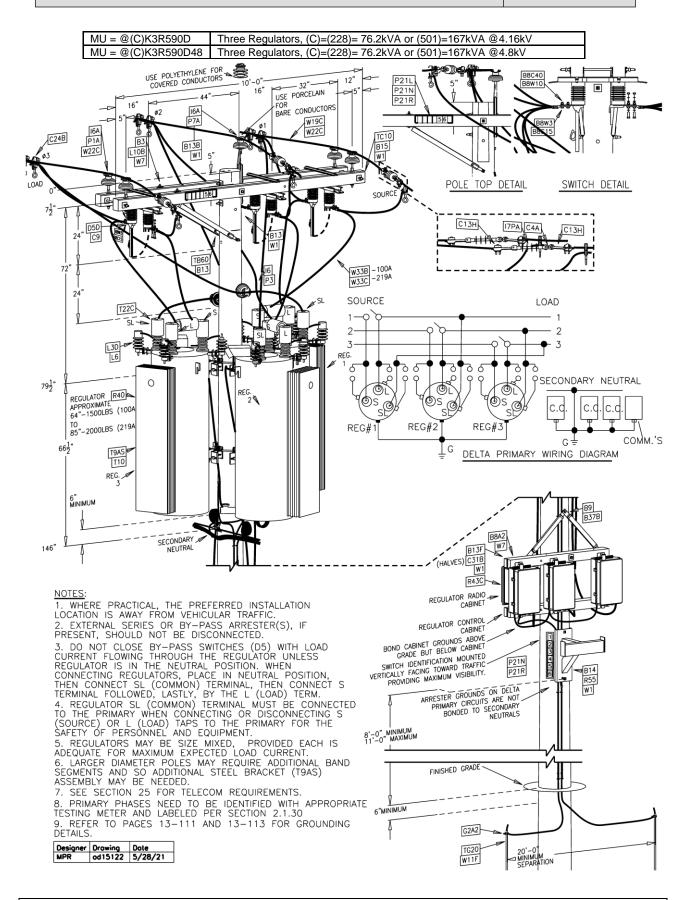

PAGE NUMBER ISSUE 15-112B 7/21

MU = @(C)KR590W(V)


Single Regulator, (C)=(76)=76.2kVA or (167)=167kVA (V)=(2)=2.4kV or (7)=7.62kV or (72)=7.2kV or (796)= 7.97kV

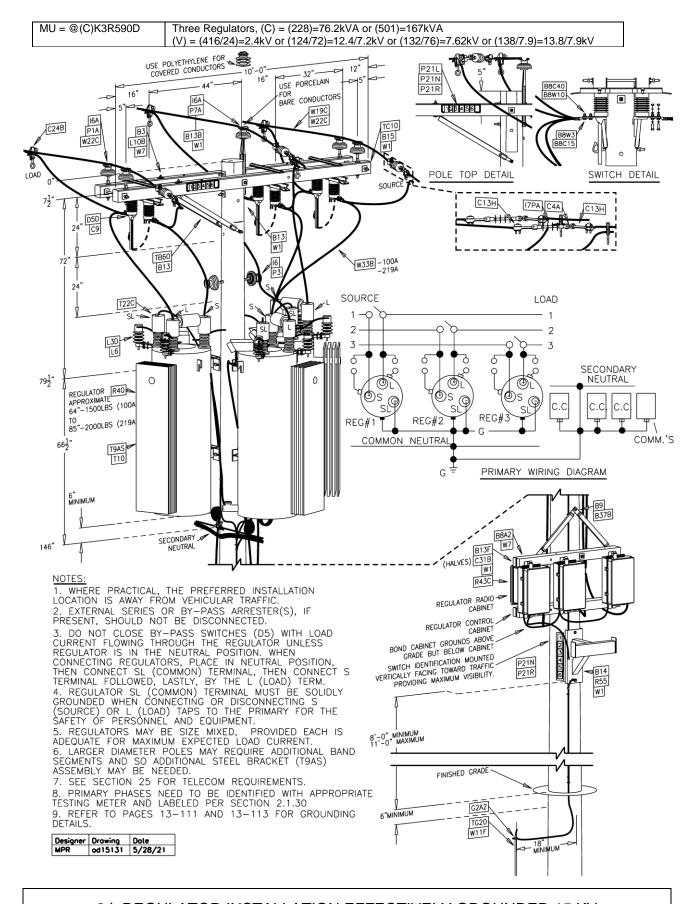
1Ø REGULATOR INSTALLATION EFFECTIVELY GROUNDED 15 kV





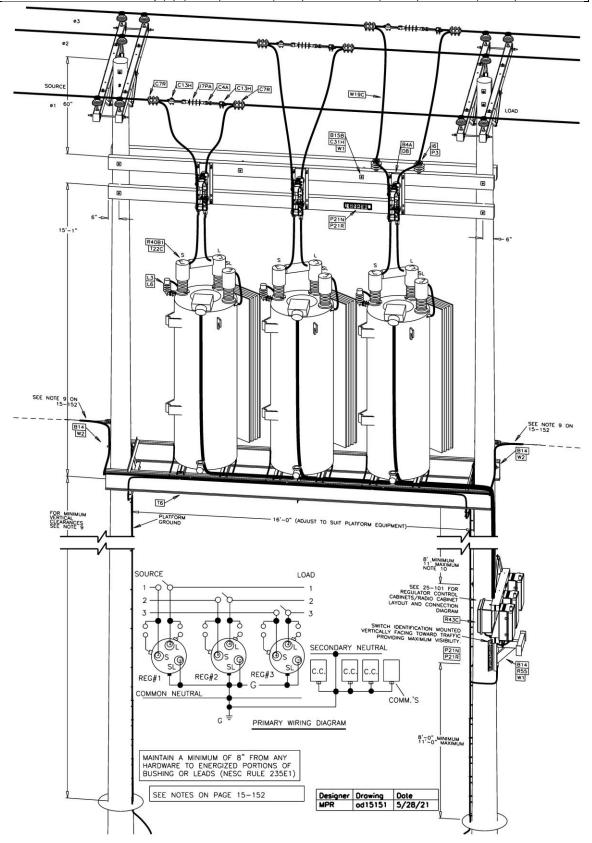
NOTES:

- 1. LOCATE INSTALLATION AWAY FROM VEHICULAR TRAFFIC.
- EXTERNAL SERIES OR BY-PASS ARRESTER(S), IF PRESENT, SHOULD NOT BE DISCONNECTED.
- 3. DO NOT CLOSE BY-PASS SWITCHES (D5) WITH LOAD CURRENT FLOWING THROUGH THE REGULATOR UNLESS REGULATOR IS IN THE NEUTRAL POSITION. WHEN CONNECTING REGULATORS, PLACE IN NEUTRAL POSITION, THEN CONNECT SL (COMMON) TERMINAL, THEN CONNECT S TERMINAL FOLLOWED, LASTLY, BY THE L (LOAD) TERM.
- TC



3Φ REGULATOR INSTALLATION NOT EFFECTIVELY GROUNDED 15 KV

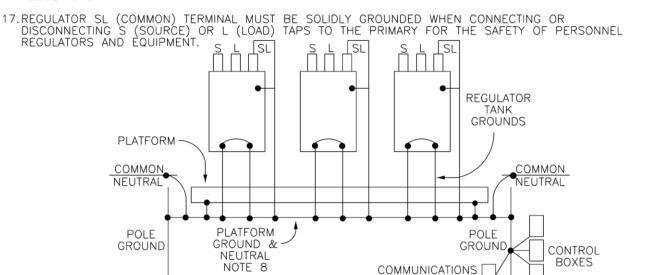
ISSUE	PAGE NUMBER	
7/21	15-122	



OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 15-131 7/21

MU=@(C)K3R590W(V)PF

Three Regulators, (C)=(501)=167kVA or (999)=333kVA (V)=(416/24)=2.4kV or (124/7)=12.4/7.2kV or (13.2/76)=7.62kV or (138/7.9)=13.8/7.9kV


	REGULATORS PLATFOR EFFECTIVELY GROUN	_
		10 LD 0 1 0 1 L 1 1 1
ISSUE	PAGE NUMBER	

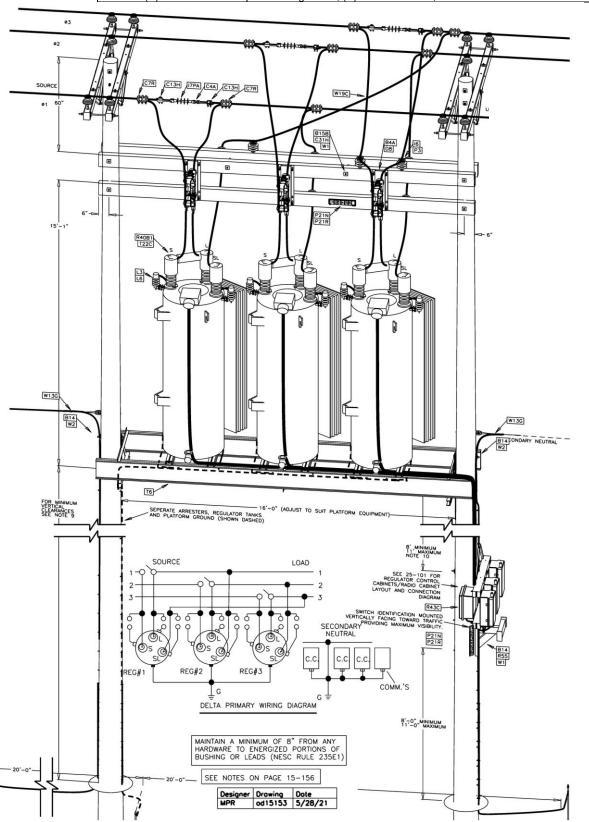
7/21 15-151

NOTES FOR DRAWING 15-151:

- 1. DIMENSIONS MAY VARY BASED ON SWITCH DESIGN.
- 2. ARRESTERS MUST BE INSTALLED ON BOTH LOAD AND SOURCE SIDE BUSHINGS.
- 3. MINIMUM CLASS 3 POLES FOR POLES 50 FEET OR SHORTER. MINIMUM CLASS 2 POLES FOR POLES 55 FEET OR LONGER.
- 4. MOUNT THE PLATFORM TO THE POLES WITH 3/4" BOLTS.
- 5. USE TIE-DOWN CLIPS ON PLATFORM TO FASTEN REGULATORS.
- 6. INSTALL ANIMAL GUARDS ON ALL REGULATOR AND ARRESTER BUSHINGS.
- 7. CAUTION: REGULATORS MUST ALWAYS HAVE THEIR TAP CHANGERS IN THE NEUTRAL POSITION BEFORE THE REGULATOR BYPASS SWITCH IS OPERATED OR THEY ARE PUT ON OR TAKEN OFF AN ENERGIZED LINE OTHERWISE, A VIOLENT REGULATOR FAILURE COULD OCCUR. REFER TO EOP DO03 FOR MORE DETAILS.
- 8. PLATFORM GROUND AND NEUTRAL CONDUCTOR SHALL BE THE SAME SIZE AS OR LARGER THAN THE SYSTEM NEUTRAL.
- FOR SPACES AND WAYS SUBJECT TO PEDESTRIANS OR RESTRICTED TRAFFIC ONLY, THE MINIMUM VERTICAL CLEARANCE MAY BE REDUCED TO 11'-0", PER NESC RULE 232B3. NOTE: SUCH LOCATIONS ARE VERY UNUSUAL.
- 10. CAUTION: MINIMUM VERTICAL DISTANCE FROM THE TOP OF THE CONTROL BOX TO THE LOWEST POINT OF THE PLATFORM IS 8'-0".
- 11.CARE SHOULD BE TAKEN TO INSTALL PLATFORM STRUCTURES IN LOCATIONS WHERE THEIR VISIBILITY TO THE PUBLIC IS MINIMIZED.
- 12.GROUND MAT IS REQUIRED FOR CONTROL CABINETS MOUNTED LESS THAN 8' ABOVE GRADE. SEE STANDARDS AT 13-113 FOR DETAILS.
- 13. CONTROL CABINETS MAY BE MOUNTED AT 8'-0" TO 11'-0" ABOVE GRADE WITH LADDER BRACKET, SIMILAR TO CABINET MOUNTING ARRANGEMENT IN DRAWING 15-122.
- 14.THE LOWEST PART OF THE GROUNDED PLATFORM (SIDE RAILS, BRACES, OR SUPPORT BRACKETS) SHALL BE AT LEAST 40" ABOVE ANY VERIZON OWNED WIRE OR CABLE AND AT LEAST 30" ABOVE ANY OTHER COMMUNICATION WIRE OR CABLE.
- 15. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30
- 16.SEE SECTION 15.4.20 FOR INFORMATION ON INSTALLATION ORIENTATION OF PLATFORM MOUNTED REGULATORS.

GROUNDING DIAGRAM

REGULATORS PLATFORM INSTALLATION GROUNDING DIAGRAM - MGY SYSTEM OVERHEAD CONSTRUCTION STANDARD REGULATORS PLATFORM INSTALLATION PAGE NUMBER ISSUE 15-152 7/21

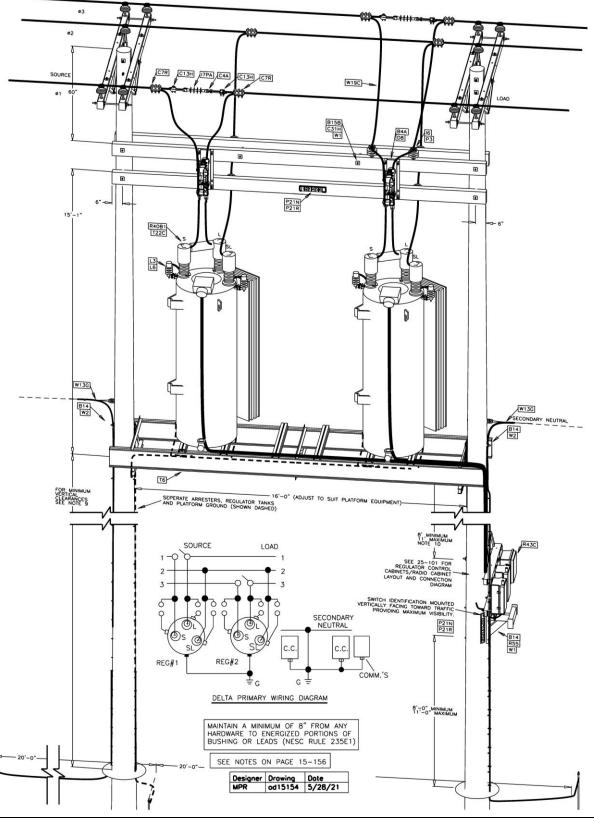

CABINET

Designer Drowing Date MPR od15152 5/28/21

ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15.00.002

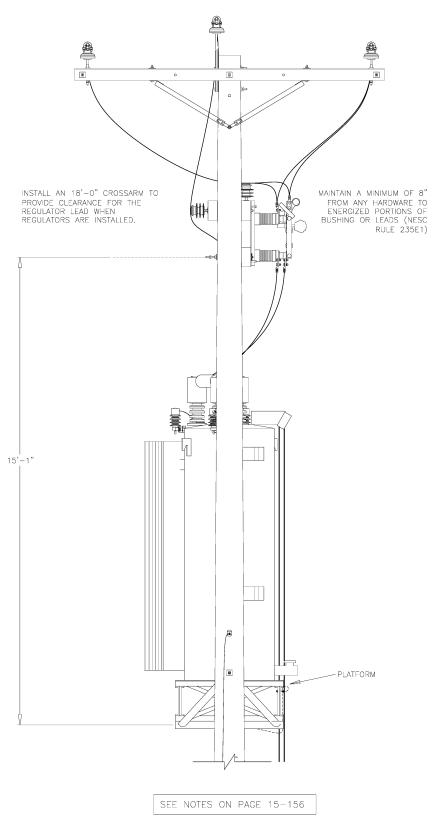
MU = @(C)K3R590D Three Regulators, (C) = 501-167KVA; 999- 333KVA@4.16kV
MU = @(C)K3R590D48PF Three Regulators, (C) = 501-167KVA; 999- 333KVA@4.8KV


REGULATOR PLATFORM DELTA INSTALLATION	1
2 OR 3 REGULATORS	

ISSUE	PAGE NUMBER	
7/21	15-153	

OVERHEAD CONSTRUCTION STANDARD

MU=@(C)K2R590DPF Two Regulators, (C)=(334)=167kVA or (666)=333kVA@4.16kV MU=@(C)K2R590D48PF Two Regulators, (C)=(334)=167kVA or (666)=333kVA@4.8kV



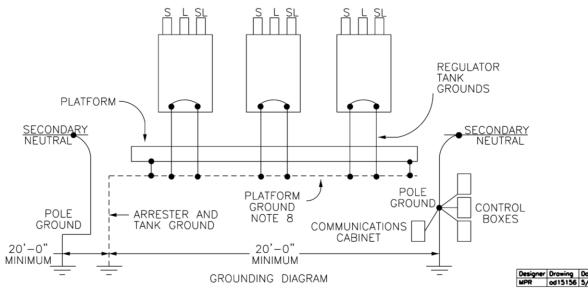
2 REGULATOR PLATFORM INSTALLATION DELTA SYSTEM

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 15-154 7/21

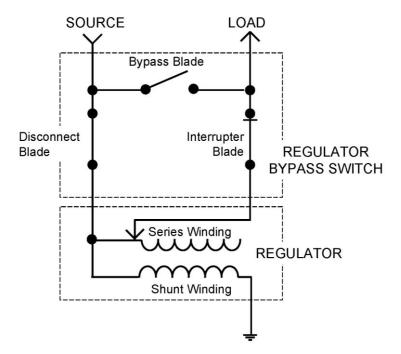
De	esigner	Drawing	Date
M	PR	od15155	5/28/21

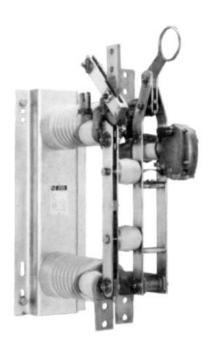
REGULATOR PLATFORM DELTA INSTALLATIO 2 OR 3 REGULATORS (SIDE VIEW) ISSUE PAGE NUMBER			
7/21	15-155	OVERHEAD CONSTRUCTION STANDARD	


15-155

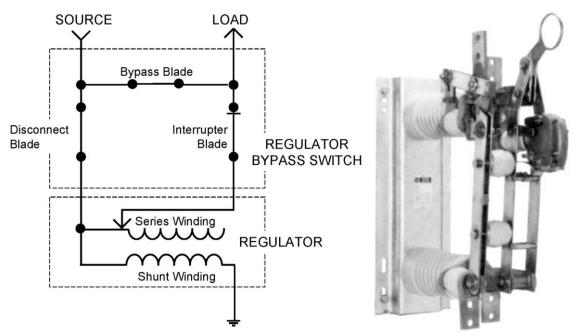
7/21

NOTES FOR DRAWINGS 15-153 AND 15-154:


- 1. DIMENSIONS MAY VARY BASED ON SWITCH DESIGN.
- 2. ARRESTERS MUST BE INSTALLED ON BOTH LOAD AND SOURCE SIDE BUSHINGS.
- 3. MINIMUM CLASS 3 POLES FOR POLES 50 FEET OR SHORTER. MINIMUM CLASS 2 POLES FOR POLES 55 FEET OR LONGER.
- 4. MOUNT THE PLATFORM TO THE POLES WITH 3/4" INCH BOLTS.
- 5. USE TIE-DOWN CLIPS ON PLATFORM TO FASTEN REGULATORS.
- 6. INSTALL ANIMAL GUARDS ON ALL REGULATOR AND ARRESTER BUSHINGS.
- 7. CAUTION: REGULATORS MUST ALWAYS HAVE THEIR TAP CHANGERS IN THE NEUTRAL POSITION BEFORE THE REGULATOR BYPASS SWITCH IS OPERATED OR THEY ARE PUT ON OR TAKEN OFF AN ENERGIZED LINE OTHERWISE, A VIOLENT REGULATOR FAILURE COULD OCCUR. REFER TO EOP D003 FOR MORE DETAILS.
- 8. PLATFORM GROUND SHALL BE #2 COPPER.
- 9. FOR SPACES AND WAYS SUBJECT TO PEDESTRIANS OR RESTRICTED TRAFFIC ONLY, THE MINIMUM VERTICAL CLEARANCE MAY BE REDUCED TO 11'-0", PER NESC RULE 232B3. NOTE: SUCH LOCATIONS ARE VERY UNUSUAL.
- 10. CAUTION: MINIMUM VERTICAL DISTANCE FROM THE TOP OF THE CONTROL BOX TO THE LOWEST POINT OF THE PLATFORM IS 8'-0".
- 11.CARE SHOULD BE TAKEN TO INSTALL PLATFORM STRUCTURES IN LOCATIONS WHERE THEIR VISIBILITY TO THE PUBLIC IS MINIMIZED.
- 12.GROUND MAT IS REQUIRED FOR CONTROL CABINETS MOUNTED LESS THAN 8'ABOVE GRADE. SEE STANDARDS AT 13-113 FOR DETAILS.
- 13.CONTROL CABINETS MAY BE MOUNTED AT 8'-11"ABOVE GRADE WITH LADDER BRACKET, SIMILAR TO CABINET MOUNTING ARRANGEMENT IN DRAWING 15-122.
- 14.THE LOWEST PART OF THE GROUNDED PLATFORM (SIDE RAILS, BRACES, OR SUPPORT BRACKETS)
 SHALL BE AT LEAST 40"ABOVE ANY VERIZON OWNED WIRE OR CABLE AND AT LEAST 30"ABOVE ANY
 OTHER
- 15. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30
- 16.SEE SECTION 15.4.20 FOR INFORMATION ON INSTALLATION ORIENTATION OF PLATFORM MOUNTED REGULATORS.



R	REGULATOR PLATFORM INSTALLATION DELTA SYSTEM		
	PAGE NUMBER ISSUE		
	OVERHEAD CONSTRUCTION STANDARD	15-156	7/21


7/10 - New page.

Regulator bypass switches must not be operated until the automatic control circuits of the associated regulator tap changers have been opened and the tap changers have been moved to the neutral position.

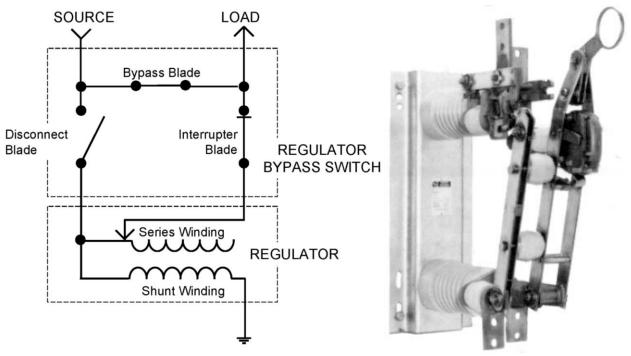


Figure 1 - Switch closed; voltage regulator is energized. Bypass blade is open; disconnect blade and interrupter blade are closed.

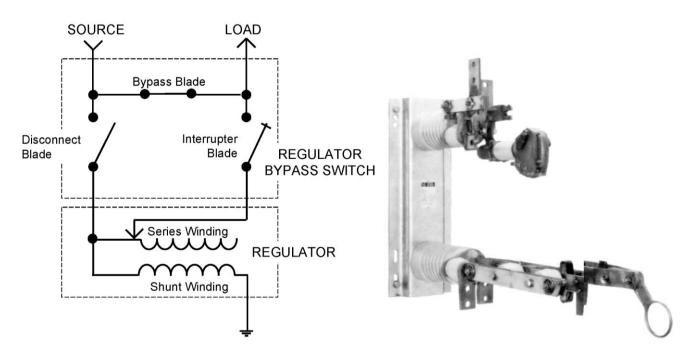


Figure 2 - Switch in early stage of opening stroke. Bypass blade has closed, making a direct connection between the source and load. Disconnect blade and interrupter blade are still closed.

REGULATOR BY-PASS SWITCH OPERATION GUIDE			
ISSUE	PAGE NUMBER		WIV
7/10	15-157	OVERHEAD CONSTRUCTION STANDARD	ppl

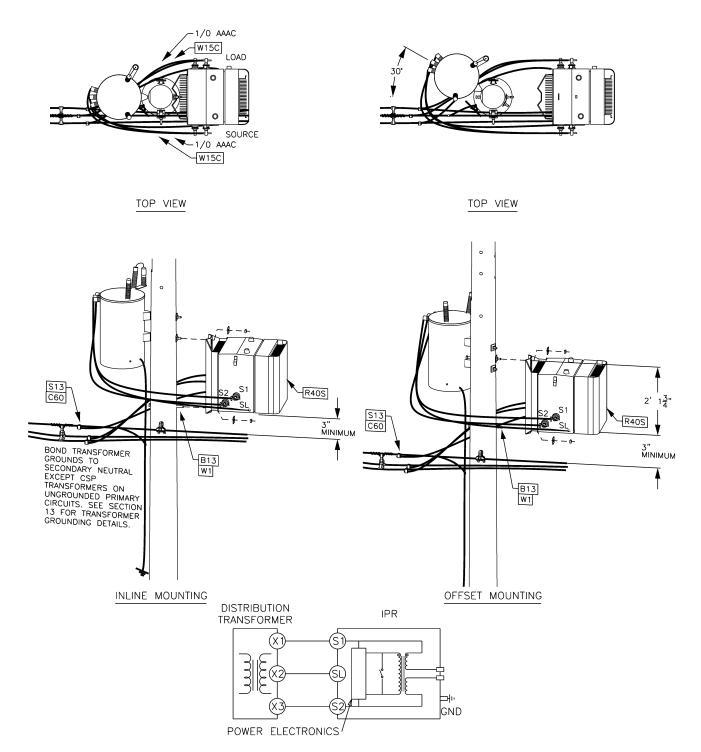
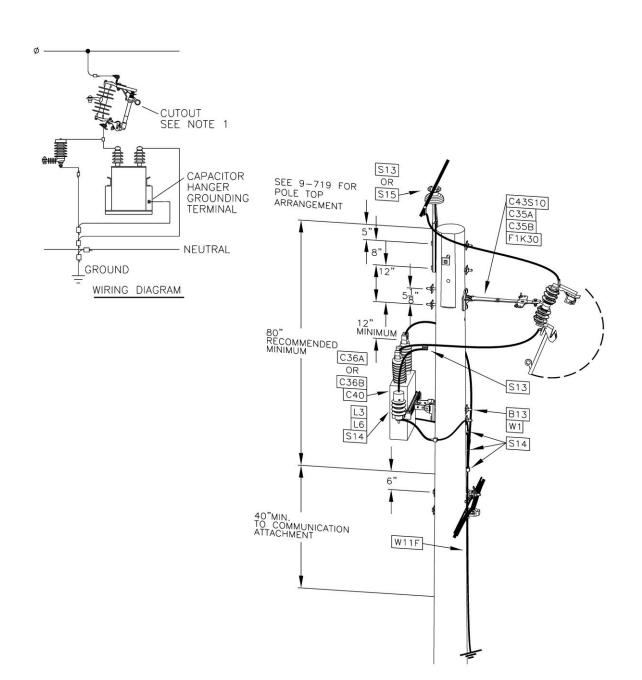


Figure 3 - Switch in later stage of opening stroke. Disconnect blade has opened, but voltage-regulator shunt winding is still energized through the interrupter blade.

Figure 4 - Switch fully open. Voltage-regulator magnetizing-current interruption has taken place within the interrupter with no external arc or flame. Voltage regulator is de-energized and bypassed.

	REGULATOR BY-PASS SWITCH OPERATION GUIDE			
	AMD		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	15-158	7/10

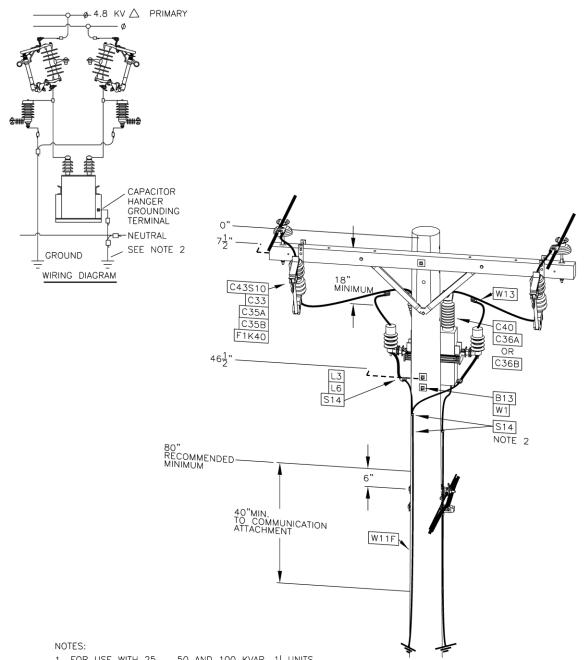

NOTE:

1. INLINE POWER REGULATOR UNIT MUST BE INSTALLED ON POLES WITH A SINGLE PHASE POLE TYPE DISTRIBUTION TRANSFORMER RATED 50KVA OR LESS THAT IS CONNECTED PHASE TO GROUNDED WYE SYSTEM WITH A PRIMARY VOLTAGE OF 8.7KV OR LESS AND A SECONDARY VOLTAGE OF 120V/240V.

Designer	Drawing	Date
MPR	od15160	6/30/20

IN-LINE POWER REGULATOR – 120/240V, 50kVA				
ISSUE	PAGE NUMBER		SMIZZ	
7/21	15-160	OVERHEAD CONSTRUCTION STANDARD	ppl	

@ 2022 PPL Corporation. All rights reserved.



NOTES

- 1. USE CUTOUT AND FUSE SIZE AS SHOWN IN SECTION 12.
- 2. SEE SECTION 5 FOR CONNECTORS

Designer	Drawing	Dote
MPR	od15211	5/14/21

1Ø CAPACITOR INSTALLATION EFFECTIVELY GROUNDED 15 kV OVERHEAD OVERHEAD CONSTRUCTION STANDARD 15-211 7/21

- 1. FOR USE WITH 25 , 50 AND 100 KVAR, 1 UNITS. 25 KVAR UNITS NOT RECOMMENDED FOR NEW PURCHASES.
- 2. ON DELTA PRIMARY SYSTEMS THE SURGE ARRESTER GROUNDING CONDUCTOR AND THE SECONDARY NEUTRAL GROUNDING CONDUCTOR SHALL BE RUN SEPARATELY TO TWO GROUND RODS. SEE SECTION 13 FOR GROUNDING DETAILS.
- 3. USE CUTOUT AND FUSE SIZE AS SHOWN IN SECTION 12.

Designer	Drawing	Dote
MPR	od15212	5/28/21

ISSUE	PAGE NUMBER	
7/21	15-212	

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 15.00.002

MU = @(E)KB(V)YFNE

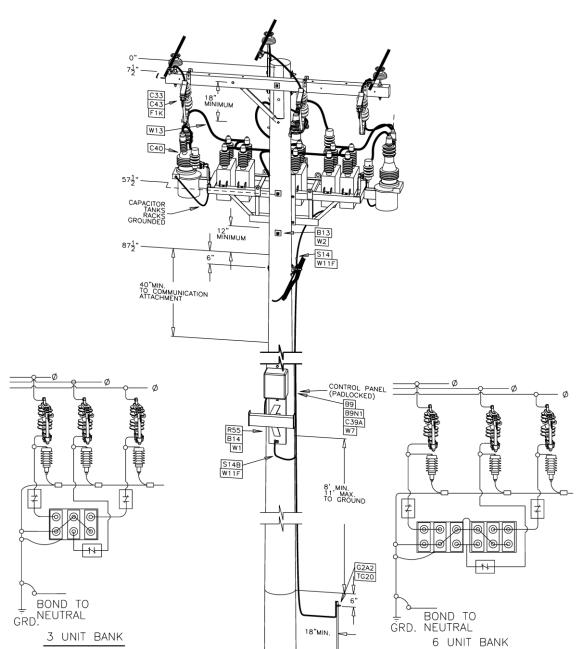
(E) = kVAR Size, (V) = Voltage

WIRING DIAGRAMS 00 NOTE 1 BOND TO NEUTRAL BOND TO NEUTRAL GROUND 6 UNIT BANK GROUND 3 UNIT BANK 18" MINIMUM TO BUSHINGS 16 P8 B13 C43 F1K W1 W13 C40 $52\frac{1}{2}$ " B13 W2 CAPACITOR TANKS AND RACKS ARE GROUNDED MINIMUM 871" S14 6" W11F BOND DOWN GROUNDS TO COMMON NEUTRAL ON MULTI-GROUNDED PRIMARY SYSTEMS 40"MIN. TO COMMUNICATION ATTACHMENT NOTES: 1. BOND SEPARATE CAPACITOR RACKS TOGETHER.

3Ø FIXED CAPACITOR INSTALLATION EFFECTIVELY GROUNDED 15 kV

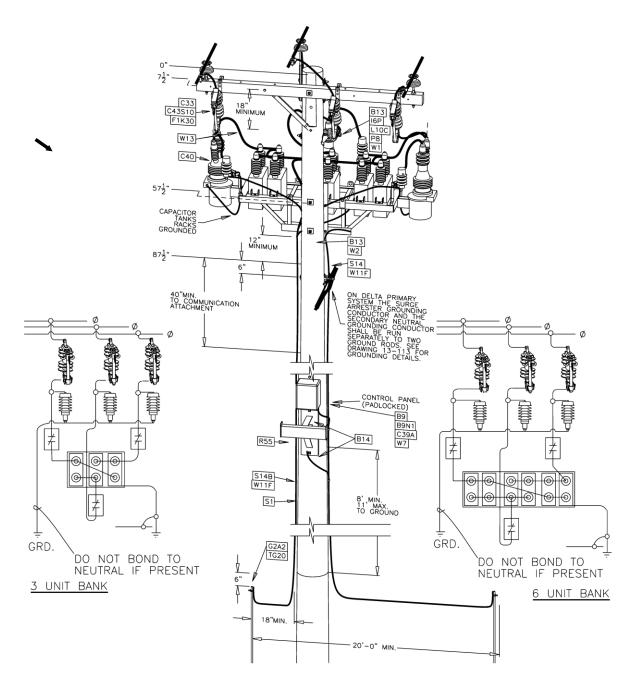
OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 15-331 7/21

Designer Drowing Date MPR od15331 5/28/21


ISSUE	PAGE NUMBER
7/21	15-332

Designer Drowing Date MPR od15332 5/28/21 MU = @(E)KB(V)YSW or YSWNE MU = @(E)K3C(V)YSWNE

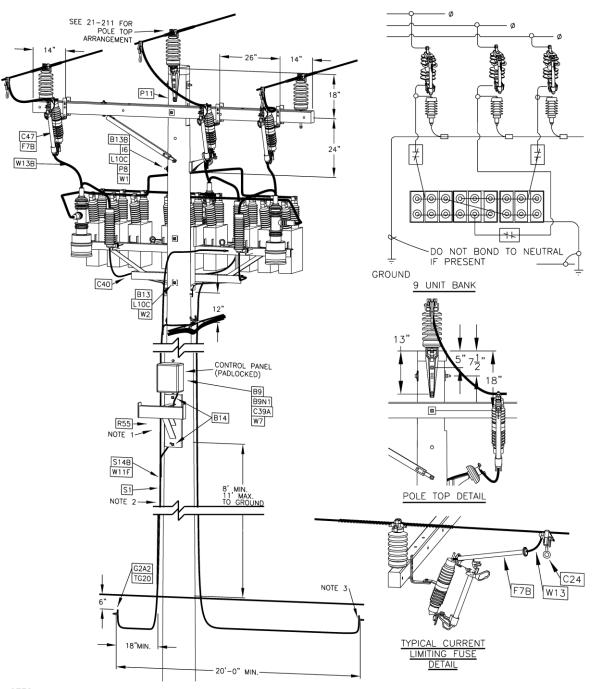
(E) = kVAR Size, (V) = Voltage



Designer	Drawing	Dote
MPR	od15333	5/28/21

3Ø SWITCHED CAPACITOR INSTALLATION EFFECTIVELY GROUNDED 15 kV

Supersedes 7/20 Issue - Update drawing to 3D.


NOTES:

- 1. LADDER RACK FOR CONTROL CABINET INSTALLATIONS OVER 8' BOND RACK TO DOWN GROUND.
- 2. CONTROL CABINET, CAPACITOR RACK AND SECONDARY NEUTRAL SHALL BE BONDED AND ATTACHED TO DOWN GROUND. GROUND RESISTANCE TO EARTH SHALL NOT EXCEED 250HMS. SEE STD 13-111 & 13-113.
- 3. ARRESTORS SHALL HAVE SEPARATE ISOLATED 20' MIN. FROM OTHER GROUND ROD. GROUND RESISTANCE TO EARTH SHALL NOT EXCEED 250HMS.

3Ø SWITCHED CAPACITOR INSTALLATION NOT EFFECTIVELY GROUNDED 15 kV

ISSUE	PAGE NUMBER		AMIZ
7/21	15-334	OVERHEAD CONSTRUCTION STANDARD	ppl

NOTES:

- 1. LADDER RACK FOR CONTROL CABINET INSTALLATIONS OVER 8' BOND RACK TO DOWN GROUND.
- 2. CONTROL CABINET AND CAPACITOR RACK SHALL BE BONDED AND ATTACHED TO DOWN GROUND. GROUND RESISTANCE TO EARTH SHALL NOT EXCEED 250HMS. SEE STD 13-111 & 13-113.
- 3. ARRESTORS SHALL HAVE SEPARATE ISOLATED 20' MIN. FROM OTHER GROUND ROD. GROUND RESISTANCE TO EARTH SHALL NOT EXCEED 250HMS.

Designer	Drowing	Date
MPR	od15334A	5/28/21

3Ø SWITCHED CAPACITOR INSTALLATION NOT EFFECTIVELY GROUNDED 23kV OVERHEAD CONSTRUCTION STANDARD 15-334A 7/21

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15.00.002

Page Left Intentionally Blank

CAPACITORS/REGULATORS/METERING				
ISSUE	PAGE NUMBER		SMIZZ	
7/21	15-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl	

Doc. # ST. 15.00.002

MU = @900KB7613YSWADVANCED

MU = @300K3C2441YSWADVANCED MU = @600KB7613YSWADVANCED

C31C C37 B15D W1 B4A C39CS1 L10B W13E W7 W22D 10" B17A L10C NC22 P1E S33 S14B W1 P1E 36" MINIMUN B13B L10C TB60 NC22 S14B S33 T22M 12" MINIMUM W11F CAPACITOR TANKS W11F RACKS GROUNDED 40"MIN. TO COMMUNICATION ATTACHMENT BOND DOWN GROUNDS TO COMMON NEUTRAL ON MULTI-GROUNDED PRIMARY SYSTEMS TYPICAL CURRENT
LIMITING FUSE
DETAIL UK11D UF10 B10B C39A1 W1 CONTROL PANEL (PADLOCKED) R55 B14 W1 S14B W11F 8' MIN. 11' MAX. TO GROUND S1 S33B ||@| () G2A2 TG20 BOND TO GRD. NEUTRAL 6 UNIT BANK

SEE PAGE 15-335A FOR CONSTRUCTION NOTES.

Designer Drowing Date MPR od15335 5/28/21

3Ø SWITCHED CAPACITOR INSTALLATION EFFECTIVELY GROUNDED 15kV CLASS AND BELOW WITH CURRENT/VOLTAGE SENSOR

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 15-335 7/21

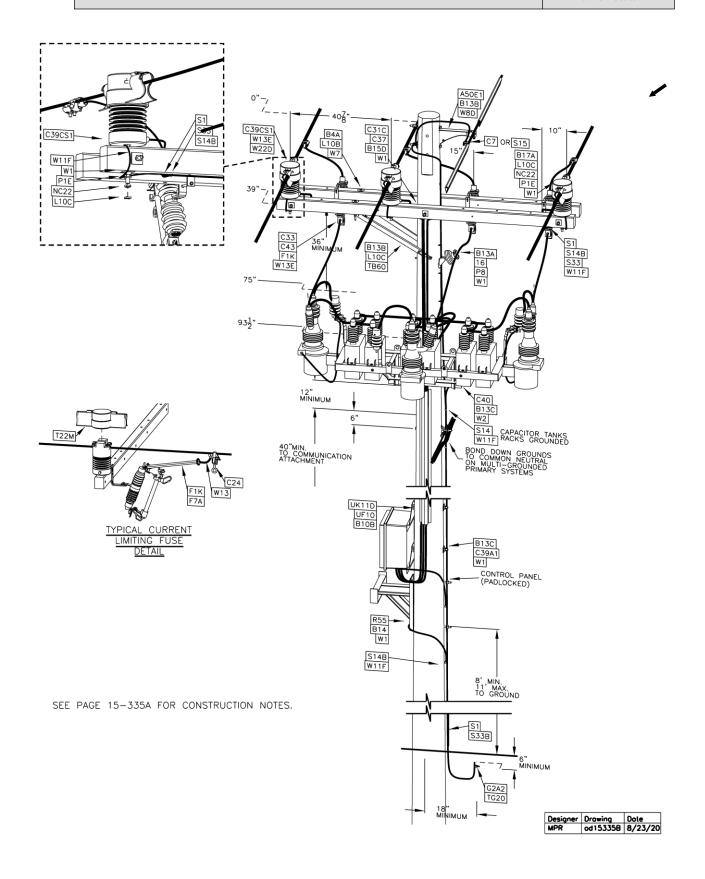
Supersedes 7/20 Issue - Update drawing to 3D

© 2022 PPL Corporation. All rights reserved.

Doc. #ST. 15.00.002

Notes for 15kV class capacitor bank with current/voltage sensor:

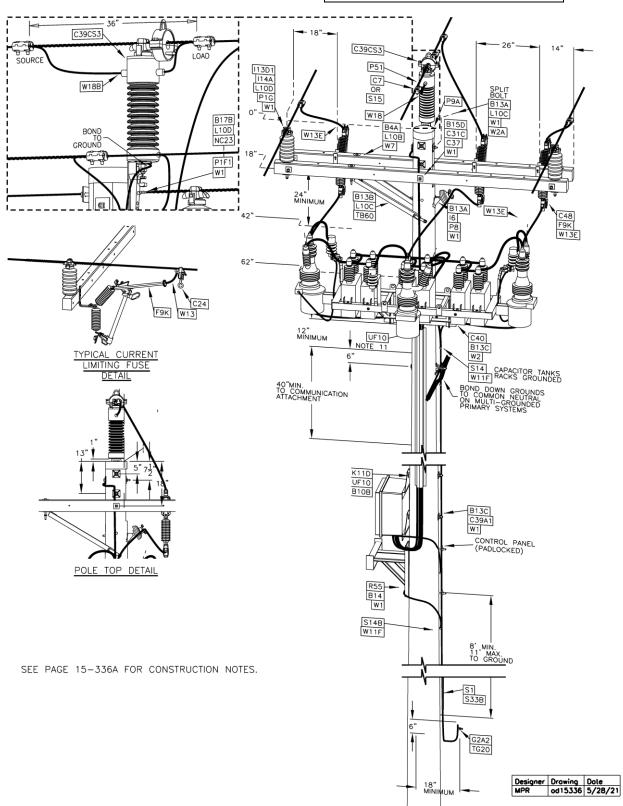
- 1. For available fault current over 5,000 sym, requires a current limiting fuse (Std Item F7A__). If units are 50kVAR and smaller available fault current is reduced to 4,000 sym.
- 2. Capacitors <u>must</u> be connected to primary on the load side of the current/voltage sensor with the H1 marking on the insulator/sensor facing source.
- 3. Sensor pin P1F1 or P1G <u>must</u> be grounded prior to any energized phase being placed on the insulator sensor. Ground shall be attached along the underside of the crossarm and down the pole to attach to the ground system. Secure with staples.
- 4. Covered primary conductor must be striped 2" on each side of sensor.
- 5. Locate control away from vehicular traffic (field side of pole).
- 6. See Section 13 for grounding and ground rod installation details.
- 7. Typical primary pole top construction shown, alternate pole top construction may be needed based on wire size and span.
- 8. Both ends of U duct STD Item UK11D shall be sealed with expanding foam Std Item UF10
- 9. Drawing shows an antenna at top of pole for communication, contact UoF (Utility of the Future) for choosing communications means.
- 10. Control requires secondary power source.
- 11. Contol cable shall be run in ground covering molding (S1) and stapled on the underside of the cross arm parallel to the ground wire.
- 12. See section 25 for telecom requirements.
- 13. Primary phases need to be identified with appropriate testing meter and labeled per section 2.1.30


ISSUE	PAGE NUMBER		sal/z		
	CLASS AND BELOW WITH CURRENT/VOLTAGE SENSOR				
3Ø S	WITCHED CAPACIT	TOR INSTALLATION EFFECTIVEL	Y GROUNDED 15kV		

7/21 15-335A

© 2022 PPL Corporation. All rights reserved.

3Ø SWITCHED CAPACITOR INSTALLATION EFFECTIVELY GROUNDED 35kV CLASS AND BELOW WITH CURRENT/VOLTAGE SENSOR SPACER CABLE

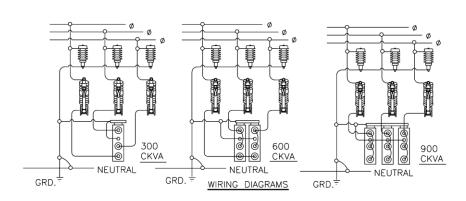


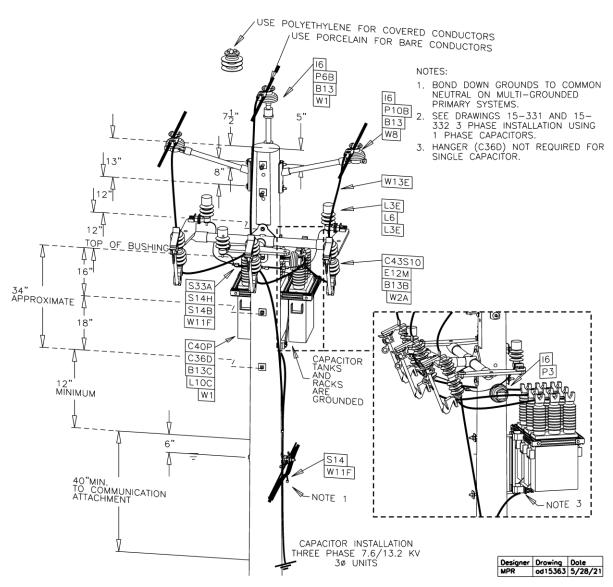
OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 15-335B 7/21

MU = @1200K3C1934YSWADVANCED

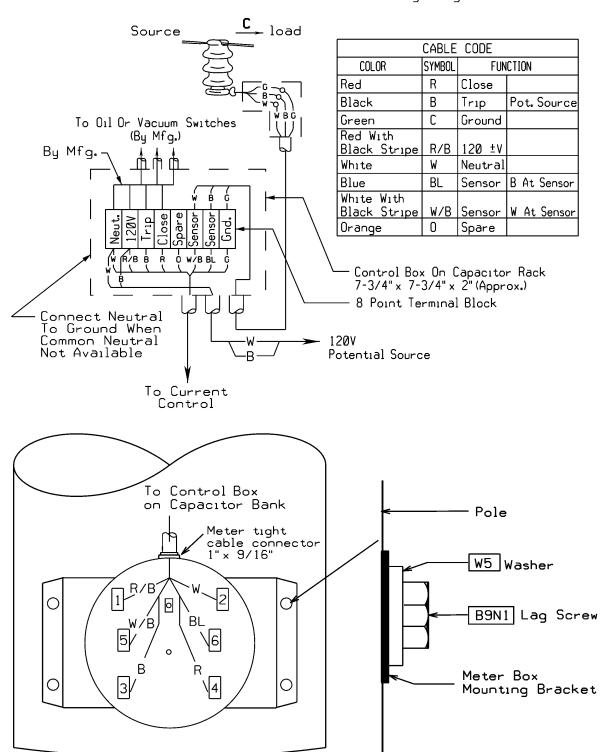
MU = @1800KB1934YSWADVANCED


3Ø SW	3Ø SWITCHED CAPACITOR INSTALLATION EFFECTIVELY GROUNDED 35kV CLASS AND BELOW WITH CURRENT/VOLTAGE SENSOR			
ISSUE	PAGE NUMBER		AMIZ	
7/21	15-336	OVERHEAD CONSTRUCTION STANDARD	ppl	

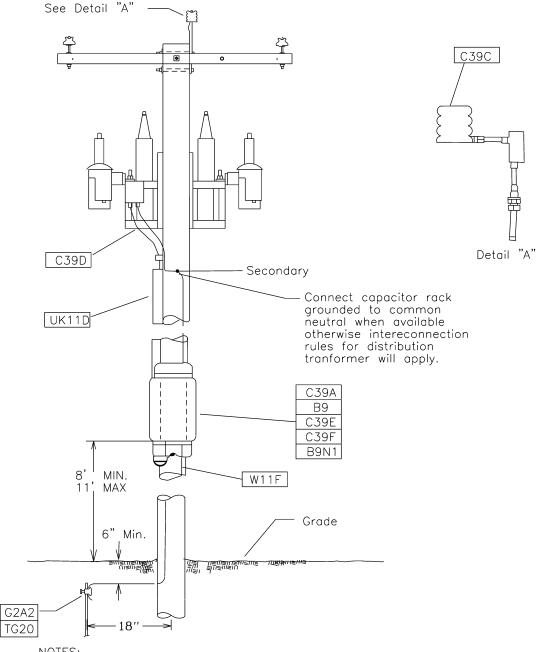

Notes for 35kV class capacitor bank with current/voltage sensor:

- For available fault current over 5,000 sym, requires a current limiting fuse (Std Item F7B).
- 2. Capacitors <u>must</u> be connected to primary on the load side of the current/voltage sensor with the H1 marking on the insulator/sensor facing source.
- 3. Sensor pin P1F1 or P1G <u>must</u> be grounded prior to any energized phase being placed on the insulator sensor. Ground shall be attached along the underside of the crossarm and down the pole to attach to the ground system. Secure with staples.
- 4. Covered primary conductor must be striped 2" on each side of sensor.
- 5. Locate control away from vehicular traffic (field side of pole).
- 6. See Section 13 for grounding and ground rod installation details.
- 7. Typical primary pole top construction shown, alternate pole top construction may be needed based on wire size and span.
- 8. Trunions used: Aluminum wire must be galvanized trunion, Copper wire must be ductile iron trunion. Trunions are packaged with the sensor.
- 9. The 4' bare conductor CVMI jumper must be sized for full ampacity of the main line and connected to the main line with Ampacts
- 10. Choke can not be closed until CVMI jumper is installed.
- 11. Both ends of U duct STD Item UK11D shall be sealed with expanding foam STD Item UF10.
- 12. Control requires secondary power source.
- 13. Sensor may be installed on pole top bracket, P12B or a P1G. Field discretion for ease of installation and maintenance.
- 14. See section 25 for telecom requirements
- Primary phases need to be identified with appropriate testing meter and labeled per section 2.1.30

3Ø SWITCHED CAPACITOR INSTALLATION EFFECTIVELY GROUNDED 35kV CLASS AND BELOW WITH CURRENT/VOLTAGE SENSOR SPACER CABLE


3Ø FIXED CAPACITOR INSTALLATION 15KV – WITH 3Ø PHASE UNIT

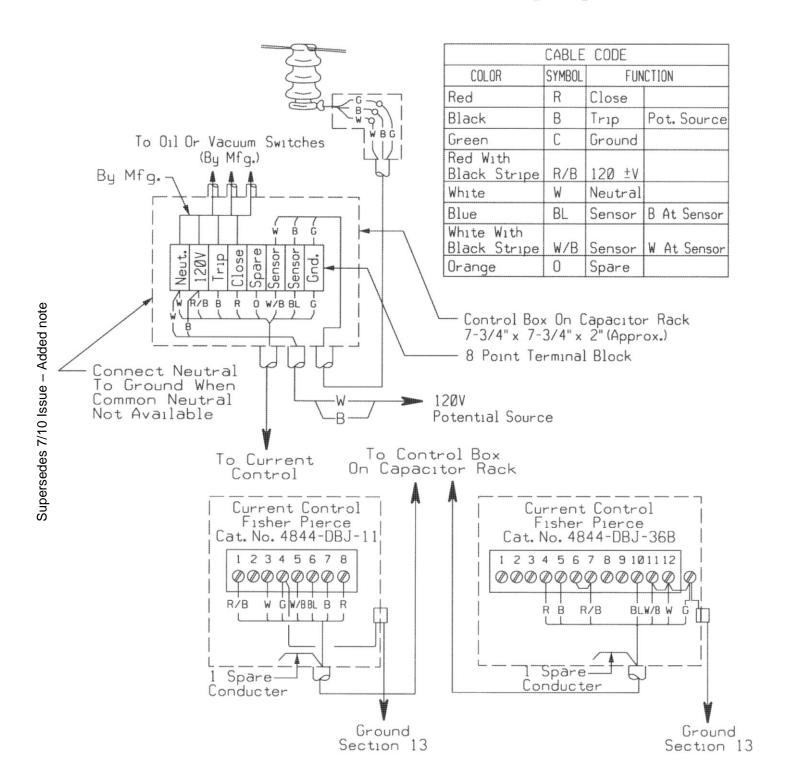
Business USE 15-363


OVERHEAD CONSTRUCTION STANDARD

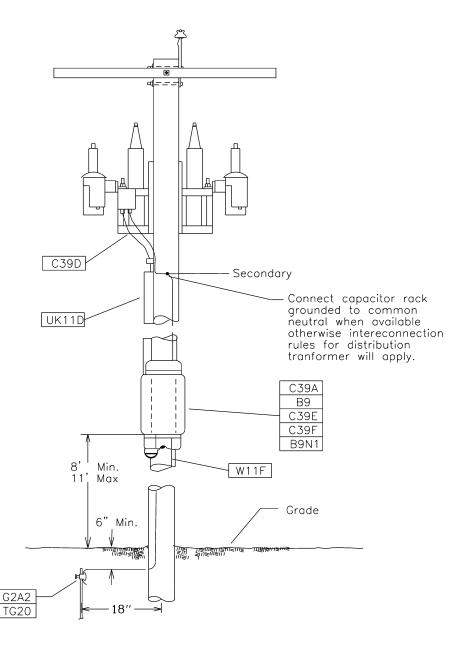
Current Control Wiring Diagram

S	SWITCHED CAPACITOR CURRENT CONTROL WIRING DIAGRAM 6 PIN METER SOCKET			
	WW.		PAGE NUMBER	ISSUE
se	ppl	OVERHEAD CONSTRUCTION STANDARD	15-399	7/10

NOTES:

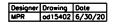

- 1. LOCATE INSTALLATION AWAY FROM VEHICULAR TRAFFIC.
- 2. CAPACITORS TO BE CONNECTED TO PRIMARY ON STATION SIDE OF CURRENT SENSOR.
- 3. CURRENT SENSOR SHOULD ALWAYS BE LOCATED ON RIDGE PIN OR ON PHASE CONDUCTOR NEAREST THE POLE.
- 4. PHASE CONDUCTOR MUST BE IN CENTER GROOVE OF THE SENSOR.
- 5. SEE SECTION 13 FOR GROUNDING AND GROUND ROD INSTALLATION DETAILS.
- 6. BOTH ENDS OF U DUCT STD ITEM UK11D SHALL BE SEALED WITH EXPANDING FOAM STD ITEM UF10
- 7. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

Designer	Drawing	Date
MPR	od15400	6/30/20

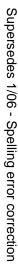

	SWTICHED CAPACITOR CURRENT CONTROL INSTALLATION			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/21 ness Use	15-400	OVERHEAD CONSTRUCTION STANDARD	ppl

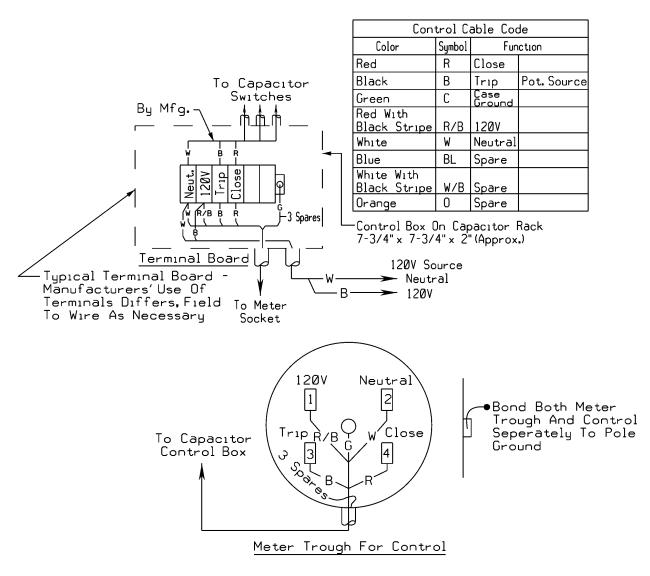
© 2022 PPL Corporation. All rights reserved.

Current Control Wiring Diagram

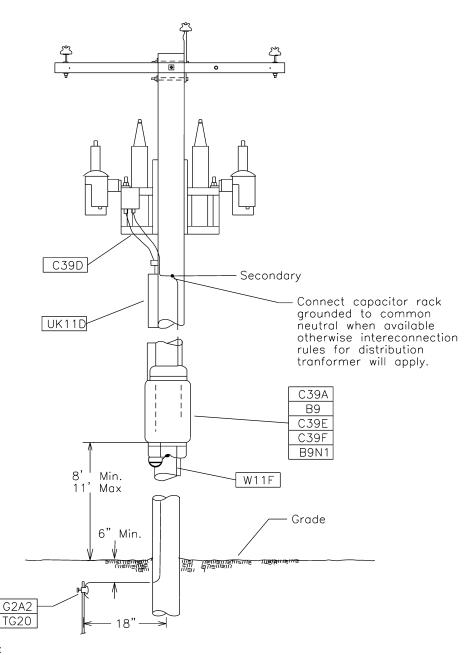


5	SWITCHED CAPACITOR CURRENT CONTROL WIRING DIAGRAM HARD WIRE				
	NIII/A	PAGE NUMBER	ISSUE		
e	ppl	OVERHEAD CONSTRUCTION STANDARD	15-401	1/06	


Note:

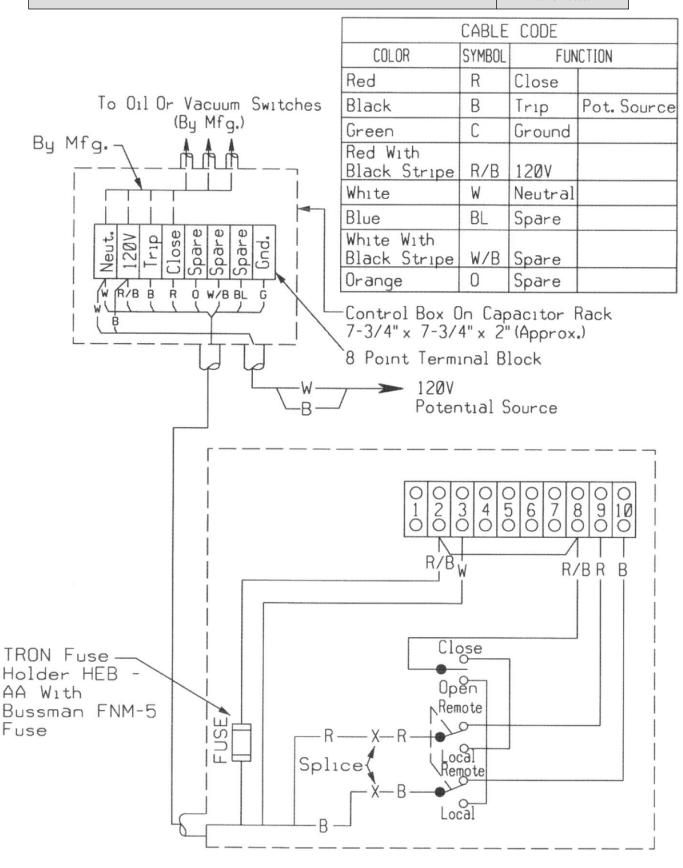

- 1. SEE SECTION 13 FOR GROUNDING AND GROUND ROD INSTALLATION DETAILS.
- 2. BOTH ENDS OF U DUCT STD ITEM UK11D SHALL BE SEALED WITH EXPANDING FOAM STD ITEM UF10 $\,$
- 3. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

3Ø SWITCHED CAPACITOR TIME CLOCK/VOLTAGE/TEMPERATURE INSTLLATION 15KV ISSUE PAGE NUMBER

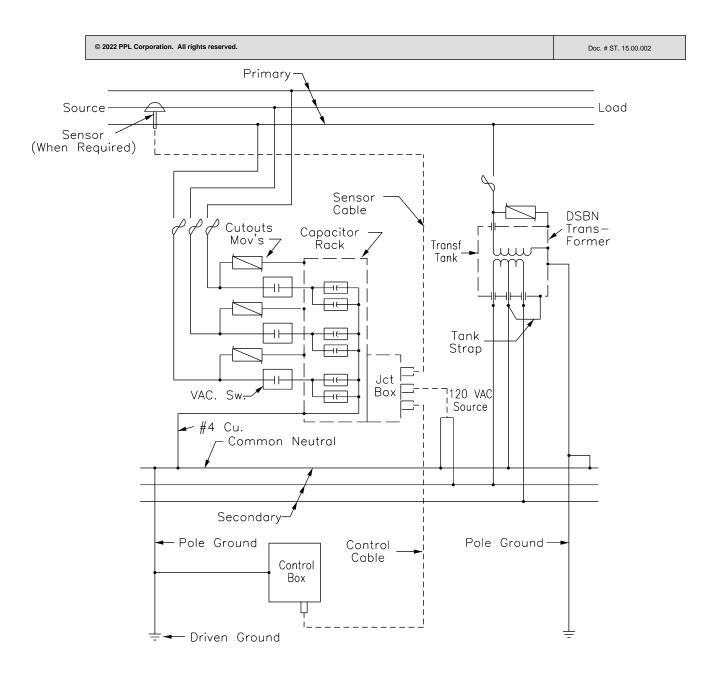

IDNV			
ISSUE	PAGE NUMBER		SMIZZ
7/12	15-402	OVERHEAD CONSTRUCTION STANDARD	ppl

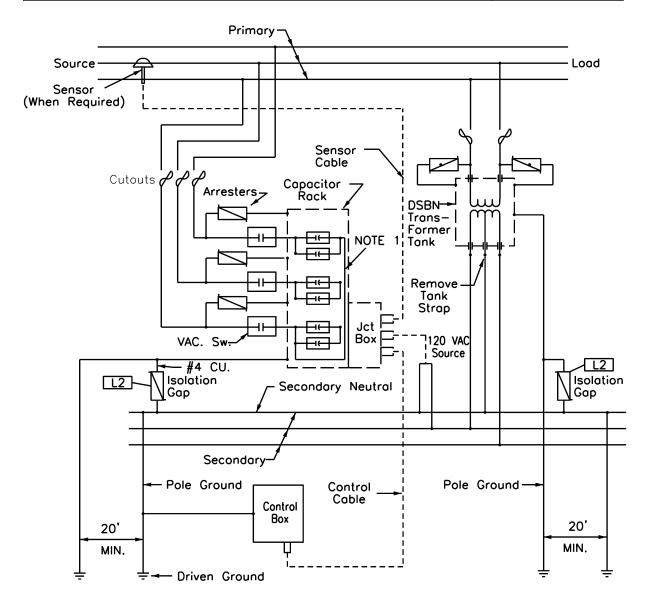
TIME CLOCK/VOLTAGE/TEMPERATURE CONTROL WIRING DIAGRAM

- Note:
 1. BOTH ENDS OF U DUCT STD ITEM UK11D SHALL BE SEALED WITH EXPANDING FOAM STD ITEM UF10
 - 2. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30


Designer Drowing Date
MPR od15404 6/30/20

3Ø SWITCHED CAPACITOR RADIO CONTROL INSTALLATIO
200 CIVITCHED CARACITOD DADIO CONTROL INICTALLATIO


ISSUE	PAGE NUMBER
7/12	15-404

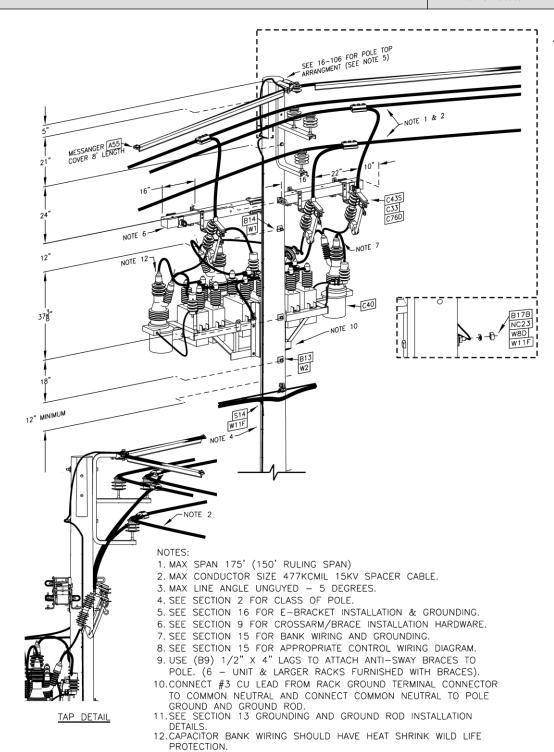


RADIO CONTROL WIRING DIAGRAM			
PAGE NUMBER ISSU			ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	15-405	1/06

DesignerDrawingDateMPRod154066/15/19

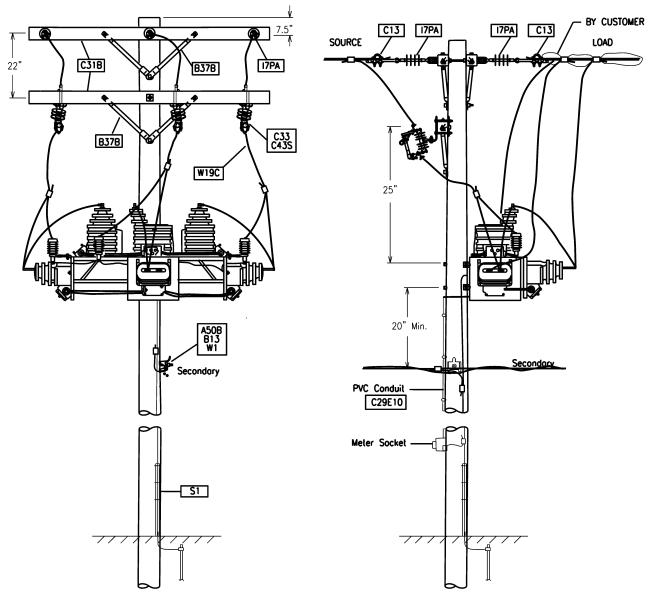
COMM	COMMON NEUTRAL WIRING SWITCHED CAPACITOR INSTALLATION DIAGRAM			
ISSUE	PAGE NUMBER		SMIZ	
7/19	15-406	OVERHEAD CONSTRUCTION STANDARD	ppl	

NOTE: Delta connection shown. This Standard also covers ungrounded wye with appropriate bank connection.


See Section 14—Transformers for transformer installation details.

Designer	Drawing	Date
MPR	od15407	6/15/19

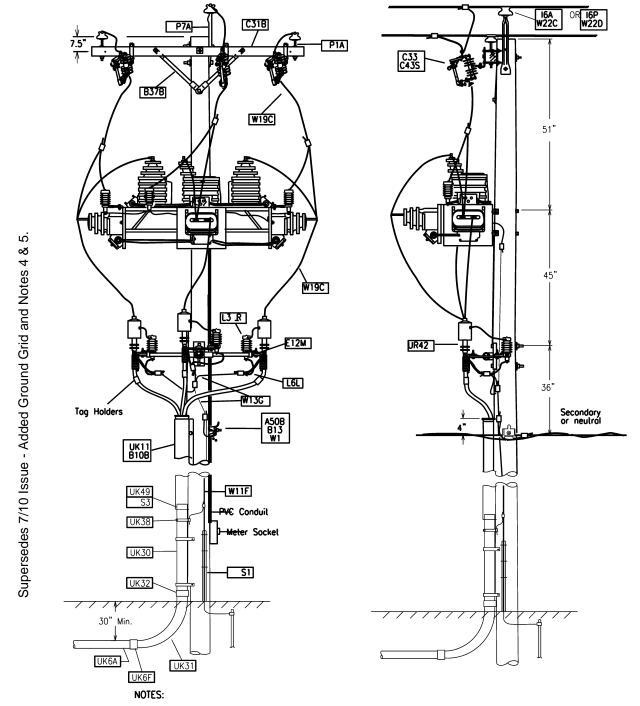
Note:


- 1 Delta connection shown. This Standard also covers ungrounded wye with appropriate bank connection. See Section 14-Transformers for transformer installation details.
- 2. Std Item L2 isolation gap is rated for up to 11 kV, do not install on electric systems greater then 11kV.

NO COMMON NEUTRA	L WIRING SWITCHED CAPACITO	R INSTALLATION D	IAGRAM
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	15-407	7/19

Designer	Drowing	Date
MPR	od15409	5/28/21

3Ф SWITCHED CAPACITOR INSTALLATION EFFECTIVELY GROUNDED SPACER CABLE 15 KV				
ISSUE				
7/21	15-409	OVERHEAD CONSTRUCTION STANDARD	ppl	


NOTES:

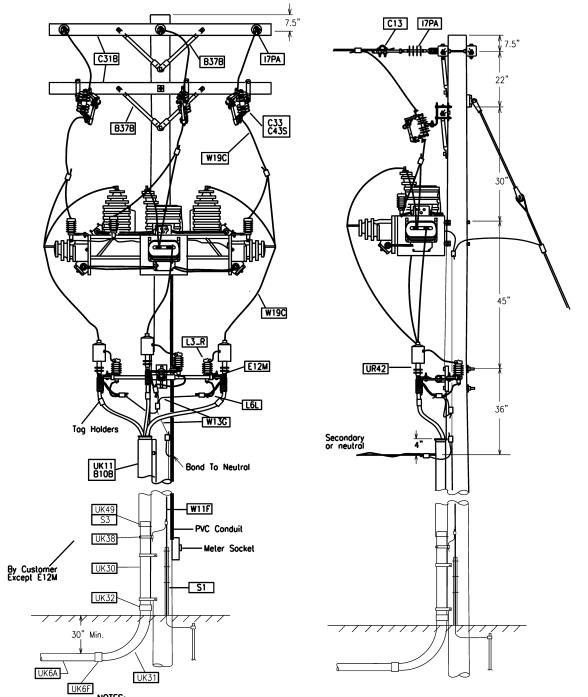
- 1. METERING EQUIPMENT SHALL BE SPECIFIED BY METER ENGINEERING.
- METER SOCKET HEIGHT IS TO BE NO LESS THAN 3 FEET AND NO MORE THAN 6 FEET FROM GROUND TO CENTER OF METER UNLESS OTHERWISE SPECIFIED BY METER ENGINEERING.
- 3. A GROUND GRID SHALL BE INSTALLED DIRECTLY BENEATH THE METER SOCKET (SEE STANDARDS 13-113 AND 13-114).
 4. FOR ALL INSTALLATIONS INCLUDING DISTRIBUTED GENERATION, THE SOURCE OR LINE PRIMARY TAPS ARE CONNECTED TO THE CUSTOMER.
- 5. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

ĺ	Designer	Drawing	Dole
	MPR	od15500	6/30/20

3Ф PRIMARY METERING – FUSED DOUBLE DEADEND			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	15-500	7/14

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15.00.002

- METERING EQUIPMENT SHALL BE SPECIFIED BY METER ENGINEERING.
- METER SOCKET HEIGHT IS TO BE NO LESS THAN 3 FEET AND NO MORE THAN 6 FEET FROM GROUND TO CENTER OF METER UNLESS OTHERWISE SPECIFIED BY METER ENGINEERING.
- FOR UG CABLES LARGER THAN #2, W17G SHALL BE USED INSTEAD OF W13G FOR CONCENTRIC CONNECTIONS.
- A GROUND GRID SHALL BE INSTALLED DIRECTLY BENEATH THE METER SOCKET (SEE STANDARDS 13-113 AND 13-114).


 FOR ALL INSTALLATIONS INCLUDING DISTRIBUTED GENERATION, THE SOURCE OR LINE PRIMARY TAPS ARE CONNECTED TO THE UTILITY. THE LOAD PRIMARY TAPS ARE CONNECTED TO THE CUSTOMER.

 PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

Designer Drowing Date MPR od15501 6/30/20

3Ø PRIMARY METERING – FUSED RISER POLE, TANGENT ISSUE **PAGE NUMBER OVERHEAD** 7/14 15-501 **CONSTRUCTION STANDARD**

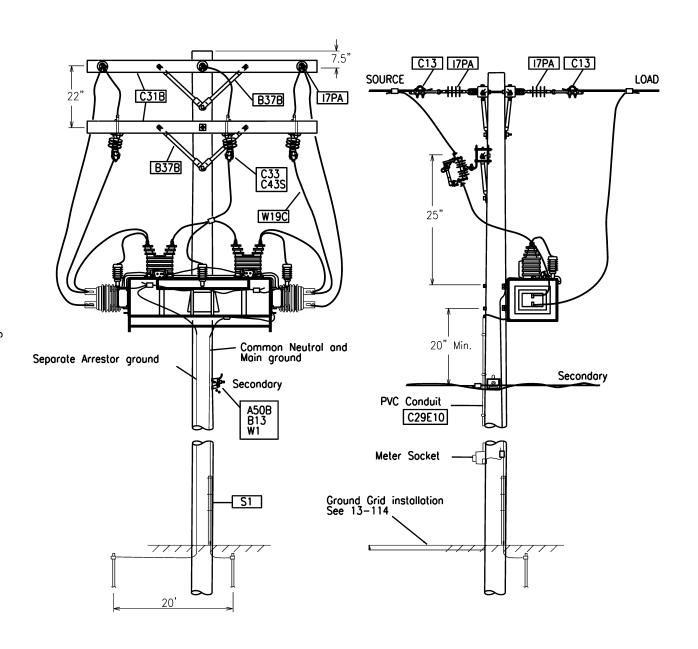
Designer Drowing Date MPR od 15502 6/30/20

NOTES:

1. METERING EQUIPMENT SHALL BE SPECIFIED BY METER ENGINEERING.

2. METER SOCKET HEIGHT IS TO BE NO LESS THAN 3 FEET AND NO MORE THAN 6 FEET FROM GROUND TO CENTER OF METER UNLESS OTHERWISE SPECIFIED BY METER ENGINEERING.

3. FOR UG CABLES LARGER THAN #2, W17G SHALL BE USED INSTEAD OF W13G FOR CONCENTRIC CONNECTIONS.


4. A GROUND GRID SHALL BE INSTALLED DIRECTLY BENEATH THE METER SOCKET (SEE STANDARDS 13-113 AND 13-114).

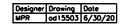
5. FOR ALL INSTALLATIONS INCLUDING DISTRIBUTED GENERATION, THE SOURCE OR LINE PRIMARY TAPS ARE CONNECTED TO THE UTILITY. THE LOAD PRIMARY TAPS ARE CONNECTED TO THE CUSTOMER.

6. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED DESIGNED TO SHAPE AND SECTION 2.1.30

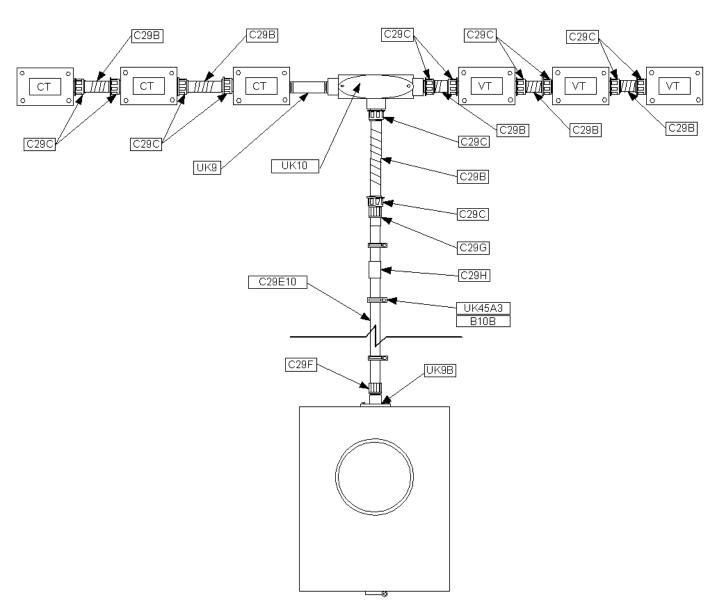
3Φ PRIMARY METERING – FUSED DEADEND RISER POLE

- NOTES:

 1. METERING EQUIPMENT SHALL BE SPECIFIED BY METER ENGINEERING.


 2. METER SOCKET HEIGHT IS TO BE NO LESS THAN 3 FEET AND NO MORE THAN 6 FEET FROM GROUND TO CENTER OF METER UNLESS OTHERWISE SPECIFIED BY METER ENGINEERING.

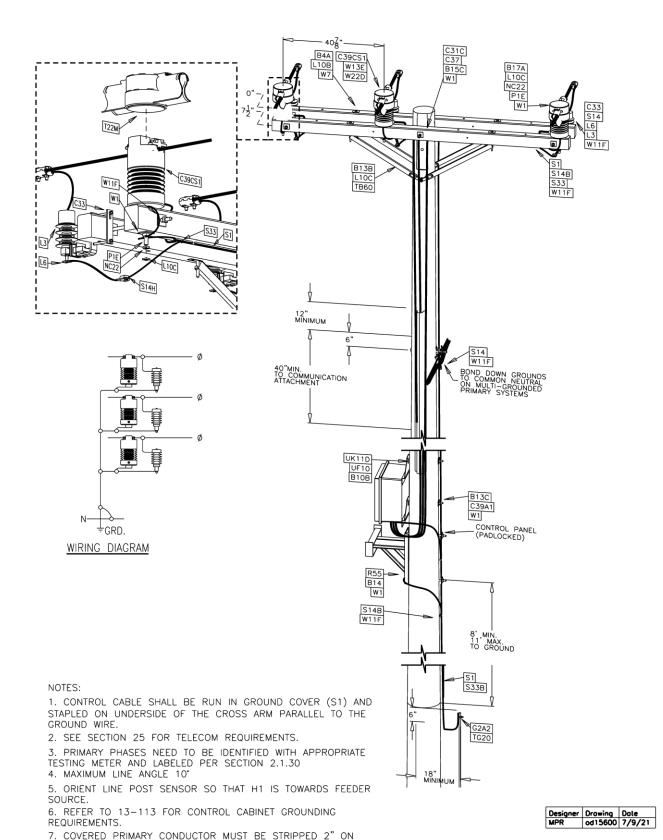
 3. A GROUND GRID SHALL BE INSTALLED DIRECTLY BENEATH THE METER SOCKET (SEE STANDARDS 13–113 AND 13–114).


 4. FOR ALL INSTALLATIONS INCLUDING DISTRIBUTED GENERATION, THE SOURCE OR LINE PRIMARY TAPS ARE CONNECTED TO THE UTILITY. THE LOAD PRIMARY TAPS ARE CONNECTED TO THE CUSTOMER.

 5. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

 | Designer | Drowing | Date | Designer | Drowing | Date | Designer | Date |

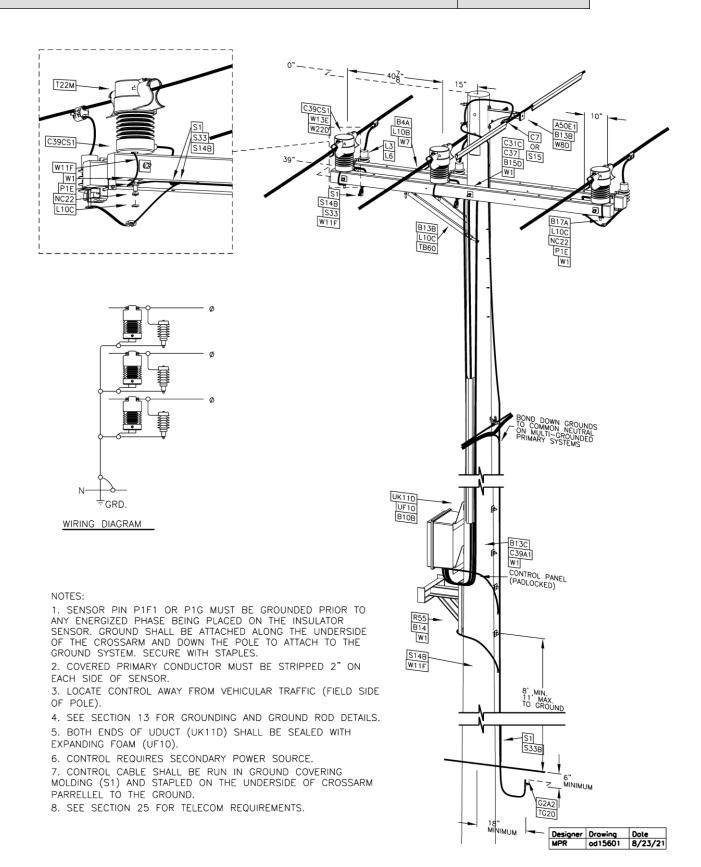
3Ø PRIMARY METERING – DELTA CIRCUITS			
ISSUE	PAGE NUMBER		WIN
7/14	15-503	OVERHEAD CONSTRUCTION STANDARD	ppl



NOTES:

All 1"flex conduit, fittings, clips, animal guards and misc. hardware is available in a kit form (M37). The kit does not include 1" PVC conduit

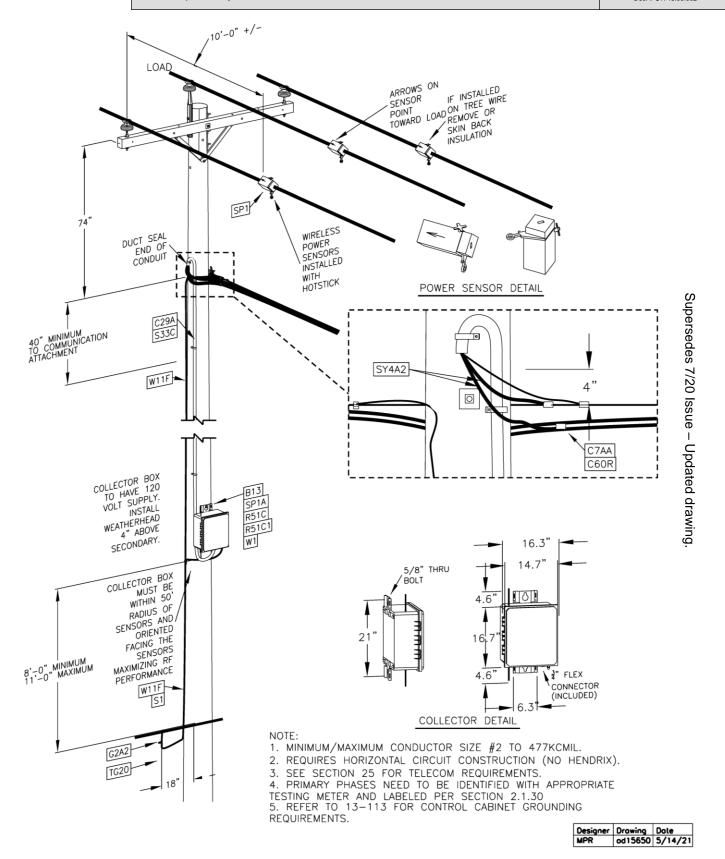
3Ф PRIMARY METERING SECONDARY CONDUIT LAYOUT			
sMD>		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	15-550	7/15


© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15,00.002

3Ф POLE MOUNTI	ED FEEDER	MONITOR	15KV

EACH SIDE OF SENSOR.

7/21 15-600 OVERHEAD CONSTRUCTION STANDARD PPI



3Φ POLE MOUNTED FEEDER MONITOR 15kV – SPACER CABLE

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 15-601 7/21

TYP	ICAL INSTALLATION	OF POWER LINE SENSOR WITH	I COLLECTOR BOX

ISSUE	PAGE NUMBER		SMD
7/21	15-650	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15,00.002

Version	Date	Modification	Author(s)	Approval by (Name/Title)
4.0	7/21	 Updated drawings 15-111 thru 15-156, 15-160, 15-600, 15-650 and added new drawing 15-601 Drawing update 15-211, 15-212, 15-331, 15-332, 15-334, 15-334A, 15-335, 15-15-335B, 15-336, 15-363, and 15-409 		
3.1	7/20	 Text update in 15.4.10 and 15.6.10 Drawing Update 15-335 and 15-600 changed to C31C crossarm Added phase and feeder numbering 		
3	7/19	 Revised notes on 15-151, 15-153, and 15-154 to provide clearance requirements to communication wires and cables. Update to drawings 335 336, 406, 407, 600 and 650. Update to notes pages 335A and 336A. Update to 15.3.20 text. Update to table 1 Added section 15.4.2 Updated drawings 15-111, 15-113 thru 15-154 and 15-156 		
2.10	7/18	Update to table 1Text shift pages 15-2 thru 6		
2.9	7/17	 Update to 13.3.10 text Update to table 1 page 15-2 New drawing 15-334A New drawing 15-160 Added ladder bracket in 15-122, 15-131, 15-151, 15-153, 15-154, 		
2.8	7/16	 Revised Pg 15-4. Added Page 15-5 with Section 15.6 Line Sensors. Added drawing 15-650 Revised title and note on 15-600 Revised titles for pages 15-151 & 15-152. Added ground mat note and primary tap and neutral wire sizes to 15-151, 15-153 & 15-154. 		
2.7	7/15	 New Drawing 15-550 Changed pole spacing and added notes and tie-down clips to platform regulators (15-151 through 15-156). 		
2.6	7/14	 Section 15.3.20 update. Updated numbering for section 15.4 and 15.5 New section 15.6 Updated drawings 15-332, 15-334, 15-335, 15-335A, 15-336 15-500,15-501, and 15-502 New drawing 15-503 and 15-600 		
2.5	7/13	Corrected Drawing 15-500		
2.4	7/12	 Updated table 1 Updated 15-152 and 15-156 item 6 EOP referral Drawing updates to 15-122, 331, 332, 333, 334, 335, 336, 400, 402, 404, 407 and 409 		

SUMMARY OF RECENT CHANGES			
SMA		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	15-NOTES	7/21

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15.00.002

Version	Date	Modification	Author(s)	Approval by (Name/Title)
2.0	7/11	 Revised 15-122 – revised wiring diagram to show Reg#1L lead connected to Line 3 instead of tap to Reg# 3. Revised 15-151 thru 15-154 – changed tap insulators to poly instead on porcelain. Revised 15-211 – added washer Revised 15-212, 15-331, 15-322, 15-333, & 15-334 – added washer and changed pole top clearance to 7 ½" Added new standards 15-335 and 15-336 		
1.1	7/10	 Revised MU's on 15-111, 15-122 & 15-131 Added Regulator Platform drawings 15-151 thru 15-156 Added By-Pass Switch Operation Guide 15-157 Revised meter socket wire labeling 15-399 Corrected Std Item # on 15-400, 15-402 and 15-404. Revised Drawings 15-500, 15-501, and 15-502. Added more details on each drawing. 		
1.0	7/09	 Renumbered sections of the document. Added Section 15.5 (Primary Metering). Updated drawing 15-333 Updated drawing 15-334 Added Drawing 15-399 Revised Drawing 15-407 		

	SUMMARY OF RECENT CHANGES				
ISSUE	PAGE NUMBER		WIII		
7/20	15-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl		

SECTION	PAGE	
• 16.0 SCOPE	16-1	
16.1 APPLICATION	16-1	
• 16.2 GENERAL	16-1 THRU 16-3	
16.3 PRACTICES	16-3 THRU 16-10	
16.4 DEADENDING, SPLICING & SPLICE RE-COVERING	16-10 THRU 16-16	_
16.5 MESSENGER AND PHASE CONDUCTOR INSTALLATION	16-17 THRU 16-46	
16.7 PREASSEMBLED LASHED AERIAL CABLE (PLAC)	16-47 THRU 16-58	
	10-47 11110 10-30	
ATTIVOS STATIS DEL MISSE AND CONTENTS AND ALL		
 15 kV Straight Line Pole With 14" Or 24" Tangent – Max. Line Angle 6° 	16-101	
 15 kV Straight Line Pole With 44" Tangent – Max. Line Angle 6° 	16-102	^
 15 kV Straight Line Pole With 14" Or 24" Tangent On Pole Top Extension – Max. Line Angle 6° 	16-103	_
 15 kV Line Angle Pole With E–Bracket – Line Angles 7° - 30° 	16-106	7
 15 kV Line Angle Pole With E–Bracket On Pole Top Extension – Line Angles 7° - 30° 	16-107	_
 15 kV Line Angle Pole With E–Bracket – Heavy Corner – Line Angles 31° - 60° 	16-108	7
 15 kV Line Angle Pole With E–Bracket – 45° Pull Into Pole 	16-109	7
 15 kV Line Pole With C–Bracket – Line Angles 61°- 90° 	16-114	_
 15 kV Line Pole With C–Bracket – Highway Crossing Pole 	16-115	\dashv
15 kV Underslung 15 kV Disconnect Switch Tangent Line And	16-118	
Angles 0° - 6°		- 14
 15 kV Preassembled Loadbreak Switch – Conductor Deadend 	16-122	
On Switch		
 15 kV Preassembled Loadbreak Switch – Switch Installed Below Crossarm 	16-123	
o 15 kV Preassembled Loadbreak Switch – Spacer Cable To		
Crossarm Construction Deadend – Horizontal Mounted	16-124	
 15 kV Line Pole – Deadend – Spacer Cable To Crossarm 	16-126	
Construction		
 15 kV Line Pole Deadend – End Of Line 	16-127	
 Line Pole Transposition 	16-130	
 15 kV Line Pole Transposition – Line Angles 1° - 45° 	16-131	4
 15 kV Junction Pole – Two Way – Buckarm Spacer Cable 	16-134	
Deadend To Spacer Cable Deadend – Line Angles 61° - 120°		
 15 kV Junction Pole – Two Way – Crossarm Mainline Deadend Ta Spacer Coble Tap Deadend Line Angles 61° 20° 	16-135	
To Spacer Cable Tap Deadend – Line Angles 61° - 90° 15 kV Junction Pole Three Way – 14" Tangent Bracket To		
Single Phase Tap	16-138	- 14
15 kV Junction Pole – Three Way – Spacer Cable Mainline	40.400	٦,
Using Pole Top Extension To Single Phase Tap	16-139	
 15 kV Junction Pole – Three Way – Spacer Cable Mainline With 	16-142	
Tangent Bracket To Crossarm Construction (Unfused)	1.0 1.2	_
 15 kV Junction Pole – Three Way – Spacer Cable Mainline With Tangent Bracket To Crossarm Construction (Fused) 	16-143	

AERIAL/SPACER CABLE INDEX OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 7/20

SECTION		PAGE
0	15 kV Junction Pole – Three Way – Spacer Cable Mainline With Tangent Bracket To Spacer Cable Tap (Unfused)	16-146
0	15 kV Junction Pole – Three Way – E–Bracket (1°–60°) To Single Phase Tap	16-148
0	15 kV Junction Pole – Three Way – Spacer Cable E–Bracket Mainline To Three Phase Crossarm Tap (Unfused)	16-150
0	15 kV Junction Pole – Three Way – Spacer Cable E–Bracket Mainline To Three Phase Crossarm Tap (Fused)	16-151
0	15 kV Junction Pole – Three Way – Spacer Cable E–Bracket Mainline To Spacer Cable Tap (Unfused)	16-153
0	15 kV Junction Pole – Three Way – Three Phase Crossarm Mainline To Spacer Cable Tap	16-155
0	15 kV Junction Pole – Four Way – Crossarm Construction Mainline To Spacer Cable Mainline	16-157
0	15 kV Junction Pole – Four Way – Spacer Cable Mainline To Crossarm Construction Mainline	16-158
0	15 kV Junction Pole – Four Way – Spacer Cable E–Bracket To Spacer Cable E–Bracket (Line Angles 7-30°)	16-160
0	15 kV Junction Pole – Four Way – Spacer Cable E–Bracket Mainline To Spacer Cable Crossarm Tap	16-161
0	15 kV Junction Pole – Four Way – 14" Or 24" Tangent Bracket To Single Phase Taps	16-163
0	15 kV Line Pole – Single Phase Transformer	16-165
0	15 kV Line Pole – Single Phase Transformer With Pole Top Extension	16-166
0	15 kV Line Pole – Single Phase Transformer With E–Bracket	16-168
0	15 kV Line Pole – Single Phase Transformer With E–Bracket On Pole Top Extension	16-169
0	15 kV Straight Line Pole – Three Phase Transformer Bank	16-171
0	15 kV Line Angle Pole – Three Phase Transformer Bank	16-173
0	35 kV Preassembled Loadbreak Switch	16-201
0	35 kV Line Pole Attachment For 40' Or 45' Pole	16-205
0	35 kV Line Pole Attachment With Pole Top Extension For 35' Or 40' Pole	16-206
0	35 kV Line Pole Attachment– 44" Extension Bracket	16-210
0	35 kV Corner Pole Attachment For 40' Or 45' Pole	16-213
0	35 kV Corner Pole Attachment Using Pole Top Extension For 35' Pole	16-214
0	35 kV Corner Pole Attachment For 40' Or 45' Pole – Line Angles 61° - 90°	16-217
0	35 kV Connection To Open Wire For 40' Or 45' Pole	16-220
0	35 kV Deadend Construction For 40' Or 45' Pole	16-223
0	35 kV Line Pole Attachment To Single Phase Open Wire Tap For 40' Pole	16-226
0	35 kV Line Pole Attachment To Single Phase Open Wire Tap For 45' Pole	16-227

	AERIAL/SPACER CABLE INDEX				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/20 ness Use	16-ii	OVERHEAD CONSTRUCTION STANDARD	ppl	

SECTION		PAGE
0	35 kV Line Pole Attachment To Single Phase Open Wire Tap For 40' Pole With Pole Top Extension	16-228
0	35 kV Corner Pole Attachment To Single Phase Open Wire Tap For 45' Pole	16-232
0	35 kV Corner Pole Attachment To Single Phase Open Wire Tap For 40' Pole With Pole Top Extension	16-233
0	35 kV Line Pole Attachment To Three Phase Open Wire Tap For 45' Pole	16-236
0	35 kV Line Pole Attachment To Three Phase Open Wire Tap For 40' Pole With Pole Top Extension	16-237
0	35 kV Line Pole Attachment To Three Phase Spacer Cable Tap For 40' Or 45' Pole	16-240
0	35 kV Corner Pole Attachment To Three Phase Open Wire Tap For 45' Pole – Line Angles 7° - 60°	16-243
0	35 kV Corner Pole Attachment To Three Phase Spacer Cable Tap For 45' Pole	16-246
0	35 kV Open Wire Straight Line To Three Phase Spacer Cable Tap	16-249
0	35 kV Four Way Junction – Crossarm Construction To Spacer Cable With 45' Pole	16-252
0	35 kV Four Way Junction – Spacer Cable To Spacer Cable With 45' Pole	16-255
0	35 kV Transformer Installation Single Phase For 40' Or 45' Pole	16-258
0	35 kV Transformer Installation Single Phase For 40' Pole With Pole Top Extension	16-259
0	35 kV Transformer Installation Single Phase For 40' Pole – Line Angles 7° - 60°	16-262
0	35 kV Transformer Installation Single Phase For 45' Pole – Line Angles 7° - 60°	16-263
0	35 kV Transformer Installation Three Phase Bank	16-265
0	Details Of Attachment, Bonding, And Termination Of Concentric Binder To Neutral	16-301
0	15 kV Tangents And Angles 0° – 35°	16-305
0	15 kV Angles 36° – 90° & Deadends	16-310
0	15 kV Straight Splice And Midspan Corner Details	16-315
0	15 kV Preassembled Lashed Aerial Cable To Open Wire	16-320
0	15 kV Preassembled Lashed Aerial Cable Termination Detail	16-321
0	Summary of Recent Changes	16-NOTES

AERIAL/SPACER CABLE INDEX OVERHEAD OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 7/20

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 16.00.001

AERIAL/SPACER CABLE INDEX			
ISSUE	PAGE NUMBER	WILV	
1/06	16-iv	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 16.00.002

16.0 **SCOPE**

This Standard includes the basic philosophy, design, and recommended practices for all new spacer cable distribution line construction at voltages of 35 kV and below as well as for all new aerial cable construction at voltages of 15 kV and below.

16.1 APPLICATION

16.1.10 Safety Cautions

- A. WARNING: Although spacer cable coverings offer some electrical protection, SPACER CABLE CONDUCTORS ARE NOT INSULATED. THEY MUST BE TREATED AS BARE CONDUCTORS DURING INSTALLATION AND MAINTENANCE.
- B. WARNING: All new spacer cable coverings contain a layer of semiconducting material right at the aluminum conductor surface. WHEN SKINNING ALL SPACER CABLE COVERINGS, DO NOT ALLOW THE REMOVED COVERING TO COME IN CONTACT WITH GROUND OR ANOTHER PHASE. A FLASH MAY RESULT.

16.1.20 Recommended Applications

Spacer cable systems are recommended for the following applications:

- A. Heavily treed areas where tree removal is not possible.
- B. Areas where proper horizontal line clearances cannot be maintained using other construction alternatives.
- C. Areas where multiple primary feeders on the same pole line are required.
- D. Areas where right-of-way space is limited.

16.2 **GENE**RAL

16.2.10 Spacer Cable System

An overhead primary distribution system consisting of covered conductors held in a close triangular configuration by spacers that are supported by a messenger and attached to brackets on a pole.

16.2.20 Basic Impulse Level (BIL) in a Spacer Cable System

BIL in a spacer cable system is dependent upon the coordinated insulation capabilities of the individual parts making-up the spacer cable; insulation covered conductor, spacers, conductor ties, and grounded messenger.

The messenger is required to be grounded approximately every 800 feet, every other pole is recommended, to aid in preventing lightning flashover resulting in conductor burn down. Thus, the basic pole top is shielded and grounded.

Basic impulse level is determined primarily by two factors: (1) inches of insulating material between conductors and (2) conductor cover thickness. Estimated minimum impulse withstand for a 15 kV class spacer cable system without conductor insulation removed, or surge arresters installed, is 280 kV.

AERIAL/SPACER CABLE Business Use			
SMA		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	16-1	7/07

Note: When spacer cable covering is removed and the conductors remain in their normal close configuration, the BIL is lowered. Arresters shall be applied per Section 16.3.40-Surge Protection, to reduce the possibility of flashover to the messenger or to an adjacent phase conductor. Furthermore, all phase conductor taps shall be taped or covered to help minimize the potential for flashover.

16.2.30 Design Basis for Individual Poles

- A. NESC (National Electrical Safety Code ANSI C-2)
 - 1. Loading Heavy loading in accordance with latest edition of the NESC.
 - 2. Vertical Clearances Sag Related Clearances.

Messenger at worst final sag producing condition (of four conditions listed below)

- Ambient temperature of 0°F/-18°C with 4 lbs. wind and with ½ inch ice, or
- Ambient temperature of 32°F/0°C with no wind but with ½ inch ice, or
- Ambient temperature of 60°F/15°C with 6 lbs. wind but with no ice.
- Maximum conductor operating temperature under unloaded conditions.

Any conductors below the spacer cable configuration, at same operating ambient, final, unloaded (no ice) sag.

Midspan clearances must be 75% of those required at the pole.

3. <u>Grades of Construction</u> – NESC specifies three grades of overhead power line construction based on required strengths for safety.

The relative order of grades for conductors and structures is B, C, and N, with grade B being the highest.

The Company Distribution Construction Standards are designed predominantly for grade C, except where grade B construction is required (mainly where supply conductors cross either a railroad or a limited access highway). Grade N construction is not used by the Company for distribution construction.

- B. Ownership/Attachments Poles are jointly owned with the telephone company. Company designed space is based on two additional communication cables being installed in the communication space, such as fire alarm and cable TV. Both pole owners, by agreement, relinquish 12 inches (i.e., 6 inches per attachment) of vertical ownership area in order to maintain the 40 inch required communication worker safety space at the pole. Additional third party attachments each require that both parties relinquish an additional 6 inches.
- C. <u>Primary Conductors</u> Maximum phase conductor size of 795 kcmil installed using a 1/0-2/5 AWAC messenger.
- D. <u>Definition of "S-S"</u> Indicates that the neutral of the secondary supply cable is located on the pole in this position.

To allow room for connections to the cable, the lowest secondary supply conductor is located 6 inches below S-S.

AERIAL/SPACER CABLE			
ISSUE	PAGE NUMBER		SMIZZ
7/07	16-2	OVERHEAD CONSTRUCTION STANDARD	ppl

E. <u>Secondary Conductor/Neutral</u> – Use of 3/C-1/0 aluminum secondary cable per Section 10-Secondaries, with its messenger attachment located at Line S-S.

Installation of a single 1/0 6201 neutral in place of secondary cable requires sags of the single 1/0 neutral to match those of secondary cable.

Clearances in this Standard do not allow for the vertical space required by any existing secondary racks. If racked secondary exists, it shall be replaced with standard secondary cable.

F. <u>Use of Messenger as the Sole Neutral</u> – In special instances the messenger may be used as the circuit's only solidly grounded neutral conductor.

Grounding shall be as specified in Section 13-Grounding.

Transformer or other equipment neutral taps to the messenger shall be made using covered conductor having equal ampacity to that of the equipment phase lead.

- G. <u>Top Communication Cable Sags</u> No sag assumed.
- H. <u>Supply Space Communication Conductors</u> Shown in construction drawings for reference purposes only. Poles in this standard are not specifically designed to accommodate these conductors. See the Company "Policy For Installing Communication Cables In The Supply Space."

16.2.40 Thermal Ratings

- A. Normal & Emergency Refer to Section 6-Primary Conductors.
- B. <u>Sags for Clearance Purposes</u> Using the NESC conditions in Section 16.2.30-Part A. above, refer to Sag & Tension Tables in 16.5-Messenger and Phase Conductor Installation for specific values.

16.3 PRACTICES

16.3.10 **Guying**

- A. Shall be in accordance with that specified in the individual drawings in this Section and per requirements of Section 3-Guying.
- B. A messenger designed storm loaded tension of 6,800 pounds, in accordance with Section 16.4-Deadending, Splicing, and Splice Recovering, shall be used for purposes of guying.
- C. Maximum allowable angles in a line may be limited by the ability to properly quy the pole.
- D. All spacer cable deadends and angle poles in excess of 30 degree line angles require a minimum of a double 12.5M guy strand and compatible hardware.
- E. Obtain the maximum guy lead possible. A ratio of Height /Lead ≤ 1 is preferred. Short leads (5-10 feet) can result in pole splitting, excessive column loading, and anchor creepage.
- F. Fiberglass guy strain insulators shall be used in accordance with individual drawings in this Section and will generally be located on every primary down guy.

AERIAL/SPACER CABLE Business Use			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	16-3	7/07

16.3.20 Installation

A. <u>Poles</u> – Shall be as shown on individual construction drawings in this Section. Pole height is dictated by what equipment is installed on the pole, whether joint use is required, span lengths, and size and type of conductors installed.

Pole class shall be determined by Distribution Design in accordance with Section 2-Poles/Hardware. Specific design criteria listed in Section 16.2.30-Design Basis for Individual Poles above, have been applied to the individual pole construction drawings in this Section.

B. Brackets

1. <u>Tangent Brackets</u> – Are designed for messenger support on straight line poles up to a maximum line angle of 6 degrees.

Tangent brackets provide three messenger offset distances from the pole: 14, 24, and 44 inches.

Note: The 24 inch bracket must be used on 35 kV straight line poles in order to provide required clearance from the pole surface.

- Anti-Sway Brackets Are designed for spacer support on transformer tap poles and areas that are subject to high wind (e.g., coastal construction). All 15 kV transformer tap poles should utilize the anti-sway bracket to help minimize potential damage to tap connections at these locations. Additionally, these brackets are available for use in high wind areas (Std. Item A54B).
- 3. <u>E-Brackets</u> Are designed for angle construction at 15 kV up to a maximum line angle of 60 degrees.

For guying purposes, the line angles for E-Brackets are broken down into "light angle" (6-30 degrees); and "heavy angle" (31-60 degrees).

The E-Bracket shall not be used at 25 kV or 35 kV, as it does not provide required clearances.

- 4. <u>C-Brackets</u> Are designed for use at 15 kV for line angles from 61-90 degrees. Adapter plates, double pins, and pin insulators must be used at these line angles to split the conductor angle to control stress cracking of the conductor covering.
- 5. <u>C-Brackets, Braced</u> Are designed for use at 25 kV & 35 kV. They provide required clearances for these voltages classes.

Since E-Brackets cannot be employed at 35 kV, the braced C-Bracket is designed for use with line angles between 6 and 90 degrees.

6. 60-inch Metal Pole Top Extension – Is designed to provide approximately 48 inches of added height, where needed, to an existing pole that otherwise doesn't warrant replacement.

Individual construction drawings in this Section detail maximum span lengths when these brackets are used with existing pole heights.

The 60 inch pole top extension shall only be employed on straight line poles and at line angles not exceeding 30 degrees, as shown in this Section.

	AERIAL/SPACER CABLE				
ISSUE	PAGE NUMBER		OMB		
7/11	16-4	OVERHEAD CONSTRUCTION STANDARD	ppl		

Pole top extensions should not be used repeatedly for more than four or five spans in order to limit the extent of pole top damage that might occur during pole or span impact.

C. <u>Messenger</u> – Properly guyed structures are critical to maintaining installed spacer cable system's designed sags and tensions, which meet NESC clearance requirements.

Install messenger in accordance with Section 16.5-Messenger and Phase Conductor Installation instructions, sags and tensions. Use approved running blocks and safety methods. Poles shall be prepared prior to pulling the messenger to insure that electrical contact will not occur during pulling. Do not pull messenger over crossarms, brackets or other means of support, as messenger damage may occur.

Do not over tension messenger during initial installation. Doing so will result in storm loaded tensions that are excessive of those designed for the installed system. Anchor pulling, pole splitting, and hardware breakage may result.

- 1. Permanent Stringing Angle Clamp PSAC
 - The PSAC is a combination stringing block and messenger clamp. The PSAC allows the messenger wire to be pulled in, tensioned and clamped using one piece of hardware. For use when installing messenger wire on E brackets at max 60 angle.
- D. <u>Phase Conductors</u> Install in accordance with recommendations in 16.5-Messenger and Phase Conductor Installation.

PHASE CONDUCTORS SHALL BE TREATED AS IF THEY WERE BARE CONDUCTORS AT ALL TIMES DURING INSTALLATION AND MAINTENANCE.

Particular attention must be given to obtain recommended phase conductor sags between spacers during installation to avoid over-tensioning. During cold weather, over-tensioned phase conductors will cause angle bracket insulator pin bending, overstressing of phase conductor covering, splice failure, and phase conductor contact with grounded brackets, all of which can lead to failure of the system.

E. Conductor Ties

<u>At spacers</u> – For maintenance on poles utilizing the older spacer design, use molded EPDM rubber ring ties furnished with spacers. New spacer designs do not require rubber ring ties as this design utilizes a built-in latch for securing conductors.

<u>At pin type polyethylene insulators</u> – Preferred – Thermoplastic Rubber (TRP) covered, solid, soft drawn (SD) #4 aluminum tie wire (Std. Item W22D).

On C-Brackets or on crossarms, where double pins and insulators are called for, an alternate method utilizing molded plastic ties or "jar rubbers" may be used for ease of installation. Manufacturer's recommendations must be followed to insure proper installation.

Do not remove factory insulation covering at spacers or at polymer pin insulators for any of the above tying methods.

- F. Spacers
 - Placement Shall be as shown on individual drawings in this Section.

<u>Tangent Brackets</u> – Install two spacers, one on each side of the bracket, about six inches from the bracket.

AERIAL/SPACER CABLE Business Use			
NIV.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	16-5	7/15

C or E-Brackets – Install first spacer approximately 30 feet either side of the bracket.

<u>At Crossarm Deadends</u> – Install double spacers approximately 50 feet out from the crossarms.

Span Between Poles – Install spacers as close as practical to 30 foot spacing.

2. <u>Maintenance</u> – When replacing broken or damaged spacers, the new spacers shall be placed a few inches away from the old location to utilize a "fresh" portion of conductor covering.

G. Insulators

- 1. Pin Type 15 kV and below A one piece, molded 15 kV pin-type polyethylene insulator shall be used.
- 2. Pin Type 25 kV and 35 kV A one piece, molded 35 kV pin-type polyethylene insulator shall be used.
- 3. <u>Deadends</u> Polymer one-piece insulators shall be used at both voltage levels above in accordance with individual drawings in this Section.

Note: There are some construction designs that require an added insulator for increased electrical isolation.

4. <u>Maintenance</u> – When performing maintenance or in the process of converting to higher voltage levels, older porcelain pin insulators shall be replaced with polyethylene units, provided conductor covering is not damaged.

If conductor damage is present, Standards Engineering shall be notified. New conductor may have to be spliced in and splices recovered per 16.4-Deadending, Splicing, and Splice Recovering.

H. Deadends

- 1. <u>Messenger</u> Deadends shall be made with approved formed wire grips as shown and listed in Section 16.4-Deadending, Splicing, and Splice Recovering.
- Phase Conductors The preferred method for deadending is by use of approved straight, bolted strain clamps as shown in 16.4-Deadending, Splicing, and Splice Re-Covering.

The alternate method of deadending is with the use of formed wire grips installed directly over the conductor covering. This method is shown in 16.4-Deadending, Splicing, and Splice Re-Covering.

In no instance should formed wire grips be used to deadend covered conductors installed using crossarm construction. Formed wire grips require support by a messenger.

I. Tapping Conductors

1. <u>Location</u> – Locate taps a minimum of 30 inches away from any grounded bracket as shown in individual standards.

Multiple taps, as in the case of two-and three-phase applications, shall be staggered a minimum of 30 inches from each other.

		AERIAL/SPACER CABLE	
ISSUE	PAGE NUMBER		MIZZ
7/15	16-6	OVERHEAD CONSTRUCTION STANDARD	ppl

- Skinning Cautions WARNING: Since some coverings contain a layer of semiconducting material at the metal conductor surface, it is important when skinning all spacer cable conductors, not to let the removed covering get so long that it could come in contact with another phase or ground. An electrical flash may result.
- Tools Coverings shall be removed using approved strippers listed in Table 5 on Page 16-13. Conductor damage may result from not selecting the right stripping tool for the conductor involved.
- Skinning Lengths Shall allow for approximately 3 inches either side of the connector.
- Lead Training Tap leads shall be trained around the spacer cable bundle as shown in individual construction drawings. Tap leads shall not be routed between phases in the spacer bundle.
- Connectors Use appropriate connector for desired application as specified in Section 5-Connectors.

Connectors of covered tap leads without proper lightening protection at immediate pole location shall be covered by gel wrap (STD C67, C68). See section 13.6.30 for proper lightening arrester installation.

Messenger Covering – Shall be installed in lengths specified by individual Standards.
 Messenger covering shall be secured using a connector (STD Item C7) for the specified conductor as outlined in Section 5-Connectors. Messenger covering is installed to prevent wildlife and tree contact from occurring.
 WARNING: MESSENGER COVERING IS NOT PATED FOR ELECTRICAL

WARNING: MESSENGER COVERING IS NOT RATED FOR ELECTRICAL PROTECTION AND THEREFORE SHALL NOT BE USED FOR WORKER PROTECTION.

J. Splicing & Recovering

- 1. <u>Messenger</u> Full tension automatic splices shall be used in accordance with Section 16.4-Deadending, Splicing, and Splice Recovering.
- Phase Conductors Full tension compression splices shall be used in accordance with Section 16.5-Deadending, Splicing, and Splice Recovering. WARNING: DO NOT USE AUTOMATIC SPLICES. AUTOMATIC SPLICES REQUIRE THAT THE CONDUCTOR BE HELD UNDER TENSION AND THIS IS NOT THE CASE FOR PHASE CONDUCTORS OF A SPACER CABLE CIRCUIT.

Splices should be located away from the pole as shown in Section 16.4-Deadending, Splicing, and Splice Recovering, Figure 4 on Page 16-13. This will allow room for **future taps to be made at the splice pole.**

Splices shall be staggered a minimum of 30 inches as shown in Section 16.4-Deadending, Splicing, and Splice Recovering.

New construction shall utilize either the "cold shrink", "hand applied tape" or the "gel wrap" method for recovering as shown in Section 16.4-Deadending, Splicing, and Splice Recovering, Figure 4 on Page 16-12.

Do not install splices at or near polyethylene pin insulators or spacers.

AERIAL/SPACER CABLE Business Use			
MIZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	16-7	7/18

16.3.30 Grounding

A. <u>Messenger</u> – Ground messenger in accordance with drawings in this Section and practices in Section 13-Grounding.

Messenger to be electrically direct connected to the system neutral at every pole.

WARNING: MESSENGER GROUNDING BY GROUNDING ITS' SUPPORTING BRACKET SHALL NOT BE PERMITTED. This creates a high resistance connection. Messengers are to be electrically connected to driven ground rods at intervals not to exceed 800 feet, preferably at every other pole; a driven ground rod at a transformer or other equipment counts toward satisfying this requirement.

B. <u>Brackets</u> – All messenger and phase conductor supporting brackets shall be bonded to the pole equipment grounding conductor as shown in individual drawings in this Standard.

All other brackets, such as capacitor racks, recloser racks, transformer cluster mounts, and metering racks shall be grounded in accordance with specific Standards in this book (Refer to Section 13-Grounding).

Single phase fiberglass equipment mounts (Std. Item E13M) shall be used for mounting all fused cutout assemblies, fused cutout / arrester assemblies and terminator / arrester assemblies located on a spacer cable system. The practice of utilizing metal equipment mounts for such applications shall be discontinued for new spacer cable construction; however, existing installations shall remain in service unless the structure is being significantly rebuilt (e.g., reconductoring, structure replacement, etc.) in compliance with the latest Standard.

C. <u>Guys</u> – Guys shall be insulated and/or grounded. The Company calls for grounding guys below their guy strain insulators when down-guying.

Refer to Section 3-Guying for additional guying detail.

D. <u>Television and Radio Interference</u> – The higher the primary voltage, the greater the possibility of generating radio and television interference.

This interference can be controlled by taking reasonable care to properly install connectors per the manufacturer's recommendations and Company outlined practices located in Section 5-Connectors as well as by properly maintaining suitable clearances between un-bonded metal pole line hardware, and by ensuring that all hardware is properly tightened.

25 kV and 35 kV construction standards call for double coil lock washers to be used with all bolts and lag screws in the process of securing metal hardware to wood structures.

The minimum clearances from unbonded metal to other metal are:

FEEDER VOLTAGE (PHASE – TO – GROUND)	CLEARANCE IN INCHES
15 kV and Below	3
Above 15 kV – 20 kV	4½"

	AERIAL/SPACER CABLE				
ISSUE	PAGE NUMBER		SMD		
7/11	16-8	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved.

E. Arresters – Ground rods are required at every surge arrester location.

All arresters require a direct electrical connection to a grounding conductor which is connected to a driven ground rod.

WARNING: IN NO INSTANCE SHALL ARRESTER GROUNDS BE TIED TO THE SYSTEM NEUTRAL CONDUCTOR ONLY, WITHOUT INSTALLING A DRIVEN GROUND ROD AND GROUNDING CONDUCTOR. Ground leads should be kept as short as possible.

The arrester ground lead shall be trained to allow for proper arrester disconnect operation. This means that the disconnect point be allowed to break free from the arrester housing. Standard construction for surge arrester application calls for a flexible line arrester grounding lead (Std. Item L6) which will accommodate the proper disconnect operation of the device.

F. <u>Bonding of Cable Messengers Located in the Communication Space</u> – Pole equipment grounding conductor shall be bonded to communication cable messengers in accordance with Pole Joint Owned Practices.

16.3.40 Surge Protection

- A. Application Arresters shall be:
 - 1. Applied in accordance with Standards in Section 13-Grounding.
 - 2. Located at all end-of-line spacer cable deadends.
 - 3. Installed at all deadends and junctions with bare or covered line conductors.
 - Installed at switch locations. Arresters are to be installed on the both sides of the switch.
 - 5. Installed at riser poles. **Note:** Riser type arresters must be used on riser poles.
 - 6. Installed at all equipment taps if no arresters exist on the equipment.
 - 7. Installed on the load side of fuse cutouts where practical.
 - 8. Installed at abandoned spacer cable tap skinnings if recovering is not practical.

Messenger grounding and driven ground rods are required at poles either side of the switch pole per Section 12-Protection.

Every attempt shall be made to locate arresters at the tap, junction, or deadend pole itself. Prior practice of installing arresters a pole or two away from a spacer cable junction shall be discontinued.

B. <u>Tree Trimming</u>

Spacer cable systems are designed to be installed in highly treed areas, or where required physical separation from buildings cannot be met with crossarm construction. They are not intended to be installed to eliminate trimming.

Spacer cable phase conductors have the ability to withstand momentary contacts with tree limbs and branches, wildlife, and other airborne objects.

AERIAL/SPACER CABLE Business Use			
SMA		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	16-9	7/07

WARNING: Continuous tree contact should not be allowed at any voltage. Erosion of the cover will result and lead to its puncture and conductor damage, and may result in conductor burndown.

Cover erosion rates increase approximately with the 6th power of the voltage. Therefore, during continuous tree contact, 35 kV circuits can be expected to fail approximately 200 times faster than 15 kV circuits.

Trimming priorities should first address circuits of higher voltage.

16.4 <u>DEADENDING, SPLICING & SPLICE RECOVERING</u>

16.4.10 General

This Section covers recommended methods of deadending, splicing, and splice recovering of the various spacer cable messengers and phase conductors.

16.4.20 <u>Messenger Deadending</u>

HARDWARE – Refer to the following, Figure 1, for messenger deadend assembly hardware. Do not use D-eyes with formed wire grips.

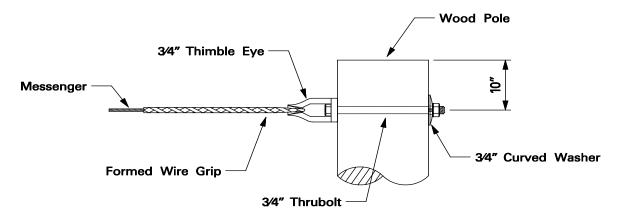


Figure 1

DEADENDS – Use formed wire messenger deadends as shown in Table 2.

TABLE 2 Formed Wire Messenger Deadends

MESSENGER		SAP ITEM ID	PS ITEM ID	
NEW CONSTRUCTION	MAINTENANCE	SAP II EWILD	PO ITENITO	
1/0 – 3/4 AWAC		9313477	3503569	
	1/0 – 4/3 AWAC	9313350	5989142 ^E	
	3/4", 7 - #8 CW	9320255	5989135 ^E	

16.4.30 Phase Conductor Deadending

There are two approved methods for deadending phase conductors: (1) use aluminum strain clamps, or (2) use formed wire deadends. Method (1) must be used at 35 kV.

AERIAL/SPACER CABLE					
ISSUE	PAGE NUMBER		SMIZZ		
7/20	16-10	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved.

Aluminum Strain Clamps – Use aluminum strain clamps per Section 5-Connectors. Allow enough phase conductor tail out of the strain clamp to make arrester and other tap connections. Avoid tapping the span if possible. See Figure 2 below.

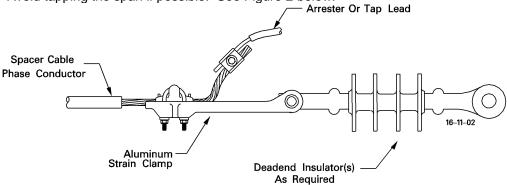


Figure 2

Formed Wire Deadends – Refer to Figure 3 below. Use phase conductor formed wire grips listed in Table 3.

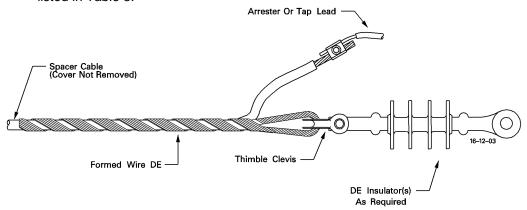


Figure 3

TABLE 3
Phase Conductor Formed Wire Deadends

CONDUC	SAP ITEM ID	PS ITEM ID	
NEW CONSTRUCTION	MAINTENANCE	SAPTIENTO	P3 II EWI ID
1/0 – 7 Str 6201-15 kV		9309140	3506748
477 – 19 Str EC-Compact-15 kV		9315735	3506749
336.4 – 19 Str EC-Compact-15 kV		9305136	5106085
795 – 37 Str EC-Compact-15 kV		N/A	5989149 ^E
1/0 - 7 Str 6201-35 kV		9315735	3506749
477 – 19 Str EC-Compact-35 kV		9313346	5989151 ^E
795 – 37 Str EC-Compact-35 kV		N/A	N/A
	1/0 – 7 Str EC-Compact-15 kV	9313348	5989145 ^E

	AERIAL/SPACER CABLE		
WHZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	16-11	7/20

16.4.40 Messenger Splicing

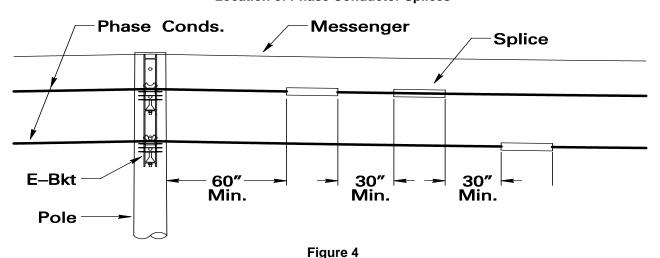
Use automatic splices or full-tension compression splices listed in Table 4 below. It is pertinent to an electrical connection that the conductor be properly cleaned; therefore, wire brush all conductors prior to splicing.

TABLE 4
Messenger Splices

MESSENGER TO BE SPLICED		SPLICE					TOTAL
NEW CONSTRUCTION	MAINTENANCE	TYPE	ITEM ID	SPLICE CAT NO	TOOL	DIE	CRIMPS
1/0 - 3/4 AWAC		Automatic	9313755	Fargo GLA – 1165			
1/0 - 2/5 AWAC		Compression	9313754	Burndy YDS7M6TG2	Y - 35	U 679	4
	1/0 – 4/3 AWAC	Automatic	9313755 ^E	Fargo GLA – 1165			
	3∕8", 7 – #8 CW	Automatic	9313288 ^E	Fargo GLA – 812			
	½", 7 STR 052 AW	Automatic	9305650 ^E	Reliable 5044			

16.4.50 Phase Conductor Splicing

Application: Full tension compression splices are used for all new construction.


WARNING: DO NOT USE AUTOMATIC SPLICES.

Splice Location: Figure 4 below shows the preferred location for splicing. Splices should be located a minimum of 60 inches from a pole to allow for future taps to be made at that pole.

Splices should be staggered along the spacer cable circuit keeping 30 inch minimum between recovered splice ends. This helps to maintain designed BIL's, and is particularly important because field applied recovering may not be electrically equivalent to factory applied covering.

Because the splice will be covered, it is not necessary to install messenger covering (line duct) on the messenger in the splice vicinity. Messenger covering does little to increase spacer cable BIL levels and is not required for wildlife protection.

Location of Phase Conductor Splices

		AERIAL/SPACER CABLE	
ISSUE	PAGE NUMBER		SMIZZ
7/20	16-12	OVERHEAD CONSTRUCTION STANDARD	ppl

Conductor End Preparation: Using a stripping tool from Table 5 below, remove the covering a distance equal to ½ the uncrimped splice length plus 1½ inches. Use care not to nick the conductor strands. Refer to Figure 5 below.

TABLE 5
Spacer Cable Stripping Tools

Spacer Cable	SAP Item ID	Cond O.D.	Cov Thkns	Cond Shield	Cover O.D.	Mid-Span Stripper	Spare Blade	Spare Ring Knife
1/0 - 7 Str 6201 - 15 kV	9302832 ^E	0.398"	150 M	15 M	0.728"	WSP1 - 166	CB – 1	N/A
1/0 - 7 Str.AAC - 15 kV*	N/A	0.338"	150 M	15 M	0.638"	WSP1 - 319	CB – 1	N/A
4/0 - 7 Str. EC Compact - 15 kV*	N/A	0.478"	150 M		0.778"	WSP1 - 193	CB – 1	N/A
336.4 - 19 Str. EC Compact - 15 kV	9305136	0.607"	150 M	15 M	0.937"	WSP2 - 238	CB – 1	N/A
477 - 19 Str. EC Compact - 15 kV	9302808 ^E	0.722"	145 M	15 M	1.042"	WSP2 - 252	CB – 1	N/A
795 - 19 Str. EC Compact - 15 kV	9313226 ^E	0.932"	160 M	20 M	1.292"	WSP10 - 003	CB – 1	N/A
336.4 - 19 Str. EC Compact - 25 kV*	N/A	0.607"	250 M	15 M	1.137"	WSRK2 - 75	CB8 – 2A	CB19
336.4 - 19 Str. EC Compact - 35 kV*	N/A	0.607"	300 M	15 M	1.237"	WSBK10-133	CB8 - 2B	CB162
795 – 37 Str. EC Compact – 25 kV*	N/A	0.932"	250 M	20 M	1.472"	WSRK10 - 71	CB8 - 2B	CB162
1/0 - 7 Str. 6201 - 35 kV	9313250 ^E	0.398"	300 M	15 M	1.028"	WSK10 - 99	CB8 – 2A	CB19
1/0 - 7 Str. EC Compact - 35 kV*	N/A	0.338"	300 M	15 M	0.968"	WSRK2 - 246	CB8 - 2A	CB19
477 - 19 Str. EC Compact - 35 kV	9313248 ^E	0.722"	300 M	20 M	1.362"	WSK10 - 102	CB8 - 2B	CB162
795 – 19 Str. EC Compact – 35 kV	9313225 ^E	0.932"	300 M	20 M	1.572"	WSK10 - 103	CB8 – 2B	CB162

* Non-STD Conductor

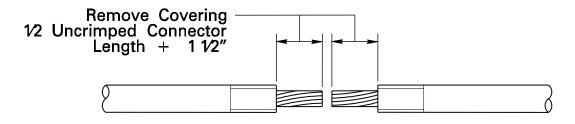


Figure 5

Clean and buff the conductor covering at both ends for a distance of 3½ inches. Use cable preparation kit, Std. Item UC80F, or kit supplied with the packaged cold shrink recovering. Refer to Figure 6 below.

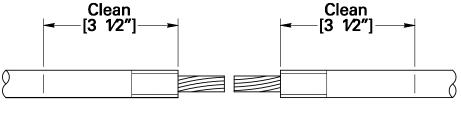
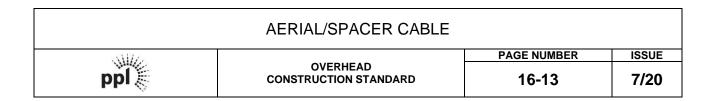
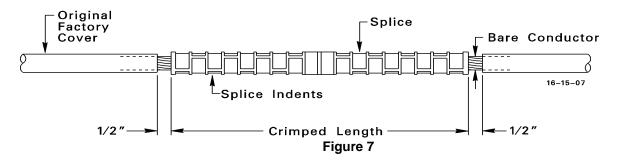


Figure 6

Note: If using "COLD SHRINK" method of splice recovering install tube at this time, before installing the splice. Park the tube on one side. Do not remove plastic liner.

Splice Installation: Select the proper splice for the conductor application from Table 6 below.




TABLE 6
Phase Conductor Splices
Full-Tension Compression Splices

Tail Tollololi Completed on Opinete							
CONDUCTORS TO BE SPLICED	CONDUCTOR "OD"	ITEM ID	SPLICE CAT. NO.	TOOL	DIE	TOTAL CRIMPS	
1/0 6201 7-Str Std Round to 1/0 6201 7-Str Std Round	0.398"	9316636	Burndy YDS25RL Alcoa 7511 – 453	Y35 30A	U660 11AH	16	
1/0 EC 7-Str Compact to 1/0 EC 7-Str Compact	0.338"	9316636	Burndy YDS25RL Alcoa 7511 – 453	Y35 30A	U660 11AH	16	
1/0 EC 7-Str Compact to 1/0 6201 7-Str Standard Round	0.338 – 0.398"	9316636	Burndy YDS25RL Alcoa 7511 – 453	Y35 30A	U660 11AH	16	
4/0 EC 7-Str Compact to 4/0 EC 7-Str Compact	0.478"	9311468	Burndy YDS28AT	Y35	U249	12	
336.4 EC 19-Str Compact to 336.4 EC 19-Str Compact	0.607"	9315874	Burndy YDS301AT	Y35	U321	16	
477 EC 19-Str Compact to 477 EC 19-Str Compact	0.722"	9311473	Burndy YDS331AT	Y35	U317	18	
795 EC 37-Str Compact to 795 EC 37-Str Compact	0.932"	9312838 ^E	Fargo C1511CD - 11	60T	11CD – 60	25% Overlap	

TABLE 7
Phase Conductor Splices
Non-Tension Compression Reducing Splices

			m reducing opilot			
CONDUCTORS TO BE SPLICED	CONDUCTOR "OD"	ITEM ID	SPLICE CAT. NO.	TOOL	DIE	TOTAL CRIMPS
4/0 EC Compact to 477 EC Compact	0.478" - 0.722"	9312754 ^E	Burndy YCR32RG3	Y35	U317	25% Overlap
336.4 EC Compact to 477 EC Compact	0.607" - 0.722"	9313010 ^E	Burndy YCR32RG5	Y35	U317	25% Overlap

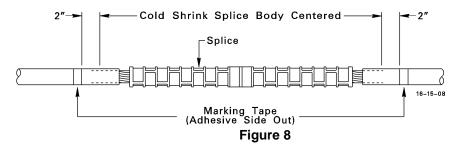
Install connector in accordance with manufacturer's instructions. Push conductor ends into splice body until fully inserted. Crimp using tools and dies shown in Tables 6 & 7. Remove excess oxide inhibitor and file off any sharp crimp flashings. Refer to Figure 7 below.

16.4.60 Phase Conductor Recovering

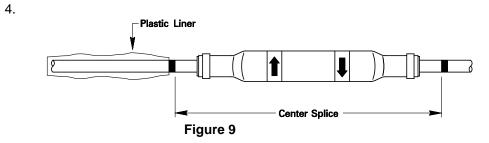
Application: There are three methods included in this Section for recovering spacer cable splices:

(1) COLD SHRINK, (2) HAND APPLIED TAPE AND (3) GELWRAP

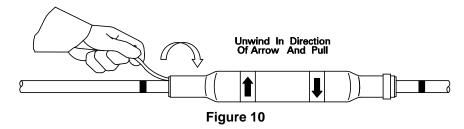
NOTE: The Cold shrink is no longer available from the manufacturer (use up existing stock). The Hand Applied tape or Gel Wrap can be used on 15kV and below. The Hand Applied tape is the only option for above 15kV, up to 35kV.


New Construction 35 kV & Below: The preferred method is to use COLD SHRINK (Std. Item S16 fits all sizes except 1/0 15 kV).

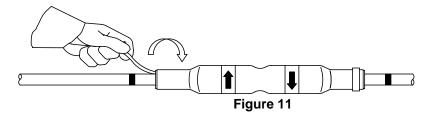
		AERIAL/SPACER CABLE	
ISSUE	PAGE NUMBER		SMI
7/20	16-14	OVERHEAD CONSTRUCTION STANDARD	ppl


New Construction 15 kV & Below - 1/0: The preferred method is to use hand applied tape; however, gelwrap (Std. Item's C62 & C63) may also be used and shall be installed in accordance with manufacturer specifications.

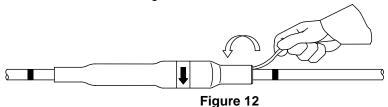
A. Cold Shrink Method


 Apply Marker Tape – Measure cold shrink body length and place marker tapes (adhesive side out) 2 inches away from each end of the centered cold shrink body. Refer to Figure 8 below.

- Apply Silicone Grease Lubricate the entire surface of conductor covering from the marker tape(s) toward the crimped splice. Use the yellow tube of silicone grease supplied in the kit. Use foam pad under cap to spread grease. It is not necessary to apply grease over the connector.
- 3. Slide Cold Shrink Body Into Position Remove the red factory tape securing the plastic cover. Unfold the plastic and slide the cold shrink body into the center of the splice area. The plastic liner will be left behind and can be removed at this point. Refer to Figure 9 below.

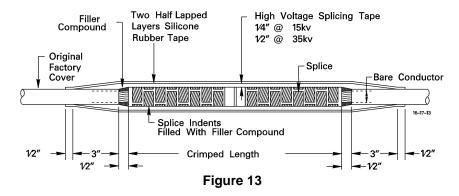


4. Shrink the Body – Steadily pull on the plastic cord, unwinding it around the conductor in the direction shown by the arrow on the cold shrink body. As the cord is pulled, it wraps around the conductor 1 or 2 times, and must be unwound before pulling again. Refer to the following, Figure 10.



After shrinking the first 1-2 inches, the splice body should begin to grip the conductor. Re-center the body between marker tapes if necessary. Continue unwinding and pulling the cord until one side is completely shrunk. Refer to Figure 11 below.

AERIAL/SPACER CABLE					
SMI		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	16-15	7/07		



Repeat the shrinking process on the other side of the cold shrink splice body. Be sure to let the cord unwind in the direction indicated by the arrows. This completes the installation. Refer to Figure 12 below.

B. Hand Applied Tape Method

1. After filing off any sharp splice flashings, fill indents with filler compound, Std. Item T5E on the material list. Reference Figure 13 below.

2. Apply ½ lap layer of high voltage splicing tape, Std. Item T5B, to the following thicknesses, over the connector and the outer conductor covering:

15 kV - ¼ inch

35 kV - 1/2 inch

Taping to the above thickness is important in attempting to restore original factory insulation levels.

Cover the entire splice with two ½ lapped layers of silicone tape extending ½ inch
beyond the high voltage splicing tape. Wrap tightly at both ends applying two
additional turns of tape with only slight tension.

C. Gelwrap Method

Gelwrap kits are used to cover conductor splices or bare spots in the 15kV system. The kit consists of gray high dielectric filler mastic, gel filled plastic cover that snaps together and two plastic ties. Installation instructions provided by the manufacturer shall be followed.

		AERIAL/SPACER CABLE	
ISSUE	PAGE NUMBER		SMIZZ
7/20	16-16	OVERHEAD CONSTRUCTION STANDARD	ppl

16.5 MESSENGER AND PHASE CONDUCTOR INSTALLATION

16.5.10 **Preliminary**

It is recommended that guying in accordance with individual Standards in this Section and Section 3-Guying be installed prior to pulling in the spacer cable messenger and phase conductors.

It is also recommended that tools, pulling blocks, hardware, procedures, and methods specified by Work Methods and Standards Engineering be employed to insure a properly installed system.

- STEP 1: Pull messenger in place through stringing devices.
- STEP 2: Refer to Messenger Initial Installation Sag & Tension Tables in this Standard for the appropriate messenger and phase conductors to be installed.

With one end of the messenger deadended, and using a dynamometer, tension the messenger in accordance with the following values for the ruling span involved and for the temperature at the time of installation. Sags are listed only for a visual check of the installation. (For ruling spans less than 150 feet, use installation tensions for 150 feet ruling span realizing that sags will be less.)

Once the appropriate tension has been reached, clamp messenger in place and remove messenger running blocks.

WARNING: Extreme care should be taken to see that the messenger has the correct initial installation tension. Low tension may result in excessive sags that do not comply with the NESC clearance requirements. Excessive initial tension may cause undue strain on the pole and on related hardware during storm loaded conditions (ice and wind).

- STEP 3: After the messenger has been properly tensioned, pull all phase conductors in at the same time. Temporarily deadend both ends of the phase conductors.
- STEP 4: Spacers should be installed at approximately 30 foot intervals between poles. They should be doubled at tangent brackets (one on each side of the bracket). First spans at locations where the phase conductors are spread out, such as at a crossarm deadend, should have double spacers placed approximately 50 feet out from the crossarm. Spacers should be placed out 30 feet from an E- or C-Bracket.
- STEP 5: Spacer installation can begin by permanently deadending the phase conductors at one end and installing spacers, making sure that the phase conductor sag between spacers is as recommended in Table 8 on Page 16-19 and the corresponding illustration.

Alternately, spacer installation can begin in the middle of the run beginning at an E-Bracket where the phases can be tied to the insulators, and then spacers installed in both directions working toward the permanent deadend poles.

It will be necessary in most instances to pull slack ahead towards the ends of the conductors as the spacer installation and sagging process proceeds.

WARNING: Proper sagging between spacers is extremely important due to the different expansion rates of the messenger and the phase conductors. At below zero temperatures, the phase conductors can produce excessive forces on insulator pins causing bending. Also, phase conductors can cause spacer breakage. DO NOT OVER-TENSION PHASE CONDUCTORS DURING INSTALLATION.

AERIAL/SPACER CABLE					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	16-17	7/07		

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 16.00.002

Supersedes 1/06 Issue - Page Content Shift / Change Due To Reformatting

Note: For spacer cable systems other than those depicted in these Standards, consult Standards Engineering (double circuit construction, larger messengers, larger phase conductors, longer spans, etc.).

Table 8
Phase Conductor Sags – 30 Foot Span Between Spacers

Temp. °F/°C	20/-7	40/4.5	60/15.5	80/26.7	100/37.8	120/48.9	167/75
Sag In Inches	3	4	5	6	7	8	9

	AERIAL/SPACER CABLE								
ISSUE	PAGE NUMBER		WINZ						
7/07	16-18	OVERHEAD CONSTRUCTION STANDARD	ppl						

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	*19500 lbs.	TRANSVERSE	3.0847 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	*0.1785 sq. in.	VERTICAL	9.055 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0227 Ω / 1000'	TOTAL	9.866 Lb/Ft	669	NORMAL	952		
R. (@ 75°C)	0.0271 Ω / 1000'	IOIAL	9.000 LD/Ft	828	EMERGENCY	1058		
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	18.81°					
MESSENGER DIAMETER	0.541"			•				
CONDUCTOR DIAMETER	1.572"							
SYSTEM WEIGHT	4466 lbs / 1000'							

Note: Quantities identified with an " * " are for the messenger only. All other quantities are specified for the complete spacer cable system.

					k	INITI	AL SA	AG TA	BLE*							
							RULII	NG SF	PAN (I	FEET)						
		12	25			15	50		175				200			
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2,325	1,722	1,380	1,052	1,150	863	688	526	574	481	437	398	423	390	371	352
ACTUAL SPAN (FEET)																
50	0.7	0.9	1.2	1.5	1.4	1.8	2.3	3.1	2.8	3.3	3.7	4.0	3.8	4.1	4.3	4.6
60	1.0	1.3	1.7	2.2	2.0	2.6	3.4	4.4	4.0	4.7	5.3	5.8	5.5	5.9	6.3	6.6
70	1.4	1.7	2.3	3.0	2.7	3.5	4.6	6.0	5.5	6.4	7.2	7.9	7.5	8.0	8.5	9.0
80	1.8	2.3	3.0	3.9	3.6	4.6	6.0	7.8	7.2	8.4	9.4	10.4	9.8	10.5	11.1	11.8
90	2.2	2.9	3.8	5.0	4.5	5.8	7.6	9.9	9.1	10.6	11.9	13.1	12.3	13.2	14.1	14.9
100	2.8	3.6	4.7	6.1	5.6	7.1	9.3	12.2	11.2	13.1	14.7	16.2	15.2	16.3	17.4	18.4
110 120	3.3 4.0	4.3 5.1	5.7 6.7	7.4 8.8	6.8 8.1	8.6 10.3	11.3 13.4	14.8 17.6	13.6 16.1	15.9 18.9	17.8 21.2	19.6 23.3	18.4 21.9	19.8 23.5	21.0 25.0	22.2 26.4
130	4.0	6.0	7.9	10.4	9.5	12.1	15.8		18.9	22.2	24.9	27.3	25.8	27.6	29.4	31.0
140	4.7 5.4	7.0	7.9 9.2	12.0	9.5 11.0	14.0	18.3	20.6 23.9	22.0	25.7	28.9	31.7	29.9	32.0	29.4 34.0	36.0
150	6.2	8.0	10.5	13.8	12.6	16.0	21.0	27.5	25.2	29.5	33.1	36.4	34.3	36.8	39.1	41.3
160	7.1	9.1	12.0	15.7	14.3	18.3	23.9	31.3	28.7	33.6	37.7	41.4	39.0	41.8	44.5	47.0
170	8.0	10.3	13.5	17.8	16.2	20.6	27.0	35.3	32.4	37.9	42.6	46.8	44.0	47.2	50.2	53.1
180	9.0	11.5	15.2	19.9	18.1	23.1	30.2	39.6	36.3	42.5	47.7	52.4	49.4	52.9	56.3	59.5
190	10.0	12.8	16.9	22.2	20.2	25.7	33.7	44.1	40.5	47.3	53.2	58.4	55.0	59.0	62.7	66.3
200	11.1	14.2	18.7	24.6	22.4	28.5	37.3	48.9	44.8	52.5	58.9	64.7	61.0	65.4	69.5	73.4
210	12.2	15.7	20.7	27.1	24.7	31.4	41.2	53.9	49.4	57.8	65.0	71.4	67.2	72.0	76.6	81.0
220	13.4	17.2	22.7	29.7	27.1	34.5	45.2	59.1	54.2	63.5	71.3	78.3	73.8	79.1	84.1	88.9
230	14.6	18.8	24.8	32.5	29.6	37.7	49.4	64.6	59.3	69.4	77.9	85.6	80.6	86.4	91.9	97.1
240	15.9	20.5	27.0	35.4	32.3	41.1	53.8	70.3	64.5	75.5	84.9	93.2	87.8	94.1	100.1	105.8
250	17.3	22.2	29.3	38.4	35.0	44.6	58.3	76.3	70.0	82.0	92.1	101.1	95.3	102.1	108.6	114.8
260	18.7	24.0	31.7	41.5	37.9	48.2	63.1	82.6	75.8	88.7	99.6	109.4	103.0	110.4	117.4	124.1
270	20.2	25.9	34.2	44.8	40.8	52.0	68.0	89.0	81.7	95.6	107.4	118.0	111.1	119.1	126.6	133.8
280	21.7	27.8	36.7	48.2	43.9	55.9	73.2	95.8	87.9	102.8	115.5	126.9	119.5	128.1	136.2	143.9
290	23.3	29.9	39.4	51.7	47.1	60.0	78.5	102.7	94.2	110.3	123.9	136.1	128.2	137.4	146.1	154.4
300	24.9	32.0	42.2	55.3	50.4	64.2	84.0	109.9	100.9	118.0	132.6	145.6	137.2	147.0	156.3	165.2

SPACER CABLE SAG / TENSION DATA								
35 kV 795 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 2/5 AWAC MESSENGER								
(A17)		PAGE NUMBER	ISSUF					

OVERHEAD CONSTRUCTION STANDARD

16-19 7/12

	FINAL SAG TABLE												
		LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0 32 60 90 120 167 176												
TEMP. °C	-18	0	15	32	50	75	80	90					
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded					
DEAD END SPAN (FEET)													
50	2.8	3.1	3.6	4.2	5.0	6.6	7.0	7.8					
75	7.0	7.9	9.0	10.3	11.9	14.4	14.9	16.0					
100	14.3	16.0	17.9	19.8	21.8	25.1	25.7	26.9					
125	25.6	28.0	30.4	32.6	35.0	38.6	39.4	40.7					
150	40.9	43.6	46.2	48.8	51.4	55.2	55.9	57.4					
175	59.8	62.6	65.4	68.2	70.8	74.8	75.6	77.0					
200	82.1	85.0	87.8	90.6	93.2	97.4	98.3	99.8					
225	107.6	110.5	113.4	116.2	118.9	123.2	124.0	125.6					
250	136.3	139.3	142.2	145.1	147.8	152.2	153.0	154.6					
275	168.4	171.4	174.2	177.1	179.9	184.3	185.0	186.7					
300	203.8	206.6	209.5	212.4	215.3	219.6	220.4	222.1					

	FINAL SAG TABLE										
	LOADING	TENSION (LBS.)									
TEMP. °F	0	60	0								
TEMP. °C	-18	0	15	-18							
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE							
DEAD END SPAN (FEET)											
50	6.0	5.8	4.1	*6,800							
75	13.3	13.1	10.0	*6,800							
100	23.8	23.4	19.2	*6,800							
125	37.2	36.7	31.9	*6,800							
150	53.6	53.2	47.9	*6,800							
175	73.2	72.6	67.1	*6,800							
200	95.8	95.2	89.5	*6,800							
225	121.6	120.8	115.1	*6,800							
250	150.4	149.8	143.9	*6,800							
275	182.5	181.8	175.9	*6,800							
300	217.9	217.2	211.2	*6,800							
	* Not	e: Design Specificat	ion Constraint								

SPACER CABLE SAG / TENSION DATA
35 kV 795 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 2/5 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-20

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELEC	TRICAL PROPER	RTIES	
R.B.S.	*13800 lbs.	TRANSVERSE	3.0691 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1450 sq. in.	VERTICAL	8.906 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0227 Ω / 1000'	TOTAL	9.720 Lb/Ft	669	NORMAL	952	
R. (@ 75°C)	0.0271 Ω / 1000'	IOIAL	9.720 LD/Ft	828	EMERGENCY	1058	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	19.01°				
MESSENGER DIAMETER	0.487"			•			
CONDUCTOR DIAMETER	1.572"						
SYSTEM WEIGHT	4351 lbs / 1000'						

Note: Quantities identified with an " * " are for the messenger only. All other quantities are specified for the complete spacer cable system.

						INITI	AL SA	G TA	BLE							
							RULII	NG SF	PAN (I	FEET)						
		12	25			15	150 175				200					
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2,479	1,897	1,547	1,178	1,661	1,221	981	760	754	563	451	379	390	345	321	298
ACTUAL SPAN (FEET)																
50	0.5	0.6	0.8	1.0	0.7	0.9	1.2	1.5	1.6	2.0	2.6	3.1	3.0	3.4	3.7	4.0
60	0.7	0.9	1.1	1.4	1.0	1.3	1.7	2.2	2.2	2.9	3.8	4.5	4.3	4.8	5.3	5.7
70	0.9	1.2	1.5	2.0	1.4	1.8	2.4	3.0	3.1	3.9	5.1	6.1	5.9	6.6	7.2	7.7
80	1.2	1.5	2.0	2.6	1.8	2.4	3.1	4.0	4.0	5.1	6.7	7.9	7.7	8.6	9.4	10.1
90	1.6	1.9	2.5	3.2	2.3	3.0	3.9	5.0	5.0	6.5	8.4	10.1	9.8	10.9	11.9	12.8
100	1.9	2.4	3.1	4.0	2.8	3.7	4.8	6.2	6.2	8.0	10.4	12.4	12.1	13.5	14.7	15.8
110	2.3	2.9	3.7	4.8	3.4	4.5	5.8	7.5	7.5	9.7	12.6	15.0	14.6	16.3	17.8	19.1
120	2.8	3.4	4.4	5.8	4.1	5.3	6.9	8.9	9.0	11.5	15.0	17.9	17.4	19.4	21.1	22.8
130	3.2	4.0	5.2	6.7	4.8	6.3	8.1	10.5	10.5	13.5	17.6	21.0	20.4	22.7	24.8	26.7
140	3.8	4.7	6.0	7.8	5.5	7.2	9.4	12.1	12.2	15.7	20.4	24.3	23.6	26.4	28.8	31.0
150	4.3	5.4	6.9	9.0	6.4	8.3	10.8	13.9	14.0	18.0	23.5	27.9	27.1	30.3	33.0	35.6
160	4.9	6.1	7.9	10.2	7.2	9.5	12.3	15.8	15.9	20.5	26.7	31.8	30.9	34.5	37.6	40.5
170	5.5	6.9	8.9	11.5	8.2	10.7	13.9	17.9	18.0	23.1	30.1	35.9	34.9	38.9	42.4	45.7
180	6.2	7.8	10.0	12.9	9.2	12.0	15.6	20.0	20.2	25.9	33.8	40.2	39.1	43.6	47.5	51.2
190	6.9	8.6	11.1	14.4	10.2	13.4	17.3	22.3	22.5	28.9	37.6	44.8	43.5	48.6	53.0	57.1
200	7.7	9.6	12.3	16.0	11.3	14.8	19.2	24.7	24.9	32.0	41.7	49.7	48.2	53.8	58.7	63.2
210	8.5	10.6	13.5	17.6	12.5	16.3	21.2	27.3	27.5	35.3	46.0	54.8	53.2	59.4	64.7	69.7
220	9.3	11.6	14.9	19.3	13.7	17.9	23.2	29.9	30.2	38.7	50.4	60.1	58.4	65.1	71.0	76.5
230	10.2	12.7	16.3	21.1	15.0	19.6	25.4	32.7	33.0	42.3	55.1	65.7	63.8	71.2	77.6	83.6
240	11.1	13.8	17.7	23.0	16.3	21.3	27.6	35.6	35.9	46.1	60.0	71.5	69.5	77.5	84.5	91.1
250	12.0	15.0	19.2	25.0	17.7	23.1	30.0	38.7	38.9	50.0	65.1	77.6	75.4	84.1	91.7	98.8
260	13.0	16.2	20.8	27.0	19.1	25.0	32.4	41.8	42.1	54.0	70.5	84.0	81.5	91.0	99.2	106.9
270	14.0	17.4	22.4	29.1	20.6	27.0	35.0	45.1	45.4	58.3	76.0	90.6	87.9	98.1	106.9	115.3
280	15.1	18.8	24.1	31.3	22.2	29.0	37.6	48.5	48.8	62.7	81.7	97.4	94.6	105.5	115.0	124.0
290	16.1	20.1	25.8	33.6	23.8	31.1	40.4	52.0	52.4	67.2	87.7	104.5	101.4	113.2	123.4	133.0
300	17.3	21.5	27.6	35.9	25.4	33.3	43.2	55.7	56.1	72.0	93.8	111.8	108.5	121.1	132.0	142.3

SPA	ACER CABLE SAG / TENSION I	DATA	
35 kV 795 KCMIL SPACER	R CABLE SUPPORTED BY A 1/	0, 3/4 AWAC MESSI	ENGER

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 7/12 16-21

	FINAL SAG TABLE												
		LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0 32 60 90 120 167 176												
TEMP. °C	-18	0	15	32	50	75	80	90					
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded					
DEAD END SPAN (FEET)													
50	3.6	4.1	4.7	5.5	6.5	8.3	8.6	9.4					
75	8.4	9.5	10.7	12.0	13.6	16.0	16.4	17.4					
100	15.5	17.2	19.0	20.8	22.7	25.8	26.3	27.5					
125	25.3	27.4	29.6	31.9	34.1	37.6	38.3	39.6					
150	37.7	40.2	42.7	45.2	47.8	51.6	52.3	53.8					
175	55.8	58.6	61.3	64.1	66.7	70.8	71.5	73.1					
200	77.5	80.4	83.3	86.0	88.8	93.0	93.8	95.4					
225	102.5	105.5	108.4	111.2	114.0	118.3	119.2	120.7					
250	130.8	133.8	136.7	139.6	142.4	146.8	147.6	149.3					
275	162.2	165.2	168.2	171.1	174.0	178.4	179.3	180.8					
300	197.0	200.0	203.0	205.9	208.8	213.2	214.1	215.8					

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	DITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	7.4	7.2	5.3	5,373
75	15.5	15.0	11.8	5,807
100	25.8	25.1	20.4	6,194
125	38.3	37.3	31.4	6,524
150	52.9	51.7	44.8	*6,800
175	72.2	70.8	63.5	*6,800
200	94.4	93.0	85.4	*6,800
225	119.9	118.3	110.5	*6,800
250	148.3	146.8	138.8	*6,800
275	180.0	178.3	170.4	*6,800
300	214.8	213.2	205.2	*6,800

SPACER CABLE SAG / TENSION DATA
35 kV 795 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 3/4 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-22

OVERHEAD CONSTRUCTION STANDARD

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*19500 lbs.	TRANSVERSE	2.8078 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1785 sq. in.	VERTICAL	7.716 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0227 Ω / 1000'	TOTAL	8.511 Lb/Ft	714	NORMAL	1005	
R. (@ 75°C)	0.0271 Ω / 1000'	IOIAL	8.511 LD/Ft	881	EMERGENCY	1118	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	20.00°				
MESSENGER DIAMETER	0.541"			•			
CONDUCTOR DIAMETER	1.292"						
SYSTEM WEIGHT	3658 lbs / 1000'						

Note: Quantities identified with an " * " are for the messenger only. All other quantities are specified for the complete spacer cable system.

	INITIAL SAG TABLE															
		RULING SPAN (FEET)														
		12	25			150			17	75			200			
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	3,241	2,506	2,060	1,585	2,010	1,487	1,203	945	1,102	858	714	572	659	551	501	455
ACTUAL SPAN (FEET)																
50	0.5	0.6	8.0	1.0	0.8	1.0	1.3	1.7	1.5	1.8	2.3	2.8	2.4	2.9	3.2	3.5
60	0.7	0.9	1.1	1.5	1.2	1.5	1.9	2.4	2.1	2.6	3.2	4.0	3.5	4.1	4.6	5.1
70	1.0	1.2	1.5	2.0	1.6	2.0	2.6	3.3	2.9	3.5	4.4	5.5	4.8	5.6	6.3	6.9
80	1.3	1.6	2.0	2.6	2.0	2.6	3.4	4.3	3.7	4.6	5.8	7.2	6.2	7.3	8.2	9.0
90	1.6	2.0	2.6	3.3	2.6	3.3	4.3	5.5	4.7	5.8	7.3	9.1	7.9	9.3	10.4	11.4
100	2.0	2.5	3.1	4.1	3.2	4.1	5.3	6.8	5.8	7.2	9.0	11.2	9.8	11.4	12.8	14.1
110	2.4	3.0	3.8	4.9	3.9	5.0	6.5	8.2	7.1	8.7	10.9	13.6	11.8	13.8	15.5	17.1
120	2.9	3.6	4.5	5.9	4.6	5.9	7.7	9.8	8.4	10.4	13.0	16.2	14.0	16.5	18.5	20.3
130	3.4	4.2	5.3	6.9	5.4	7.0	9.0	11.4	9.9	12.2	15.2	19.0	16.5	19.3	21.7	23.9
140	3.9	4.8	6.2	8.0	6.3	8.1	10.5	13.3	11.4	14.1	17.7	22.0	19.1	22.4	25.2	27.7
150	4.5	5.6	7.1	9.2	7.2	9.3	12.0	15.2	13.1	16.2	20.3	25.3	21.9	25.7	28.9	31.8
160	5.1	6.3	8.1	10.4	8.2	10.6	13.7	17.3	14.9	18.4	23.1	28.8	25.0	29.2	32.9	36.2
170 180	5.8	7.1	9.1	11.8	9.2	11.9	15.4	19.6	16.9	20.8	26.0	32.5	28.2	33.0	37.1	40.8
	6.5	8.0	10.2	13.2	10.4	13.4	17.3	21.9	18.9	23.3	29.2	36.4	31.6	37.0	41.6	45.8
190 200	7.2	8.9	11.4	14.7	11.6	14.9	19.3	24.5	21.1	26.0	32.5	40.6	35.2	41.2	46.4	51.0
210	8.0 8.8	9.9 10.9	12.6 13.9	16.3 18.0	12.8 14.1	16.5 18.2	21.3 23.5	27.1 29.9	23.4 25.7	28.8 31.8	36.0 39.7	45.0 49.6	39.0 43.0	45.7 50.4	51.4 56.6	56.5 62.3
220																
230	9.7 10.6	12.0 13.1	15.2 16.7	19.7 21.5	15.5 16.9	20.0 21.8	25.8 28.2	32.8 35.8	28.3 30.9	34.9 38.1	43.6 47.7	54.4 59.5	47.2 51.6	55.3 60.4	62.1 67.9	68.4 74.7
230 240	11.5	14.2	18.1	23.4	18.4	23.8	20.2 30.7	39.0	33.6	41.5	51.9	64.8	56.2	65.8	74.0	81.4
250																
250 260	12.5 13.5	15.4 16.7	19.7 21.3	25.4 27.5	20.0 21.6	25.8 27.9	33.3 36.1	42.3 45.8	36.5 39.5	45.0 48.7	56.3 60.9	70.3 76.0	60.9 65.9	71.4 77.2	80.3 86.8	88.3 95.5
270	14.6	18.0	23.0	27.5 29.7	23.3	30.1	38.9	45.8 49.4	39.5 42.6	48.7 52.5	65.7	76.0 82.0	71.1	83.3	93.6	95.5
280		19.4	24.7	31.9	25.3	32.4	41.8	53.1	45.8	56.5	70.7	88.2	76.4		100.7	
280 290	15.7 16.8	19.4 20.8	24.7 26.5	31.9	26.9	32.4 34.7	41.8 44.9	53.1 57.0	45.8 49.1	56.5 60.6	70.7 75.8	94.6	76.4 82.0	89.6 96.1	100.7	110.8 118.8
300	18.0	20.8	26.5 28.3	34.2 36.6	28.8	34. <i>1</i> 37.1	44.9 48.0	61.0	52.5					102.8		
300	18.0	ZZ.Z	∠ö.3	J0.0	۷۵.۵	37.1	48.U	01.0	52.5	64.8	81.1	101.2	87.8	102.8	115.6	127.2

SPACER CABLE SAG / TENSION DATA
15 kV 795 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 2/5 AWAC MESSENGER

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 7/12

	FINAL SAG TABLE												
		LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0 32 60 90 120 167 176												
TEMP. °C	-18	0	15	32	50	75	80	90					
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded					
DEAD END SPAN (FEET)													
50	2.2	2.5	2.9	3.4	4.1	5.6	6.0	6.7					
75	5.4	6.2	7.2	8.4	9.8	12.4	13.0	14.0					
100	11.0	12.5	14.3	16.2	18.2	21.7	22.3	23.6					
125	19.8	22.1	24.5	27.0	29.6	33.5	34.3	35.8					
150	32.3	35.2	38.0	40.9	43.7	48.0	48.8	50.4					
175	48.2	51.4	54.5	57.6	60.5	65.0	65.9	67.6					
200	67.3	70.7	73.8	77.0	80.0	84.7	85.7	87.4					
225	89.4	92.8	96.0	99.2	102.4	107.2	108.1	109.9					
250	114.4	117.7	121.0	124.2	127.4	132.4	133.2	135.0					
275	142.1	145.4	148.8	152.0	155.3	160.2	161.2	163.0					
300	172.7	176.0	179.4	182.6	185.9	190.9	191.8	193.7					

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	5.2	4.9	3.4	*6,800
75	11.6	11.2	8.0	*6,800
100	20.8	20.0	15.6	*6,800
125	32.5	31.7	26.3	*6,800
150	46.9	45.8	39.8	*6,800
175	63.8	62.8	56.4	*6,800
200	83.5	82.3	75.8	*6,800
225	106.0	104.6	97.9	*6,800
250	131.0	129.7	122.9	*6,800
275	158.9	157.6	150.7	*6,800
300	189.6	188.3	181.3	*6,800
	* Note	e: Design Specificat	ion Constraint	

		SPAC	CER CABLE S	SAG / TEN	ISION DAT	Ά	
15 kV 7	95 KCMIL	SPACER	CABLE SUPP	ORTED E	3Y A 1/0, 2	/5 AWAC	MESSENGER

ISSUE	PAGE NUMBER
7/12	16-24

PHYSICAL	PROPERTIES	LOADING PR	ROPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*13800 lbs.	TRANSVERSE	2.7874 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1450 sq. in.	VERTICAL	7.568 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0227 Ω / 1000'	TOTAL	8.365 Lb/Ft	714	NORMAL	1005	
R. (@ 75°C)	0.0271 Ω / 1000'	IOTAL	0.303 LD/Ft	881	EMERGENCY	1118	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	20.22°				
MESSENGER DIAMETER	0.487"			•			
CONDUCTOR DIAMETER	1.292"						
SYSTEM WEIGHT	3543 lbs / 1000'						

Note: Quantities identified with an " * " are for the messenger only. All other quantities are specified for the complete spacer cable system.

INITIAL SAG TABLE																
	RULING SPAN (FEET)															
	125		150			175				200						
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	3,220	2,564	2,154	1,695	2,592	2,002	1,646	1,269	1,551	1,150	936	743	806	638	523	438
ACTUAL SPAN (FEET)																
50	0.4	0.4	0.5	0.7	0.5	0.6	0.7	0.9	0.8	1.0	1.3	1.6	1.5	1.8	2.2	2.7
60	0.5	0.6	0.8	1.0	0.7	0.8	1.0	1.3	1.1	1.4	1.8	2.3	2.1	2.5	3.2	3.9
70	0.7	0.9	1.1	1.4	0.9	1.1	1.4	1.8	1.5	1.9	2.5	3.1	2.9	3.5	4.4	5.3
80	0.9	1.1	1.4	1.8	1.2	1.4	1.8	2.4	1.9	2.5	3.2	4.0	3.7	4.5	5.7	6.9
90	1.2	1.4	1.7	2.2	1.5	1.8	2.3	3.0	2.4	3.2	4.1	5.1	4.7	5.7	7.3	8.7
100	1.5	1.8	2.2	2.8	1.8	2.2	2.8	3.7	3.0	3.9	5.0	6.3	5.8	7.1	9.0	10.7
110	1.8	2.1	2.6	3.3	2.2	2.7	3.4	4.5	3.7	4.8	6.1	7.6	7.0	8.6	10.9	13.0
120	2.1	2.6	3.1	4.0	2.6	3.2	4.1	5.3	4.3	5.7	7.2	9.1	8.4	10.2	12.9	15.5
130	2.5	3.0	3.6	4.7	3.1	3.8	4.8	6.2	5.1	6.7	8.5	10.7	9.8	12.0	15.2	18.2
140	2.9	3.5	4.2	5.4	3.6	4.4	5.5	7.2	5.9	7.7	9.8	12.4	11.4	13.9	17.6	21.1
150	3.3	4.0	4.8	6.2	4.1	5.1	6.4	8.3	6.8	8.9	11.3	14.2	13.1	15.9	20.2	24.2
160	3.7	4.5	5.5	7.1	4.6	5.8	7.2	9.4	7.7	10.1	12.8	16.1	14.9	18.1	23.0	27.5
170	4.2	5.1	6.2	8.0	5.2	6.5	8.2	10.6	8.7	11.4	14.5	18.2	16.8	20.5	25.9	31.0
180	4.7	5.7	7.0	9.0	5.9	7.3	9.2	11.9	9.8	12.8	16.3	20.4	18.9	22.9	29.1	34.8
190	5.3	6.4	7.8	10.0	6.5	8.1	10.2	13.3	10.9	14.2	18.1	22.8	21.0	25.6	32.4	38.8
200	5.8	7.1	8.6	11.1	7.3	9.0	11.3	14.7	12.1	15.7	20.1	25.2	23.3	28.3	35.9	43.0
210	6.4	7.8	9.5	12.2	8.0	9.9	12.5	16.2	13.3	17.4	22.1	27.8	25.7	31.2	39.6	47.4
220	7.1	8.6	10.4	13.4	8.8	10.9	13.7	17.8	14.6	19.1	24.3	30.5	28.2	34.3	43.4	52.0
230	7.7	9.4	11.4	14.6	9.6	11.9	15.0	19.5	16.0	20.8	26.5	33.4	30.8	37.5	47.5	56.8
240	8.4	10.2	12.4	15.9	10.4	13.0	16.3	21.2	17.4	22.7	28.9	36.3	33.5	40.8	51.7	61.9
250	9.1	11.1	13.4	17.3	11.3	14.1	17.7	23.0	18.9	24.6	31.3	39.4	36.4	44.3	56.1	67.1
260	9.9	12.0	14.5	18.7	12.3	15.2	19.1	24.9	20.4	26.6	33.9	42.6	39.3	47.9	60.6	72.6
270	10.6	12.9	15.7	20.2	13.2	16.4	20.6	26.8	22.0	28.7	36.6	46.0	42.4	51.6	65.4	78.3
280	11.4	13.9	16.9	21.7	14.2	17.6	22.2	28.9	23.7	30.9	39.3	49.5	45.6	55.5	70.3	84.2
290	12.3	14.9	18.1	23.3	15.3	18.9	23.8	30.9	25.4	33.1	42.2	53.1	48.9	59.6	75.4	90.3
300	13.1	16.0	19.4	24.9	16.3	20.2	25.4	33.1	27.2	35.4	45.1	56.8	52.4	63.7	80.7	96.7

SPACER CABLE SAG / TENSION DATA
15 kV 795 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 3/4 AWAC MESSENGER

UNDERGROUND CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 7/12

FINAL SAG TABLE								
	LOADING (UNLOADED CONDITIONS)							
TEMP. °F	0	32	60	90	120	167	176	194
TEMP. °C	-18	0	15	32	50	75	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	2.9	3.2	3.8	4.6	5.5	7.3	7.7	8.4
75	6.6	7.6	8.6	10.0	11.5	14.0	14.5	15.6
100	12.2	13.7	15.4	17.3	19.2	22.4	23.0	24.4
125	19.8	21.8	24.1	26.4	28.8	32.5	33.2	34.7
150	29.5	32.0	34.7	37.4	40.2	44.4	45.1	46.8
175	44.0	47.0	50.0	53.0	55.9	60.5	61.3	63.0
200	62.3	65.5	68.8	71.9	75.0	79.8	80.6	82.4
225	83.8	87.1	90.4	93.6	96.8	101.8	102.6	104.4
250	108.1	111.5	114.8	118.2	121.4	126.4	127.3	129.1
275	135.2	138.7	142.1	145.4	148.7	153.7	154.7	156.6
300	165.2	168.7	172.1	175.4	178.8	183.8	184.8	186.7

FINAL SAG TABLE						
	LOADING	TENSION (LBS.)				
TEMP. °F	0	32	60	0		
TEMP. °C	-18	0	15	-18		
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE		
DEAD END SPAN (FEET)						
50	6.6	6.2	4.4	5,292		
75	13.7	13.1	9.7	5,704		
100	22.8	21.8	16.9	6,094		
125	33.8	32.4	26.0	6,443		
150	46.4	44.8	37.1	6,750		
175	62.9	61.0	52.4	*6,800		
200	82.2	80.2	71.3	*6,800		
225	104.3	102.0	92.9	*6,800		
250	129.0	126.6	117.4	*6,800		
275	156.4	154.0	144.6	*6,800		
300	186.6	184.1	174.6	*6,800		
-	* Not	e: Design Specificat	ion Constraint			

	SPAC	ER CABLE SAG / TENSION DATA	A
15 kV 7	95 KCMIL SPACER	CABLE SUPPORTED BY A 1/0, 3/	4 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-26

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*19500 lbs.	TRANSVERSE	2.8749 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1785 sq. in.	VERTICAL	7.427 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	8.264 Lb/Ft	489	NORMAL	692	
R. (@ 75°C)	0.0447 Ω / 1000'	IOIAL	0.204 LD/Ft	603	EMERGENCY	768	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	21.16°				
MESSENGER DIAMETER	0.541"			•			
CONDUCTOR DIAMETER	1.362"						
SYSTEM WEIGHT	3230 lbs / 1000'						

Note: Quantities identified with an " * " are for the messenger only. All other quantities are specified for the complete spacer cable system.

						INITI	AL SA	AG TA	BLE							
							RULII	NG SF	PAN (F	EET)						
		12	25		150 175						20	00				
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION	3 407	2 653	2 193	1 696	2 196	1 633	1 321	1,028	1 236	953	815	631	755	605	539	484
(LBS.)	0, 101	_,000	_,,,,,	1,000	_,,,,,	1,000	1,021	1,020	1,200		0.0					
ACTUAL																
SPAN (FEET)																
50	0.5	0.6	0.7	0.9	0.7	0.9	1.2	1.6	1.3	1.6	2.0	2.5	2.1	2.6	3.0	3.3
60	0.7	0.8	1.1	1.4	1.1	1.4	1.7	2.2	1.9	2.3	2.8	3.7	3.1	3.7	4.3	4.8
70	0.9	1.1	1.4	1.8	1.4	1.8	2.4	3.1	2.6	3.2	3.9	5.0	4.2	5.1	5.9	6.5
80	1.2	1.5	1.9	2.4	1.9	2.4	3.1	4.0	3.3	4.2	5.0	6.5	5.5	6.6	7.6	8.5
90	1.6	1.9	2.4	3.0	2.4	3.0	3.9	5.1	4.2	5.3	6.4	8.3	6.9	8.4	9.7	10.8
100	1.9	2.3	2.9	3.8	2.9	3.8	4.9	6.2	5.2	6.5	7.9	10.2	8.5	10.4	11.9	13.3
110	2.3	2.8	3.5	4.6	3.5	4.5	5.9	7.6	6.3	7.9	9.5	12.3	10.3	12.6	14.4	16.1
120	2.8	3.3	4.2	5.4	4.2	5.4	7.0	9.0	7.5	9.4	11.3	14.7	12.3	14.9	17.2	19.2
130	3.2	3.9	4.9	6.4	5.0	6.3	8.2	10.5	8.8	11.0	13.3	17.2	14.4	17.5	20.2	22.5
140	3.8	4.5	5.7	7.4	5.7	7.4	9.5	12.2	10.2	12.8	15.4	20.0	16.7	20.3	23.4	26.1
150	4.3	5.2	6.6	8.5	6.6	8.4	10.9	14.0	11.7	14.7	17.7	22.9	19.2	23.3	26.9	30.0
160	4.9	5.9	7.5	9.6	7.5	9.6	12.4	16.0	13.3	16.7	20.2	26.1	21.8	26.6	30.6	34.1
170	5.5	6.7	8.4	10.9	8.5	10.8	14.0	18.0	15.1	18.9	22.8	29.4	24.6	30.0	34.5	38.5
180	6.2	7.5	9.5	12.2	9.5	12.2	15.7	20.2	16.9	21.1	25.5	33.0	27.6	33.6	38.7	43.2
190	6.9	8.4	10.5	13.6	10.6	13.5	17.5	22.5	18.8	23.6	28.4	36.8	30.8	37.5	43.1	48.1
200 210	7.7 8.5	9.3 10.2	11.7 12.9	15.1 16.6	11.7 12.9	15.0 16.5	19.4 21.4	25.0 27.5	20.8 23.0	26.1 28.8	31.5 34.7	40.8 44.9	34.1 37.6	41.5 45.8	47.8 52.7	53.3 58.7
220	9.3	11.2	14.1	18.2	14.2	18.2	23.5	30.2	25.2	31.6	38.1	49.3	41.2	50.2	57.8	64.5
230	10.2	12.2	15.4	19.9	15.5	19.8	25.7	33.0	27.6	34.5	41.7	53.9	45.1	54.9	63.2	70.5
240	11.1	13.3	16.8	21.7	16.9	21.6	28.0	35.9	30.0	37.6	45.4	58.7	49.1	59.8	68.8	76.7
250	12.0	14.5	18.2	23.5	18.3	23.5	30.3	39.0	32.6	40.8	49.2	63.7	53.3	64.9	74.6	83.3
260	13.0	15.6	19.7	25.4	19.8	25.4	32.8	42.2	35.2	44.1	53.2	68.9	57.6	70.1	80.7	90.0
270	14.0	16.9	21.3	27.4	21.4	27.4	35.4	45.5	38.0	47.6	57.4	74.3	62.1	75.6	87.0	97.1
280	15.1	18.1	22.9	29.5	23.0	29.4	38.1	48.9	40.9	51.2	61.7	79.9	66.8	81.4	93.6	104.4
290	16.1	19.5	24.5	31.6	24.7	31.6	40.8	52.5	43.8	54.9	66.2	85.7	71.7	87.3	100.4	112.0
300	17.3	20.8	26.3	33.9	26.4	33.8	43.7	56.2	46.9	58.7	70.9	91.7	76.7	93.4	107.5	119.9

SPACER CABLE SAG / TENSION DATA	
35 kV 477 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 2/5 AWAC MESSEN	GER

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 16-27 7/12

			FINAL	SAG TABI	.E			
			LOADIN	G (UNLOA	DED COND	DITIONS)		
TEMP. °F	0	32	60	90	120	167	176	194
TEMP. °C	-18	0	15	32	50	75	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	1.9	2.2	2.5	3.0	3.7	5.2	5.5	6.4
75	4.8	5.5	6.4	7.6	8.9	11.5	12.1	13.2
100	9.7	11.2	12.8	14.8	16.9	20.5	21.1	22.6
125	17.8	20.0	22.6	25.2	27.8	31.9	32.8	34.2
150	29.5	32.5	35.5	38.5	41.4	46.0	46.8	48.5
175	44.9	48.2	51.5	54.7	57.8	62.5	63.4	65.2
200	63.5	67.0	70.3	73.6	76.8	81.7	82.6	84.4
225	85.0	88.4	91.8	95.2	98.5	103.4	104.4	106.2
250	109.2	112.7	116.2	119.5	122.9	127.9	128.9	130.7
275	136.2	139.7	143.2	146.5	149.9	155.0	156.0	157.9
300	166.0	169.4	172.9	176.3	179.6	184.8	185.8	187.7

		FINAL SAG TA	BLE			
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0		
TEMP. °C	-18	0	15	-18		
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE		
DEAD END SPAN (FEET)						
50	5.0	4.8	3.1	*6,800		
75	11.4	10.8	7.6	*6,800		
100	20.3	19.4	14.6	*6,800		
125	31.7	30.6	24.8	*6,800		
150	45.6	44.4	37.9	*6,800		
175	62.2	60.8	54.0	*6,800		
200	81.4	79.9	72.8	*6,800		
225	103.1	101.6	94.3	*6,800		
250	127.6	126.0	118.7	*6,800		
275	154.7	153.1	145.7	*6,800		
300	184.4	182.9	175.3	*6,800		
	* Note	e: Design Specificat	ion Constraint			

	SPAC	CER CABLE SAG / TENSION DATA	1
35 kV 477	7 KCMIL SPACER	CABLE SUPPORTED BY A 1/0, 2/5	5 AWAC MESSENGER
			<u>-</u>

ISSUE	PAGE NUMBER
7/12	16-28

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	*13800 lbs.	TRANSVERSE	2.8579 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	*0.1450 sq. in.	VERTICAL	7.278 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	8.119 Lb/Ft	489	NORMAL	692		
R. (@ 75°C)	0.0447 Ω / 1000'	IOIAL	O.119 LD/Ft	603	EMERGENCY	768		
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	21.44°					
MESSENGER DIAMETER	0.487"			•				
CONDUCTOR DIAMETER	1.362"							
SYSTEM WEIGHT	3115 lbs / 1000'							

						INITI	AL SA	AG TA	BLE							
							RULII	NG SF	PAN (F	FEET)						
		12	25			150 175					20	00				
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	3,576	2,893	2,463	1,970	2,881	2,259	1,878	1,463	1,748	1,302	1,056	829	925	723	615	487
ACTUAL SPAN (FEET)																
50	0.3	0.4	0.5	0.6	0.4	0.5	0.6	8.0	0.7	0.9	1.1	1.4	1.3	1.6	1.9	2.4
60	0.5	0.6	0.7	0.9	0.6	0.7	0.9	1.2	1.0	1.2	1.6	2.0	1.8	2.3	2.8	3.5
70	0.6	8.0	0.9	1.2	0.8	1.0	1.2	1.6	1.3	1.7	2.2	2.8	2.5	3.1	3.7	4.7
80	0.8	1.0	1.2	1.5	1.1	1.3	1.6	2.0	1.7	2.2	2.8	3.6	3.2	4.0	4.9	6.2
90	1.1	1.2	1.6	1.9	1.3	1.6	2.0	2.6	2.2	2.8	3.6	4.6	4.1	5.1	6.2	7.8
100	1.3	1.5	1.9	2.4	1.7	2.0	2.5	3.2	2.7	3.5	4.4	5.7	5.1	6.3	7.7	9.7
110	1.6	1.9	2.3	2.9	2.0	2.4	3.0	3.9	3.3	4.2	5.4	6.9	6.1	7.6	9.3	11.7
120	1.9	2.2	2.8	3.4	2.4	2.9	3.6	4.6	3.9	5.0	6.4	8.2	7.3	9.1	11.0	13.9
130	2.2	2.6	3.2	4.0	2.8	3.3	4.2	5.4	4.6	5.9	7.5	9.6	8.6	10.6	12.9	16.3
140	2.6	3.0	3.8	4.7	3.2	3.9	4.9	6.3	5.3	6.8	8.7	11.1	9.9	12.3	15.0	18.9
150	2.9	3.5	4.3	5.4	3.7	4.5	5.6	7.2	6.1	7.8	10.0	12.8	11.4	14.2	17.2	21.7
160	3.3	3.9	4.9	6.1	4.2	5.1	6.4	8.2	6.9	8.9	11.3	14.5	13.0	16.1	19.6	24.7
170	3.8	4.5	5.5	6.9	4.8	5.7	7.2	9.2	7.8	10.0	12.8	16.4	14.7	18.2	22.1	27.9
180	4.2	5.0	6.2	7.7	5.4	6.4	8.1	10.4	8.8	11.2	14.3	18.4	16.4	20.4	24.8	31.3
190	4.7	5.6	6.9	8.6	6.0	7.2	9.0	11.6	9.8	12.5	16.0	20.5	18.3	22.7	27.6	34.9
200	5.2	6.2	7.7	9.5	6.6	7.9	10.0	12.8	10.8	13.9	17.7	22.7	20.3	25.2	30.6	38.6
210	5.8	6.8	8.5	10.5	7.3	8.7	11.1	14.1	11.9	15.3	19.5	25.1	22.4	27.8	33.7	42.6
220	6.3	7.5	9.3	11.5	8.0	9.6	12.1	15.5	13.1	16.8	21.4	27.5	24.5	30.5	37.0	46.8
230	6.9	8.2	10.2	12.6	8.7	10.5	13.3	16.9	14.3	18.3	23.4	30.1	26.8	33.3	40.5	51.1
240	7.5	8.9	11.1	13.7	9.5	11.4	14.4	18.4	15.6	20.0	25.5	32.7	29.2	36.2	44.1	55.6
250	8.2	9.6	12.0	14.9	10.3	12.4	15.7	20.0	16.9	21.7	27.7	35.5	31.7	39.3	47.8	60.4
260	8.8	10.4	13.0	16.1	11.2	13.4	16.9	21.6	18.3	23.4	29.9	38.4	34.3	42.5	51.7	65.3
270	9.5	11.2	14.0	17.4	12.1	14.5	18.3	23.3	19.7	25.3	32.3	41.4	37.0	45.9	55.8	70.4
280	10.2	12.1	15.1	18.7	13.0	15.5	19.7	25.1	21.2	27.2	34.7	44.5	39.7	49.3	60.0	75.7
290	11.0	13.0	16.1	20.0	13.9	16.7	21.1	26.9	22.7	29.1	37.2	47.8	42.6	52.9	64.3	81.2
300	11.8	13.9	17.3	21.4	14.9	17.8	22.6	28.8	24.3	31.2	39.8	51.1	45.6	56.6	68.9	86.9

S	PACER CABLE SAG / TENSION I	DATA	
35 kV 477 KCMIL SPAC	CER CABLE SUPPORTED BY A 1/	0, 3/4 AWAC MESSI	ENGER

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 7/12

			FINAL	SAG TABI	.E			
			LOADIN	G (UNLOA	DED COND	DITIONS)		
TEMP. °F	0 32 60 90 120 167							194
TEMP. °C	-18	0	15	32	50	75	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END								
SPAN (FEET)								
50	2.5	2.9	3.4	4.1	4.9	6.7	7.1	7.9
75	5.8	6.6	7.7	8.9	10.3	13.0	13.4	14.5
100	10.6	12.0	13.6	15.4	17.4	20.6	21.4	22.7
125	17.0	19.0	21.2	23.5	25.9	29.9	30.6	32.2
150	26.2	28.8	31.4	34.2	37.1	41.5	42.4	44.0
175	40.3	43.4	46.6	49.7	52.8	57.6	58.4	60.2
200	58.0	61.4	64.8	68.0	71.3	76.3	77.2	79.1
225	78.7	82.3	85.8	89.2	92.5	97.6	98.5	100.4
250	102.5	106.1	109.6	113.0	116.4	121.6	122.5	124.4
275	128.9	132.5	136.1	139.4	142.9	148.2	149.2	151.1
300	158.0	161.6	165.2	168.7	172.2	177.4	178.4	180.4

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	6.4	6.0	4.1	5,308
75	13.3	12.6	9.0	5,744
100	22.0	20.9	15.6	6,166
125	32.4	30.7	23.9	6,553
150	44.9	43.0	34.6	*6,800
175	61.2	59.0	49.9	*6,800
200	80.0	77.6	68.2	*6,800
225	101.5	98.9	89.2	*6,800
250	125.5	122.9	112.8	*6,800
275	152.2	149.4	139.3	*6,800
300	181.4	178.7	168.5	*6,800
	* Not	e: Design Specificat	ion Constraint	

	SPAC	ER CABLE SAG / TENSION DAT	A
35 kV 4	77 KCMIL SPACER	CABLE SUPPORTED BY A 1/0, 3	/4 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-30

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*19500 lbs.	TRANSVERSE	2.5544 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1785 sq. in.	VERTICAL	6.014 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	6.834 Lb/Ft	528	NORMAL	739	
R. (@ 75°C)	0.0447 Ω / 1000'	IOIAL	0.034 LD/Ft	647	EMERGENCY	819	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	23.01°				
MESSENGER DIAMETER	0.541"			•			
CONDUCTOR DIAMETER	1.042"						
SYSTEM WEIGHT	2422 lbs / 1000'						

Note: Quantities identified with an " * " are for the messenger only. All other quantities are specified for the complete spacer cable system.

	INITIAL SAG TABLE															
							RULII	NG SF	PAN (F	EET)						
		12	25		150			175			200					
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION	4 320	3 496	2 971	2 373	3 340	2 601	2 153	1 675	2 330	1 756	1 435	1 131	1 486	1,145	974	821
(LBS.)	7,020	0,400	2,571	2,010	0,040	2,001	2,100	1,070	2,000	1,700	1,400	1,101	1,400	1,140	514	021
ACTUAL																
SPAN																
(FEET)																
50 60	0.4	0.4	0.5	0.7	0.5	0.6	0.7	1.0	0.7	0.9	1.1	1.4	1.1	1.4	1.7	2.0
70	0.5	0.6	0.8 1.1	1.0	0.7	0.8 1.2	1.1	1.4	1.0	1.3	1.6	2.0	1.6	2.0	2.4	2.8
70 80	0.7 0.9	0.9 1.1		1.3	0.9 1.2	1.2 1.5	1.5 1.9	1.9 2.5	1.3 1.8	1.7 2.2	2.2 2.9	2.8 3.6	2.1 2.8	2.7 3.5	3.2 4.2	3.8
90	1.2	1.1	1.4 1.7	1.7 2.2	1.6	1.5	2.4	2.5 3.1	2.2	2.2 2.8	2.9 3.6	3.6 4.6	3.5	3.5 4.4	4.2 5.3	5.0 6.3
100	1.5	1.8	2.2	2.7	1.9	2.4	3.0	3.8	2.7	3.5	4.5	5.7	4.3	5.4	6.6	7.8
110	1.8	2.1	2.6	3.3	2.3	2.4	3.6	3.6 4.6	3.3	3.3 4.2	4.5 5.4	6.9	5.2	6.6	8.0	7.6 9.5
120	2.1	2.6	3.1	3.9	2.8	3.4	4.3	5.5	3.9	5.0	6.4	8.2	6.2	7.8	9.5	11.3
130	2.5	3.0	3.6	4.5	3.2	4.0	5.0	6.5	4.6	5.9	7.5	9.6	7.3	9.2	11.2	13.2
140	2.9	3.5	4.2	5.3	3.8	4.6	5.9	7.5	5.4	6.9	8.8	11.1	8.5	10.6	12.9	15.3
150	3.3	4.0	4.8	6.0	4.3	5.3	6.7	8.6	6.2	7.9	10.1	12.8	9.7	12.2	14.9	17.6
160	3.7	4.5	5.5	6.9	4.9	6.0	7.6	9.8	7.0	9.0	11.4	14.5	11.1	13.9	16.9	20.0
170	4.2	5.1	6.2	7.8	5.5	6.8	8.6	11.1	7.9	10.1	12.9	16.4	12.5	15.7	19.1	22.6
180	4.7	5.7	7.0	8.7	6.2	7.6	9.7	12.4	8.9	11.4	14.5	18.4	14.0	17.6	21.4	25.4
190	5.3	6.4	7.8	9.7	6.9	8.5	10.8	13.9	9.9	12.6	16.1	20.5	15.6	19.6	23.8	28.3
200	5.8	7.1	8.6	10.8	7.7	9.4	11.9	15.4	11.0	14.0	17.9	22.7	17.3	21.7	26.4	31.3
210	6.4	7.8	9.5	11.9	8.5	10.4	13.2	16.9	12.1	15.5	19.7	25.1	19.1	23.9	29.1	34.5
220	7.1	8.6	10.4	13.0	9.3	11.4	14.5	18.6	13.3	17.0	21.6	27.5	20.9	26.2	31.9	37.9
230	7.7	9.4	11.4	14.2	10.2	12.5	15.8	20.3	14.5	18.5	23.6	30.1	22.9	28.7	34.9	41.4
240	8.4	10.2	12.4	15.5	11.1	13.6	17.2	22.1	15.8	20.2	25.7	32.7	24.9	31.2	38.0	45.1
250	9.1	11.1	13.4	16.8	12.0	14.7	18.7	24.0	17.1	21.9	27.9	35.5	27.0	33.9	41.3	48.9
260	9.9	12.0	14.5	18.2	13.0	15.9	20.2	26.0	18.5	23.7	30.2	38.4	29.2	36.6	44.6	52.9
270	10.6	12.9	15.7	19.6	14.0	17.2	21.8	28.0	20.0	25.5	32.6	41.4	31.5	39.5	48.1	57.1
280	11.4	13.9	16.9	21.1	15.1	18.5	23.4	30.1	21.5	27.5	35.0	44.5	33.9	42.5	51.7	61.4
290	12.3	14.9	18.1	22.6	16.1	19.8	25.1	32.3	23.1	29.5	37.6	47.8	36.3	45.6	55.5	65.9
300	13.1	16.0	19.4	24.2	17.3	21.2	26.9	34.6	24.7	31.5	40.2	51.1	38.9	48.8	59.4	70.5

S	PACER CABLE SAG / TENSION	DATA	
15 kV 477 KCMIL SPAC	CER CABLE SUPPORTED BY A 1/	/0, 2/5 AWAC MESSE	ENGER
SMW		PAGE NUMBER	ISSUE

OVERHEAD CONSTRUCTION STANDARD

16-31 7/12

	FINAL SAG TABLE													
		LOADING (UNLOADED CONDITIONS)												
TEMP. °F	0	32	60	90	120	167	176	194						
TEMP. °C	-18	0	15	32	50	75	80	90						
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded						
DEAD END SPAN (FEET)														
50	1.4	1.6	1.9	2.3	2.8	4.0	4.3	5.2						
75	3.5	4.0	4.6	5.5	6.6	9.1	9.7	10.9						
100	6.7	7.8	9.1	10.8	12.8	16.6	17.3	18.7						
125	12.1	13.9	16.2	18.7	21.5	26.0	26.9	28.7						
150	20.2	23.0	26.2	29.3	32.6	37.8	38.8	40.6						
175	31.7	35.3	38.9	42.6	46.2	51.6	52.7	54.7						
200	46.4	50.4	54.4	58.3	62.0	67.7	68.8	70.9						
225	64.1	68.3	72.4	76.3	80.2	86.0	87.1	89.3						
250	84.2	88.4	92.6	96.6	100.6	106.6	107.6	109.8						
275	106.7	111.0	115.2	119.3	123.2	129.2	130.3	132.6						
300	131.6	135.8	140.0	144.1	148.1	154.2	155.4	157.6						

		FINAL SAG TA	BLE	
	LOADIN	G (LOADED COND	DITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	4.3	3.8	2.3	*6,800
75	9.6	8.8	5.6	*6,800
100	17.0	15.8	10.9	*6,800
125	26.8	25.1	18.6	*6,800
150	38.5	36.6	29.0	*6,800
175	52.4	50.3	42.0	*6,800
200	68.5	66.1	57.5	*6,800
225	86.9	84.4	75.4	*6,800
250	107.4	104.6	95.6	*6,800
275	130.1	127.3	118.2	*6,800
300	155.0	152.3	143.0	*6,800
	* No	te: Design Specificat	ion Constraint	

SPACER CABLE SAG / TENSION DATA	
15 kV 477 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 2/5 AWAC MESSENG	ER

ISSUE	PAGE NUMBER
7/12	16-32

SYSTEM WEIGHT

2307 lbs / 1000'

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	*13800 lbs.	TRANSVERSE	2.5390 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	*0.1450 sq. in.	VERTICAL	5.865 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	6.691 Lb/Ft	528	NORMAL	739		
R. (@ 75°C)	0.0447 Ω / 1000'	IOIAL	0.091 LD/Ft	647	EMERGENCY	819		
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	23.41°					
MESSENGER DIAMETER	0.487"			•				
CONDUCTOR DIAMETER	1.042"							

Note: Quantities identified with an " * " are for the messenger only. All other quantities are specified for the complete spacer cable system.

						INITI	AL SA	G TA	BLE							*INITIAL SAG TABLE*										
	RULING SPAN (FEET)																									
		12	25			15	50			17	75		200													
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90										
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32										
TENSION	4,12	3,41	2,95	2,42	3,84	3,14	2,70	2,19	3,01	2,38	1,99	1,57	2,05	1,56	1,27	1,00										
(LBS.)	7	4	6	1	6	9	6	5	7	6	8	4	6	1	9	7										
ACTUAL																										
SPAN																										
(FEET)																										
50	0.3	0.3	0.4	0.5	0.3	0.4	0.4	0.5	0.4	0.5	0.6	0.7	0.6	0.7	0.9	1.2										
60	0.4	0.5	0.6	0.7	0.4	0.5	0.6	0.8	0.6	0.7	0.8	1.1	0.8	1.0	1.3	1.7										
70 80	0.6	0.6	0.8	0.9	0.6	0.7	0.9	1.0	0.8	0.9	1.2	1.5	1.1	1.4	1.8	2.3										
90	0.7 0.9	0.8 1.1	1.0 1.3	1.2 1.6	0.8 1.0	0.9 1.2	1.1 1.4	1.4 1.7	1.0 1.3	1.2 1.5	1.5 1.9	1.9 2.4	1.5 1.8	1.9 2.3	2.3 3.0	3.0 3.8										
100	1.2	1.3	1.6	1.9	1.2	1.4	1.8	2.1	1.6	1.9	2.4	3.0	2.3	2.9	3.7	4.7										
110	1.4	1.6	2.0	2.3	1.5	1.7	2.1	2.1	1.0	2.3	2.4	3.6	2.8	3.5	3. <i>1</i> 4.4	4.7 5.7										
120	1.7	1.9	2.3	2.8	1.8	2.1	2.5	3.1	2.3	2.7	3.4	4.3	3.3	4.2	5.3	6.7										
130	1.9	2.2	2.7	3.2	2.1	2.4	3.0	3.6	2.6	3.2	4.0	5.0	3.9	4.9	6.2	7.9										
140	2.3	2.6	3.2	3.8	2.4	2.8	3.4	4.2	3.1	3.7	4.6	5.8	4.5	5.7	7.2	9.2										
150	2.6	2.9	3.6	4.3	2.8	3.3	4.0	4.8	3.5	4.2	5.3	6.7	5.1	6.5	8.2	10.5										
160	2.9	3.4	4.1	4.9	3.1	3.7	4.5	5.5	4.0	4.8	6.0	7.6	5.8	7.4	9.4	12.0										
170	3.3	3.8	4.7	5.5	3.5	4.2	5.1	6.2	4.5	5.5	6.8	8.6	6.6	8.4	10.6	13.5										
180	3.7	4.2	5.2	6.2	4.0	4.7	5.7	6.9	5.1	6.1	7.6	9.6	7.4	9.4	11.9	15.2										
190	4.2	4.7	5.8	6.9	4.4	5.2	6.4	7.7	5.7	6.8	8.5	10.8	8.2	10.4	13.2	16.9										
200	4.6	5.2	6.5	7.7	4.9	5.8	7.0	8.5	6.3	7.6	9.4	11.9	9.1	11.6	14.6	18.7										
210	5.1	5.8	7.1	8.5	5.4	6.4	7.8	9.4	6.9	8.3	10.4	13.1	10.1	12.8	16.1	20.6										
220	5.6	6.3	7.8	9.3	5.9	7.0	8.5	10.3	7.6	9.1	11.4	14.4	11.0	14.0	17.7	22.7										
230	6.1	6.9	8.5	10.2	6.5	7.6	9.3	11.3	8.3	10.0	12.4	15.8	12.1	15.3	19.4	24.8										
240	6.6	7.5	9.3	11.1	7.1	8.3	10.1	12.3	9.0	10.9	13.5	17.2	13.1	16.7	21.1	27.0										
250	7.2	8.2	10.1	12.0	7.7	9.0	11.0	13.3	9.8	11.8	14.7	18.6	14.3	18.1	22.9	29.3										
260 270	7.8	8.9	10.9	13.0	8.3	9.8	11.9	14.4	10.6	12.8	15.9	20.1	15.4	19.6	24.7	31.6										
270	8.4	9.6	11.8	14.0	8.9	10.5	12.8	15.6	11.4	13.8	17.1	21.7	16.6	21.1	26.7	34.1										
280 290	9.0 9.7	10.3	12.6	15.1	9.6	11.3	13.8	16.7	12.3	14.8	18.4	23.3	17.9	22.7	28.7	36.7										
300	9.7 10.4	11.0 11.8	13.6 14.5	16.1 17.3	10.3 11.0	12.2	14.8	17.9	13.2	15.9	19.8	25.0	19.2	24.3	30.8	39.4										
300	10.4	II.8	14.5	17.3	11.0	13.0	15.8	19.2	14.1	17.0	21.2	26.8	20.5	26.0	32.9	42.1										

SPACER CABLE SAG / TENSION DATA									
15 kV 477 KCMIL SPAC	CER CABLE SUPPORTED BY A 1/	0, 3/4 AWAC MESSI	ENGER						
PAGE NUMBER ISSUE									

OVERHEAD CONSTRUCTION STANDARD

16-33 7/12

	FINAL SAG TABLE										
		LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	167	176	194			
TEMP. °C	-18	0	15	32	50	75	80	90			
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded			
DEAD END											
SPAN (FEET)											
50	1.8	2.2	2.5	3.0	3.7	5.5	5.9	6.8			
75	4.2	4.8	5.6	6.7	8.0	10.8	11.3	12.5			
100	7.6	8.6	10.1	11.6	13.7	17.2	17.9	19.3			
125	12.1	13.8	15.7	17.9	20.4	24.6	25.4	27.1			
150	17.9	20.0	22.6	25.3	28.3	33.2	34.1	36.0			
175	27.2	30.4	33.6	37.0	40.4	45.8	46.8	48.8			
200	40.6	44.3	48.0	51.8	55.6	61.3	62.4	64.6			
225	57.0	61.1	65.2	69.1	73.1	79.1	80.2	82.4			
250	76.3	80.5	84.7	88.9	92.9	99.1	100.2	102.5			
275	98.2	102.5	106.8	111.0	115.1	121.2	122.4	124.7			
300	122.4	126.7	131.0	135.2	139.4	145.7	146.9	149.2			

	FINAL SAG TABLE										
	TENSION (LBS.)										
TEMP. °F	0	32	60	0							
TEMP. °C	-18	0	15	-18							
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE							
DEAD END SPAN (FEET)											
50	5.5	5.0	3.1	5,204							
75	11.5	10.6	7.0	5,591							
100	19.1	17.5	12.0	5,989							
125	28.0	25.8	18.5	6,372							
150	38.2	35.4	26.0	6,731							
175	51.5	48.2	37.6	*6,800							
200	67.2	63.6	52.2	*6,800							
225	85.2	81.4	69.4	*6,800							
250	105.4	101.3	88.9	*6,800							
275	127.7	123.4	110.9	*6,800							
300	152.2	147.7	135.1	*6,800							
	* No	te: Design Specificat	ion Constraint								

	SPAC	CER CABLE SAG / TENSION DATA	4
15 kV 4	77 KCMIL SPACER	CABLE SUPPORTED BY A 1/0, 3/4	4 AWAC MESSENGER
100115	DAGE MUMBER		•

ISSUE	PAGE NUMBER
7/12	16-34

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*19500 lbs.	TRANSVERSE	2.4501 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1785 sq. in.	VERTICAL	5.398 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0527 Ω / 1000'	TOTAL	6.228 Lb/Ft	425	NORMAL	593	
R. (@ 75°C)	0.0629 Ω / 1000'	IOIAL	0.220 LD/Ft	519	EMERGENCY	657	
TEMP.	167°F (75°C) /	SWING	24.41°				
LIMIT	194°F (90°C)	SWING	24.41				
MESSENGER	0.541"			•			
DIAMETER	0.541						
CONDUCTOR	0.937"						
DIAMETER	0.937						
SYSTEM WEIGHT	2002 lbs / 1000'						

	INITIAL SAG TABLE															
	RULING SPAN (FEET)															
		12	25			1:	50			17	75	200				
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	4,689	3,833	3,289	2,661	3,820	3,032	2,545	2,007	2,888	2,217	1,824	1,426	2,004	1,520	1,261	1,026
ACTUAL SPAN (FEET)																
50	0.3	0.4	0.5	0.6	0.4	0.5	0.6	8.0	0.6	0.7	0.9	1.1	0.8	1.0	1.3	1.6
60	0.5	0.6	0.7	0.9	0.6	0.7	0.9	1.2	0.8	1.0	1.3	1.6	1.2	1.5	1.8	2.3
70	0.7	8.0	0.9	1.2	0.8	1.0	1.2	1.6	1.1	1.4	1.7	2.2	1.6	2.0	2.5	3.1
80	0.9	1.0	1.2	1.5	1.1	1.3	1.6	2.0	1.4	1.8	2.3	2.9	2.1	2.6	3.3	4.0
90	1.1	1.3	1.6	1.9	1.4	1.6	2.0	2.6	1.8	2.3	2.9	3.6	2.6	3.3	4.1	5.1
100	1.4	1.6	1.9	2.4	1.7	2.0	2.5	3.2	2.2	2.8	3.5	4.5	3.2	4.1	5.1	6.3
110	1.7	2.0	2.3	2.9	2.1	2.5	3.0	3.9	2.7	3.4	4.3	5.5	3.9	4.9	6.2	7.6
120	2.0	2.3	2.8	3.4	2.5	2.9	3.6	4.6	3.2	4.0	5.1	6.5	4.6	5.9	7.3	9.0
130	2.3	2.7	3.2	4.0	2.9	3.4	4.2	5.4	3.8	4.7	6.0	7.6	5.4	6.9	8.6	10.6
140	2.7	3.2	3.8	4.7	3.3	4.0	4.9	6.3	4.4	5.5	6.9	8.8	6.3	8.0	10.0	12.3
150	3.1	3.6	4.3	5.4	3.8	4.6	5.6	7.2	5.0	6.3	7.9	10.1	7.2	9.2	11.5	14.1
160	3.5	4.1	4.9	6.1	4.4	5.2	6.4	8.2	5.7	7.2	9.0	11.5	8.2	10.4	13.1	16.1
170 180	4.0	4.7 5.2	5.5 6.2	6.9 7.7	4.9 5.5	5.9	7.2	9.2	6.5	8.1 9.1	10.2	13.0	9.3	11.8	14.7	18.1
190	4.5					6.6	8.1	10.4	7.2		11.4	14.6	10.4	13.2	16.5	20.3
200	5.0	5.8 6.5	6.9 7.7	8.6 9.5	6.2 6.8	7.3 8.1	9.0 10.0	11.6 12.8	8.1 8.9	10.1 11.2	12.7 14.1	16.3 18.0	11.6 12.8	14.7 16.3	18.4 20.4	22.6
210	5.5 6.1	6.5 7.1	7.7 8.5	9.5 10.5	7.5	9.0	11.1	14.1	9.8	12.3	15.6	19.9	14.2	17.9	22.5	25.1 27.7
220	6.7	7.8	9.3	11.5	8.3	9.8	12.1	15.5	10.8	13.5	17.1	21.8	15.5	19.7	24.7	30.3
230	7.3	7.6 8.6	10.2	12.6	9.0	10.8	13.3	16.9	11.8	14.8	18.7	23.8	17.0	21.5	27.0	33.2
240	8.0	9.3	11.1	13.7	9.8	11.7	14.4	18.4	12.9	16.1	20.3	26.0	18.5	23.4	29.4	36.1
250	8.6	10.1	12.0	14.9	10.7	12.7	15.7	20.0	14.0	17.5	22.0	28.2	20.1	25.4	31.9	39.2
260	9.3	10.1	13.0	16.1	11.5	13.8	16.9	21.6	15.1	18.9	23.8	30.5	21.7	27.5	34.5	42.4
270	10.1	11.8	14.0	17.4	12.4	14.8	18.3	23.3	16.3	20.4	25.7	32.8	23.4	29.7	37.2	45.7
280	10.8	12.7	15.1	18.7	13.4	16.0	19.7	25.1	17.5	21.9	27.6	35.3	25.2	31.9	40.0	49.2
290	11.6	13.6	16.1	20.0	14.4	17.1	21.1	26.9	18.8	23.5	29.7	37.9	27.0	34.2	42.9	52.7
300	12.4	14.6	17.3	21.4	15.4	18.3	22.6	28.8	20.1	25.2	31.7	40.6	28.9	36.6	45.9	56.4

SPACER CABLE SAG / TENSION DATA	
15 kV 477 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 3/4 AWAC MESSENGER	3

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 16-35 7/12

	FINAL SAG TABLE										
		LOADING (UNLOADED CONDITIONS)									
TEMP. °F	0	32	60	90	120	167	176	194			
TEMP. °C	-18	0	15	32	50	75	80	90			
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded			
DEAD END SPAN (FEET)											
50	1.2	1.3	1.6	1.8	2.3	3.4	3.7	4.4			
75	2.8	3.2	3.7	4.4	5.5	7.9	8.4	9.7			
100	5.4	6.2	7.3	8.9	10.7	14.4	15.2	16.8			
125	9.6	11.2	13.1	15.5	18.2	23.0	24.0	25.8			
150	16.0	18.5	21.5	24.7	28.2	33.7	34.8	36.8			
175	25.4	28.9	32.8	36.6	40.6	46.4	47.5	49.7			
200	38.2	42.4	46.7	50.9	55.0	61.2	62.4	64.7			
225	53.9	58.6	63.0	67.3	71.6	78.0	79.2	81.5			
250	72.2	76.9	81.6	86.0	90.4	96.8	98.0	100.4			
275	92.9	97.7	102.2	106.8	111.1	117.7	118.9	121.3			
300	115.8	120.5	125.2	129.6	133.9	140.6	141.8	144.4			

		FINAL SAG TA	BLE	
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	4.0	3.5	2.0	6,791
75	8.9	7.9	4.8	*6,800
100	15.7	14.3	9.2	*6,800
125	24.6	22.7	15.8	*6,800
150	35.4	33.1	24.8	*6,800
175	48.2	45.6	36.5	*6,800
200	63.1	60.1	50.5	*6,800
225	79.9	76.8	66.7	*6,800
250	98.9	95.4	85.3	*6,800
275	119.8	116.2	106.0	*6,800
300	142.7	139.1	128.6	*6,800
	* Note	e: Design Specificat	ion Constraint	

	SPACER CABLE SAG / TENSION DATA
1	15 kV 336.4 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 2/5 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-36

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*13800 lbs.	TRANSVERSE	2.4343 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1450 sq. in.	VERTICAL	5.249 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0527 Ω / 1000'	TOTAL	6.086 Lb/Ft	425	NORMAL	593	
R. (@ 75°C)	0.0629 Ω / 1000'	IOIAL	0.000 LD/Ft	519	EMERGENCY	657	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	24.88°				
MESSENGER DIAMETER	0.487"			-			
CONDUCTOR DIAMETER	0.937"						
SYSTEM WEIGHT	1887 lbs / 1000'						

						INITI	AL SA	AG TA	BLE							
							RULI	NG SF	PAN (I	FEET)						
		1:	25		150			175			200					
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	4,354	3,630	3,164	2,614	4,169	3,456	2,998	2,462	3,560	2,885	2,459	1,976	2,670	2,083	1,730	1,359
ACTUAL SPAN (FEET)																
50	0.3	0.3	0.4	0.4	0.3	0.3	0.4	0.5	0.3	0.4	0.5	0.6	0.4	0.5	0.7	0.9
60	0.4	0.4	0.5	0.6	0.4	0.5	0.6	0.7	0.5	0.6	0.7	0.9	0.6	8.0	1.0	1.2
70	0.5	0.6	0.7	0.9	0.5	0.7	8.0	0.9	0.7	8.0	0.9	1.2	0.9	1.1	1.3	1.7
80	0.7	8.0	0.9	1.1	0.7	0.9	1.0	1.2	0.9	1.0	1.2	1.5	1.1	1.4	1.7	2.2
90	0.9	1.0	1.2	1.4	0.9	1.1	1.3	1.6	1.1	1.3	1.6	1.9	1.4	1.8	2.2	2.8
100	1.1	1.2	1.5	1.8	1.1	1.3	1.5	1.9	1.3	1.6	1.9	2.4	1.8	2.2	2.7	3.5
110	1.3	1.5	1.8	2.1	1.4	1.6	1.9	2.3	1.6	1.9	2.3	2.9	2.1	2.6	3.3	4.2
120	1.5	1.8	2.1	2.5	1.6	1.9	2.2	2.8	1.9	2.3	2.8	3.4	2.5	3.1	3.9	5.0
130	1.8	2.1	2.5	3.0	1.9	2.3	2.6	3.2	2.3	2.7	3.2	4.0	3.0	3.7	4.6	5.8
140	2.1	2.4	2.9	3.5	2.2	2.6	3.0	3.8	2.6	3.1	3.8	4.7	3.5	4.3	5.3	6.8
150	2.4	2.8	3.3	4.0	2.5	3.0	3.5	4.3	3.0	3.5	4.3	5.4	4.0	4.9	6.1	7.8
160	2.8	3.2	3.7	4.5	2.9	3.4	4.0	4.9	3.4	4.0	4.9	6.1	4.5	5.6	6.9	8.8
170	3.1	3.6	4.2	5.1	3.2	3.9	4.5	5.5	3.9	4.5	5.5	6.9	5.1	6.3	7.8	10.0
180	3.5	4.0	4.7	5.7	3.6	4.3	5.0	6.2	4.3	5.1	6.2	7.7	5.7	7.0	8.7	11.2
190	3.9	4.4	5.3	6.4	4.0	4.8	5.6	6.9	4.8	5.7	6.9	8.6	6.4	7.8	9.7	12.5
200	4.3	4.9	5.8	7.1	4.5	5.3	6.2	7.7	5.3	6.3	7.7	9.6	7.1	8.7	10.8	13.8
210	4.7	5.4	6.4	7.8	4.9	5.9	6.8	8.5	5.9	6.9	8.5	10.5	7.8	9.6	11.9	15.2
220	5.2	6.0 6.5	7.1 7.7	8.5	5.4	6.5 7.1	7.5	9.3	6.4	7.6	9.3	11.6	8.6 9.4	10.5	13.1	16.7
230 240	5.7 6.2	6.5 7.1	7.7 8.4	9.3	5.9 6.5		8.2	10.2 11.1	7.0 7.7	8.3	10.2	12.6 13.8	10.2	11.5	14.3	18.3
				10.2		7.7	8.9			9.1	11.1		-	12.5	15.6	19.9
250 260	6.7	7.7 8.3	9.1	11.0 11.9	7.0	8.4	9.7 10.5	12.0 13.0	8.3 9.0	9.8	12.0 13.0	14.9 16.2	11.1	13.6 14.7	16.9 18.3	21.6
270	7.3 7.8	8.3 9.0	9.9 10.6	12.9	7.6 8.2	9.0 9.7	11.3	14.0	9.0	10.6 11.5	14.0	17.4	12.0 12.9	15.8	19.7	23.3 25.2
280													-			
290	8.4 9.0	9.7 10.4	11.4 12.3	13.8 14.9	8.8 9.4	10.5 11.2	12.1 13.0	15.1 16.1	10.4 11.2	12.3 13.2	15.1 16.1	18.7 20.1	13.9 14.9	17.0 18.2	21.2 22.7	27.0 29.0
300	9.0	11.1	13.1	15.9	10.1	12.0	13.0	17.3	12.0	14.2	17.3	21.5	15.9	19.5	24.3	31.1
300	9.1	11.1	13.1	າວ.ອ	10.1	12.0	13.9	17.3	12.0	14.2	17.3	۵.۱۷	າວ.ອ	เษ.อ	24.3	٦١.١

	SPACER CABLE SAG / TENSION	DATA	
15 kV 336.4 KCMIL SPA	CER CABLE SUPPORTED BY A	1/0, 3/4 AWAC MESS	ENGER
-SNI77 -		PAGE NUMBER	ISSUE

			FINAL	SAG TABI	.E							
	LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0	32	60	90	120	167	176	194				
TEMP. °C	-18	0	15	32	50	75	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	1.4	1.7	2.0	2.5	3.1	4.8	5.3	6.1				
75	3.4	4.0	4.6	5.5	6.8	9.5	10.1	11.3				
100	6.1	7.1	8.2	9.7	11.5	15.1	15.8	17.4				
125	9.7	11.2	12.8	14.9	17.4	21.7	22.6	24.4				
150	14.3	16.2	18.5	21.1	24.1	29.2	30.2	32.3				
175	21.4	24.1	27.2	30.6	34.2	40.0	41.0	43.3				
200	32.2	35.9	39.7	43.8	47.8	54.1	55.3	57.6				
225	46.3	50.6	55.1	59.4	63.7	70.3	71.5	73.9				
250	63.5	68.2	72.8	77.4	81.8	88.6	89.9	92.3				
275	83.3	88.2	92.9	97.6	102.0	108.8	110.2	112.7				
300	105.5	110.4	115.2	119.8	124.3	131.3	132.6	135.1				

		FINAL SAG TA	BLE	
	LOADING	G (LOADED COND	DITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	5.0	4.6	2.6	5,164
75	10.7	9.6	5.9	5,531
100	17.8	16.0	10.3	5,919
125	26.0	23.5	15.8	6,301
150	35.4	32.2	22.3	6,667
175	47.3	43.4	31.9	*6,800
200	61.8	57.5	44.9	*6,800
225	78.4	73.7	60.2	*6,800
250	96.8	91.8	78.0	*6,800
275	117.4	112.0	98.0	*6,800
300	139.8	134.3	120.1	*6,800
	* Not	te: Design Specificat	ion Constraint	

SPACER CABLE SAG / TENSION DATA	
15 kV 336.4 KCMIL SPACER CABLE SUPPORTED BY A 1/0, 3/4 AWAC MESSENGE	₽R

ISSUE	PAGE NUMBER
7/12	16-38

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*19500 lbs.	TRANSVERSE	2.5407 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1785 sq. in.	VERTICAL	5.367 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.166 Ω / 1000'	TOTAL	6.238 Lb/Ft	200	NORMAL	280	
R. (@ 75°C)	0.195 Ω / 1000'	IOTAL	0.230 LD/Ft	244	EMERGENCY	310	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	25.33°				
MESSENGER DIAMETER	0.541"			•			
CONDUCTOR DIAMETER	1.028"						
SYSTEM WEIGHT	1793 lbs / 1000'						

						INITI	AL SA	AG TA	BLE							
							RULII	NG SF	PAN (I	FEET)						
		12	25		150			175				200				
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	4,684	3,828	3,284	2,656	3,813	3,025	2,538	2,001	2,878	2,209	1,817	1,420	1,994	1,513	1,256	1,022
ACTUAL SPAN (FEET)																
50	0.3	0.4	0.5	0.6	0.4	0.5	0.6	8.0	0.6	0.7	0.9	1.1	0.8	1.0	1.3	1.6
60	0.5	0.6	0.7	0.9	0.6	0.7	0.9	1.2	8.0	1.0	1.3	1.6	1.2	1.5	1.8	2.3
70	0.7	8.0	0.9	1.2	8.0	1.0	1.2	1.6	1.1	1.4	1.7	2.2	1.6	2.0	2.5	3.1
80	0.9	1.0	1.2	1.5	1.1	1.3	1.6	2.0	1.4	1.8	2.3	2.9	2.1	2.6	3.3	4.0
90	1.1	1.3	1.6	1.9	1.4	1.6	2.0	2.6	1.8	2.3	2.9	3.6	2.6	3.3	4.1	5.1
100	1.4	1.6	1.9	2.4	1.7	2.0	2.5	3.2	2.2	2.8	3.5	4.5	3.2	4.1	5.1	6.3
110	1.7	2.0	2.3	2.9	2.1	2.5	3.0	3.9	2.7	3.4	4.3	5.5	3.9	5.0	6.2	7.6
120	2.0	2.3	2.8	3.4	2.5	2.9	3.6	4.6	3.2	4.0	5.1	6.5	4.6	5.9	7.3	9.1
130	2.3	2.7	3.2	4.0	2.9	3.4	4.2	5.4	3.8	4.7	6.0	7.6	5.4	6.9	8.6	10.6
140	2.7	3.2	3.8	4.7	3.3	4.0	4.9	6.3	4.4	5.5	6.9	8.8	6.3	8.0	10.0	12.3
150	3.1	3.6	4.3	5.4	3.8	4.6	5.6	7.2	5.0	6.3	7.9	10.1	7.2	9.2	11.5	14.2
160	3.5	4.1	4.9	6.1	4.4	5.2	6.4	8.2	5.7	7.2	9.0	11.5	8.2	10.5	13.1	16.1
170	4.0	4.7	5.5	6.9	4.9	5.9	7.2	9.2	6.5	8.1	10.2	13.0	9.3	11.8	14.7	18.2
180	4.5	5.2	6.2	7.7	5.5	6.6	8.1	10.4	7.2	9.1	11.4	14.6	10.4	13.3	16.5	20.4
190 200	5.0	5.8	6.9	8.6	6.2	7.3	9.0	11.6	8.1	10.1	12.7	16.3	11.6	14.8	18.4	22.7
200	5.5 6.1	6.5 7.1	7.7 8.5	9.5 10.5	6.8 7.5	8.1 9.0	10.0 11.1	12.8 14.1	8.9 9.8	11.2 12.3	14.1 15.6	18.0 19.9	12.8 14.2	16.4 18.1	20.4 22.5	25.2 27.8
220	6.7	7.1	9.3	11.5	8.3	9.8	12.1	15.5	10.8	13.5	17.1	21.8	15.5	19.8	24.7	30.5
230	7.3	7.8 8.6	9.3 10.2	12.6	9.0	9.8 10.8	13.3	16.9	10.8	14.8	17.1	23.8	17.0	21.7	24.7 27.0	33.3
240	8.0	9.3	11.1	13.7	9.8	11.7	14.4	18.4	12.9	16.1	20.3	26.0	18.5	23.6	29.4	36.3
250	8.6	10.1	12.0	14.9	10.7	12.7	15.7	20.0	14.0	17.5	22.0	28.2	20.1	25.6	31.9	39.4
260	9.3	10.1	13.0	16.1	11.5	13.8	16.9	21.6	15.1	18.9	23.8	30.5	21.7	27.7	34.5	42.6
270	10.1	11.8	14.0	17.4	12.4	14.8	18.3	23.3	16.3	20.4	25.7	32.8	23.4	29.9	37.2	45.9
280	10.1	12.7	15.1	18.7	13.4	16.0	19.7	25.1	17.5	21.9	27.6	35.3	25.2	32.1	40.0	49.4
290	11.6	13.6	16.1	20.0	14.4	17.1	21.1	26.9	18.8	23.5	29.7	37.9	27.0	34.5	42.9	53.0
300	12.4	14.6	17.3	21.4	15.4	18.3	22.6	28.8	20.1	25.2	31.7	40.6	28.9	36.9	45.9	56.7

5	SPACER CABLE SAG / TENSION	DATA	
35 kV 1/0 AWG SPAC	ER CABLE SUPPORTED BY A 1/0), 2/5 AWAC MESSE	NGER
SMIZE		PAGE NUMBER	ISSUE

			FINAL	SAG TABL	.E									
		LOADING (UNLOADED CONDITIONS)												
TEMP. °F	0	32	60	90	120	167	176	194						
TEMP. °C	-18	0	15	32	50	75	80	90						
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded						
DEAD END SPAN (FEET)														
50	1.1	1.2	1.3	1.7	2.0	3.1	3.4	4.1						
75	2.5	2.9	3.4	4.1	5.0	7.3	7.9	9.2						
100	4.9	5.6	6.7	8.0	10.0	13.7	14.5	16.2						
125	8.6	10.2	12.1	14.4	17.3	22.2	23.2	25.1						
150	14.8	17.2	20.2	23.5	27.1	32.9	34.0	36.0						
175	23.9	27.5	31.3	35.4	39.4	45.5	46.7	49.0						
200	36.5	40.9	45.2	49.7	53.9	60.2	61.4	63.8						
225	52.3	57.0	61.7	66.2	70.6	77.0	78.2	80.6						
250	70.8	75.6	80.3	84.8	89.3	95.9	97.2	99.6						
275	91.6	96.4	101.2	105.7	110.2	116.8	118.1	120.5						
300	114.5	119.3	124.0	128.5	133.1	139.8	141.0	143.5						

		FINAL SAG TA	BLE	
	LOADIN	G (LOADED COND	DITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	4.0	3.5	1.9	*6,800
75	8.9	7.8	4.7	*6,800
100	15.7	14.2	9.0	*6,800
125	24.6	22.6	15.6	*6,800
150	35.5	33.0	24.6	*6,800
175	48.4	45.5	36.1	*6,800
200	63.2	60.1	50.2	*6,800
225	80.0	76.7	66.5	*6,800
250	99.0	95.4	85.1	*6,800
275	119.9	116.2	105.7	*6,800
300	142.9	139.1	128.5	*6,800
	* No	te: Design Specificat	ion Constraint	

SPACER CABLE SAG / TENSION DATA
35 kV 1/0 AWG SPACER CABLE SUPPORTED BY A 1/0, 2/5 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-40

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELEC	TRICAL PROPER	RTIES
R.B.S.	*13800 lbs.	TRANSVERSE	2.5231 Lb/Ft	SUMMER	MAXIMUM	WINTER
C.S.A.	*0.1450 sq. in.	VERTICAL	5.218 Lb/Ft	(37.7°C)	AMPACITY	(10°C)
R. (@ 25°C)	0.166 Ω / 1000'	TOTAL	6.096 Lb/Ft	200	NORMAL	280
R. (@ 75°C)	0.195 Ω / 1000'	IOIAL	6.096 LD/Ft	244	EMERGENCY	310
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	25.81°			
MESSENGER DIAMETER	0.487"			•		
CONDUCTOR DIAMETER	1.028"					
SYSTEM WEIGHT	1678 lbs / 1000'					

INITIAL SAG TABLE																
							RULII	NG SF	PAN (FEET)						
		1:	25			1	50			17	75		200			
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	4,454	3,727	3,257	2,701	4,312	3,592	3,129	2,584	3,550	2,876	2,451	1,969	2,659	2,073	1,722	1,352
ACTUAL SPAN (FEET)																
50	0.3	0.3	0.4	0.4	0.3	0.3	0.4	0.5	0.3	0.4	0.5	0.6	0.4	0.5	0.7	0.9
60	0.4	0.4	0.5	0.6	0.4	0.5	0.5	0.7	0.5	0.6	0.7	0.9	0.6	8.0	1.0	1.3
70	0.5	0.6	0.7	0.9	0.5	0.6	0.7	0.9	0.7	8.0	0.9	1.2	0.9	1.1	1.3	1.7
80	0.7	8.0	0.9	1.1	0.7	8.0	1.0	1.2	0.9	1.0	1.2	1.5	1.1	1.4	1.7	2.2
90	0.9	1.0	1.2	1.4	0.9	1.0	1.2	1.5	1.1	1.3	1.6	1.9	1.4	1.8	2.2	2.8
100	1.1	1.2	1.5	1.8	1.1	1.3	1.5	1.8	1.3	1.6	1.9	2.4	1.8	2.2	2.7	3.5
110	1.3	1.5	1.8	2.1	1.3	1.6	1.8	2.2	1.6	1.9	2.3	2.9	2.1	2.6	3.3	4.2
120	1.5	1.8	2.1	2.5	1.5	1.8	2.2	2.6	1.9	2.3	2.8	3.4	2.5	3.1	3.9	5.0
130	1.8	2.1	2.5	3.0	1.8	2.2	2.5	3.1	2.3	2.7	3.2	4.0	3.0	3.7	4.6	5.9
140	2.1	2.4	2.9	3.5	2.1	2.5	2.9	3.6	2.6	3.1	3.8	4.7	3.5	4.3	5.4	6.8
150	2.4	2.8	3.3	4.0	2.4	2.9	3.4	4.1	3.0	3.5	4.3	5.4	4.0	4.9	6.1	7.8
160	2.8	3.2	3.7	4.5	2.7	3.3	3.8	4.6	3.4	4.0	4.9	6.1	4.5	5.6	7.0	8.9
170	3.1	3.6	4.2	5.1	3.1	3.7	4.3	5.2	3.9	4.5	5.5	6.9	5.1	6.3	7.9	10.1
180	3.5	4.0	4.7	5.7	3.5	4.2	4.8	5.9	4.3	5.1	6.2	7.7	5.7	7.0	8.8	11.3
190	3.9	4.4	5.3	6.4	3.9	4.6	5.4	6.5	4.8	5.7	6.9	8.6	6.4	7.8	9.9	12.6
200	4.3	4.9	5.8	7.1	4.3	5.1	6.0	7.3	5.3	6.3	7.7	9.6	7.1	8.7	10.9	13.9
210	4.7	5.4	6.4	7.8	4.7	5.7	6.6	8.0	5.9	6.9	8.5	10.5	7.8	9.6	12.0	15.3
220	5.2	6.0	7.1	8.5	5.2	6.2	7.2	8.8	6.4	7.6	9.3	11.6	8.6	10.5	13.2	16.8
230	5.7	6.5	7.7	9.3	5.6	6.8	7.9	9.6	7.0	8.3	10.2	12.6	9.4	11.5	14.4	18.4
240	6.2	7.1	8.4	10.2	6.1	7.4	8.6	10.4	7.7	9.1	11.1	13.8	10.2	12.5	15.7	20.0
250	6.7	7.7	9.1	11.0	6.7	8.0	9.3	11.3	8.3	9.8	12.0	14.9	11.1	13.6	17.1	21.8
260	7.3	8.3	9.9	11.9	7.2	8.7	10.1	12.3	9.0	10.6	13.0	16.2	12.0	14.7	18.5	23.5
270	7.8	9.0	10.6	12.9	7.8	9.4	10.9	13.2	9.7	11.5	14.0	17.4	12.9	15.8	19.9	25.4
280	8.4	9.7	11.4	13.8	8.4	10.1	11.7	14.2	10.4	12.3	15.1	18.7	13.9	17.0	21.4	27.3
290	9.0	10.4	12.3	14.9	9.0	10.8	12.6	15.3	11.2	13.2	16.1	20.1	14.9	18.2	23.0	29.3
300	9.7	11.1	13.1	15.9	9.6	11.6	13.4	16.3	12.0	14.2	17.3	21.5	15.9	19.5	24.6	31.3

SPACER CABLE SAG / TENSION DATA								
35 kV 1/0 AWG SPACER CABLE SUPPORTED BY A 1/0, 3/4 AWAC MESSENGER								
		PAGE NUMBER						
ppl	UNDERGROUND CONSTRUCTION STANDARD	16-41	7/12					

	FINAL SAG TABLE											
		LOADING (UNLOADED CONDITIONS)										
TEMP. °F	0	32	60	90	120	167	176	194				
TEMP. °C	-18	0	15	32	50	75	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	1.3	1.6	1.8	2.3	2.9	4.4	4.8	5.8				
75	3.0	3.5	4.1	4.9	6.1	8.8	9.4	10.7				
100	5.4	6.2	7.3	8.6	10.4	14.0	14.8	16.4				
125	8.5	9.8	11.4	13.3	15.7	20.2	21.1	22.9				
150	12.5	14.3	16.4	19.0	22.0	27.1	28.2	30.2				
175	19.6	22.3	25.4	28.9	32.6	38.6	39.7	42.1				
200	30.0	33.8	37.8	42.0	46.2	52.7	54.0	56.4				
225	44.0	48.6	53.2	57.7	62.2	69.0	70.2	72.7				
250	61.3	66.2	71.0	75.7	80.3	87.2	88.6	91.1				
275	81.4	86.4	91.2	96.0	100.6	107.6	109.0	111.5				
300	103.7	108.7	113.5	118.3	123.0	130.1	131.4	133.9				

		FINAL SAG TA	BLE	
	LOADING	TENSION (LBS.)		
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	5.0	4.4	2.6	5,179
75	10.7	9.5	5.8	5,561
100	17.6	15.7	10.0	5,966
125	25.8	23.2	15.2	6,368
150	35.0	31.6	21.5	6,756
175	47.4	43.3	31.6	*6,800
200	61.9	57.5	44.5	*6,800
225	78.5	73.6	59.9	*6,800
250	97.0	91.8	77.8	*6,800
275	117.5	112.0	97.7	*6,800
300	140.0	134.3	119.9	*6,800
	* Note	: Design Specificat	ion Constraint	

SPACER CABLE SAG / TENSION DATA
35 kV 1/0 AWG SPACER CABLE SUPPORTED BY A 1/0, 3/4 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-42

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELEC	TRICAL PROPER	RTIES	
R.B.S.	*19500 lbs.	TRANSVERSE	2.2411 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1785 sq. in.	VERTICAL	4.282 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.166 Ω / 1000'	TOTAL	5.133 Lb/Ft	214	NORMAL	296	
R. (@ 75°C)	0.195 Ω / 1000'	IOIAL	5.133 LD/Ft	259	EMERGENCY	327	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	27.63°				
MESSENGER DIAMETER	0.541"			•			
CONDUCTOR DIAMETER	0.728"						
SYSTEM WEIGHT	1276 lbs / 1000'						

	INITIAL SAG TABLE															
							RULI	NG SF	AN (FEET)						
		1:	25			1:	50		175				2	00		
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	5,278	4,393	3,823	3,152	4,632	3,782	3,244	2,626	3,901	3,112	2,624	2,086	3,124	2,431	2,020	1,598
ACTUAL SPAN (FEET)																
50	0.3	0.3	0.4	0.5	0.3	0.4	0.5	0.6	0.4	0.5	0.6	0.8	0.5	0.6	8.0	1.0
60	0.4	0.5	0.6	0.7	0.5	0.6	0.7	0.9	0.6	0.7	0.9	1.1	0.7	0.9	1.1	1.4
70	0.6	0.7	8.0	1.0	0.7	8.0	1.0	1.2	8.0	1.0	1.2	1.5	1.0	1.2	1.6	2.0
80	8.0	0.9	1.1	1.3	0.9	1.1	1.3	1.6	1.1	1.3	1.6	2.0	1.3	1.6	2.0	2.6
90	1.0	1.1	1.4	1.7	1.1	1.3	1.6	2.0	1.3	1.6	2.0	2.5	1.7	2.1	2.6	3.3
100	1.2	1.4	1.7	2.1	1.4	1.7	2.0	2.5	1.6	2.0	2.4	3.1	2.0	2.5	3.2	4.0
110	1.5	1.7	2.0	2.5	1.7	2.0	2.4	3.0	2.0	2.4	2.9	3.7	2.5	3.1	3.8	4.9
120	1.8	2.0	2.4	3.0	2.0	2.4	2.8	3.5	2.4	2.9	3.5	4.5	2.9	3.6	4.6	5.8
130	2.1	2.3	2.9	3.5	2.3	2.8	3.3	4.1	2.8	3.4	4.1	5.2	3.4	4.3	5.4	6.8
140	2.4	2.7	3.3	4.1	2.7	3.3	3.9	4.8	3.2	3.9	4.8	6.1	4.0	5.0	6.2	7.9
150	2.8	3.1	3.8	4.7	3.1	3.7	4.4	5.5	3.7	4.5	5.5	7.0	4.6	5.7	7.2	9.0
160	3.1	3.6	4.3	5.3	3.5	4.2	5.1	6.3	4.2	5.1	6.2	7.9	5.2	6.5	8.1	10.3
170	3.6	4.0	4.9	6.0	4.0	4.8	5.7	7.1	4.8	5.8	7.0	8.9	5.9	7.3	9.2	11.6
180	4.0	4.5	5.5	6.7	4.5	5.4	6.4	7.9	5.3	6.5	7.9	10.0	6.6	8.2	10.3	13.0
190	4.4	5.0	6.1	7.5	5.0	6.0	7.1	8.9	5.9	7.2	8.8	11.2	7.4	9.1	11.5	14.5
200	4.9	5.6	6.8	8.3	5.5	6.6	7.9	9.8	6.6	8.0	9.7	12.4	8.2	10.1	12.7	16.1
210	5.4	6.1	7.5	9.1	6.1	7.3	8.7	10.8	7.3	8.8	10.7	13.7	9.0	11.2	14.0	17.7
220	5.9	6.7	8.2	10.0	6.7	8.0	9.6	11.9	8.0	9.7	11.8	15.0	9.9	12.3	15.4	19.5
230	6.5	7.3	8.9	11.0	7.3	8.8	10.4	13.0	8.7	10.6	12.9	16.4	10.8	13.4	16.8	21.3
240	7.1	8.0	9.7	11.9	8.0	9.6	11.4	14.1	9.5	11.6	14.0	17.8	11.8	14.6	18.3	23.2
250	7.7	8.7	10.6	13.0	8.7	10.4	12.3	15.3	10.3	12.5	15.2	19.3	12.8	15.8	19.9	25.1
260	8.3	9.4	11.4	14.0	9.4	11.2	13.3	16.6	11.1	13.6	16.4	20.9	13.8	17.1	21.5	27.2
270	9.0	10.1	12.3	15.1	10.1	12.1	14.4	17.9	12.0	14.6	17.7	22.6	14.9	18.5	23.2	29.3
280	9.6	10.9	13.2	16.3	10.9	13.0	15.5	19.2	12.9	15.7	19.0	24.3	16.0	19.8	24.9	31.5
290	10.3	11.7	14.2	17.4	11.7	13.9	16.6	20.6	13.8	16.9	20.4	26.0	17.2	21.3	26.7	33.8
300	11.1	12.5	15.2	18.7	12.5	14.9	17.8	22.1	14.8	18.0	21.9	27.9	18.4	22.8	28.6	36.2

S	PACER CABLE SAG / TENSION	DATA	
15 kV 1/0 AWG SPACI	ER CABLE SUPPORTED BY A 1/0), 2/5 AWAC MESSE	NGER
Miller		PAGE NUMBER	ISSUE

UNDERGROUND CONSTRUCTION STANDARD

16-43 7/12

	FINAL SAG TABLE											
	LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0	32	60	90	120	167	176	194				
TEMP. °C	-18	0	15	32	50	75	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	0.7	0.8	1.0	1.2	1.4	2.3	2.5	3.2				
75	1.7	1.9	2.3	2.8	3.5	5.3	5.9	7.1				
100	3.2	3.8	4.4	5.4	6.8	10.2	11.0	12.7				
125	5.6	6.6	7.8	9.6	12.0	16.9	18.0	20.2				
150	9.1	10.8	13.0	15.8	19.3	25.6	26.8	29.3				
175	14.5	17.2	20.6	24.6	29.0	36.1	37.4	40.1				
200	22.4	26.5	31.1	35.9	40.9	48.4	49.8	52.6				
225	33.7	38.8	44.2	49.4	54.7	62.5	64.0	66.7				
250	48.1	53.8	59.5	65.0	70.3	78.2	79.8	82.7				
275	65.0	71.0	76.8	82.4	87.8	95.9	97.3	100.2				
300	84.2	90.2	96.0	101.6	107.0	115.1	116.6	119.5				

	FINAL SAG TABLE									
	LOADIN	G (LOADED COND	OITIONS)	TENSION (LBS.)						
TEMP. °F	0	32	60	0						
TEMP. °C	-18	0	15	-18						
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE						
DEAD END SPAN (FEET)										
50	3.4	2.8	1.4	6,726						
75	7.4	6.2	3.4	*6,800						
100	13.3	11.4	6.4	*6,800						
125	20.8	18.1	10.9	*6,800						
150	30.0	26.5	17.3	*6,800						
175	40.8	36.8	25.9	*6,800						
200	53.4	48.8	36.8	*6,800						
225	67.6	62.6	50.0	*6,800						
250	83.5	78.2	65.3	*6,800						
275	101.2	95.5	82.4	*6,800						
300	120.5	114.7	101.5	*6,800						
	* No	te: Design Specificat	ion Constraint	* Note: Design Specification Constraint						

SPACER CABLE SAG / TENSION DATA
15 kV 1/0 AWG SPACER CABLE SUPPORTED BY A 1/0, 2/5 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-44

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*13800 lbs.	TRANSVERSE	2.2253 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1450 sq. in.	VERTICAL	4.133 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.166 Ω / 1000'	TOTAL	4.994 Lb/Ft	214	NORMAL	296	
R. (@ 75°C)	0.195 Ω / 1000'	IOTAL	4.994 LD/Ft	259	EMERGENCY	327	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	28.30°				
MESSENGER DIAMETER	0.487"			•			
CONDUCTOR DIAMETER	0.728"						
SYSTEM WEIGHT	1161 lbs / 1000'						

INITIAL SAG TABLE																
	RULING SPAN (FEET)															
		12	25			15	50			17	75			2	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	4,637	3,904	3,428	2,861	4,576	3,846	3,373	2,812	4,473	3,748	3,280	2,728	3,785	3,097	2,662	2,164
ACTUAL SPAN (FEET)																
50	0.2	0.3	0.3	0.4	0.3	0.3	0.3	0.4	0.3	0.3	0.4	0.4	0.3	0.4	0.4	0.5
60	0.4	0.4	0.5	0.6	0.4	0.4	0.5	0.6	0.4	0.4	0.5	0.6	0.4	0.5	0.6	0.8
70	0.5	0.6	0.7	8.0	0.5	0.6	0.7	8.0	0.5	0.6	0.7	0.8	0.6	0.7	0.9	1.1
80	0.6	0.7	0.9	1.0	0.6	8.0	0.9	1.1	0.7	8.0	0.9	1.1	8.0	0.9	1.1	1.4
90	8.0	0.9	1.1	1.3	0.8	1.0	1.1	1.3	0.9	1.0	1.2	1.4	1.0	1.2	1.4	1.7
100	1.0	1.2	1.4	1.6	1.0	1.2	1.4	1.7	1.1	1.2	1.4	1.7	1.2	1.5	1.8	2.2
110	1.2	1.4	1.7	2.0	1.2	1.4	1.7	2.0	1.3	1.5	1.8	2.1	1.5	1.8	2.1	2.6
120	1.4	1.7	2.0	2.3	1.5	1.7	2.0	2.4	1.5	1.8	2.1	2.5	1.8	2.1	2.5	3.1
130	1.7	2.0	2.3	2.7	1.7	2.0	2.3	2.8	1.8	2.1	2.5	2.9	2.1	2.5	3.0	3.7
140	2.0	2.3	2.7	3.2	2.0	2.3	2.7	3.2	2.1	2.4	2.8	3.4	2.4	2.9	3.5	4.2
150	2.2	2.6	3.1	3.6	2.3	2.6	3.1	3.7	2.4	2.7	3.3	3.9	2.8	3.3	4.0	4.9
160	2.6	3.0	3.5	4.1	2.6	3.0	3.5	4.2	2.7	3.1	3.7	4.4	3.1	3.8	4.5	5.5
170	2.9	3.3	4.0	4.7	2.9	3.4	4.0	4.8	3.1	3.5	4.2	5.0	3.6	4.3	5.1	6.2
180	3.2	3.7	4.5	5.2	3.3	3.8	4.5	5.4	3.4	3.9	4.7	5.6	4.0	4.8	5.7	7.0
190	3.6	4.2	5.0	5.8	3.7	4.2	5.0	6.0	3.8	4.4	5.2	6.2	4.4	5.3	6.4	7.8
200	4.0	4.6 5.1	5.5	6.5	4.1	4.7	5.5	6.6	4.2	4.9	5.8	6.9	4.9	5.9	7.1	8.6
210	4.4		6.1	7.1	4.5	5.2	6.1	7.3	4.7	5.4	6.4	7.6	5.4	6.5	7.8	9.5
220 230	4.8	5.6	6.7	7.8	4.9	5.7	6.7	8.0	5.1	5.9	7.0	8.3	6.0	7.1	8.6	10.5
240	5.3	6.1	7.3	8.5	5.4	6.2	7.3	8.7	5.6	6.4	7.7	9.1	6.5	7.8	9.4	11.4
	5.8	6.7	8.0	9.3	5.8	6.8	8.0	9.5	6.1	7.0	8.4	9.9	7.1	8.5	10.2	12.4
250 260	6.2	7.2	8.6	10.1	6.3	7.4	8.7	10.3	6.6	7.6	9.1	10.8	7.7	9.2	11.1	13.5
270	6.7 7.3	7.8 8.4	9.3 10.1	10.9 11.8	6.9 7.4	8.0 8.6	9.4 10.1	11.2 12.1	7.2 7.7	8.2 8.9	9.8 10.6	11.7 12.6	8.3 9.0	10.0 10.8	12.0 12.9	14.6 15.7
280 290	7.8 8.4	9.1 9.7	10.8 11.6	12.6 13.6	7.9 8.5	9.2 9.9	10.9 11.7	13.0 13.9	8.3 8.9	9.6 10.2	11.4 12.2	13.5 14.5	9.6 10.3	11.6 12.4	13.9 14.9	16.9
300																18.2
300	9.0	10.4	12.4	14.5	9.1	10.6	12.5	14.9	9.5	11.0	13.0	15.5	11.1	13.3	15.9	19.4

S	SPACER CABLE SAG / TENSION	DATA	
15 kV 1/0 AWG SPACI	ER CABLE SUPPORTED BY A 1/0), 3/4 AWAC MESSE	NGER
-51172		PAGE NUMBER	ISSUE

	FINAL SAG TABLE							
		LOADING (UNLOADED CONDITIONS)						
TEMP. °F	0	32	60	90	120	167	176	194
TEMP. °C	-18	0	15	32	50	75	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END								
SPAN (FEET)								
50	1.0	1.1	1.3	1.6	2.0	3.4	3.7	4.8
75	2.0	2.4	2.9	3.5	4.4	6.8	7.4	8.9
100	3.7	4.3	5.0	6.1	7.6	11.0	11.9	13.7
125	5.9	6.7	7.9	9.5	11.5	16.1	17.0	19.1
150	8.4	9.7	11.4	13.4	16.2	21.6	22.7	25.1
175	11.6	13.4	15.6	18.4	21.7	28.0	29.2	31.8
200	17.5	20.3	23.6	27.5	31.9	39.2	40.7	43.6
225	26.0	30.0	34.6	39.5	44.5	52.6	54.1	57.1
250	37.8	43.0	48.4	53.9	59.4	67.8	69.4	72.4
275	52.9	58.8	64.7	70.6	76.2	84.7	86.3	89.4
300	70.9	77.2	83.2	89.2	94.8	103.4	105.0	108.2

FINAL SAG TABLE						
	LOADING	LOADING (LOADED CONDITIONS)				
TEMP. °F	0	32	60	0		
TEMP. °C	-18	0	15	-18		
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE		
DEAD END SPAN (FEET)						
50	4.3	3.6	1.9	5,085		
75	9.2	7.8	4.2	5,401		
100	15.4	13.1	7.4	5,751		
125	22.7	19.3	11.4	6,111		
150	30.8	26.5	16.1	6,469		
175	39.8	34.6	21.6	*6,800		
200	52.1	46.1	31.0	*6,800		
225	66.0	59.3	42.7	*6,800		
250	81.6	74.2	56.9	*6,800		
275	98.8	91.0	73.1	*6,800		
300	117.6	109.4	91.3	*6,800		
	* Note	e: Design Specificat	ion Constraint			

SPACER CABLE SAG / TENSION DATA
15 kV 1/0 AWG SPACER CABLE SUPPORTED BY A 1/0, 3/4 AWAC MESSENGER

ISSUE	PAGE NUMBER
7/12	16-46

16.6 PREASSEMBLED LASHED AERIAL CABLE (PLAC)

Factory assembled shielded aerial cable shall be used as the second circuit on 15 kV pole lines or on those lines that may become 15 kV. It shall also be used where clearance to ground or clearance to buildings is questionable as well as for express feeder applications. In general, the preferred construction shall first utilize open wire crossarm construction followed by armless or spacer cable construction; however, aerial cable may be used as an alternate method to satisfy conditions mentioned above. Factory assembled shielded aerial cable has a grounded metallic sheath and requires similar clearance to that specified for secondary, rather than for primary conductors. The metallic sheath is to be bonded at each splice and termination. Additionally, arresters shall be installed at each termination to provide the best surge protection possible. In order to properly do so, the termination must be placed on a bracket and not hung directly under the disconnect switch as shown on Page 16-320.

There are several standard pre-assembled aerial cables currently available (refer to Section 50 in UG Standards). These cables have a jacketed concentric neutral with 3 phase conductors and a EHS copperweld messenger held together with a covered copper binding tape. Cables have a 5000 lb. design tension. Consult Standards Engineering for Sag tensions and requirements for the larger sizes. Older pre-assembled aerial cable uses a copper tape shielding as opposed to a concentric neutral. The messenger can be utilized as the neutral conductor. The messenger shall be bonded to the secondary neutral, if present, at every pole. The messenger shall be bonded to a driven ground rod a minimum of every 800 feet.

Note: Certain existing circuits may utilize a ½" EHS copperweld messenger that requires either deadending at a pole location for splicing or double deadending to a figure 8 where mid-span splicing is necessary.

16.6.10 Aerial Cable Installation

Factory assembled shielded aerial cable should be pulled in and sagged as follows:

- (a) Use large blocks at every pole with auxiliary roller near the cable reel to minimize bending of the cable.
- (b) Have provisions for braking the cable reel.
- (c) Pull in the cable using sufficient tension so that the cable is not bent sharply at any block.
- (d) Pull the messenger to 5,000 lbs.
- (e) Inspect deadends, angles, and guys. If guys have slipped or seriously cut into the wood, tighten, replace, or repair the fittings, then re-stress the messenger as in (d) above.
- (f) Reduce the tension to the values specified (Pages 16-54 thru 16-56), clamp the messenger at each pole and complete the dead ends.

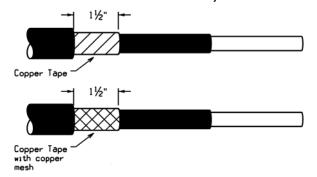
16.6.20 <u>Cold Shrink Splices</u>

Newer aerial cables are designed with a jacketed concentric neutral. Older aerial cables are copper tape shielded and unjacketed. For copper tape shielded, unjacketed cable, place a tape marker on the copper tape at the distance given in the instructions for the jacket cutback. Then make all other measurements from this tape marker.

Both splices and terminations shall be cold shrink. Each splice is to be externally bonded. Splice kits (Std. Item UR51_) have carbon black in the splice jackets making them UV resistant therefore no additional steps are required to protect splices from UV rays. Follow the instructions included in the kits for installing the splice and for grounding and bonding.

AERIAL/SPACER CABLE						
SMIZE.		PAGE NUMBER	ISSUE			
ppl	UNDERGROUND CONSTRUCTION STANDARD	16-47	7/20			

16.6.30 <u>Aerial Cable Splice Installation – Cable Preparation</u>

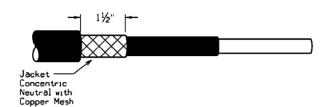

Copper Tape Shield

The instructions packed with the kit are for jacketed concentric neutral (JCN) cable. Use the kit instructions with the following modifications for copper tape shielded aerial cable.

Make the copper tape cutback with the same dimensions shown in the kit for jacketed concentric neutral and flat strap cables. Apply copper tape strip over end of shield. Apply four layers of copper mesh over copper tape and tie back

For unjacketed cable, place a tape marker on the copper tape shield at the dimension given in the instructions for the jacket cutback. Then make all other measurements from this tape marker.

Cut the copper tape shield to 1 ½" beyond the cable jacket cutback. Be careful not to damage the semicon layer.


Wrap the copper tape shield with 4 layers of copper mesh and tie off.

Jacketed Concentric Neutrals

The instructions packed with the kit are for jacketed concentric neutral (JCN) cable.

Lift concentric neutrals or drain wires. Wrap 4 layers of copper mesh onto the semicon. Lay the neutrals back down. Refer to Figure 4.

Cover with 4 additional layers of copper mesh and tie off. Refer to Figure 5.

16.6.40 Aerial Cable Splice Installation – Splice Building and Bonding

- 1. Cut the concentric neutrals / drain wires and apply copper mesh on both sides of the splice to a convenient length as shown on section 36.7.20.
- 2. Connect the ends of each cable with the proper connector sized to the conductors. Compression connectors are to be used with heat shrink, pre-molded and hand taped splices. Shear bolt connectors are approved for use with cold shrink splices only. For compression connectors make sure to allow an expansion gap from the edge of connector and half the length of the connector for each side as indicated in the instructions. Shear bolt connectors are installed butting the insulation, no expansion gap required. Refer to Figure 19

	AERIAL/SPACER CABLE						
ISSUE	PAGE NUMBER		WIII				
7/20	16-48	OVERHEAD CONSTRUCTION STANDARD	ppl				

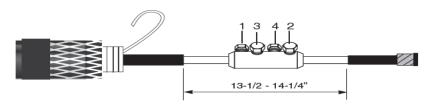


Figure 19

3. Place marking tape on one side of the cable as indicated in the instructions. Position the splice body so that the silicon's edge is lined up with the marking tape Refer to Figure 20.

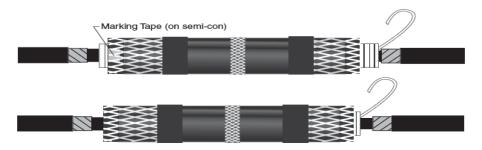


Figure 20

4. Pull the cord counterclockwise while holding the splice body in place. Do not pull the spiral holdout all at once. Slowly pull the spiral holdout on top of the cable then around and underneath until the cord has been completely removed. Refer to Figure 21.

Figure 21

 Roll out the ground sock on each side of the splice. Lay the ground sock over the metallic shield end of the cables and connect with spring clamps included in the splice kit.
 Connect copper braid to system ground. Refer to Figure 22

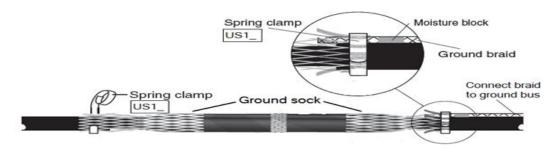


Figure 22

AERIAL/SPACER CABLE					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	ppl underground construction standard		7/20		

As of March 2015, cold shrink splice Raychem /TE models (Std. Item UR51_) come with a tinned copper ground sock that runs the length of the splice and overlaps the cable on both sides. Connections to cable neutrals are made with constant force springs laid over the sock and neutrals at each side with a single #2 copper tinned ground braid on one side that exits the splice. This ground braid is connected to the system neutral / driven ground with a single #2 stranded tinned copper conductor (Std. Item W13F) and C crimps (Std. Item S14_). Instructions are included in the kits.

16.6.50 Constant Spring Force Connection Installation

The **only** acceptable method of braid to shield connection is the following:

- 1. Clean the copper tape or lead where the connection is to be made.
- 2. Hold the braid perpendicular to the cable and make at least one complete wrap around the cable. Refer to Figure 15

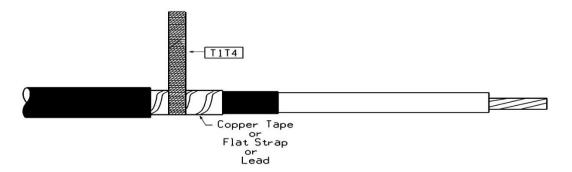


Figure 15

3. Fold the braid over itself at 45 degrees, bringing the long end parallel with the cable. Refer to Figure 16.

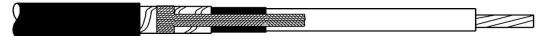


Figure 16

4. Wrap the constant force spring over the braid where it is wrapped around the cable. Use up all of the spring. Refer to Figure 17.

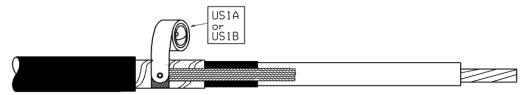


Figure 17

AERIAL/SPACER CABLE					
ISSUE	PAGE NUMBER		MIZZ		
7/20	16-50	OVERHEAD CONSTRUCTION STANDARD	ppl		

5. If necessary, one to two laps of vinyl tape (Std. Item T2W1) may be placed over the spring to hold it in place. Refer to Figure 18.

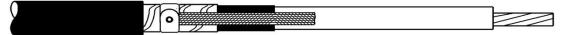


Figure 18

This connection method provides sufficient contact area of the braid to the cable shield and keeps the high resistance spring out of the electrical circuit. The spring is used solely as the mechanical force for the connection.

The traditional method of connecting the braid to the copper tape or lead has been to place one wrap of the constant force spring around the cable, then lay the braid over the spring parallel to the run of cable and then continue wrapping the spring around the cable until all the spring is used up. This connection depends on the spring to carry current from the cable shield to the braid, since the spring is the only material in contact with the shield. **This practice is no longer acceptable as** the spring steel has a relatively high resistance.

AERIAL/SPACER CABLE					
WIII		PAGE NUMBER	ISSUE		
ppl	UNDERGROUND CONSTRUCTION STANDARD	16-51	7/20		

This page is intentionally left blank

	AERIAL/SPACER CABLE					
ISSUE	PAGE NUMBER		SMIZZ			
7/15	16-52	OVERHEAD CONSTRUCTION STANDARD	ppl			

16.6.60 <u>Terminations For Copper Tape Shield</u>

In order to adapt the termination kit for use on cables rated for 5 kV through 25 kV with copper tape shield, an accessory kit will be necessary. This kit contains a solder blocked ground braid and constant force spring. Follow the instructions below for preparation of the cable and installation of the ground braid. The instructions packed with the accessory kit are for a different type of cable.

Select the accessory kit based upon the O.D. over the shield of the cable, as listed in the following table.

Table 3

Shield O.D.	Accessory Kit (Std. Item)
0.82" - 1.63"	UR47T4
1.15" – 2.42"	UR47T5

If the cable has fabric or tape semi-con, this material shall be cut back ¼ - ½ inch more than specified here-in for extruded semi-con layers. The exposed portion of the fabric tape semi-con shall then be wrapped with semi-con tape (Std. Item T1S) applied half lapped, until the specified semi-con cutback is reached. This tape shall then be trimmed square to the cable at the required cutback.

A. Prepare Cable:

- Check to be sure cable size fits within kit range as shown in Table 1 (cover page) of the termination instructions packaged with the kit.
- 2. Prepare cable using dimensions shown in Figure 19. Be sure to allow for the depth of the terminal lug and growth of Aluminum Lug (if used see chart below). If necessary to prevent tape shield from unraveling, TEMPORARILY hold down the edge with a single wrap of vinyl electrical tape.

Table 4

Aluminum Cable Size	#2 - 350 kcMil	400 – 650 kcMil	750 – 1000 kcMil
Growth Allowance	0.25"	0.50"	0.75"

	AERIAL/SPACER CABLE		
SMIZZ		PAGE NUMBER	ISSUE
laa	UNDERGROUND CONSTRUCTION STANDARD	16-53	7/15

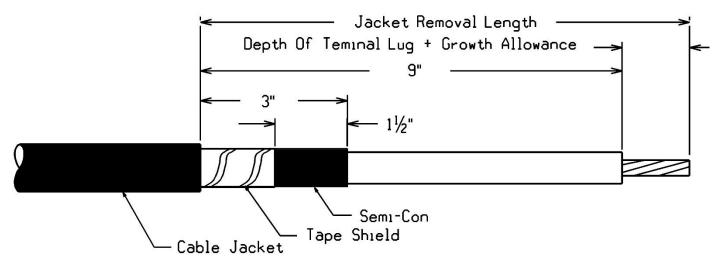
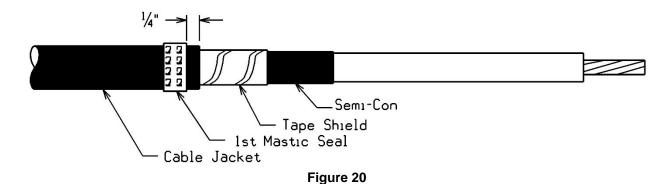



Figure 19

- B. Install Ground Braid:
 - 1. Select one of the mastic strips from the termination kit and remove the white release liners. Using light tension, apply a single wrap of mastic around the cable jacket ¼ inch from the cut edge. Cut off excess mastic. See Figure 20.

2. Position pre-formed "U" shaped ground braid over tape shield directly adjacent to the cable jacket cut edge. The long tails should extend over the cable jacket, with the solder block of one tail positioned over the mastic. Secure this tail to the cable jacket with a vinyl tape marker, located 4½ inches from the edge of the cable semi-con. See Figure 21.

Note: Position this vinyl tape with care as it will serve as the marker for final termination location on the cable.

AERIAL/SPACER CABLE					
ISSUE	PAGE NUMBER		WIII		
7/15	16-54	OVERHEAD CONSTRUCTION STANDARD	ppl		

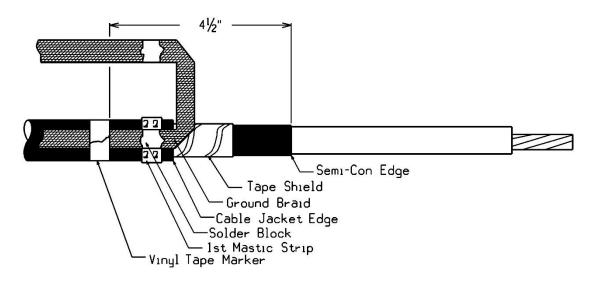


Figure 21

3. Wrap the ground braid around the tape shield and secure with a constant force spring. Using the second mastic strip from the termination kit, remove the liners and wrap mastic over the solder blocks and the first mastic strip. If the solder blocks overlap each other, mastic must be applied between the solder blocks as well as over them. See Figure 22.

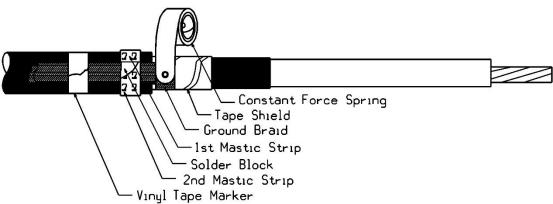


Figure 22

4. Wrap two half-lapped layers of vinyl tape around the mastic seal, constant force spring and exposed metallic shield. Do not allow the vinyl tape to lap onto the cable semi-con. **Note:** If vinyl tape was used to hold the copper tape in place in Step 2, remove it just prior to applying this tape. See Figure 23.

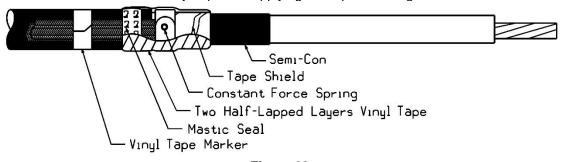


Figure 23

AERIAL/SPACER CABLE					
SMIZZ.		PAGE NUMBER	ISSUE		
ppl	UNDERGROUND CONSTRUCTION STANDARD	16-55	7/15		

PHYSICAL	PHYSICAL PROPERTIES		LOADING PROPERTIES		ELECTRICAL PROPERTIES		
R.B.S.	*16890 lbs.	TRANSVERSE	2.5251 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1145 sq. in.	VERTICAL	7.307 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0526 Ω / 1000'	TOTAL	8.031 Lb/Ft	359	NORMAL	577	
R. (@ 75°C)	Ω / 1000'	101AL 8.031 LD/Ft	446	EMERGENCY	626		
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	19.06°				
MESSENGER DIAMETER	0.4330"			•			
COMPLETE DIAMETER	2.5655"						
SYSTEM WEIGHT	3,834 lbs / 1000'						

	FINAL SAG TABLE							
		LOADING (UNLOADED CONDITIONS)						
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END								
SPAN (FEET)								
50	2.76	3.12	3.36	3.84	4.44	5.28	5.76	6.24
75	6.24	6.96	7.68	8.52	9.60	11.04	11.76	12.48
100	11.40	12.48	13.68	15.00	16.44	18.36	19.32	20.28
125	18.12	19.80	21.24	23.04	24.84	27.24	28.44	29.64
150	26.64	28.80	30.60	32.76	34.92	37.68	39.00	40.44
175	38.64	41.16	43.44	45.84	48.36	51.48	52.92	54.36
200	53.76	56.64	59.16	61.80	64.44	67.80	69.48	71.04
225	71.52	74.64	77.40	80.16	83.04	86.52	88.20	89.88
250	91.92	95.16	98.04	100.92	103.92	107.52	109.20	110.88
275	114.72	118.08	120.96	123.96	126.96	130.80	132.48	134.28
300	139.92	143.28	146.28	149.40	152.40	156.24	158.04	159.84

FINAL SAG TABLE						
	LOADIN	OITIONS)	TENSION (LBS.)			
TEMP. °F	0	32	60	0		
TEMP. °C	-18	0	15	-18		
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE		
DEAD END SPAN (FEET)						
50	5.28	5.40	3.72	5647		
75	11.40	11.52	8.28	5931		
100	19.32	19.44	14.64	6222		
125	29.04	29.04	22.56	6496		
150	40.20	40.20	32.28	6745		
175	54.36	54.24	45.24	*6800		
200	70.92	70.80	53.76	*6800		
225	89.88	89.76	79.32	*6800		
250	110.88	110.76	99.96	*6800		
275	134.28	134.16	123.00	*6800		
300	159.84	159.72	148.32	*6800		
	* No	te: Design Specificat	ion Constraint			

4/0 AW	AERIAL CABLE SAG / TENSION DATA 4/0 AWG CU, 19 STRAND, COPPER TAPE SHIELD, COPPER BINDING TAPE, PLAC					
ISSUE	PAGE NUMBER		SMIZE			
7/15	16-56	OVERHEAD CONSTRUCTION STANDARD	ppl			

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	*16890 lbs.	TRANSVERSE	1.409 Lb/Ft	SUMMER	MAXIMUM	WINTER	
C.S.A.	*0.1145 sq. in.	VERTICAL	7.130 Lb/Ft	(37.7°C)	AMPACITY	(10°C)	
R. (@ 25°C)	0.0526 Ω / 1000'	TOTAL	7.568 Lb/Ft	333	NORMAL	547	
R. (@ 75°C)	Ω / 1000'	IOIAL	7.300 LD/Ft	416	EMERGENCY	593	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	11.12°				
MESSENGER DIAMETER	0.4330"			•			
COMPLETE DIAMETER	3.228"						
WEIGHT	5,010 lbs / 1000'						

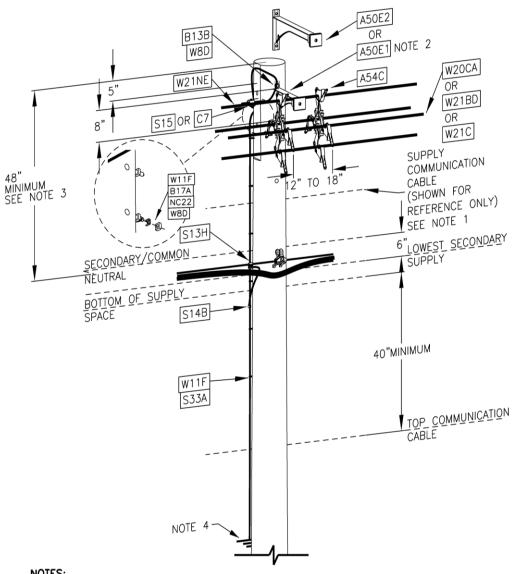
INITIAL SAG TABLE																
		RULING SPAN (FEET)														
		12	25			150 17			75 200							
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	4894	4596	4353	4111	4783	4536	4336	4136	4688	4485	4320	4155	4610	4442	4306	4169
ACTUAL SPAN (FEET)																
50	3.8	4.1	4.3	4.6	3.9	4.1	4.3	4.6	4.0	4.2	4.4	4.5	4.1	4.2	4.4	4.5
60	5.5	5.9	6.2	6.6	5.7	6.0	6.3	6.6	5.8	6.1	6.3	6.5	5.9	6.1	6.3	6.5
70	7.5	8.0	8.5	9.0	7.7	8.1	8.5	8.9	7.9	8.2	8.6	8.9	8.0	8.3	8.6	8.9
80	9.8	10.5	11.1	11.7	10.1	10.6	11.1	11.7	10.3	10.8	11.2	11.6	10.5	10.9	11.2	11.6
90	12.4	13.3	14.0	14.8	12.7	13.4	14.1	14.8	13.0	13.6	14.2	14.7	13.3	13.8	14.2	14.7
100	15.4	16.4	17.3	18.3	15.7	16.6	17.4	18.2	16.1	16.8	17.5	18.1	16.4	17.0	17.5	18.1
110	18.6	19.8	20.9	22.1	19.0	20.1	21.0	22.1	19.4	20.3	21.1	22.0	19.8	20.5	21.2	21.9
120	22.1	23.6	24.9	26.3	22.7	23.9	25.0	26.3	23.1	24.2	25.2	26.1	23.6	24.5	25.2	26.1
130	26.0	27.6	29.2	30.9	26.6	28.0	29.4	30.8	27.2	28.4	29.5	30.7	27.7	28.7	29.6	30.6
140	30.1	32.1	33.9	35.8	30.8	32.5	34.1	35.8	31.5	32.9	34.3	35.6	32.1	33.3	34.3	35.5
150	34.6	36.8	38.9	41.1	35.4	37.3	39.1	41.0	36.1	37.8	39.3	40.8	36.9	38.2	39.4	40.8
160	39.3	41.9	44.2	46.8	40.3	42.5	44.5	46.7	41.1	43.0	44.7	46.4	41.9	43.5	44.9	46.4
170	44.4	47.3	49.9	52.8	45.5	47.9	50.2	52.7	46.4	48.6	50.5	52.4	47.3	49.1	50.6	52.4
180	49.8	53.0	56.0	59.2	51.0	53.7	56.3	59.1	52.1	54.5	56.6	58.8	53.1	55.0	56.8	58.7
190	55.4	59.1	62.4	66.0	56.8	59.9	62.8	65.8	58.0	60.7	63.1	65.5	59.1	61.3	63.2	65.4
200	61.4	65.4	69.1	73.1	62.9	66.3	69.5	73.0	64.3	67.2	69.9	72.6	65.5	67.9	70.1	72.5
210	67.7	72.1	76.2	80.6	69.4	73.1	76.7	80.4	70.8	74.1	77.1	80.0	72.2	74.9	77.3	79.9
220	74.3	79.2	83.6	88.5	76.1	80.3	84.2	88.3	77.8	81.4	84.6	87.8	79.3	82.2	84.8	87.7
230	81.3	86.5	91.4	96.7	83.2	87.7	92.0	96.5	85.0	88.9	92.4	96.0	86.7	89.8	92.7	95.9
240	88.5	94.2	99.5	105.3	90.6	95.5	100.1	105.1	92.5	96.8	100.7	104.5	94.3	97.8	100.9	104.4
250	96.0	102.2	108.0	114.2	98.3	103.7	108.7	114.0	100.4	105.1	109.2	113.4	102.4	106.1	109.5	113.3
260	103.8		116.8	123.6	106.4	112.1	117.5		108.6	113.6	118.1		110.7	114.8	118.4	122.5
270	112.0		126.0		114.7		126.7		117.1		127.4			123.8	127.7	132.1
280	120.4	128.2	135.5	143.3	123.3	130.0	136.3	143.0	126.0	131.8	137.0	142.2	128.4	133.1	137.4	142.1
290	-		145.3		132.3		146.2		135.1		147.0			142.8	147.3	152.4
300	138.2	147.2	155.5	164.5	141.6	149.3	156.5	164.2	144.6	151.3	157.3	163.3	147.4	152.8	157.7	163.1

AERIAL CABLE SAG / TENSION DATA						
4/0 AWG CU, 19 STRAND, JACKETED CONCENTRIC NEUTRAL, PLAC						
SMIZZ		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	16-57	7/15			

	FINAL SAG TABLE							
			LOADIN	G (UNLOA	DED COND	OITIONS)		
TEMP. °F	0	32	60	90	120	158	176	194
TEMP. °C	-18	0	15	32	50	70	80	90
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded
DEAD END SPAN (FEET)								
50	3.6	4.1	4.4	5.0	5.6	6.4	7.1	7.6
75	8.4	9.2	10.0	11.0	12.1	13.3	14.3	15.0
100	15.2	16.6	17.8	19.2	20.6	22.2	23.5	24.5
125	24.5	26.3	27.8	29.6	31.4	33.3	34.7	35.8
150	36.1	38.3	40.2	42.1	44.2	46.3	48.0	49.2
175	50.2	52.6	54.7	57.0	59.2	61.5	63.3	64.7
200	66.6	69.2	71.5	73.9	76.3	78.8	80.8	82.2
225	85.4	88.2	90.6	93.2	95.8	98.3	100.4	101.9
250	106.7	109.6	112.1	114.7	117.4	120.1	122.2	123.7
275	130.2	133.2	135.8	138.6	141.2	144.0	146.2	147.8
300	156.1	159.2	161.9	164.8	167.5	170.4	172.6	174.2

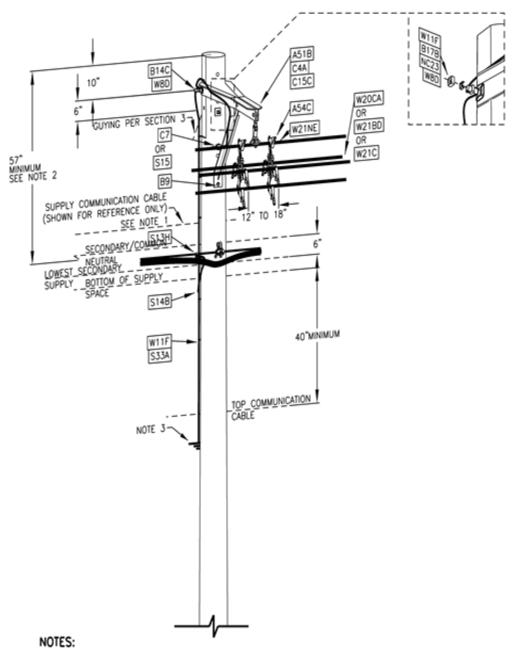
FINAL SAG TABLE						
	LOADING	(LOADED COND	OITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0		
TEMP. °C	-18	0	15	-18		
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE		
DEAD END SPAN (FEET)						
50	5.0	4.9	4.2	5431		
75	11.2	10.9	9.5	5523		
100	19.4	19.2	17.0	5615		
125	30.0	29.6	26.9	5698		
150	42.7	42.4	39.0	5767		
175	57.6	57.1	53.5	5825		
200	74.6	74.3	70.2	5872		
225	94.0	93.5	89.3	5910		
250	115.7	115.1	110.6	5941		
275	139.6	139.0	134.3	5967		
300	165.7	165.2	160.3	5988		
* Note: Design Specification Constraint						

AERIAL CABLE SAG / TENSION DATA
4/0 AWG CU, 19 STRAND, COPPER TAPE SHIELD, COPPER BINDING TAPE, PLAC


ISSUE	PAGE NUMBER
7/15	16-58

Spacer Cable Construction Drawings 15 kV & Below Grounded Distribution Systems

SPACER CABLE - 15KV & BELOW GROUNDED DISTRIBUTION SYSTEMS


NOTES:

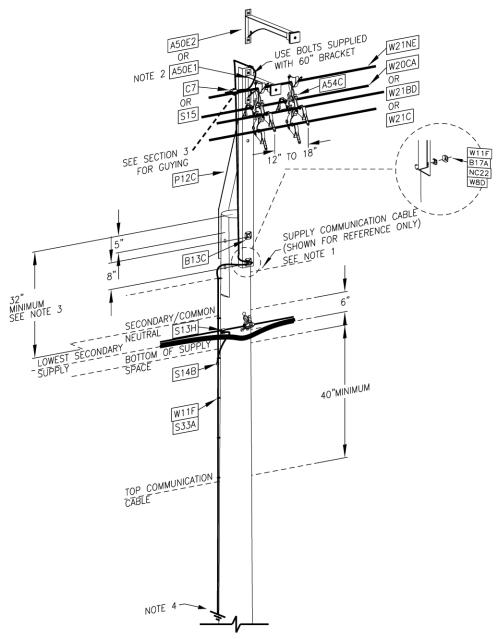
- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
- 2. FOR REFERENCE PURPOSES, 14" TANGENT BRACKET DESIGN DEPICTED IN INSTALLATION ABOVE (STANDARD ITEM A50E1).
- 3. MINIMUM DIMENSION SHOWN FOR 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.
- 4. GROUNDING PER SECTION 13.

Designer	Drawing	Date
MPR	od16101	6/30/20

15KV STRAIGHT LINE POLE WITH 14" OR 24" TANGENT MAX. LINE ANGLE 6°				
ISSUE	PAGE NUMBER		WIN	
7/20	16-101	OVERHEAD CONSTRUCTION STANDARD	ppl	

© 2022 PPL Corporation. All rights reserved.

- POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
 SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLE(S). IN THE SUPPLY SPACE."
- MINIMUM DIMENSION BASED ON 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.
- 3. GROUNDING PER SECTION 13.

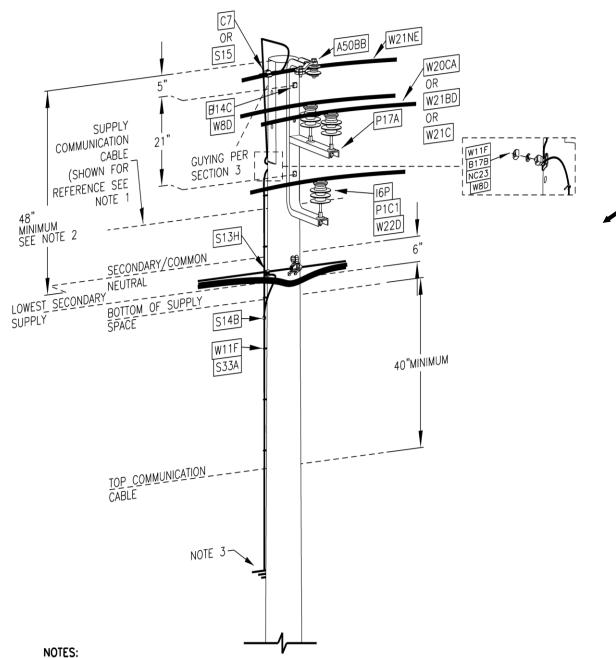

Designer	Drawing	Dote
MPR	od16102	6/30/20

SPACER CABLE - 15KV & BELOW GROUNDED DISTRIBUTION SYSTEMS

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 16-103 7/20

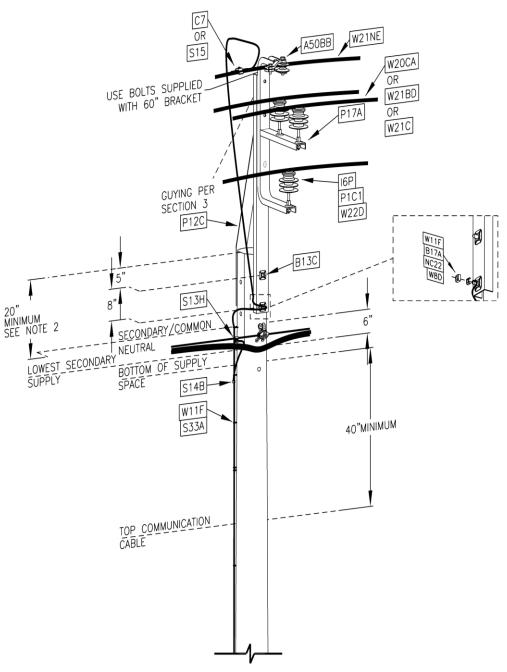
NOTES:


- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 2. FOR REFERENCE PURPOSES, 14" TANGENT BRACKET DESIGN DEPICTED IN INSTALLATION ABOVE (STD ITEM A50E1).
- 3. MINIMUM DIMENSION BASED ON 1/0 SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.
- 4. GROUNDING PER SECTION 13.

Designer	Drowing	Date
MPR	od16103	6/30/20

15KV STRAIGHT LINE POLE WTIH 14" OR 24" TANGENT ON POLE TOP EXTENSION MAX. LINE ANGLE 6° ISSUE PAGE NUMBER

7/20 16-103 Business Use

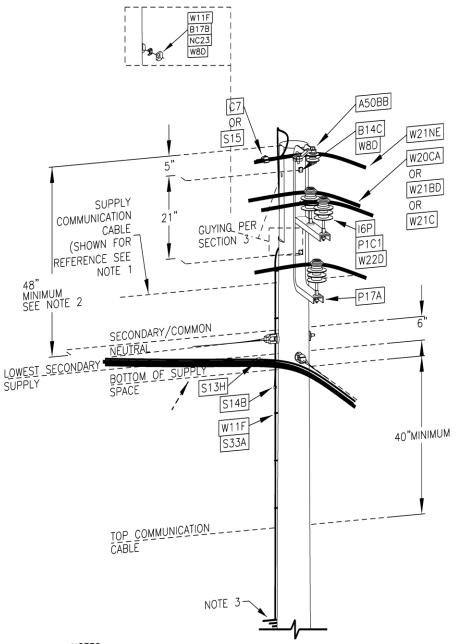


- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 2. MINIMUM DIMENSION BASED ON 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.
- 3. GROUNDING PER SECTION 13.

Designer	Drawing	Date
MPR	od16106	6/30/20

	15KV LINE ANGLE POLE WITH E – BRACKET LINE ANGLES 7° - 30°			
	WIIV		PAGE NUMBER	ISSUE
U	se ppl	OVERHEAD CONSTRUCTION STANDARD	16-106	7/20

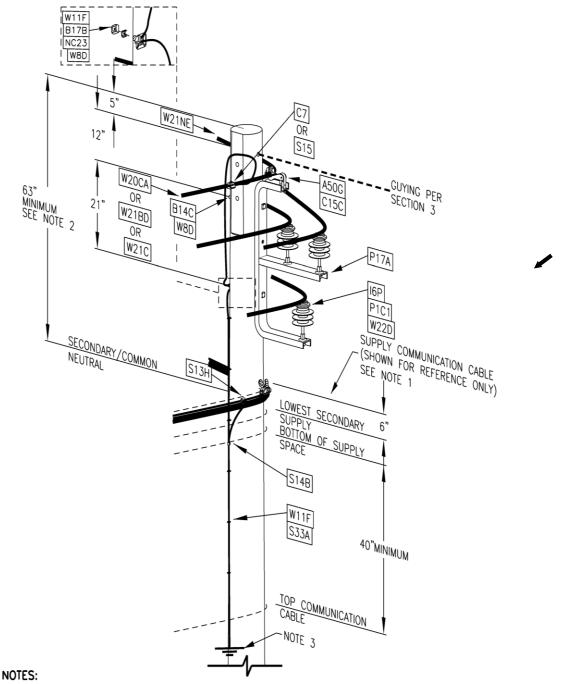
0-15 kV (Y) = Wire Size



NOTES:

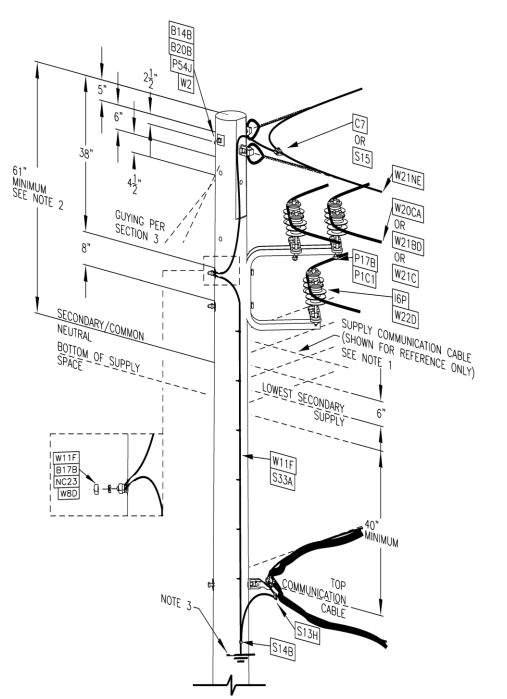
- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 2. MINIMUM DIMENSION BASED ON 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.
- 3. GROUNDING PER SECTION 13.

Designer	Drawing	Date
MPR	od16107	6/30/20


15KV LINE ANGLE POLE WITH E – BRACKET ON POLE TOP EXTENSION LINE ANGLES 7° - 30° ISSUE PAGE NUMBER OVERHEAD CONSTRUCTION STANDARD Ppi

- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 2. MINIMUM DIMENSION BASED ON 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.
- 3. GROUNDING PER SECTION 13.

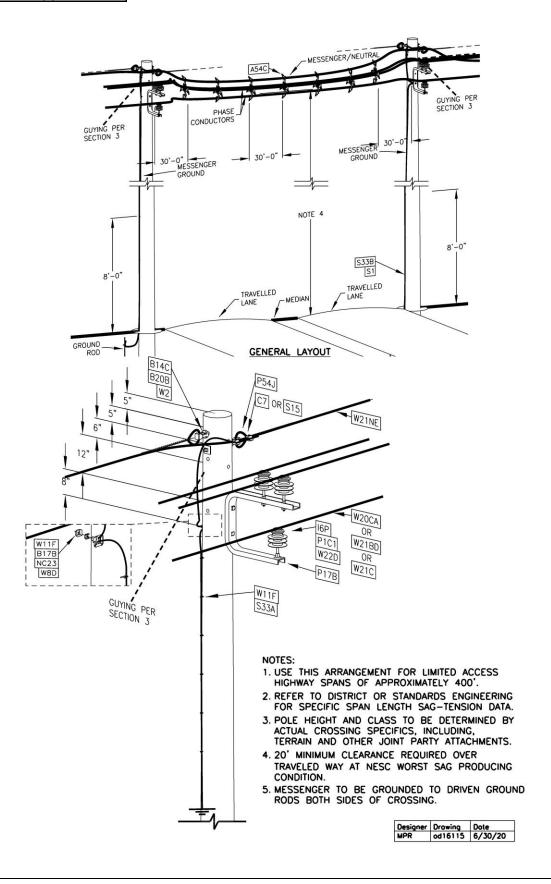
Designer	Drawing	Date
	od16108	6/30/20


15KV LINE ANGLE POLE WITH E - BRACKET - HEAVY CORNER LINE ANGLES 31° - 60° PAGE NUMBER ISSUE ppl **OVERHEAD CONSTRUCTION STANDARD** 16-108 7/20

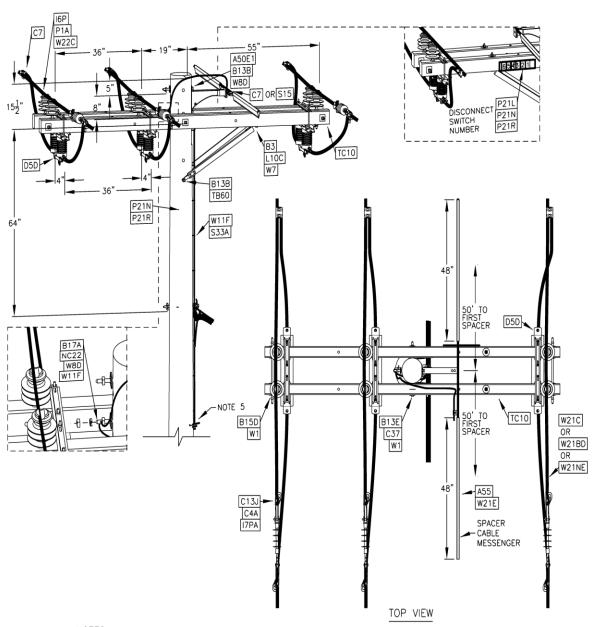
- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 2. MINIMUM DIMENSION BASED ON 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.
- 3. GROUNDING PER SECTION 13.

Designer	Drowing	Date
MPR	od16109	6/30/20

15KV LINE ANGLE POLE WITH E – BRACKET – 45° PULL INTO POLE			
ISSUE	PAGE NUMBER		WIN
7/15	16-109	OVERHEAD CONSTRUCTION STANDARD	ppl

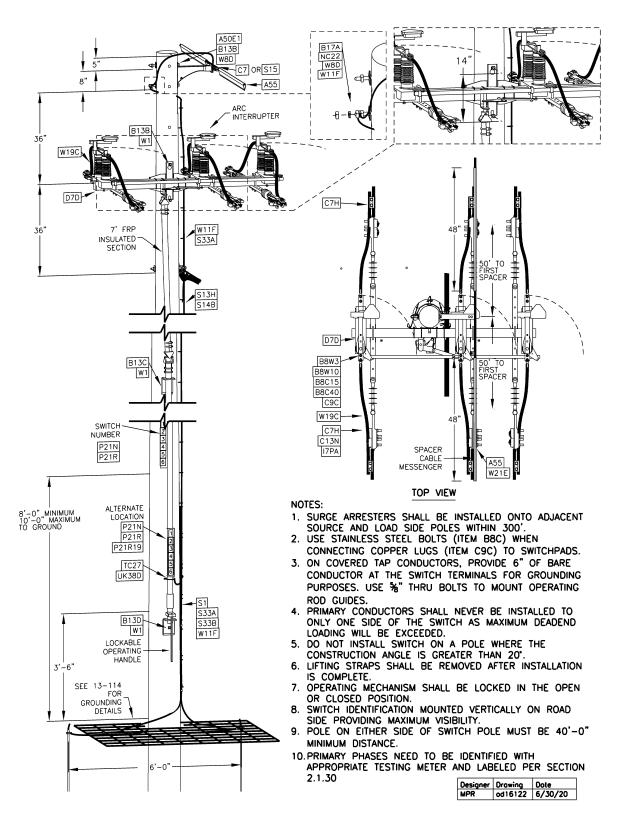

- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 2. MINIMUM DIMENSION BASED ON 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.
- 3. GROUNDING PER SECTION 13.

C	Designer	Drawing	Dote
N	MPR	od16114	6/30/20


15KV LINE POLE WITH C - BRACKET - LINE ANGLES 61°-90°

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 16-114

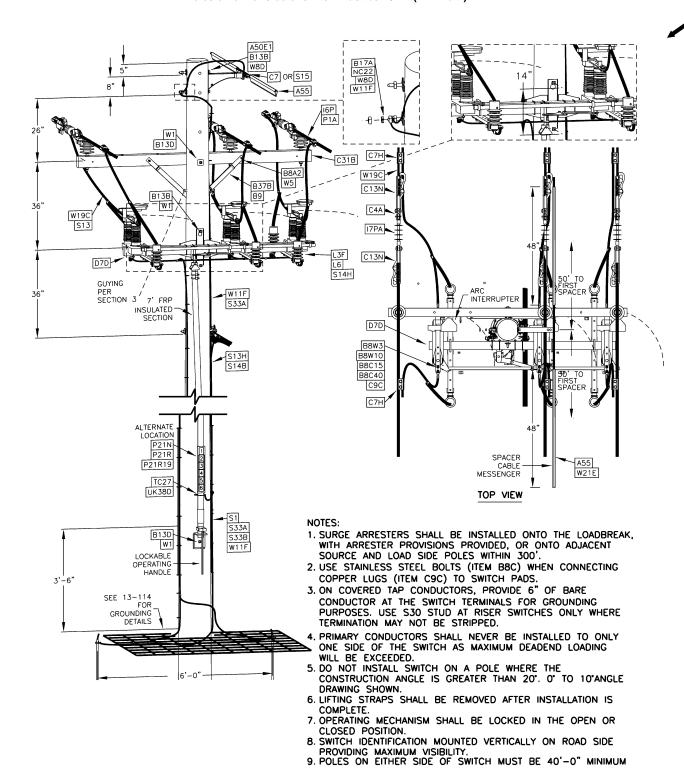
15KV LINE POLE WITH C – BRACKET – HIGHWAY CROSSING POLE			
ISSUE	PAGE NUMBER		WW
7/20	16-115	OVERHEAD CONSTRUCTION STANDARD	ppl



- 1. WHEN CONNECTING ALUMINUM LUG TO SWITCH PAD, APPLY CONDUCTIVE-GRIT INHIBITING GREASE TO ELECTRICAL SURFACES AND USE STAINLESS STEEL BOLTS.
- 2. STANDARD PRACTICE IS TO INSTALL SWITCH SO THAT BLADE OPENS AWAY FROM SOURCE AND IS DE- ENERGIZED WHEN OPEN.
- 3. SWITCH IDENTIFICATION MOUNTED VERTICALLY ON ROAD SIDE PROVIDING MAXIMUM VISIBILITY.
- 4. SURGE ARRESTERS SHALL BE INSTALLED ONTO ADJACENT SOURCE AND LOAD SIDE POLES WITHIN 300'.
- 5. GROUNDING PER SECTION 13.
- 6. REFER TO SECTION 2.1.30 FOR PHASE AND FEEDER NUMBERING REQUIREMENT

Designer	Drawing	Dote
MPR	od16118	6/13/20

Pole on either side of switch pole must be 40 Ft. Minimum

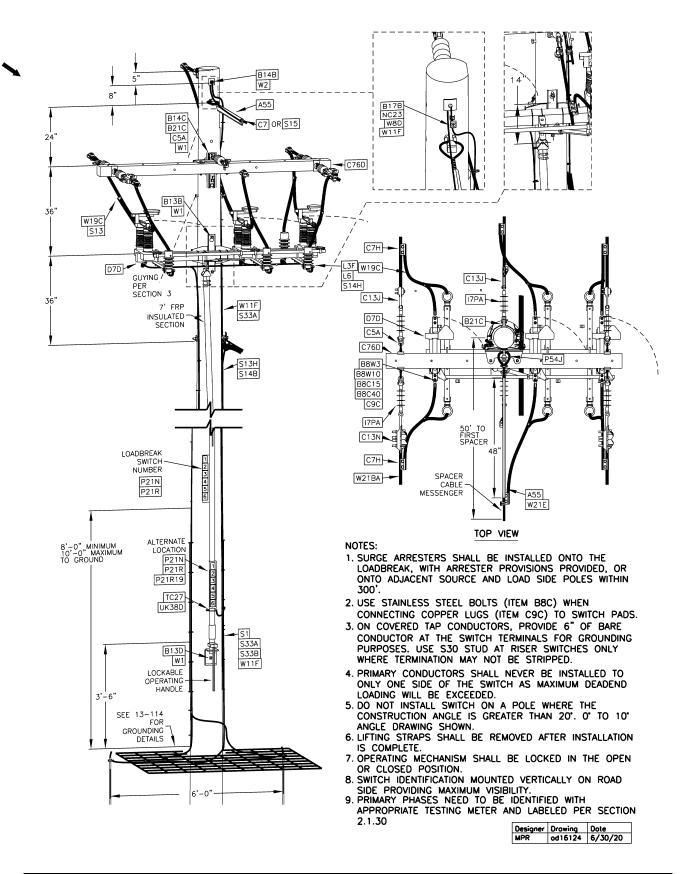

15KV PREASSEMBLED LOADBREAK SWITCH
CONDUCTOR DEADEND ON SWITCH

7/20 PAGE NUMBER
7/20 16-122

OVERHEAD CONSTRUCTION STANDARD

Poles on either side of switch must be 40 Ft. (Minimum)

15KV PREASSEMBLED LOADBREAK SWITCH

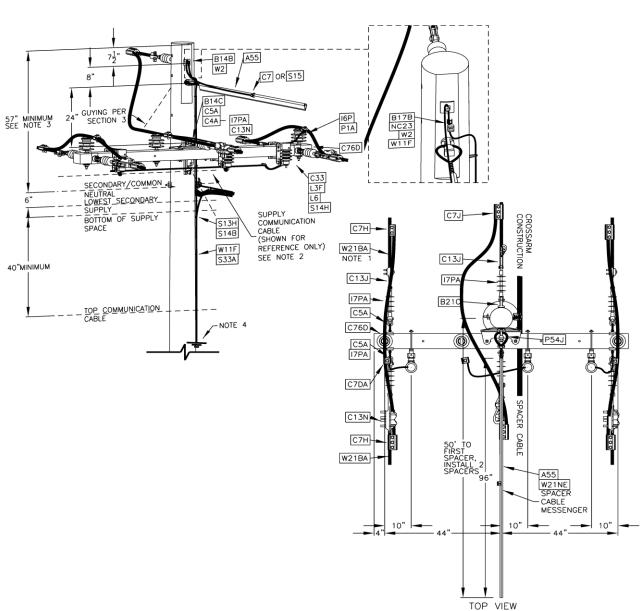

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 16-123 7/20

Designer Drowing Date MPR od16123 6/30/20

DISTANCE.

10. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING

METER AND LABELED PER SECTION 2.1.30



15KV PREASSEMBLED LOADBREAK SWITCH - SPACER CABLE TO CROSSARM
CONSTRUCTION DEADEND – HORIZONTAL MOUNTED

ISSUE	PAGE NUMBER
7/20	16-124

OVERHEAD CONSTRUCTION STANDARD

- 1. DRAWING AND MATERIAL LIST DEPICT A USE OF 477 BARE ALUMINUM CONDUCTOR.
 2. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S), SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 3. MINIMUM DIMENSION BASED ON 40/40 JOINTLY OWNED POLE.
- 4. GROUNDING PER SECTION 13.


Designer		Date
MPR	od16126	1/15/21

15KV LINE POLE - DEADEND - SPACER CABLE TO CROSSARM CONSTRUCTION

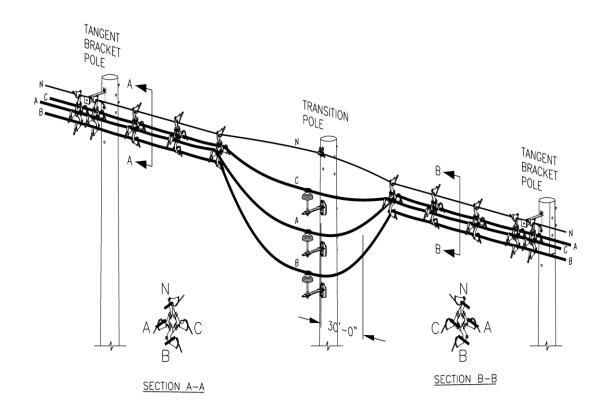
OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 16-126 7/21

0-15 kV (Y) = Wire Size

NOTES:

- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S), SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 2. MINIMUM DIMENSION BASED ON 40/40 JOINTLY OWNED POLE.
- 3. GROUNDING PER SECTION 13.

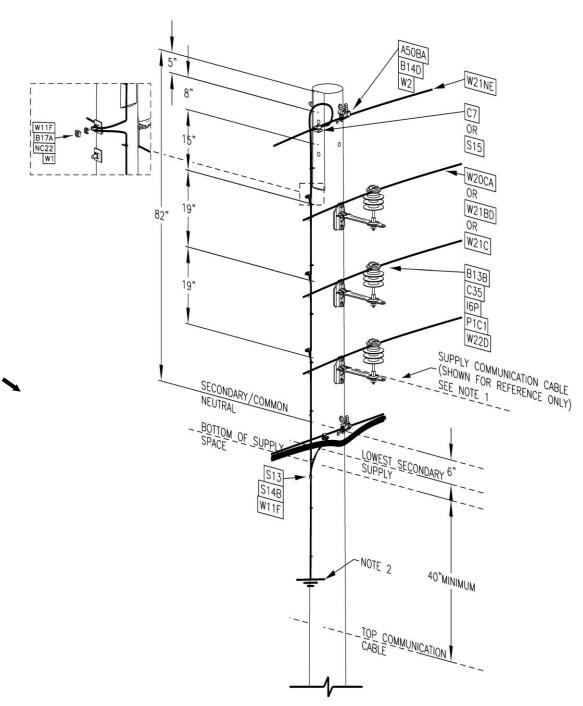
0	O	0-1-
Designer	Drowing	Dote
MOD	od16127	1/15/21
MPK	001012/	1/13/21


15KV LINE POLE DEADEND – END OF LINE			
ISSUE	PAGE NUMBER		WWZ
7/21	16-127	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 16.00.003

APPLICATION – Use when field conditions do not readily allow for incoming and outgoing spacer cable systems to phase. Phase identification by pole stenciling of incoming and outgoing systems is recommended. The typical phasing diagram is shown below. Construction details of Transition Pole are shown on the Page 16-131.

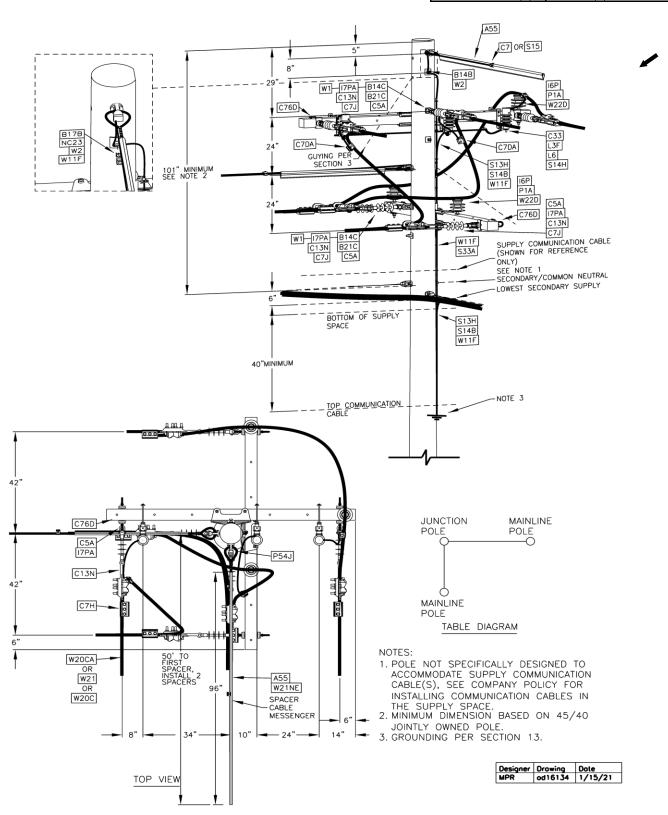
TYPICAL PHASING DIAGRAM

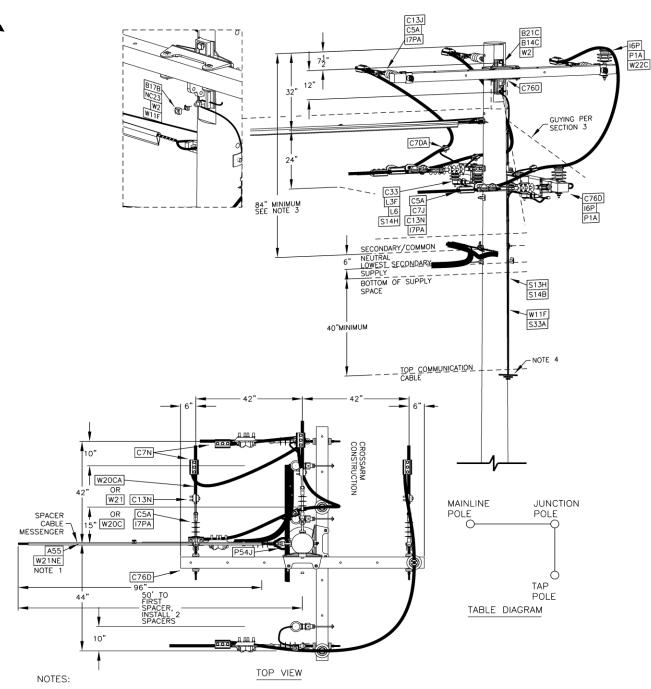

GENERAL ARRANGEMENT

NOTES

1. USE THIS ARRANGEMENT WHEN FIELD CONDITIONS DO NOT READILY ALLOW FOR INCOMING AND OUTGOING SPACER CABLE SYSTEMS TO PHASE. PHASE IDENTIFICATION BY POLE STENCILING OF INCOMING AND OUTGOING SYSTEMS IS RECOMMENDED. THE TYPICAL PHASING DIAGRAM IS SHOWN BELOW. CONSTRUCTION DETAILS OF TRANSITION POLE ARE SHOWN ON THE PAGE 16-131.

Designer	Drawing	Date
MPR	od16130	6/30/20


	LINE POLE TRANSPOSITION		I	
	SMIZZ		PAGE NUMBER	ISSUE
Use	ppl	OVERHEAD CONSTRUCTION STANDARD	16-130	7/20

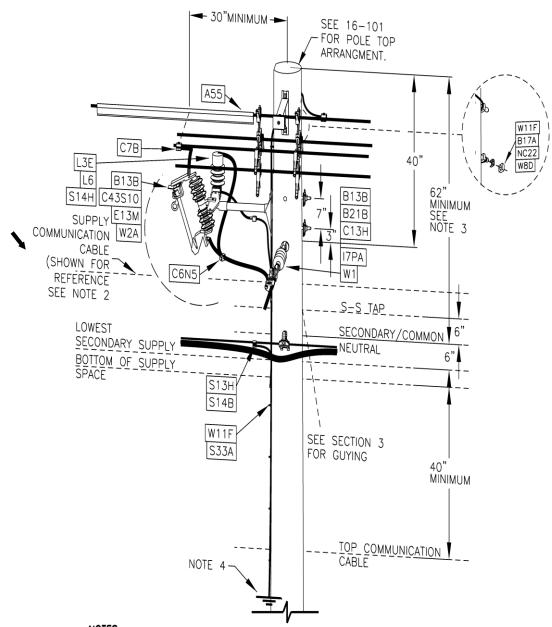

- 1. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE".
- 2. GROUNDING PER SECTION 13.

Designer	Drawing	Date
MPR	od16131	6/30/20

15KV LINE POLE TRANSPOSITION – LINE ANGLES 1°- 45°			
ISSUE	PAGE NUMBER		SMIZZ
7/20	16-131	OVERHEAD CONSTRUCTION STANDARD	ppl

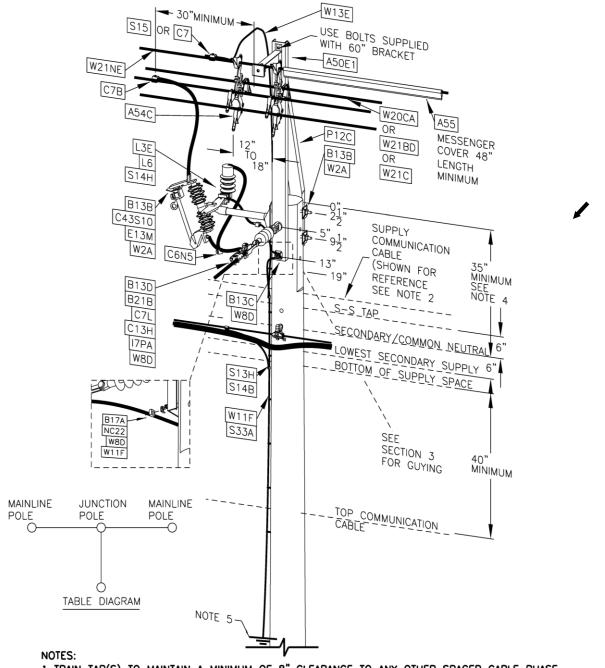
15KV JUNCTION POLE - TWO WAY BUCKARM SPACER CABLE DE TO SPACER CABLE DE - LINE ANGLES 61° - 120° PAGE NUMBER ISSUE ppl

- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 477 BARE ALUMINUM CONDUCTOR.
- 2. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S), SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 3. MINIMUM DIMENSION BASED ON 45/40 JOINTLY OWNED POLE.
- 4. GROUNDING PER SECTION 13.


	Designer	Drawing	Date
I	MPR	od16135	1/15/21

15KV JUNCTION POLE – TWO WAY – CROSSARM MAINLINE DE TO SPACER
CABLE TAP DE – LINE ANGLES 61° - 90°

ISSUE	PAGE NUMBER	
7/21	16-135	


- 1. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8' CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12", 35KV).
- 2. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 3. MINIMUM DIMENSION BASED ON A 40/40 JOINTLY OWNED POLE.
- 4. GROUNDING PER SECTION 13.

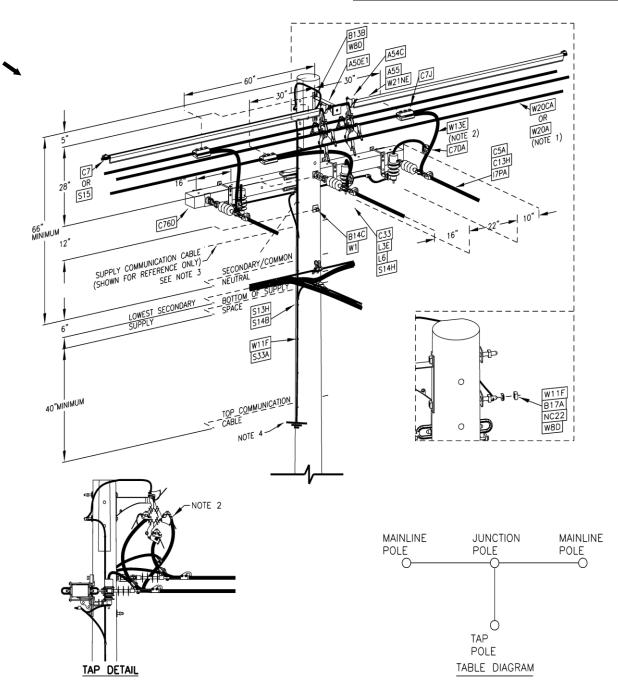
Designer	Drawing	Date	
MPR	od16138	6/30/20	

15KV JUNCTION POLE THREE WAY 14" TANGENT BRACKET TO SINGLE PHASE TAP PAGE NUMBER ISSUE ppl **OVERHEAD CONSTRUCTION STANDARD** 16-138 7/20

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 16.00.003

- 1. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 2. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 3. EXISTING 35' POLE OLD AGREEMENTS AND SETTING DEPTH.
- 4. MINIMUM DIMENSION BASED ON A 40/40 JOINTLY OWNED POLE.
- 5. GROUNDING PER SECTION 13.


Designer	Drawing	Date
MPR	od16139	6/30/20

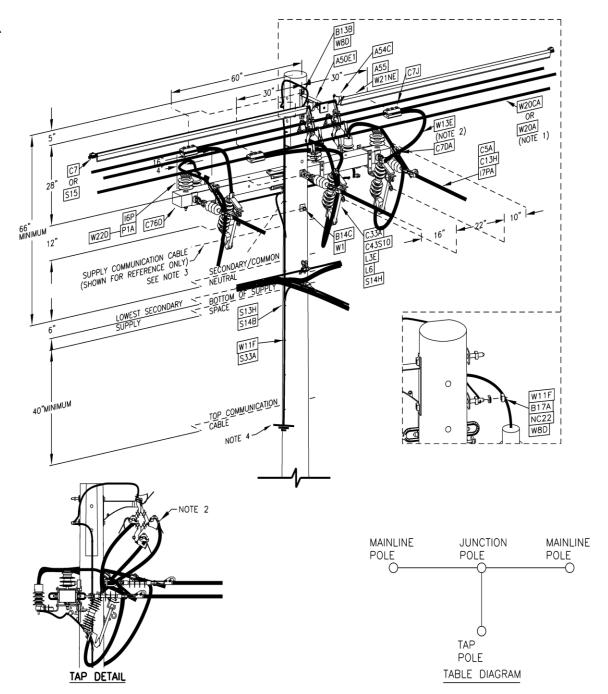
15KV JUNCTION POLE – THREE WAY SPACER CABLE MAINLINE USING POLE TOP EXTENSION TO SINGLE PHASE TAP ISSUE PAGE NUMBER OVERHEAD CONSTRUCTION STANDARD OVERHEAD CONSTRUCTION STANDARD

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 16.00.003

Supersedes 7/15 Issue - Updated 3D drawing

NOTES:

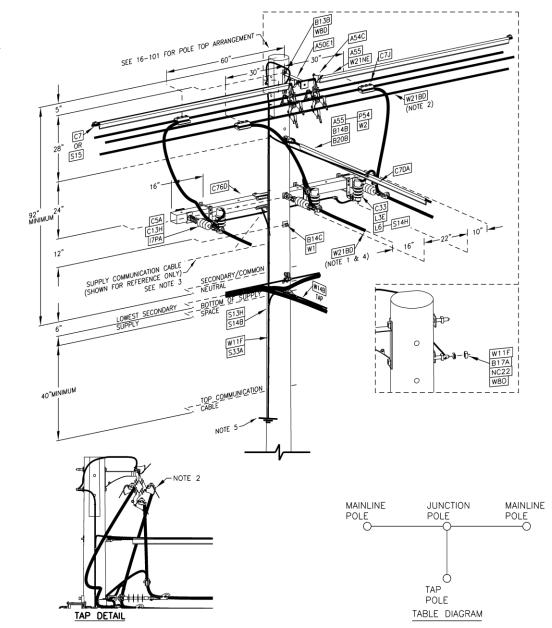

- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 477 BARE ALUMINUM CONDUCTOR.
- TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 4. GROUND PER SECTION 13.

Designer	Drawing	Date
MPR	od16142	6/30/20

15KV JUNCTION POLE – THREE WAY – SPACER CABLE MAINLINE WITH TANGENT BRACKET TO CROSSARM CONSTRUCTION (UNFUSED)

OVERHEAD PAGE NUMBER ISSUE

CONSTRUCTION STANDARD 16-142 7/20

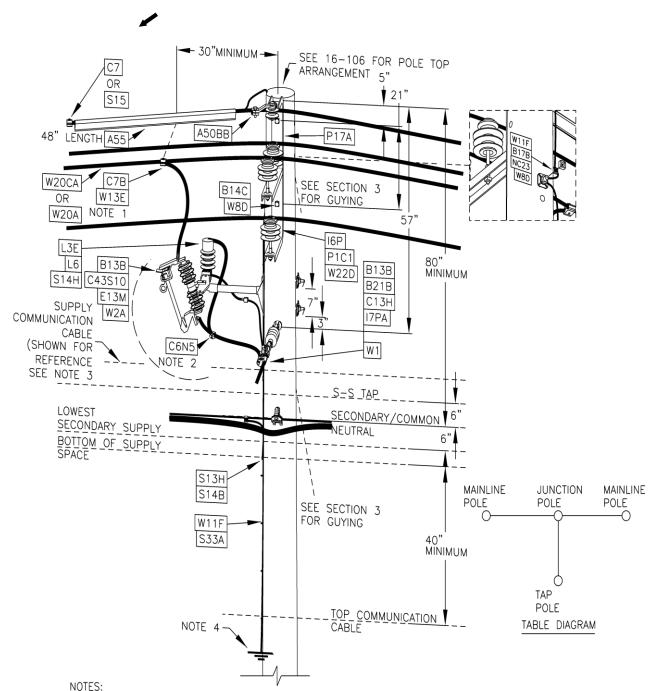


- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 1/0 (6201) BARE AZUZA OR TREE WIRE.
- 2. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 4. GROUNDING PER SECTION 13.

Designer	Drawing	Date
	od16143	

15KV JUNCTION POLE – THREE WAY - SPACER CABLE MAINLINE WITH TANGENT BRACKET TO CROSSARM CONSTRUCTION (FUSED)

ISSUE	PAGE NUMBER		SMW2
7/20	16-143	OVERHEAD CONSTRUCTION STANDARD	ppl



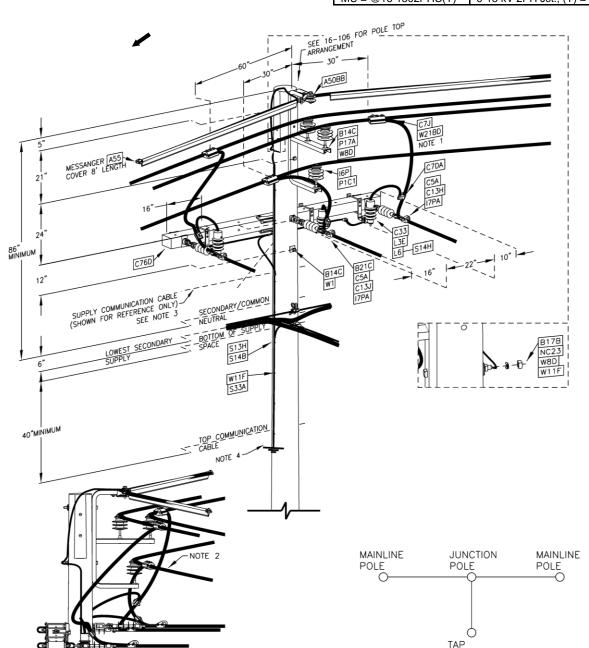
- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 477 SPACER CABLE.
- 2. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 4. FIRST SPACER LOCATION 50' FROM CROSSARM. INSTALL 2 SPACERS.
- 5. GROUNDING PER SECTION 13.

Designer	Drawing	Date
MPR	od16146	1/15/21

15KV JUNCTION POLE THREE WAY – SPACER CABLE MAINLINE WITH TANGENT BRACKET TO SPACER CABLE TAP (UNFUSED)

- 1. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8' CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12", 35KV).
- 2. TRAIN UNDER BRACKET BODY AND CONNECT TO POLE DOWN-GROUND.
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 4. GROUNDING PER SECTION 13.

Designer	Drawing	Date
MPR	od16148	6/30/20


	15KV JUNCTION POLE – THREE WAY E – BRACKET (1° – 60°) TO SINGLE PHASE TAP		
ISSUE	PAGE NUMBER		WIII
7/20	16-148	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved.

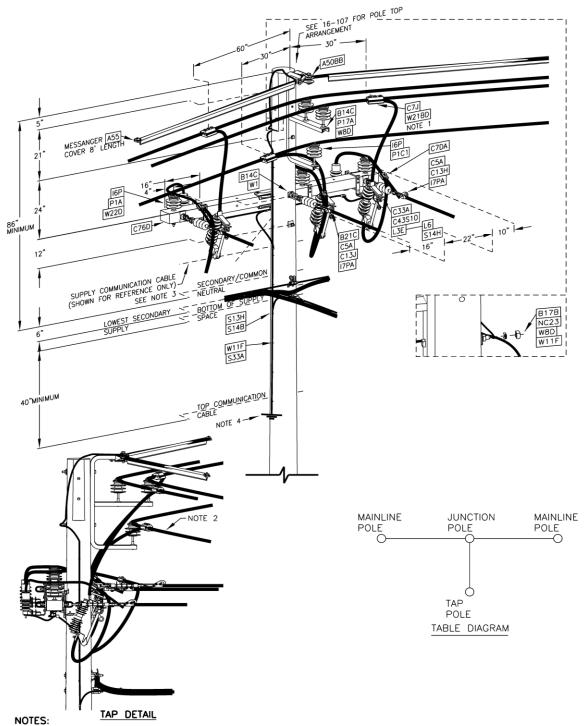
Doc. # ST. 16.00.003

MU = @16-150C(Y)MU = @16-1502PHC(Y) 0-15 kV (Y) = Wire Size 0-15 kV 2PH Jct., (Y) = Wire Size

Supersedes 7/15 Issue - Updated drawing to 3D

- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 477 BARE ALUMINUM CONDUCTOR.
- 2. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 4. GROUNDING PER SECTION 13.

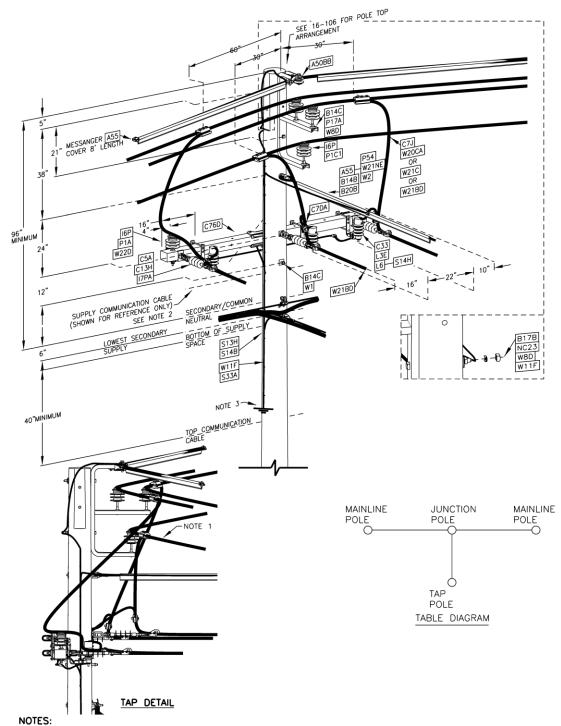
TAP DETAIL


Designer	Drawing	Date
MPR	od16150	6/30/20

POLE TABLE DIAGRAM

15KV JUNCTION POLE - THREE WAY - SPACER CABLE E - BRACKET MAINLINE TO THREE PHASE CROSSARM TAP (UNFUSED)

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 16-150



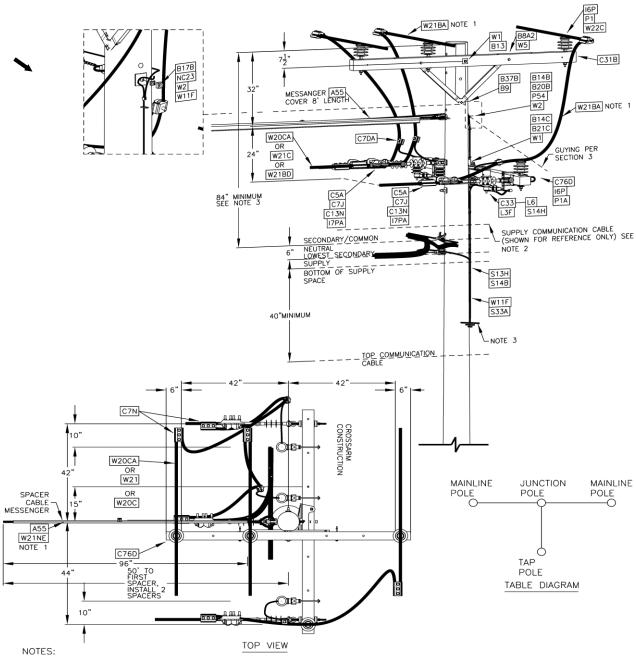
- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 1/0 (6201) BARE AZUZA OR TREE WIRE ON TAP LINE.
- 2. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 4. GROUNDING PER SECTION 13.

Designer		Date
MPR	od16151	6/30/20

15KV JUNCTION POLE – THREE WAY – SPACER CABLE E – BRACKET MAINLINE TO THREE PHASE CROSSARM TAP (FUSED)

	TO THREE PHASE CROSSARM TAP (FUSED)		
ISSUE	PAGE NUMBER		
7/20	16-151	OVERHEAD CONSTRUCTION STANDARD	ppl

- 1. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 2. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S). SEE COMPANY "POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE."
- 3. GROUNDING PER SECTION 13.

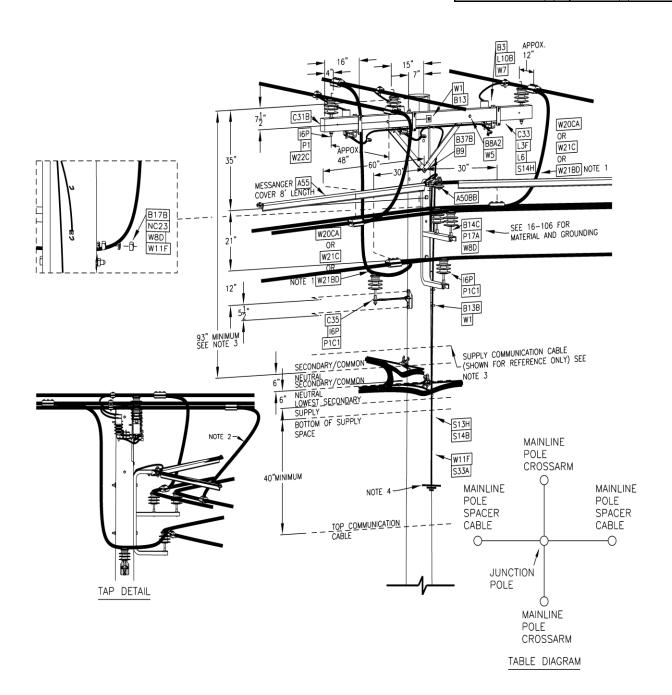

Designer	Drawing	Date
MPR	od16153	1/15/21

15KV JUNCTION POLE - THREE WAY - SPACER CABLE E - BRACKET MAINLINE TO SPACER CABLE TAP (UNFUSED)

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 16-153

MU = @16-155C(Y)	0-15 kV 0° to 10°, (Y) = Wire Size
MU = @16-15511C(Y)	0-15 kV 11° to 20°, (Y) = Wire Size
MU = @16-15521C(Y)	0-15 kV 21° to 45°, (Y) = Wire Size
MU = @.16-15546C(Y)	0-15 kV 46° to 60°. (Y) = Wire Size

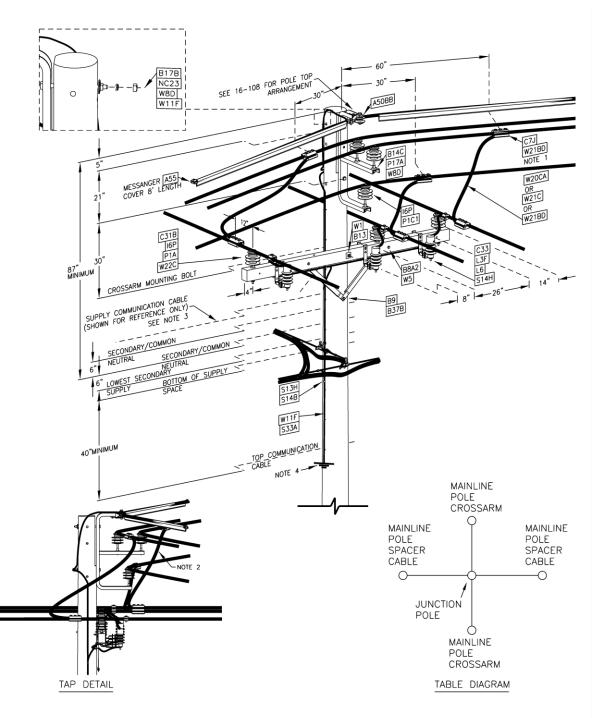
- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 477 BARE ALUMINUM CONDUCTOR.
- 2. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S), SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 3. GROUNDING PER SECTION 13.


Designer	Drawing	Date
MPR	od16155	1/15/21

15KV JUNCTION POLE – THREE WAY – THREE PHASE CROSSARM MAINLINE TO SPACER CABLE TAP

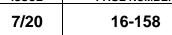
ISSUE	PAGE NUMBER	
7/21	16-155	

OVERHEAD CONSTRUCTION STANDARD

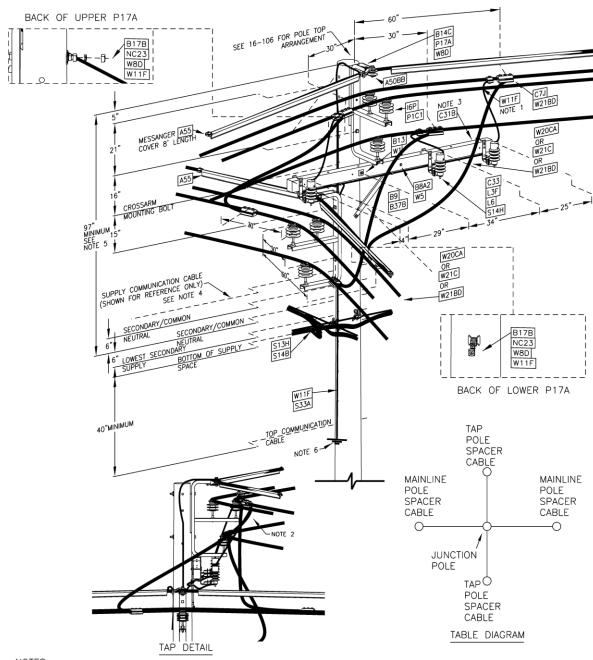


- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 477 BARE ALUMINUM CONDUCTOR.
- 2. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S), SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 4. GROUNDING PER SECTION 13.

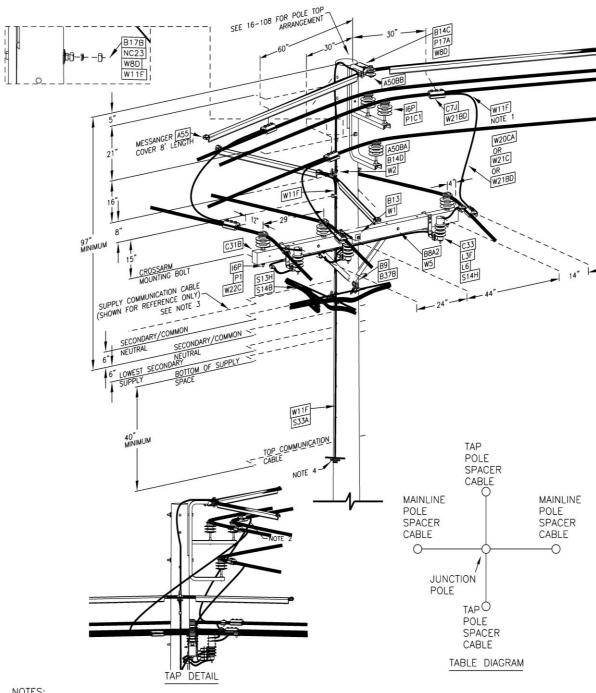
Designer	Drowing	Dote
MPR	od16157	6/30/20


15KV JUNCTION POLE – FOUR WAY – CROSSARM CONSTRUCTION MAINLINE TO SPACER CABLE MAINLINE OVERHEAD PAGE NUMBER ISSUE CONSTRUCTION STANDARD 16-157 7/20

- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 477 BARE ALUMINUM CONDUCTOR.
- 2. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S), SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 4. GROUNDING PER SECTION 13.


Designer	Drawing	Date
MPR	od16158	6/30/20

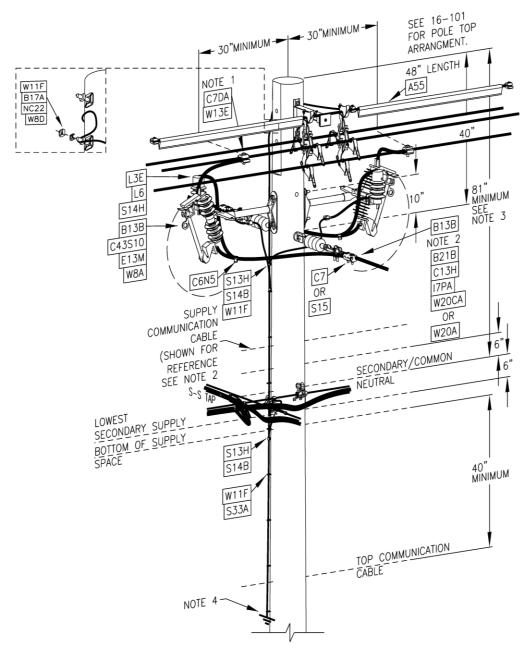
15KV JUNCTION POLE – FOUR WAY – SPACER CABLE MAINLINE TO CROSSARM CONSTRUCTION MAINLINE ISSUE PAGE NUMBER OVERHEAD



- 1. USE #4 AWG. COVERED COPPER WIRE FOR ARRESTER PRIMARY TAP LEADS (W11F).
- 2. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. CROSSARM IS "SEMI-OUTRIGGED" FOR CLEARANCE OF PHASE TAPS.
- 4. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S), SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE. Designer Drowing Dote MPR od16160 6/30/20
- 5. MINIMUM DIMENSION BASED ON A 45/40 JOINT OWNED POLE.
- 6. GROUNDING PER SECTION 13.

15KV JUNCTION POLE – FOUR WAY – SPACER CABLE E – BRACKET TO SPACER
CABLE E – BRACKET (LINE ANGLES 7° – 30°)

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 16-160 7/20



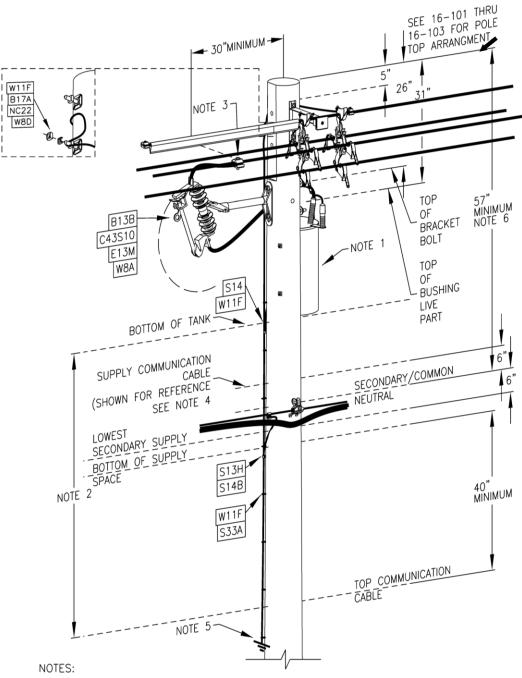
- 1. DRAWING AND MATERIAL LIST DEPICTS USE OF 477 BARE ALUMINUM CONDUCTOR.
- 2. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S), SEE COMPANY POLICY FOR INSTALLING COMMUNICATION CABLES IN THE SUPPLY SPACE.
- 4. GROUNDING PER SECTION 13.

Designer	Drowing	Dote
MPR	od16161	6/30/20

15KV JUNCTION POLE – FOUR WAY – SPACER CABLE E –BRACKET MAINLINE TO

SPACER CABLE CROSSARM TAP			
ISSUE	PAGE NUMBER		SWA.
7/20	16-161	OVERHEAD CONSTRUCTION STANDARD	ppl

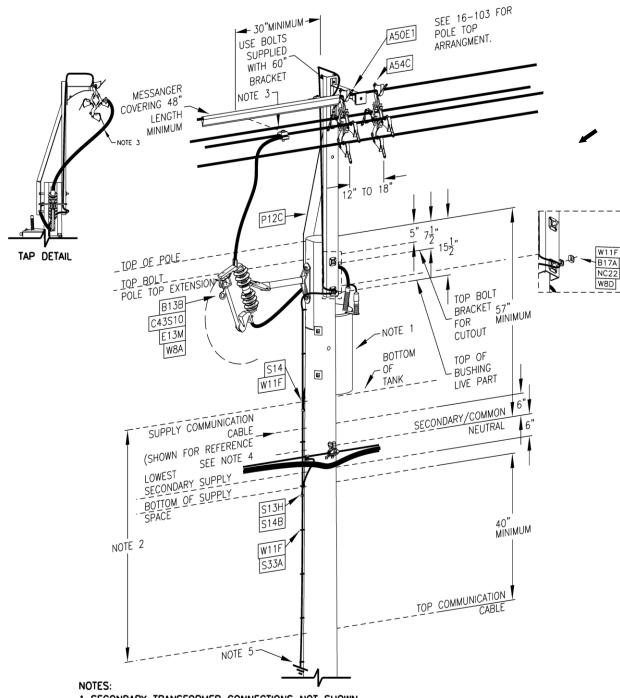
- 1. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 2. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
- 3. MINIMUM DIMENSION BASED ON 1/Ø SPACER CABLE CONDUCTOR ON A 45/45 JOINTLY OWNED POLE.
- 4. GROUNDING PER SECTION 13.


Designer	Drawing	Date	l
MPR	od16163	6/30/20	

15KV JUNCTION POLE – FOUR WAY – 14" OR 24" TANGENT BRACKET TO SINGLE PHASE TAPS

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 16-163 7/20



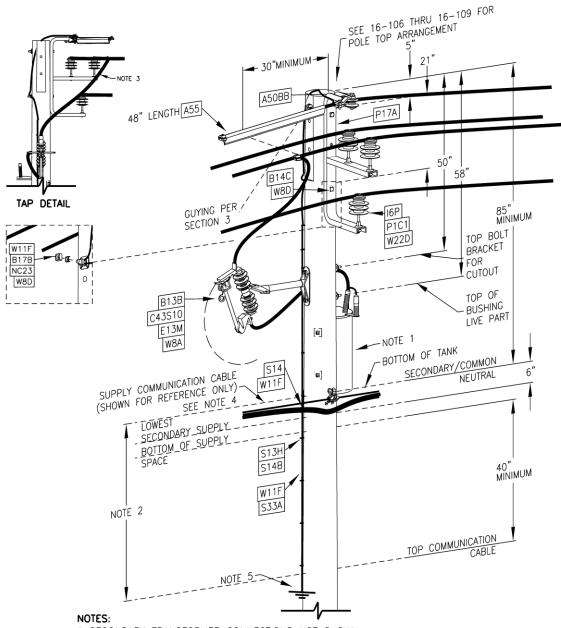
- 1. SECONDARY TRANSFORMER CONNECTIONS NOT SHOWN.
- 2. MAINTAIN 30" MINIMUM BOTTOM TANK TO TOP COMMUNICATION.
- 3. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 4. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
- 5. GROUNDING PER SECTION 13.
- 6. MINIMUM DIMENSION SHOWN FOR 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.

Designer	Drawing	Date
MPR	od16165	6/30/20

15KV LINE POLE – SINGLE PHASE TRANSFORMER ISSUE PAGE NUMBER OVERHEAD CONSTRUCTION STANDARD Ppl

© 2022 PPL Corporation. All rights reserved.

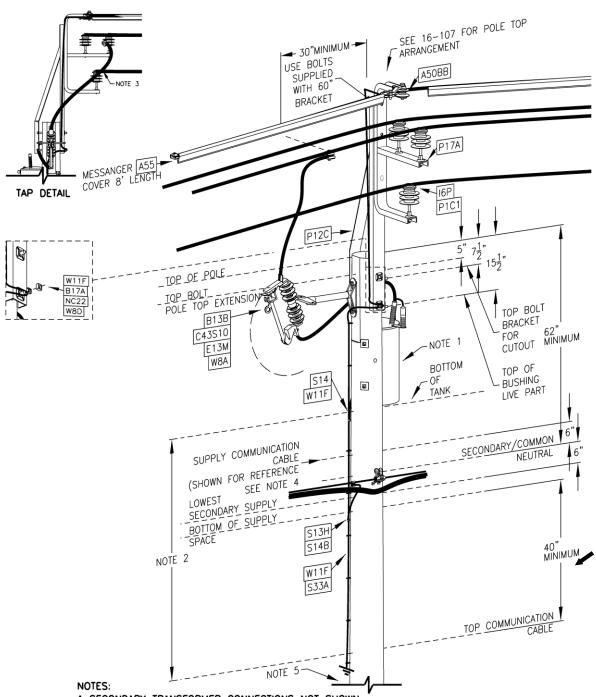
- 1. SECONDARY TRANSFORMER CONNECTIONS NOT SHOWN.
- 2. MAINTAIN 30" MINIMUM BOTTOM TANK TO TOP COMMUNICATION.
- TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 4. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
- 5. GROUNDING PER SECTION 13.
- 6. MINIMUM DIMENSION SHOWN FOR 1/Ø SPACER CABLE CONDUCTOR ON A 40/40 JOINTLY OWNED POLE.


 Designer Drawing Dote MPR od16166 6/30/20

15KV LINE POLE - SINGLE PHASE TRANSFORMER WITH POLE TOP EXTENSION

OVERHEAD CONSTRUCTION STANDARD

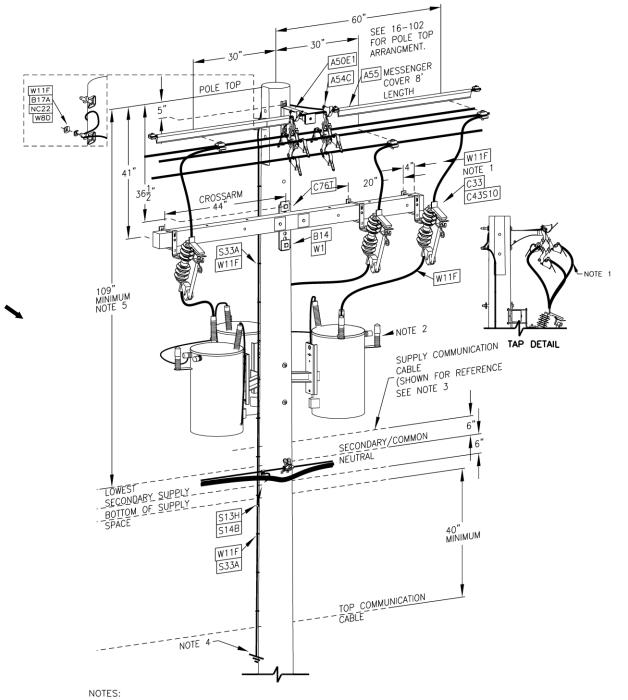
PAGE NUMBER ISSUE 16-166 7/20


- 1. SECONDARY TRANSFORMER CONNECTIONS NOT SHOWN.
- 2. MAINTAIN 30" MINIMUM BOTTOM TANK TO TOP COMMUNICATION.
- TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 4. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
- 5. GROUNDING PER SECTION 13.

Designer	Drowing	Dote
MPR	od16168	6/30/20

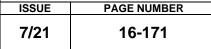
© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 16.00.003

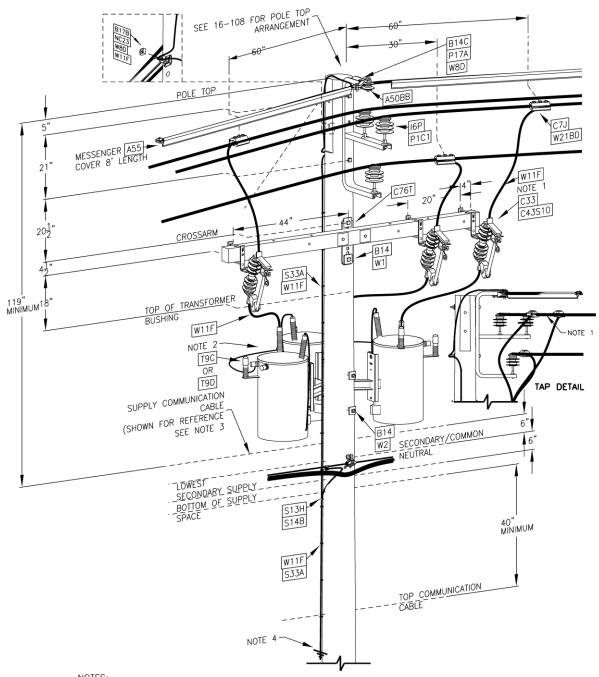


- 1. SECONDARY TRANSFORMER CONNECTIONS NOT SHOWN.
- 2. MAINTAIN 30" MINIMUM BOTTOM TANK TO TOP COMMUNICATION.
- TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 4. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
- 5. GROUNDING PER SECTION 13.

Designer	Drawing	Date
MPR	od16169	6/30/20


© 2022 PPL Corporation. All rights reserved.

- 1. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 2. SECONDARY TRANSFORMER CONNECTIONS NOT SHOWN.
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
- 4. GROUNDING PER SECTION 13.
- 5. MINIMUM DIMENSION SHOWN FOR $1/\emptyset$ SPACER CABLE CONDUCTOR ON A 45/40 JOINTLY OWNED POLE.

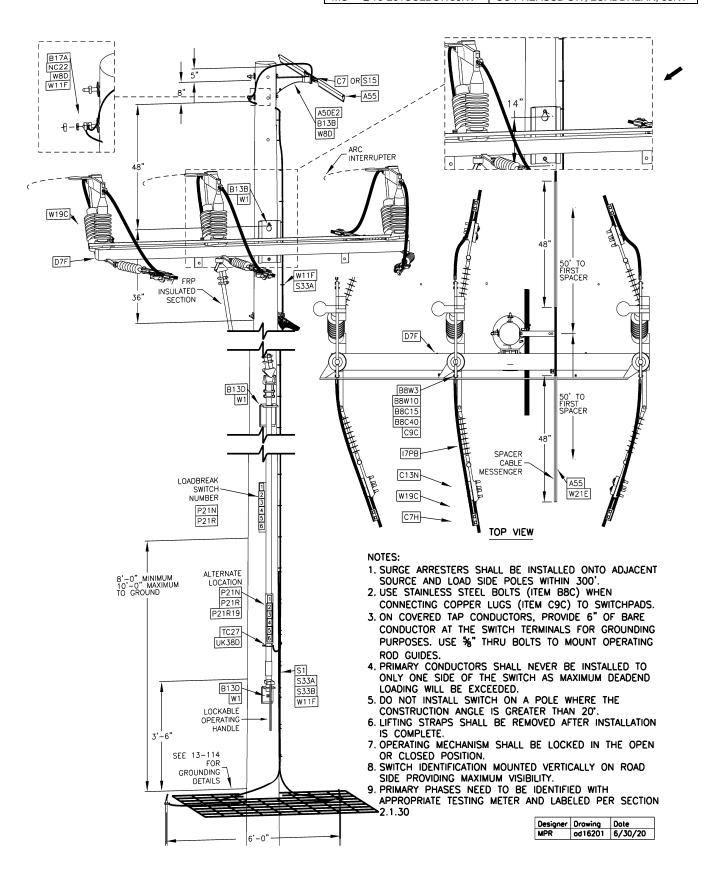

Designer	Drowing	Date
MPR	od16171	1/15/21

15KV STRAIGHT LINE POLE – THREE PHASE TRANSFORMER BANK

OVERHEAD CONSTRUCTION STANDARD

NOTES:

- 1. TRAIN TAP(S) TO MAINTAIN A MINIMUM OF 8" CLEARANCE TO ANY OTHER SPACER CABLE PHASE (12" FOR 35KV).
- 2. SECONDARY TRANSFORMER CONNECTIONS NOT SHOWN.
- 3. POLE NOT SPECIFICALLY DESIGNED TO ACCOMMODATE SUPPLY COMMUNICATION CABLE(S).
- 4. GROUNDING PER SECTION 13.


Designer	Drawing	Dote
MPR	od16173	1/15/21

15KV LINE POLE - SINGLE PHASE TRANSFORMER WITH E - BRACKET ON POLE TOP EXTENSION PAGE NUMBER ISSUE ppl **OVERHEAD CONSTRUCTION STANDARD** 16-173 7/21

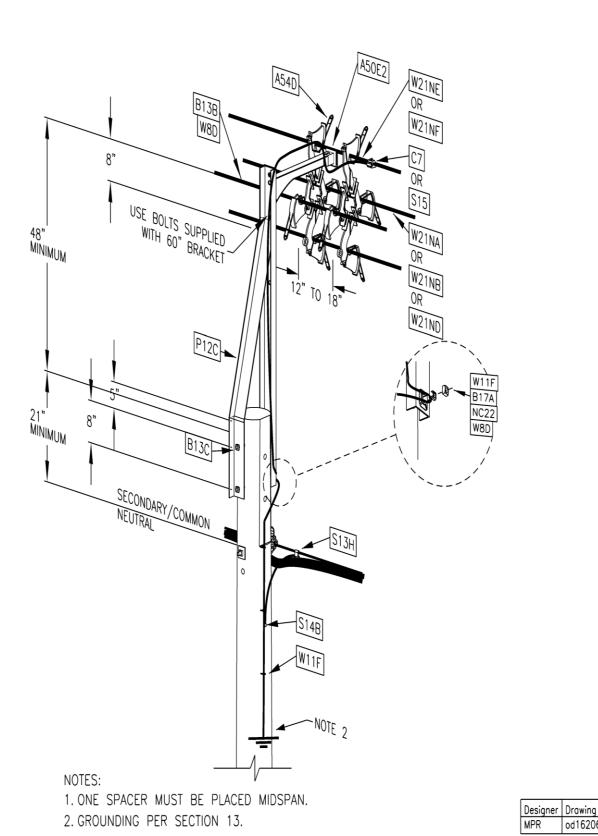
© 2022 PPL Corporation. All rights reserved. Doc. # ST. 16.00.004

Spacer Cable Construction Drawings 23 kV & 35 kV Grounded Distribution Systems

	SPACER CABLE – 35KV GROUNDED DISTRIBUTION SYSTEMS			
	ISSUE	PAGE NUMBER		WHZ
Busi	1/06 ness Use	16-200	OVERHEAD CONSTRUCTION STANDARD	ppl

35KV PREASSEMBLED LOADBREAK SWITCH

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 16-201

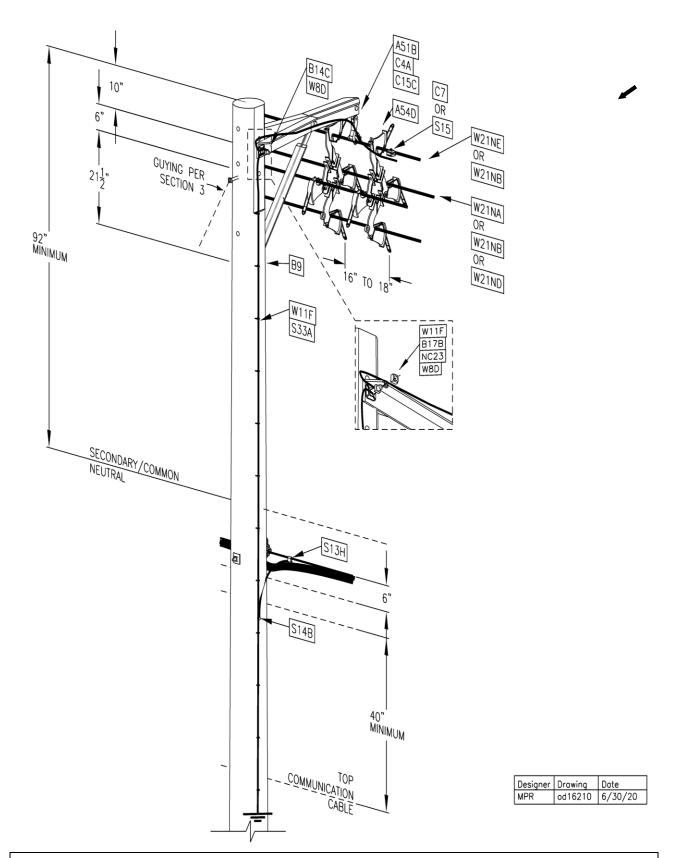

Supersedes
7/15
lssue –
Updated drav
ving
to 3D

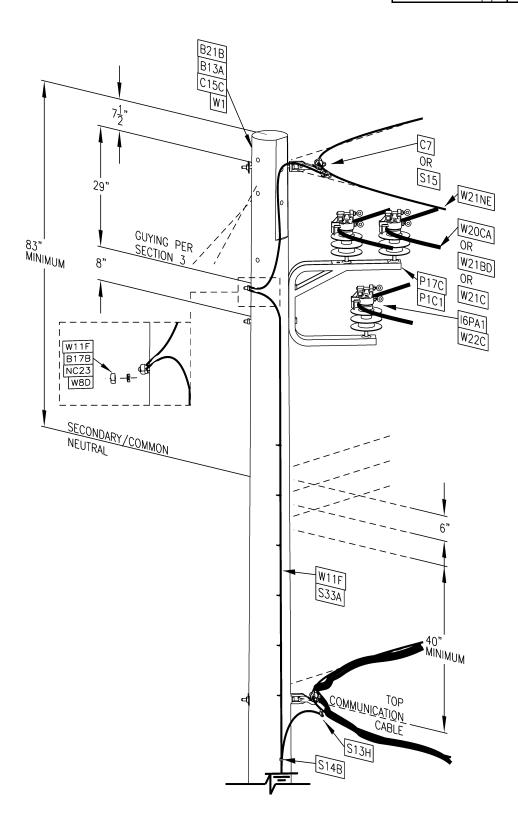
1. GROUNDING PER SECTION 13.

2. OPEN SPACER MUST BE PLACED MIDSPAN.

Designer	Drawing	Date
MPR	od16205	6/30/20

	35KV LINE POLE ATTACHMENT FOR 40' OR 45' POLE			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/20 ness Use	16-205	OVERHEAD CONSTRUCTION STANDARD	ppl

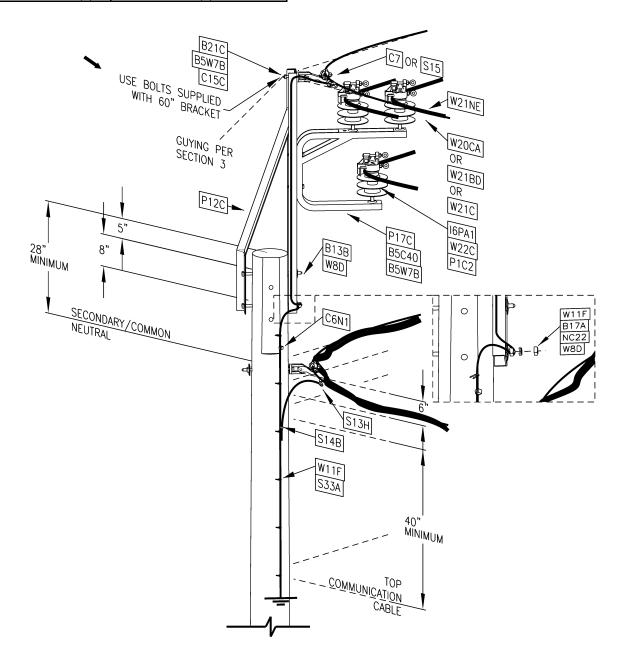

35KV LINE POLE ATTACHMENT WITH POLE TOP EXTENSION FOR 35' OR 40' POLE


OVERHEAD
CONSTRUCTION STANDARD

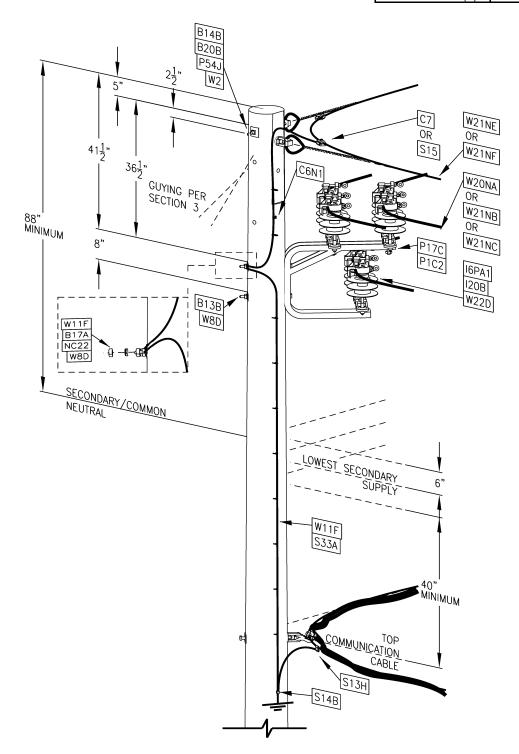
Date

od16206 6/30/20

	35KV LINE POLE ATTACHMENT – 44" EXTENSION BRACKET			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/20 ness Use	16-210	OVERHEAD CONSTRUCTION STANDARD	ppl



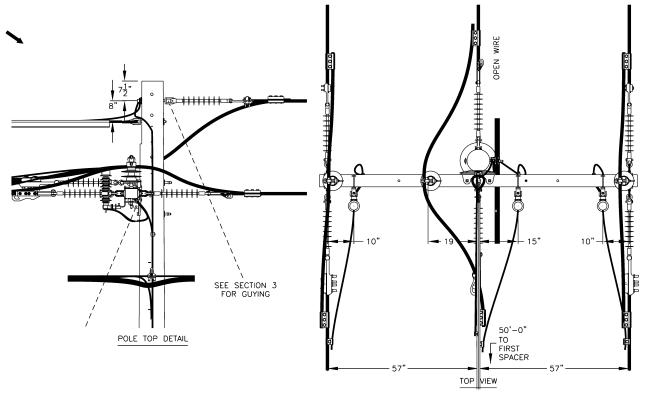
Designer	Drawing	Date
MPR	od16213	7/16/20

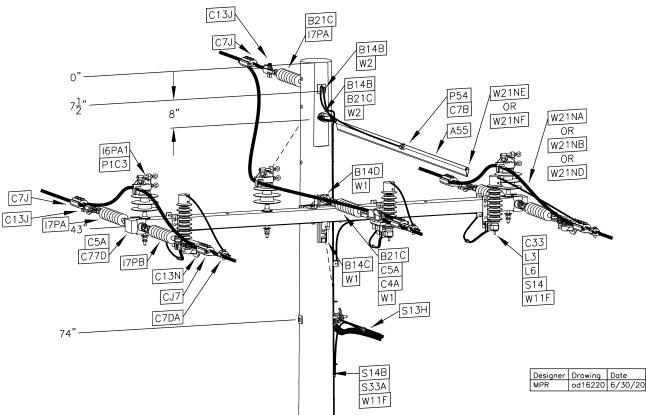

OVERHEAD CONSTRUCTION STANDARD

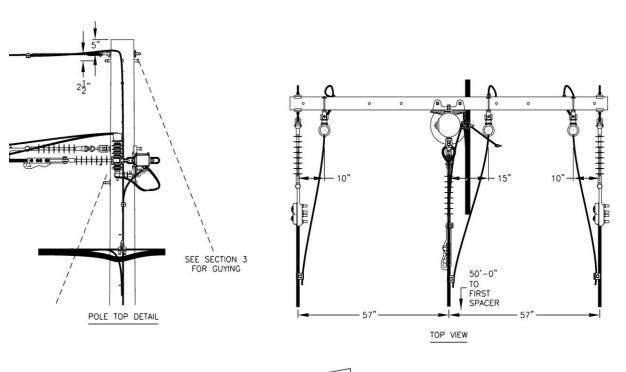
PAGE NUMBER ISSUE 7/20

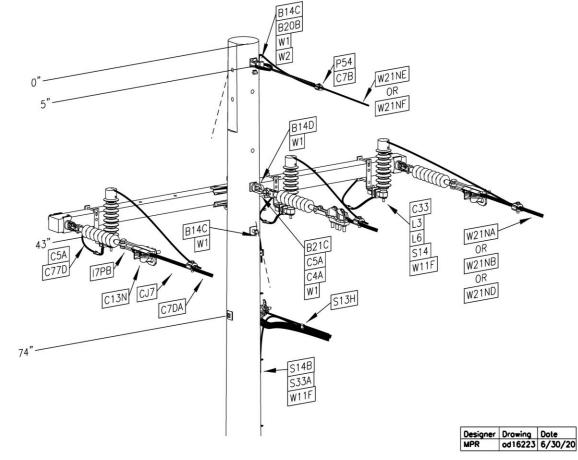
Designer	Drawing	Date
MPR	od16214	7/16/20

	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/20 ness Use	16-214	OVERHEAD CONSTRUCTION STANDARD	ppl


Designer	Drowing	Date
MPR	od16217	7/16/20


35KV CORNER POLE ATTACHMENT FOR 40' OR 45' POLE - LINE ANGLES 61° - 90°

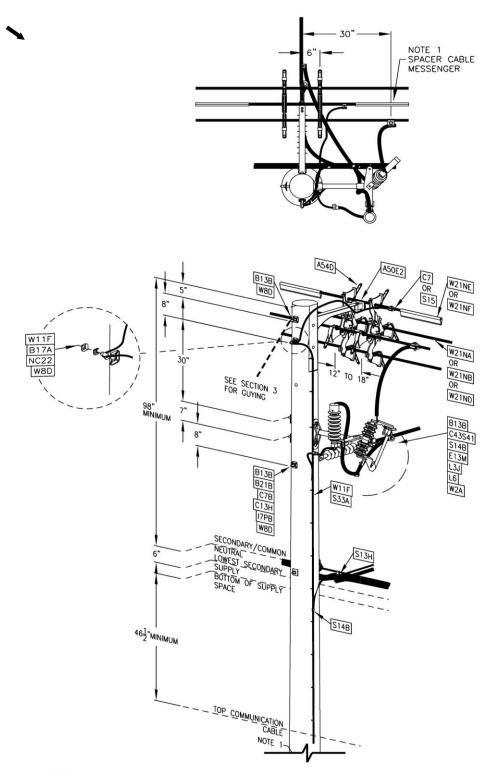

OVERHEAD CONSTRUCTION STANDARD


PAGE NUMBER ISSUE 16-217 7/20

	35 KV CONNECTION TO OPEN WIRE FOR 40' OR 45' POLE				
	ISSUE	PAGE NUMBER		WHZ	
Busi	7/20 ness Use	16-220	OVERHEAD CONSTRUCTION STANDARD	ppl	

35KV DEADEND CONSTRUCTION FOR 40' OR 45' POL
--

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 16-223

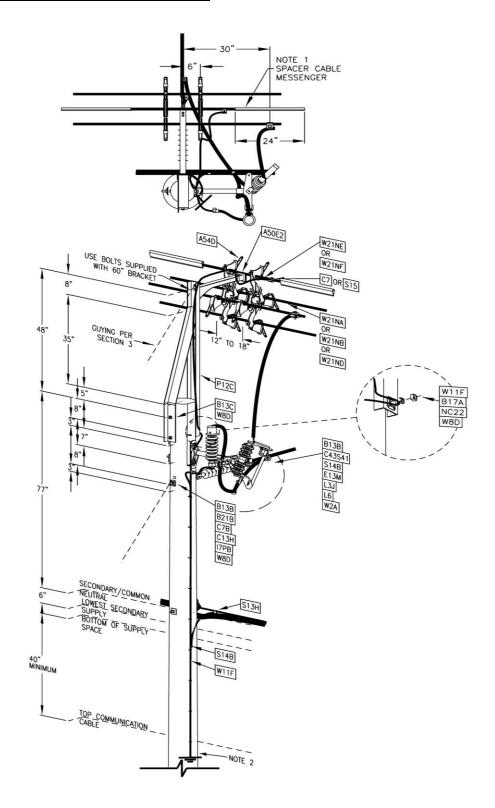

NOTES:

- 1. MESSENGER COVERING TO EXTEND A MINIMUM OF 12" EACH SIDE OF TAP CONNECTION
- 2. 125' MAXIMUM IF NO FUTURE CROSSARM USED ON LINE POLE ONE SPAN AWAY.

Designer	Drawing	Dote
MPR	od16226	6/30/20

	35KV LINE POLE ATTACHEMENT TO SINGLE PHASE OPEN WIRE TAP FOR 40' POLE				
	ISSUE	PAGE NUMBER		SM/Z	
Busi	7/20 ness Use	16-226	OVERHEAD CONSTRUCTION STANDARD	ppl	

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 16.00.004

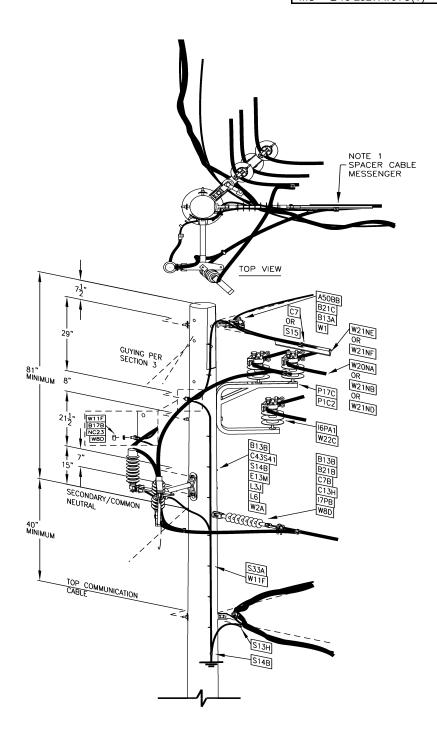


NOTES:

1. MESSENGER COVERING TO EXTEND A MINIMUM OF 12" EACH SIDE OF TAP CONNECTION

Designer		Dote
MPR	od16227	6/30/20

	35KV LINE POLE ATTACHEMENT TO SINGLE PHASE OPEN WIRE TAP FOR 45' POLE					
f	AMIZ		PAGE NUMBER	ISSUE		
U	se ppl	OVERHEAD CONSTRUCTION STANDARD	16-227	7/20		

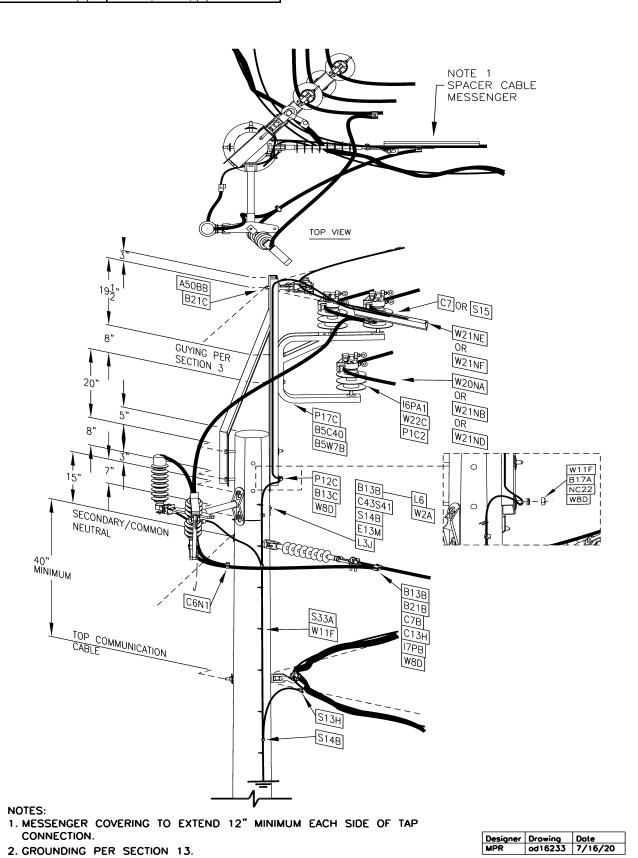


NOTES:

- 1. MESSENGER COVERING TO EXTEND 12" MINIMUM EACH SIDE OF TAP CONNECTION.
- 2. GROUNDING PER SECTION 13.

Designer	Drawing	Dote
MPR	od16228	6/30/20

	35KV LINE POLE ATTACHEMENT TO SINGLE PHASE OPEN WIRE TAP FOR					
	40' POLE WITH POLE TOP EXTENSION					
	ISSUE	PAGE NUMBER		SMA		
Busi	7/20 ness Use	16-228	OVERHEAD CONSTRUCTION STANDARD	ppl		

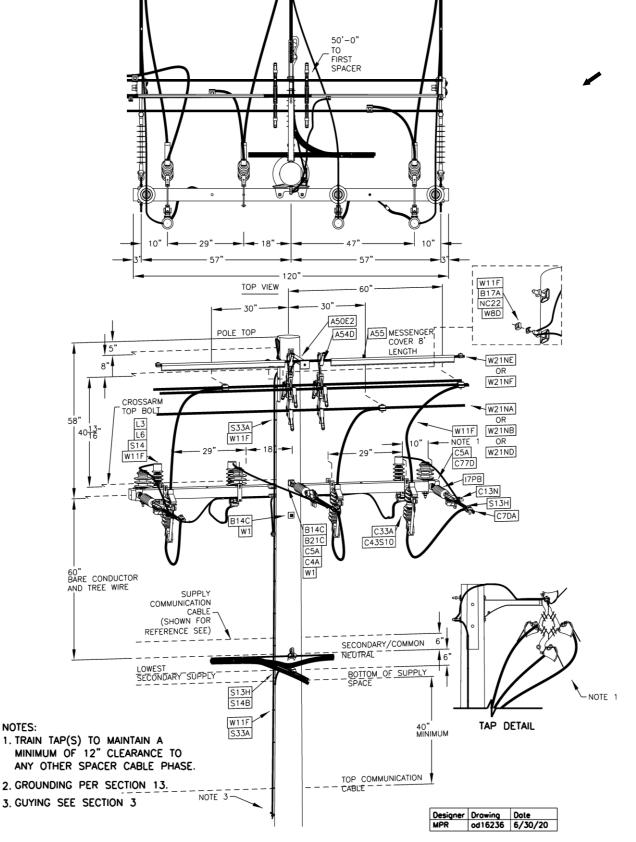


NOTES:

- 1. MESSENGER COVERING TO EXTEND 12" MINIMUM EACH SIDE OF TAP CONNECTION.
- 2. GROUNDING PER SECTION 13.

	Drawing	Date
MPR	od16232	7/16/30

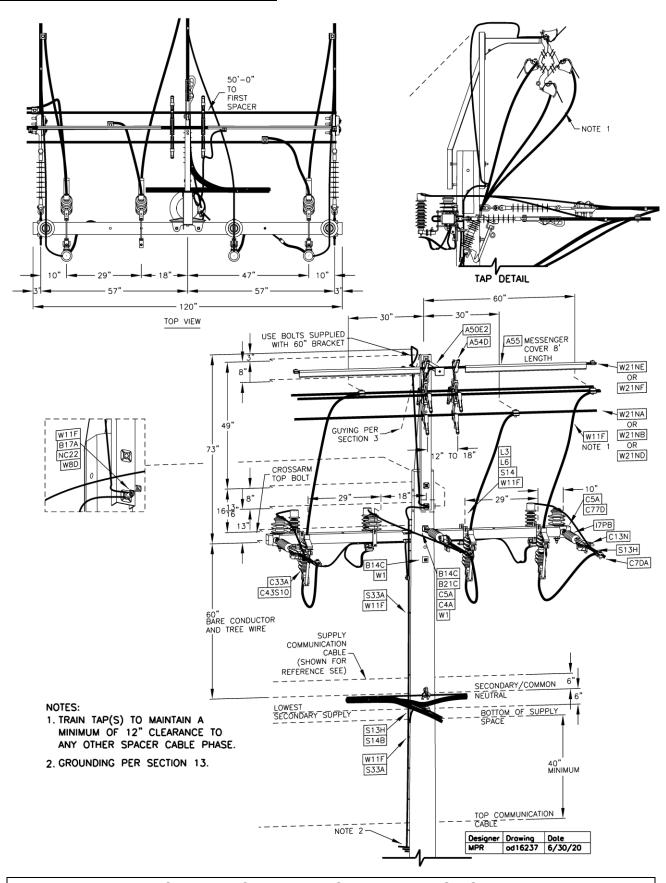
35KV CORNER POLE ATTACHEMENT TO SINGLE PHASE OPEN WIRE TAP FOR 45' POLE OVERHEAD CONSTRUCTION STANDARD 16-232 7/20



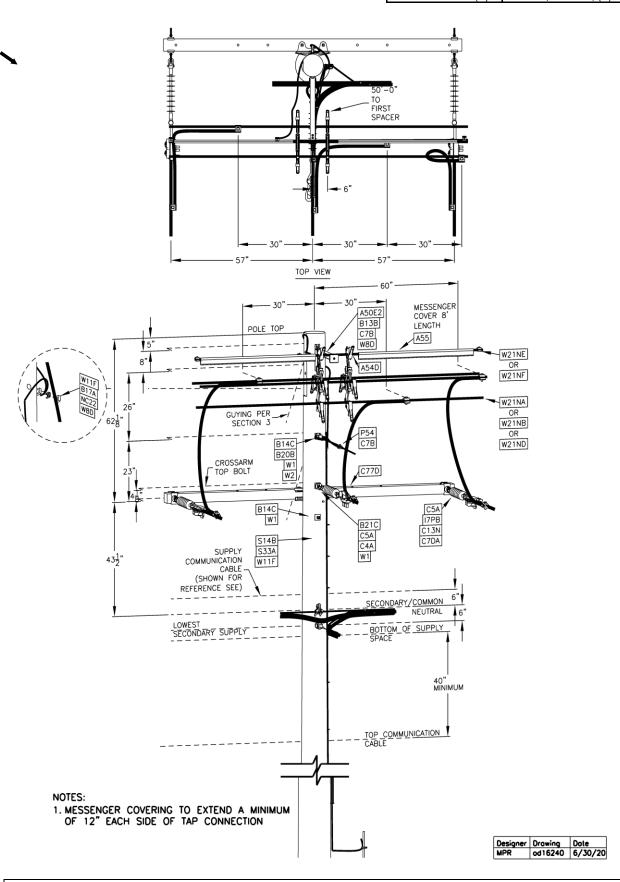
35KV CORNER POLE ATTACHEMENT TO SINGLE PHASE OPEN WIRE TAP FOR 40' POLE WITH POLE TOP EXTENSION

7/20 Business Use PAGE NUMBER

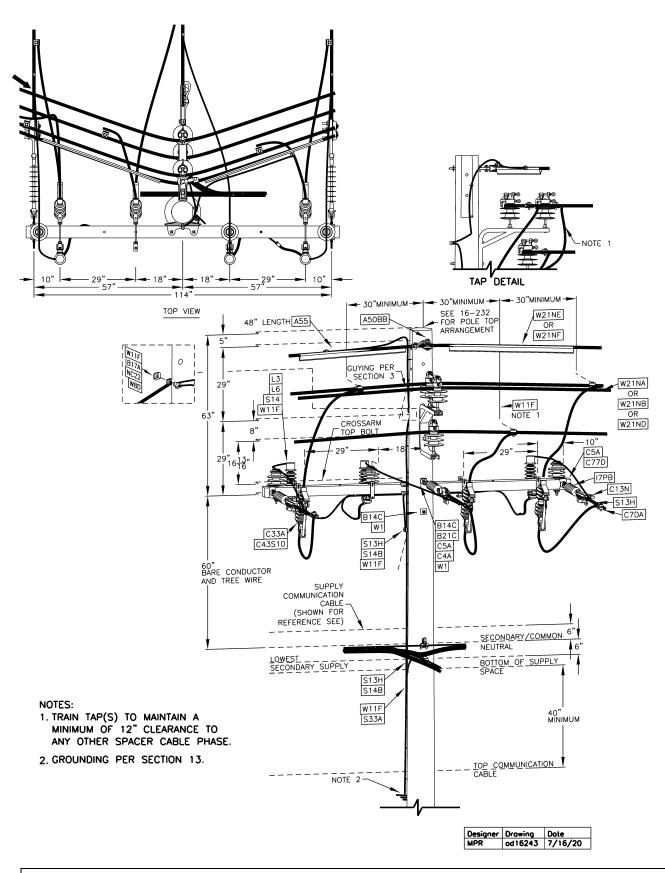
OVERHEAD CONSTRUCTION STANDARD


35KV LINE POLE ATTACHEMENT TO THREE PHASE OPEN WIRE TAP FOR 45' POLE

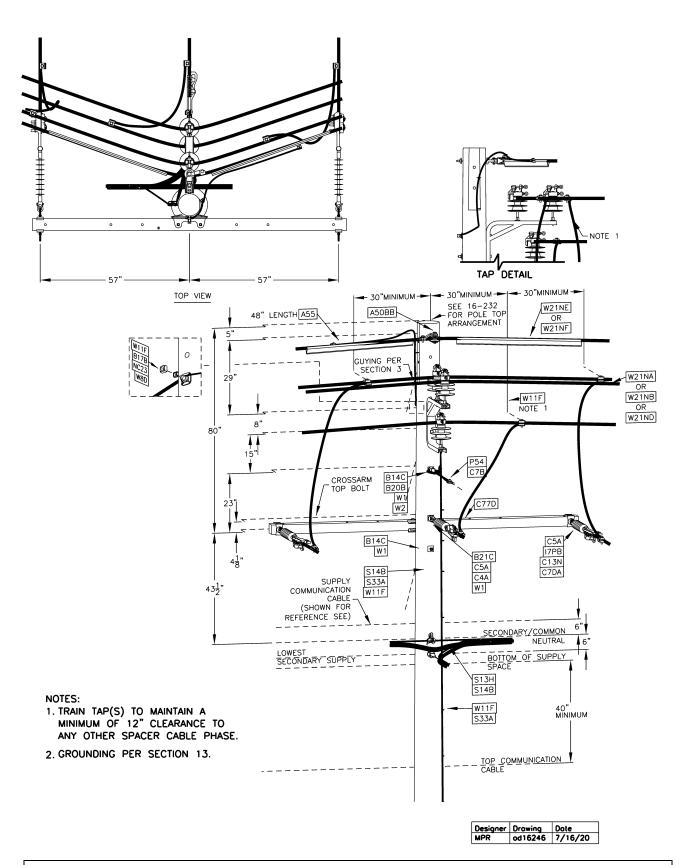
NOTES:

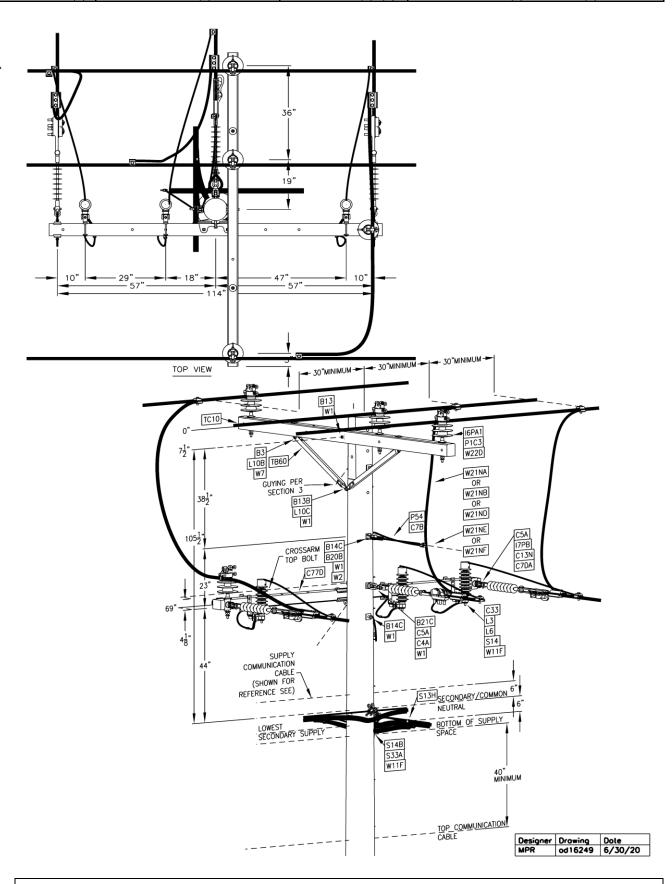

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 16-236 7/20

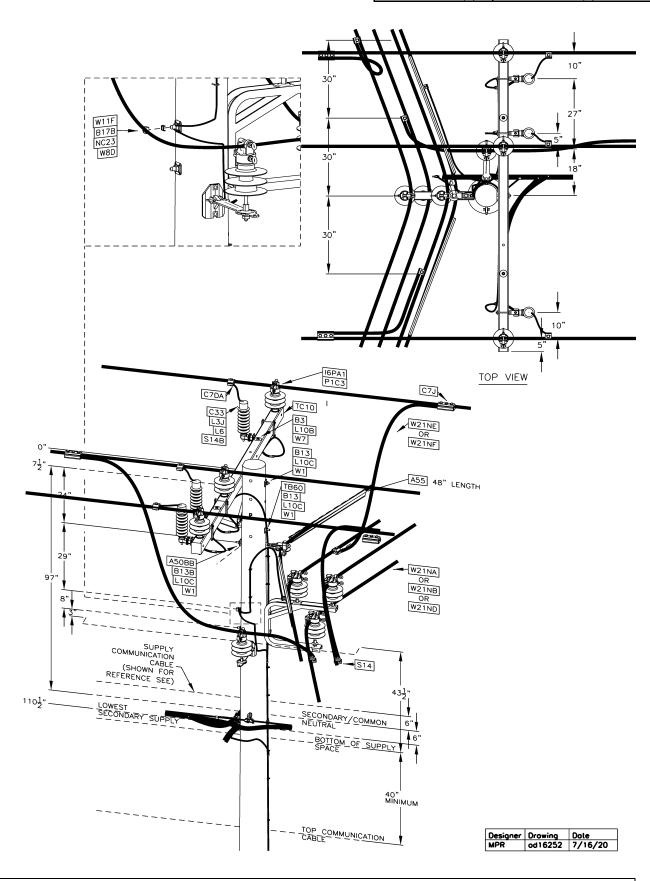
Supersedes 7/15 Issue - Updated drawing to 3D

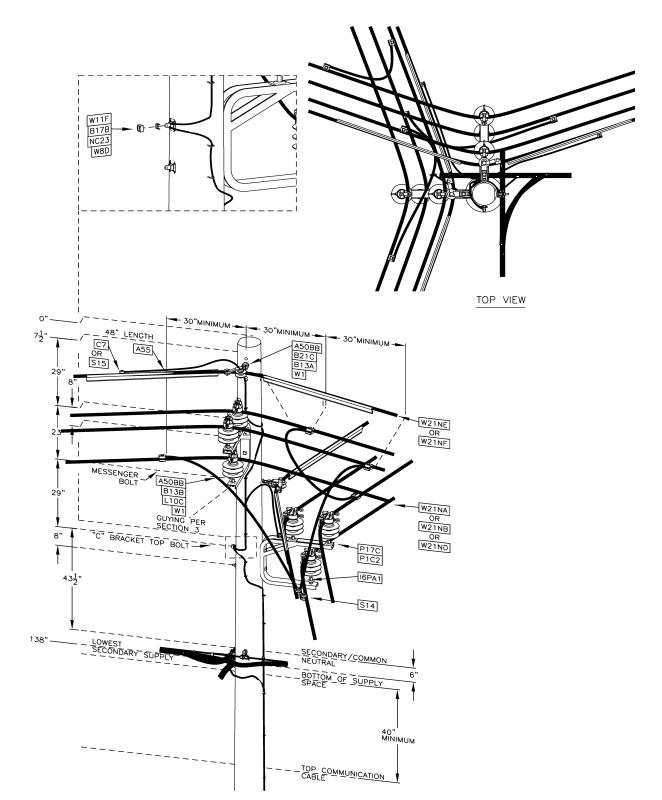


	35KV LINE POLE ATTACHEMENT TO THREE PHASE OPEN WIRE TAP				
	FOR 40' POLE WITH POLE TOP EXTENSION				
	ISSUE	PAGE NUMBER		SMA	
Busi	7/20 ness Use	16-237	OVERHEAD CONSTRUCTION STANDARD	ppl	

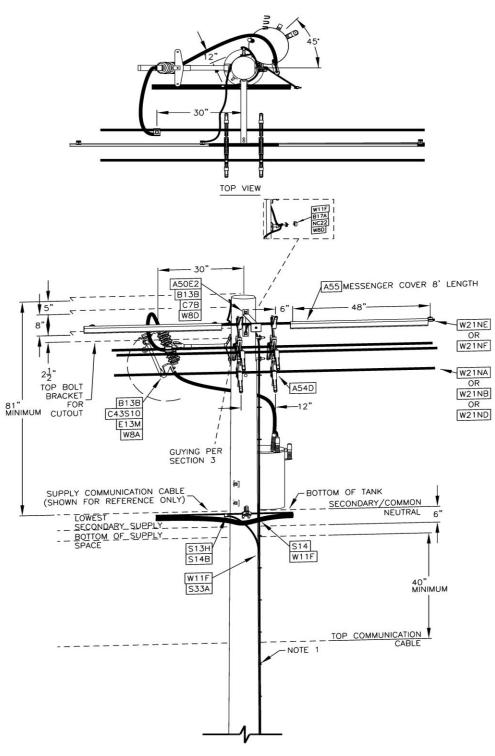



35KV LINE POLE ATTACHEMENT TO THREE PHASE SPACER CABLE TAP				
FOR 40' OR 45' POLE				
SMILE.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD 16-240		7/20	


	35ł	35KV CORNER POLE ATTACHMENT TO THREE PHASE OPEN WIRE TAP				
	FOR 45' POLE – LINE ANGLES 7° – 60°					
	ISSUE	PAGE NUMBER				
Busi	7/20 ness Use	16-243	OVERHEAD CONSTRUCTION STANDARD	ppl		


35KV CORNER POLE ATTACHMENT TO THREE PHASE SPACER CABLE TAP FOR 45' POLE			
WW.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	16-246	7/20

	35KV OPEN WIRE STRAIGHT LINE TO THREE PHASE SPACER CABLE TAP				
	ISSUE	PAGE NUMBER		AMIZZ	
Busi	7/20 ness Use	16-249	OVERHEAD CONSTRUCTION STANDARD	ppl	

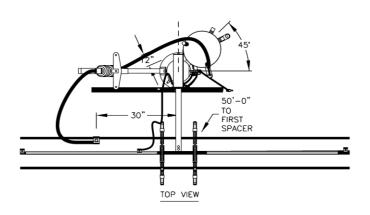

35KV FOUR WAY JUNCTION				
CROSSARM CONSTRUCTION TO SPACER CABLE WITH 45' POLE				
		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	16-252	7/20	

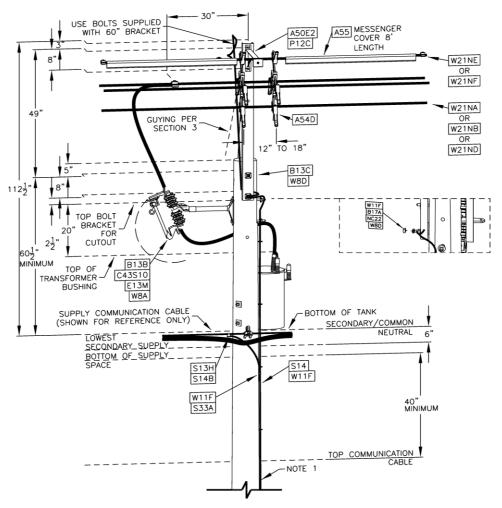
Designer	Drawing	Date
MPR	od16255	7/16/20

35KV FOUR WAY JUNCTION – SPACER CABLE TO SPACER CABLE WITH 45' POL
--

ISSUE	PAGE NUMBER		SMIZZ.
7/20	16-255	OVERHEAD CONSTRUCTION STANDARD	ppl

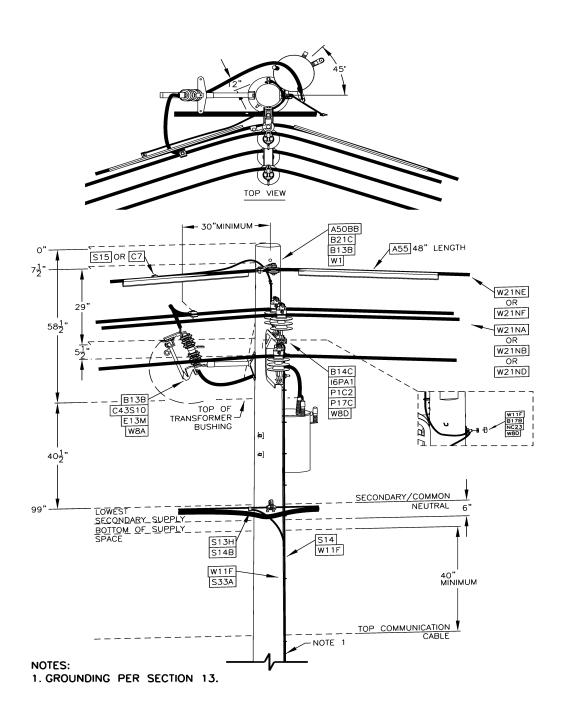
NOTES:
1. GROUNDING PER SECTION 13.


Designer	Drowing	Dote
MPR	od16258	6/30/20


35KV TRANSFORMER INSTALLATION SINGLE PHASE FOR 40' OR 45' POLE

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 7/20

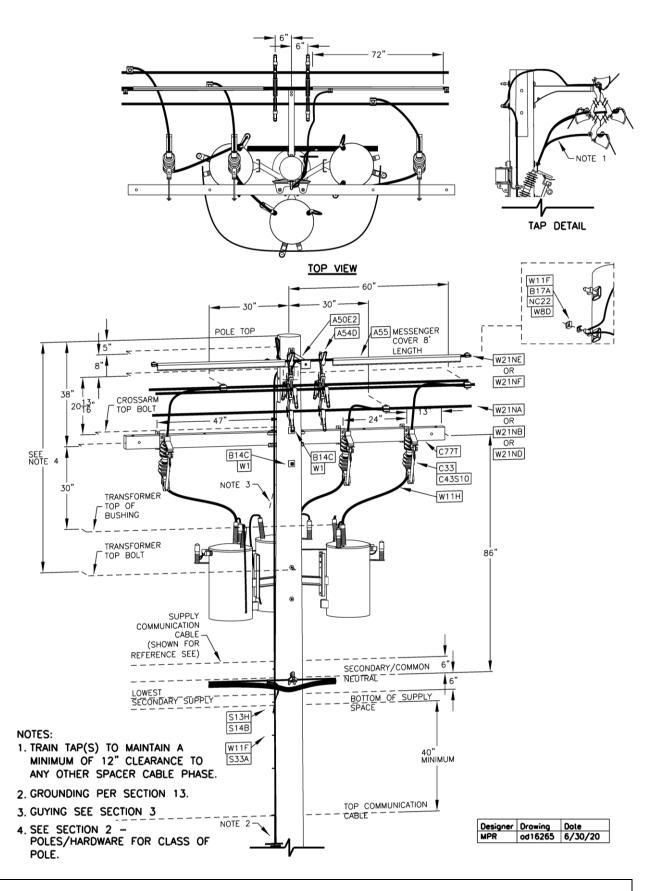


NOTES:

1. GROUNDING PER SECTION 13.

Designer	Drawing	Dote
MPR	od16259	6/30/20

	35KV TRANSFORMER INSTALLATION SINGLE PHASE FOR 40' POLE WITH POLE TOP EXTENSION			
	ISSUE	PAGE NUMBER		SMA
Busi	7/15 ness Use	16-259	OVERHEAD CONSTRUCTION STANDARD	ppl


Designer	Drawing	Date
MPR	od16262	7/16/20

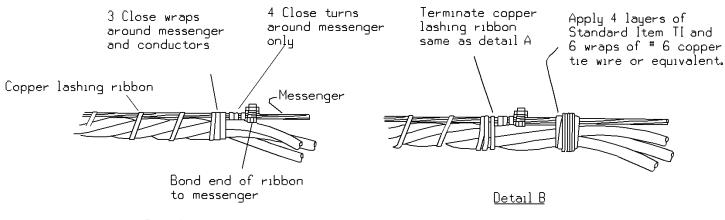
	35KV TRANSFORMER INSTALLATION SINGLE PHASE FOR 40' POLE – LINE ANGLES 7° – 60°				
ſ	SMIZZ		PAGE NUMBER	ISSUE	
U	se ppl	OVERHEAD CONSTRUCTION STANDARD	16-262	7/20	

1	Designer	Drawina	Date
	MPR	od16263	7/16/20

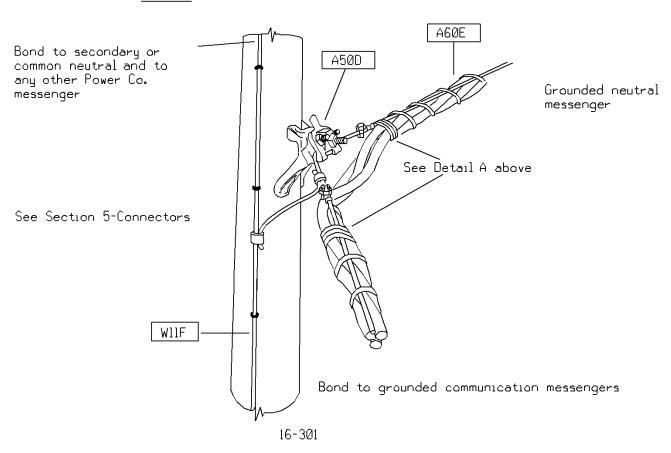
	35KV TRANSFORMER INSTALLATION SINGLE PHASE FOR 45' POLE – LINE ANGLES 7° – 60°			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/20 ness Use	16-263	OVERHEAD CONSTRUCTION STANDARD	ppl

35KV TRANSFORMER INSTALLATION THREE PHASE BANK

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 16-265


Doc. # ST. 16.00.005

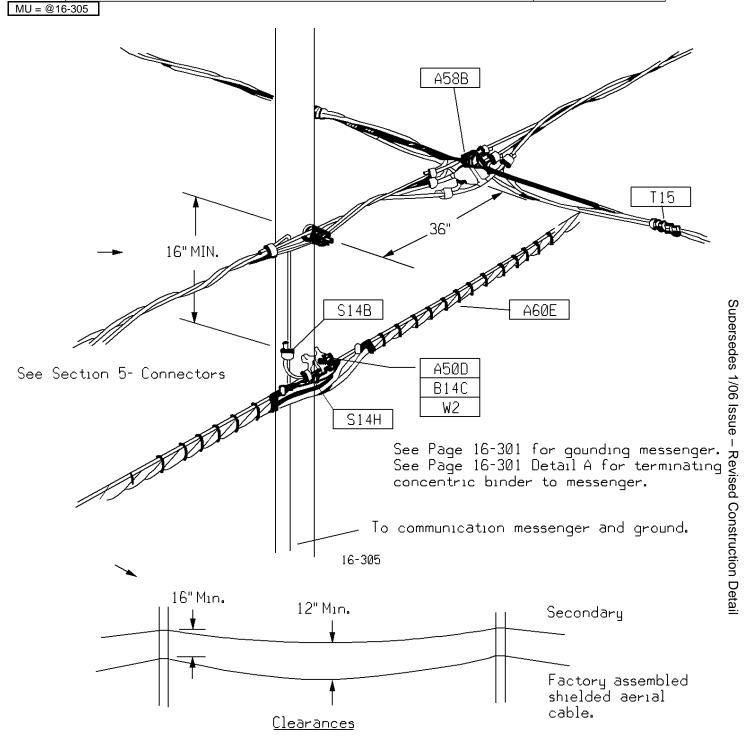
Aerial Cable Construction Drawings


		AERIAL CABLE		
	ISSUE	PAGE NUMBER		AMIZZ
Busi	1/06 ness Use	16-300	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 16.00.005

CU = PBSCHA CU = PBSCA

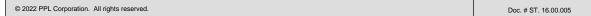
<u>Detail A</u>

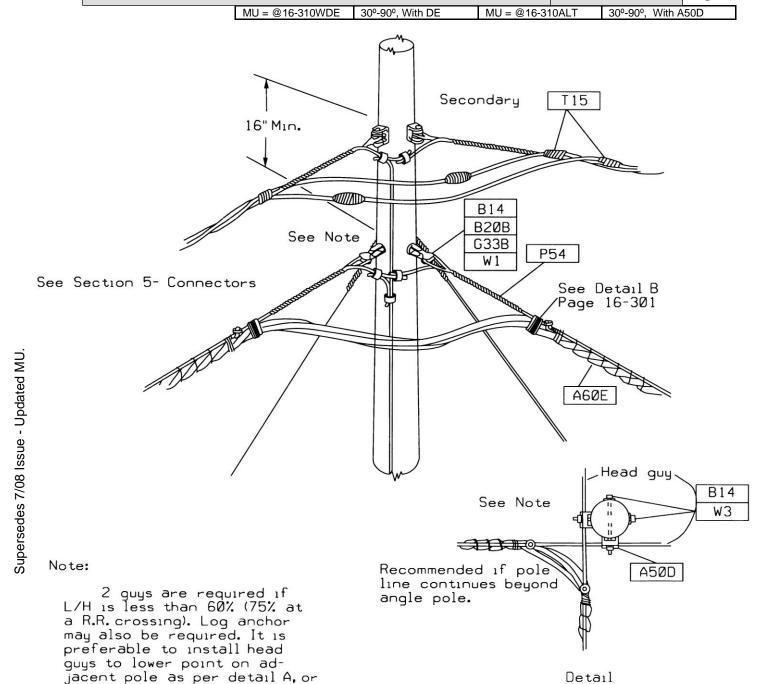


Angles Ø to 35

DETAILS OF ATTACHMENT, BONDING, AND TERMINATION OF CONCENTRIC				
BINDER TO NEUTRAL				
WW.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	16-301	7/07	

Supersedes 1/06 Issue - Revised Construction Detail

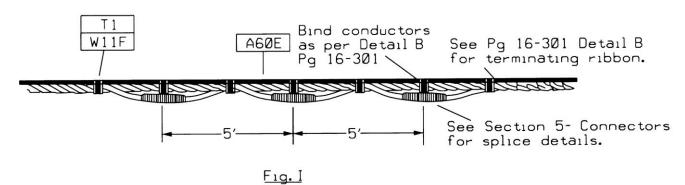

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 16.00.005

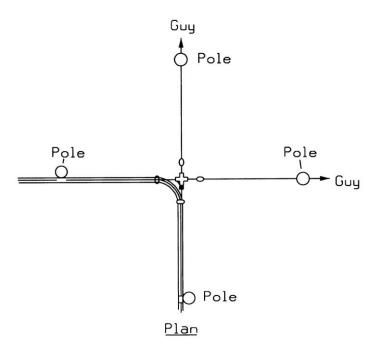


Notes:

- Where factory assembled shielded aerial cable is installed, limit the midspan taps on secondary to those 3 ft. from the pole.
- Bond the messenger of the factory assembled shielded aerial cable to the secondary or common neutral at each transformer, at ends of each secondary, and elsewhere to provide a bond on every fourth pole.

15KV TANGENTS AND ANGLES 0° – 35°		5°		
	ISSUE	PAGE NUMBER		WIN
Busi	7/07 ness Use	16-305	OVERHEAD CONSTRUCTION STANDARD	ppl





15KV ANGLES 36° – 90° & DEAD ENDS			
		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	16-310	7/09

Detail

one head guy and one anchor guy.

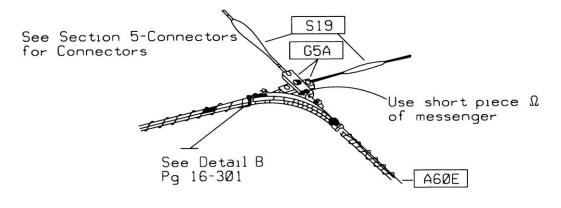
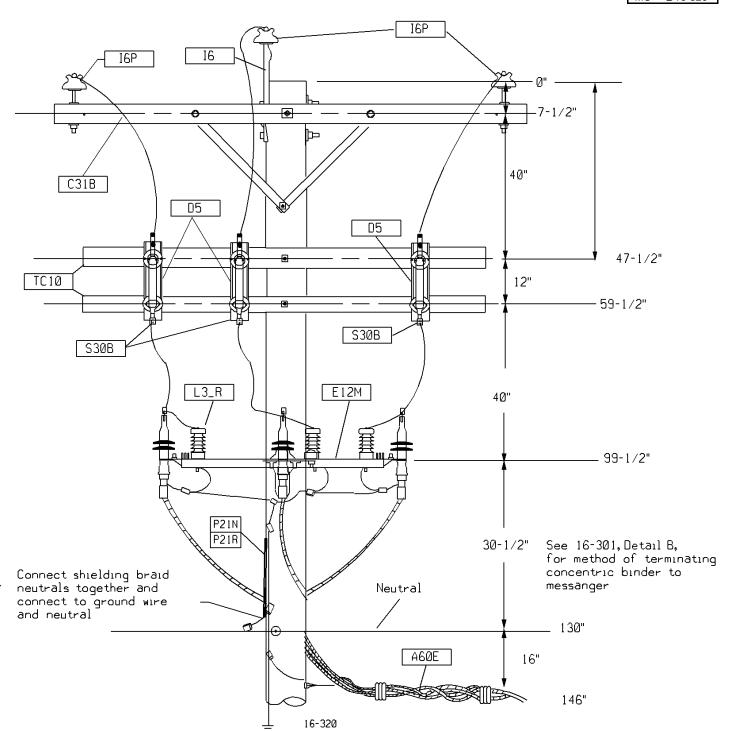
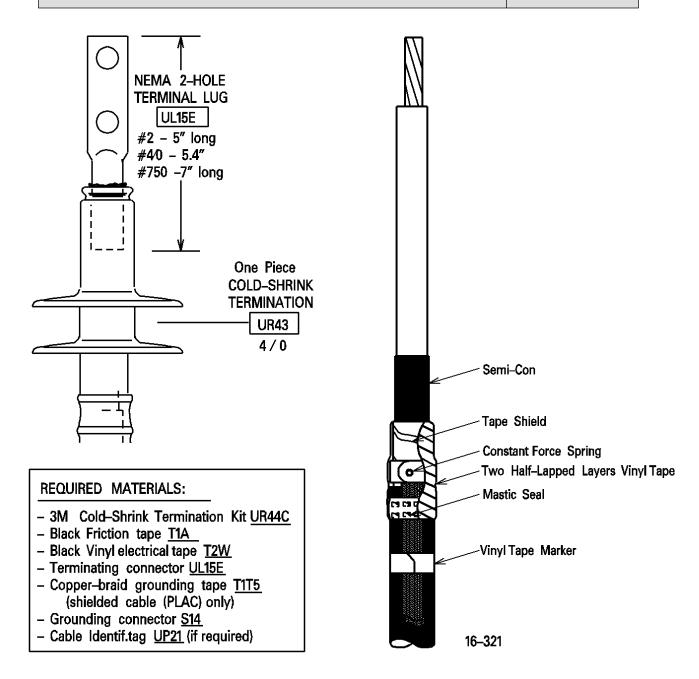



Fig. II


	15KV STRAIGHT SPLICE AND MID-SPAN CORNER DETAILS			
	ISSUE	PAGE NUMBER		MHZ
Busi	7/07 ness Use	16-315	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @16-320

- 1. Secondary can be accommodated on this pole. The preferred arrangement is to avoid secondary.
- 2. See Section 18 Risers for lightning arrester and disconnect switch connection assemblies as well as for equipment mount and equipment mount adapter assembly.
- 3. See Section 5 Connectors for outdoor taped cable termination details and for premolded modular cable termination details.
- 4. Switch identification mounted vertically on road side providing maximum visibility.

	15KV PREASSEMBLED LASHED AERIAL CABLE TO OPEN WIRE			
	WHA		PAGE NUMBER	ISSUE
Business Use	ppl	OVERHEAD CONSTRUCTION STANDARD	16-320	7/07

Cold-Shrink Terminations are recommended for the Outdoor termination of Insulated and shielded standard cables. Properly installed terminations will provide the required electrical stress relief and resistance to water and moisture ingress. Some taping may be required where cold-shrink termination does not cover terminal connector barrel.

NOTES:

- Avoid knife damage to the conductor strands and the insulation layers.
- Determine required cable length by training the cable into its final proposed position before cutting.
- ALL traces of removed SemiConductive layer MUST be removed from the underlying insulation layer to prevent tracking and termination failure.

15	15KV PREASSEMBLED LASHED AERIAL CABLE TERMINATION DETAIL			
ISSUE	PAGE NUMBER		SMIZZ	
7/07	16-321	OVERHEAD CONSTRUCTION STANDARD	ppl	

Version	Date	Modification	Author(s)	Approval by (Name/Title)
10	7/21	Updated item ID from C33A to C33 in pages 16-126 thru 16-173.		(
0	7/20	 Updated pages 16-10 through 16-14 to include SAP Item ID numbers Updated page 16-16, Gel Wrap Method Updated pages 16-47 through 16-51, Aerial Cable Preparation and Splicing 		
8	7/18	 Added connector standard item ID to Section 16.3.20 I7 on page 16-7. Replaced wood crossarm with fiberglass crossarm for cutout mounting in drawings 16-171, 16-173, and 16-265 		
7	7/15	 Added 16.6.20 new cold shrink splice to aerial cable Renumbered pages 16-47 through 16-58 Added grounding clip detail to all bracket drawings. Added messenger clamp A50BB to drawings 16-106, 16-107, 16-108, 16-148, 16-150, 16-151, 16-153, 16-157, 16-158, 16-160, 16-161, 16-168, 16-169, 16-173, 16-213, 16-232, 16-233, 16-243, 16-246. 		
6	7/13	 Revised text in 16-47, Section 16.6 Revised Description on page 16-153 and index page 16-ii. Revised Drawing on page 16-220 Revised Description in Title block on pages 16-258 &16-259. 		
5	7/12	 Revised sag/tension tables for all spacer cables to reflect revised application of "k" factor for spacer cable in 2012 NESC. Updated spacer cable ampacity ratings. Revised Pg 16.47, Sect. 16.6 to include multiple aerial cable sizes. 		
4	7/11	Amended explanation of how to properly cover tap leads on spacer cable (16.20.1.6)		
3	7/10	 Corrected STD Id's for spacer cable, and/or arrester/cutout tap wire and connectors on pages 16-101, 16-102, 16-103, 16-106, 16-107, 16-108, 16-109, 16-114, 16-115, 16-131, 16-134, 16-135, 16-138, 16-139, 16-143, 16-148, 16-151, 16-153, 16-155, 16-157, 16-158, 16-160, 16-161, 16-163. Revised sag/tension and conductor prop 		

SUMMARY OF RECENT CHANGES

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 7/21

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 16.00.005

		tables on Pages 16-55 and 16-56
2	7/09	 Revised CUs/MUs on pages 16-101, 16-102, 16-103, 16-106, 16-107, 16-108, 16-109, 16-114, 16-115, 16-118, 16-122, 16-123, 16-126, 16-127, 16-131, 16-134, 16-135, 16-138, 16-139, 16-142, 16-146, 16-148, 16-150, 16-153, 16-155, 16-157, 16-158, 16-160, 16-161, 16-163, 16-201, 16-205, 16-206, 16-210, 16-213, 16-214, 16-217, 16-220, 16-223, 16-226, 16-228, 16-232, 16-233, 16-236, 16-237, 16-240, 16-243, 16-246, 16-249, 16-252, 16-255, 16-310. Revised drawing details on pages 16-
1	7/08	 138, 16-139, 16-148, and 16-163. Revised Dimensional Details and added notes on pages 16-101, 16-102, 16-103, 16-106, 16-107, 16-108, 16-109, 16-114, 16-126, 16-127, 16-131, 16-134, 16-135, 16-138, 16-139, 16-160, 16-163. Updated Std. Item Identifiers on page 16-123. Rev dimensional detail on pages 16-142, 16-143, 16-146, 16-148, 16-150, 16-151, 16-153, 16-155, 16-157, 16-158, 16-161, 16-165, 16-168, 16-169, 16-171, 16-173.

	SUMMARY OF RECENT CHANGES			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/18 ness Use	16-NOTES-2	OVERHEAD CONSTRUCTION STANDARD	ppl

SECTION	PAGE
• 17.0 GENERAL	17-1
• 17.1 POLES	17-1
• 17.2 GUYS	17-1
17.3 CLIMBING SPACE	17-2
• 17.4 CLEARANCES	17-2
17.5 LOCATION OF ATTACHMENTS	17-2
17.6 15kV MAXIMUM DISTRIBUTION WOOD POLE MOUNTED METERED POWER SUPPLY AND ANTENNA INSTALLATIONS	17-2 THRU 17-4
17.7 ALL-DIELECTRIC FIBER OPTIC CABLE IN THE SUPPLY SPACE	17-4 THRU 17-5
 17.8 WOOD DISTRIBUTION POLE MOUNTED SECURITY AND SURVEILLANCE CAMERAS 	17-6 THRU 17-7
CONSTRUCTION DRAWINGS	
o Joint Pole Space Allocation	17-100 THRU 17-101
o Relative Levels And Spacing On Joint Use Poles 15 kV	17-102
Communication Company Air Dryer On Jointly Owned Poles	17-105
 Meter Socket Bracket And Connection For Pole Mounted Meter Installation 	17-107
 35 kV Max. Distribution Wood Pole Mounted Meter Supply Installation 	17-108
 15 kV Max. Distribution Wood Pole Mounted Antenna Installation 	17-109
 5-15kV Distribution Wood Pole Mounted Communication Equipment – Mounted Below Communication Space 	17-109A
 Single Phase Tangent With All Dielectric Fiber Optic (ADFO) Cable Between Primary And Secondary 	17-110
 Single Phase Angle With All Dielectric Fiber Optic (ADFO) Cable Between Primary And Secondary 	17-111
 Single Phase Corner Deadend With All Dielectric Fiber Optic (ADFO) Cable Between Primary And Secondary 	17-112
 Single Phase Tangent With Transformer And All Dielectric Fiber Optic (ADFO) Cable Between Primary And Secondary 	17-113
 Three Phase Tangent Single Crossarm With All Dielectric Fiber Optic (ADFO) Cable Between Primary And Secondary 	17-114
 Three Phase Angle Double Crossarm With All Dielectric Fiber Optic (ADFO) Cable Between Primary And Secondary 	17-115
 Three Phase Deadend Double Crossarm With All Dielectric Fiber Optic (ADFO) Cable Between Primary And Secondary 	17-116
 Three Phase Tangent With Transformers And All Dielectric Fiber Optic (ADFO) Cable Between Primary And Secondary 	17-117
 Distribution Wood Pole Mounted Security Or Survelliance Camera – Metered Service 	17-118
 Distribution Wood Pole Mounted Security Or Survelliance Camera – Non-metered Service 	17-119
 5-15kV Distribution Wood Pole Mounted Communication Equipment – Smart City Data Hub Connected Network Camera 	17-122
 5-15kV Distribution Wood Pole Mounted Communication Equipment – Smart City Data Hub Connected Temperature Sensor 	17-123

JOINT USE INDEX OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 7/20

	_
	ወ
	≤
	New Issue
	\overline{c}
	ດັ
	☱
	ᇷ
	٠.
	Т
	~
	≾
	×
	봈
	ሧ
	\mathbf{c}
	c
	~
	ゴ
	۵
	⊐
	Ξ
	C
	≒
•	⋖
	^
	뽀
	_
	Ω
	Ω
	П
	ᅋᄪ
	Q FIEC
	a Flectr
	a Flectric
	a Flectric
	a ⊨lectric ∨
	a Flectric Ve
	a ⊨lectric √en
	a Electric Venio
	d Electric Vehici
	d ⊏lectric Venicle
	a Electric Venicle L
	a Electric Venicle Di
	a Electric Venicle Dra
	d Electric Vehicle Drav
	a Electric Venicle Drawi
	a Electric Venicle Drawin
(a Electric Vehicle Drawing
(- Added Smart City and Electric Venicle Drawings
(d Electric Venicle Drawings.

SECTION		PAGE
0	5-15kV Distribution Wood Pole Mounted Communication Equipment – Smart City Data Hub Connected Traffic Analytics	17-124
0	5-15kV Distribution Wood Pole Mounted Communication Equipment – Smart City Data Hub Connected Audio Analytics	17-125
0	5-15kV Distribution Wood Pole Mounted Communication Equipment – Smart City Data Hub Connected Air Quality Monitor	17-126
0	Distribution Wood Pole Mounted Electric Vehicle Charging Station – Single Charger	17-201
0	Distribution Wood Pole Mounted Electric Vehicle Charging Station – Dual Chargers	17-202

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 17.00.002

17.0. GENERAL

This Standard covers the engineering practices for application of poles used jointly by the Company's electric supply facilities, communications company facilities and other facilities.

If two or more entities must install overhead lines on the same street, it is usually in the public interest to install them on joint use poles. On the Company's system, the terms for this joint use are covered by agreements between the joint users. This Section covers the special requirements for such poles.

Depending on the geographic location of the poles, reference should be made to Electric System Bulletin #101, the applicable Joint Use or Joint Ownership Agreement, the applicable Administrative and Operating Procedures (AOPs) or Intercompany Operating Procedures (IOPs), and applicable Distribution Pole Attachment or Aerial License Agreements for details of ownership, division of costs, division of work responsibilities, rental or licensing fees, and other detailed terms and conditions.

17.1. POLES

17.1.10 General

Contact should be made with the telephone and CATV companies serving the area, to determine their requirement or possible short-term future need for pole space, before poles are installed. Poles should be installed to provide space for foreign or joint use only when there is an agreement with another entity to share use of the pole, in which the other entity agrees to rent or license space on the pole(s) or purchase an ownership interest in the pole(s).

The Company shall not accept the cost of added space without compensation, even when the costs are low. Future plans should be based on the Company needs only, unless there are written commitments from others to rent or license space or to purchase an ownership interest.

After each entity has identified its need for space, new poles shall be selected from the Allocated Space Tables located on Pages 17-100 and 17-101. Joint poles or poles with extra height should be used depending on how these poles meet needs for clearance of all the users that have agreed to rent or license space or to purchase an ownership interest.

The necessity of replacing jointly owned poles shall be mutually agreed on by the joint owners, in writing, in each specific case. Neither joint owner shall at any time change the location of or remove any jointly owned pole without the written consent of the other party.

17.1.20 Pole Strength

The class of pole (pole strength) can be determined from the calculations and Tables in Section 3-Guying for storm guys and Section 2-Poles/Hardware.

This calculation will need the cooperation of the communication facility owner(s) to determine present and future wind loads under heavy loading conditions.

As an alternate practice to installing stronger poles, the line may be guyed for transverse load every second or third pole.

17.2 GUYS

Each entity shall provide guys of sufficient strength to hold the unbalanced load of its own wires and attachments (See Section 3-Guying).

Joint anchors and rods shall be used whenever practical and in any case Distribution Design shall arrange the exact location of each anchor. Triple thimble eyes are the standard anchor rod eye nuts.

	JOINT USE			
	SMA		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	17- 1	7/07

17.3 CLIMBING SPACE

Adequate clearances for climbing shall be provided as shown on Page 7-127. Care shall be taken when installing services, street lights, risers, etc. so that full climbing space is available to line workers from all attaching entities.

17.4 CLEARANCES

Clearances between communication space and electric supply space attachments are shown on Page 17-102. Reference should also be made to Section 7-Clearances.

Communications messengers in the communication space shall have a vertical spacing of 12 inches (center-to-center) at the pole. To avoid a pole replacement, provided other NESC requirements are satisfied and the new attacher, adjacent attachers and the joint pole owner agree, PPL will allow a reduction in vertical spacing between communication messengers to not less than 6 inches at the pole. If the spacing of 12 inches at the pole between communication messengers can be achieved without pole replacement, then the spacing of 12 inches shall be maintained. Communications conductors, cables and equipment of one communication utility to those of another shall have at least 4" clearance (surface-to-surface) anywhere in the span.

17.5 LOCATION OF ATTACHMENTS

Cooperative effort is needed to avoid placing heavy communication equipment on power company poles with cable risers or equipment that will make climbing difficult. The appearance of individual poles and the whole pole line should also be considered.

Communication equipment, such as CATV, power supplies, telephone air dryers, telephone stands, etc., shall be installed on joint poles in accordance with Pages 17-105 thru 17-108 or special drawings approved by Standards Engineering.

In general, avoid placing risers for multiple entities on one pole. When this is not practical, install them per Section 18-Risers as well as Section 48-Risers of the Underground Construction Standards manual.

17.6 <u>15kV MAXIMUM DISTRIBUTION WOOD POLE MOUNTED METERED POWER SUPPLY AND ANTENNA</u> INSTALLATIONS

17.6.10 Application

This Section covers installation details for distribution wood pole mounted, metered, secondary service to power supplies and antenna communication equipment on poles with 15kV maximum voltage equipment on pole.

17.6.20 **General**

All installations shall be made in compliance with all applicable codes including the National Electrical Safety Code (NESC) and National Electrical Code (NEC), with local wiring inspector requirements and with applicable service requirements from the Company's tariffs and "Specifications for Electrical Installations" (ESB 750) book. The communication entity shall contact the Company office serving the area involved and also obtain agreement from all other affected pole occupants and/or owners. The communication entity shall submit all appropriate documentation in a timely fashion to allow for necessary engineering and construction to take place.

17.6.30 <u>Location</u>

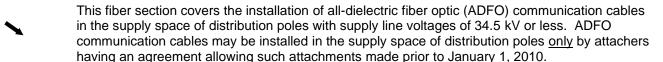
Poles selected for communication mounted equipment shall be relatively "clean" poles, free of any other major equipment, and accessible by bucket truck throughout the year. Antennas shall not be installed on poles with airbreak or loadbreak switches, line reclosers, sectionalizers, capacitors, voltage regulators, transformers, primary or secondary risers, major communications or fire alarm equipment, other antennas, three or four-way primary junction poles and backyard poles.

	JOINT USE			
	ISSUE	PAGE NUMBER		WIII
Busi	7/16 ness Use	17-2	OVERHEAD CONSTRUCTION STANDARD	ppl

17.6.40 <u>Division of Responsibility</u>

- A.) A rain tight weatherhead shall be mounted in a location suitable for the Company to form a driploop and to make secondary connections (See Pages 17-108 thru 17-109).
- B.) Service entrance cables shall be #10 stranded copper, insulated THWN, THHN, or SE conductor suitable for outdoor use. The cable shall include two black insulated conductors and one white insulated conductor and shall extend a minimum of 24 inches beyond the weatherhead to form a driploop and to make secondary connections.
- C.) Electric service conduit shall be 1inch PVC schedule 40, at a minimum, sunlight and weather resistant as well as direct and weather sealed to the meter socket enclosure. Conduit straps shall be placed at intervals not exceeding 30 inches.
- D.) An approved meter socket shall be installed on the quarter of the pole away from vehicular traffic. The meter shall be a ringless socket sealable style with a safety arc shield and an approved single handle-operation bypass; use of an automatic bypass is not permitted. The meter socket shall be approved by an Authority of Higher Jurisdiction (AHJ) accepted organization concerned with product evaluation and carry the label of that agency.
- E.) Bracket system, (Std. Item C39E or equivalent), for mounting the socket to the pole (See Page 17-107). Attach the bracket to the pole with galvanized lag screws and the socket to the bracket with stainless steel bolts, nuts and lock washers. In the event that a 120/208 V meter is installed, a 5th terminal is required.
- F.) Disconnect and overcurrent protection shall be limited to a 30 A maximum service rating and should be located in a separate compartment from the meter socket.
- G.) Grounding shall consist of #4 covered, soft drawn copper down ground (Std. Item W11F), and copper or bronze connectors, and copperclad 5/8 inch diameter x 8 foot length ground rod(s). An additional ground rod shall be installed if it is necessary to lower the resistance to earth. All equipment shall be bonded to the grounding system. The communication company shall leave enough grounding conductor coiled at the location of the weatherhead for final connection by the electric company to their aerial ground wire/system neutral conductor. This ground arrangement shall apply unless local requirements specify otherwise.
- H.) A single power supply shall be located on the back side of the pole away from vehicular traffic with a maximum weight not to exceed 670 lbs. All mounting equipment shall be galvanized steel construction.
- I.) If needed, an antenna shall be mounted via an approved method at the top of the distribution pole. The antenna maximum weight shall not exceed 110 lbs. and the maximum height shall be 104 inches including any mounting hardware. The minimum horizontal clearances between the antenna and any primary energized part up to 15kV shall be 12".
- J.) If needed, a cable shall be directly routed from the antenna to the power supply inside a 2 inch PVC conduit that is schedule 40 minimum as well as sunlight and weather resistant.

JOINT USE				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	17-3	7/16	


K.) If needed, fiber shall be directly routed from the power supply to the splice box inside a 2 inch PVC riser guard that is schedule 40 minimum as well as sunlight and weather resistant.

Following the municipal wiring inspector's approval of the construction by others, the Company shall provide all connections to the secondary supply conductors including the communication company's grounding conductor. The Company will also set the meter with a polycarbonate cover.

Note: All work performed in or above the "Communication Worker Safety Zone" shall be completed by an electrically qualified worker meeting NESC and OSHA requirements. Further detail can be referenced in ESB #750 or the Electric Service Information and Requirements documents.

17.7 ALL-DIELECTRIC FIBER OPTIC (ADFO) CABLE IN THE SUPPLY SPACE

17.7.10 **General**

The Company allows the installation of ADFO communication cables in the supply space of distribution poles. Such installations must comply with the requirements detailed below, with the NESC and with any applicable federal, state or local regulations.

Under the NESC, a communication cable may be installed in the supply space; however, such a cable is considered part of the supply space. This means that the Communication Worker Safety Zone requirements between this communications cable in the supply space and communication space attachments apply when a separate communication space is required on the pole. This also means that workers installing and maintaining this cable in the supply space must meet the more stringent worker training and equipment requirements for work in the supply space. These requirements come from the NESC and OSHA, as well as by state and local regulations.

17.7.20 Approved Installation

Per Company requirements, ADFO cable is the only type of fiber cables that may be installed in the supply space. An ADFO cable is entirely dielectric including being supported on a messenger that is entirely dielectric. The key distinguishing feature of this type of cable is that the entire cable assembly is dielectric. A cable assembly that contains any metallic component cannot be considered all-dielectric.

The other type of fiber cable, an effectively grounded cable, is a communication cable that is supported on a messenger and is effectively grounded throughout its length. In general, the Company shall not allow the installation of any communication cables with a metallic component in the supply space even if that cable is effectively grounded.

17.7.30 Location on Pole

The Company will designate the location on each pole for any communication cables installed in the supply space. In general, this cable shall be the next cable above the existing neutral or secondary cable. Where there are multiple communication cables in the supply space, to the extent practical, this location should be in the same relative position on adjacent poles.

	JOINT USE			
	ISSUE	PAGE NUMBER		AMIZZ
Busi	7/10 ness Use	17-4	OVERHEAD CONSTRUCTION STANDARD	ppl

In general, an ADFO cable must be attached to the pole with a 12 inch minimum separation in any direction from the electric neutral or secondary cables and at least 30 inches of separation from any primary electric supply cable or other energized part (See pages 17-110 thru 17-118). A 12 inch vertical separation between the ADFO cable and the electric neutral or secondary cables at the pole is preferred. Where this is not possible, the owner of the communication cable may install an ADFO cable on an offset bracket to obtain a 12 inch minimum horizontal separation from the neutral or secondary cable. The bracket should be installed immediately above the neutral or secondary cable. Grounding of this bracket is not required.

17.7.40 Clearances

The NESC imposes no minimum clearance requirement between an ADFO cable and some classes of cables in the supply space. In particular, the NESC does not specify clearances between an ADFO cable in the supply space and any other cable in the supply space up to and including, the 15 kV class. The NESC also does not specify clearances between an ADFO cable and supply cables in the 23 kV or 34.5 kV classes where the cables are owned by the same entity. However, the NESC does specify clearance requirements between an ADFO cable and supply cables in the 23 kV or 34.5 kV classes where the cables are owned by different entities.

Where the NESC does not specify clearances, maintaining the ability of all parties to safely work on their cables is still a primary concern. Therefore, ADFO cables shall be installed with a minimum 12 inch separation at the pole, in any direction, from the electric neutral or secondary cables. To allow work on the communication cable without requiring the Company to cover its primary electric supply cables or other exposed parts, an ADFO cable in the supply space shall be installed with a 30 inch minimum separation in any direction from any primary cable or other exposed part at the pole.

Where the NESC specifies clearances, at a minimum those clearances shall be followed. This type of installation may be approved by Distribution Design based on a review of the specific proposed installation. If a request for this type of installation is received, consult Standards Engineering for specific applicable requirements.

17.7.50 Sag and Tension

An ADFO cable installed in the supply space should be sagged to approximately match the sag of the existing secondary or neutral cable with both cables at final sag condition at 60°F/15°C. The communication cable's owner shall provide the Company with appropriate sag and tension data for the cable used. The owner of the communication cable is responsible for costs associated with the additional space required to accommodate cables that do not follow this recommended practice.

17.7.60 Worker Qualifications

The installation, maintenance, modification and removal of cables or equipment in the supply space must be done by workers qualified to work in that space. The owner of the communication cable shall ensure that the workers installing its fiber in the supply space understand and meet the requirements of the NESC (Part 4) and OSHA (Parts 1910 and 1926), and that various states and localities each impose requirements on employers for the training, qualification, equipment and practices of workers in the supply space. The Company expects that the owner of the communication cable will assure compliance with all applicable NESC, OSHA, state and local requirements by the workers installing the communication cable(s) in the supply space and their employer.

JOINT USE

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

17- 5 7/10

17.8 WOOD DISTRIBUTION POLE MOUNTED SECURITY AND SURVEILLANCE CAMERAS

17.8.10 General

This Section covers installation details for wood distribution pole mounted security and surveillance cameras.

All third party use of PPL poles will be authorized by written agreement. Occupancy fees are routinely assessed for use of PPL facilities (e.g., poles), however, such fees may be waved for municipal or law enforcement short term (temporary) installations. Unless waived by PPL Security or Business Services, permanent installations including those of municipalities and law enforcement agencies are subject of occupancy fees. In addition to occupancy fees, the applicant (requestor) shall reimburse PPL for support services (e.g. field surveys, make ready work, etc.) and energy supply costs for such installations. Energy cost shall be per Company tariffs. Municipal franchise agreements and/or pole permits should be reviewed to determine municipal rights regarding use of Company facilities. Unless otherwise noted below, PPL's Telecommunication Attachment Department shall hold all Agreements, retain and invoice for appropriate occupancy and support service fees. Energy cost shall be managed and invoiced through Business Services.

NOTE: Many poles are jointly owned with the Telephone Company. PPL cannot unilaterally authorize use of joint owned poles, e.g., application must also be made to and authorization received from our joint pole owner.

17.8.20 Location on Pole

The security and surveillance cameras shall be installed at least 12 inches below the lowest communication cable.

17.8.30 Division of Responsibility

- A.) A rain tight weatherhead shall be mounted in a location suitable for the Company to form a driploop and to make secondary connections (See Page 17-118).
- B.) Service entrance cables shall be #10 stranded copper, insulated THWN, THHN, or SE conductor suitable for outdoor use. The cable shall include two black insulated conductors and one white insulated conductor and shall extend a minimum of 24 inches beyond the weatherhead to form a driploop and to make secondary connections.
- C.) Electric service conduit shall be 1inch PVC schedule 40, at a minimum, sunlight and weather resistant as well as direct and weather sealed to the meter socket enclosure. Conduit straps shall not be placed at intervals exceeding 30 inches.
- D.) An approved meter socket shall be installed on the quarter of the pole away from vehicular traffic. The meter shall be a ringless socket sealable style with a safety arc shield and an approved single handle-operation bypass; use of an automatic bypass is not permitted. The meter socket shall be approved by an Authority of Higher Jurisdiction (AHJ) accepted organization concerned with product evaluation and carry the label of that agency.
- E.) Bracket system, (Std. Item C39E or equivalent), for mounting the socket to the pole (See Page 17-107). Attach the bracket to the pole with galvanized lag screws and the socket to the bracket with stainless steel bolts, nuts and lock washers. In the event that a 120/208 V meter is installed, a 5th terminal is required.

		JOINT USE	
ISSUE	PAGE NUMBER		WIN
iness Use	17-6	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 17.00.002

F.) Disconnect and overcurrent protection shall be limited to a 30 A maximum service rating and may be located in a separate compartment from the meter socket.

- G.) Grounding shall consist of #4 covered, soft drawn copper down ground (Std. Item W11F), and copper or bronze connectors, and copperclad 5/8 inch diameter x 8 foot length ground rod(s). An additional ground rod shall be installed if it is necessary to lower the resistance to earth. All equipment shall be bonded to the grounding system. The owner of the Security or Surveillance camera shall leave enough grounding conductor coiled at the location of the weatherhead for final connection by the electric company to their aerial ground wire/system neutral conductor. This ground arrangement shall apply unless local requirements specify otherwise.
- H.) A single power supply shall be located on the back side of the pole away from vehicular traffic with a maximum weight not to exceed 670 lbs. All mounting equipment shall be galvanized steel construction.

17.8.40 Law Enforcement Requests For Criminal or Investigational Surveillance

The Company supports all efforts related to national security (homeland security) and Law enforcement investigations. All such requests shall be directed to PPL Corporate Security. Due to confidentiality requirement of these requests, Corporate Security will be responsible arranging PPL support services and for maintaining all records associated with law enforcement requests and the subsequent installation of these technical surveillance devices.

17.8.50 Other Municipal Requests

The Company supports municipal public service efforts (e.g. traffic control, building/parking lot security, etc.). Consistent with existing franchise agreements and PPL operational needs, PPL will authorize municipal camera installations. All such requests shall be directed to Business Services.

JOINT USE					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	17- 7	7/07		

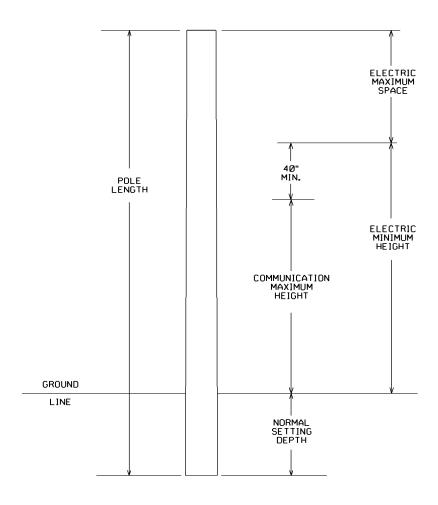
© 2022 PPL Corporation. All rights reserved. Doc. # ST. 17.00.002

	RHODE ISLAND					
Pole Length (Feet)	Ownership Percentage (Elec./Tel.)	Normal Setting Depth (Ft-Inches)	Tel. Space Allocation (Ft-Inches)	Licensee Space Allocation (Ft-Inches)	Municipal Space Allocation (Ft-Inches)	Electric Space Allocation (Ft-Inches)
35	35/35	6'-0"	2'-6"	1'-0"	1'-0"	60"
40	40/40	6'-0"	2'-6"	1'-0"	1'-0"	78"
45	45/45	6'-6"	2'-6"	1'-0"	1'-0"	105"
50	50/50	7'-0"	2'-6"	1'-0"	1'-0"	132"
55	55/55	7'-6"	2'-6"	1'-0"	1'-0"	159"
60	60/60	8'-0"	2'-6"	1'-0"	1'-0"	186"

See notes on page 17-100A and diagram on page 17-101.

	JOINT POLE SPACE ALLOCATION				
	ISSUE	PAGE NUMBER		WHZ.	
Busi	7/20 ness Use	17-100	OVERHEAD CONSTRUCTION STANDARD	ppl	

Doc. # ST. 17.00.002


NOTES:

- 45/40 indicates a 45 foot pole where the communication company pays for and occupies the space as if it
 were a 40 foot joint pole. 40/45 indicates a 45 foot pole where the Company pays for and occupies the
 space as if it were a 40 foot joint pole.
- 2. These space allocations are based on wood poles with embedment depths of 2 ft plus 10% of the pole length. Space allocation may need to be adjusted when other embedment depths are used, Not used in this edition.
- 3. Electric Maximum Space does not include 8" at the top of the pole that is considered unusable. Electric Minimum Height reflects Electric Maximum Space and the 8" unusable pole top.
- 4. To minimize pole replacements each party shall rearrange its attachments on existing poles to provide space for the other party, within the limits of each company's construction standards, regardless of allocated space shown.
- 5. Generally, to meet in-span ground clearance requirements, communication companies must install their cables on the pole at least 18 feet above ground. If the communication cable can be installed on the pole at less than 18 feet above ground clearance (for example, 15 feet required in rear lots), the extra pole space is divided equally between the joint owners 1-½ feet to each. If ground clearance forces telephone companies upwards (say a 3 foot high knoll), each company may be required to give up equal space (1-½ feet) or use a 5 foot higher pole.

JOINT POLE SPACE ALLOCATION				
	PAGE NUMBER	ISSUE		
OVERHEAD CONSTRUCTION STANDARD	17-100A	7/20		

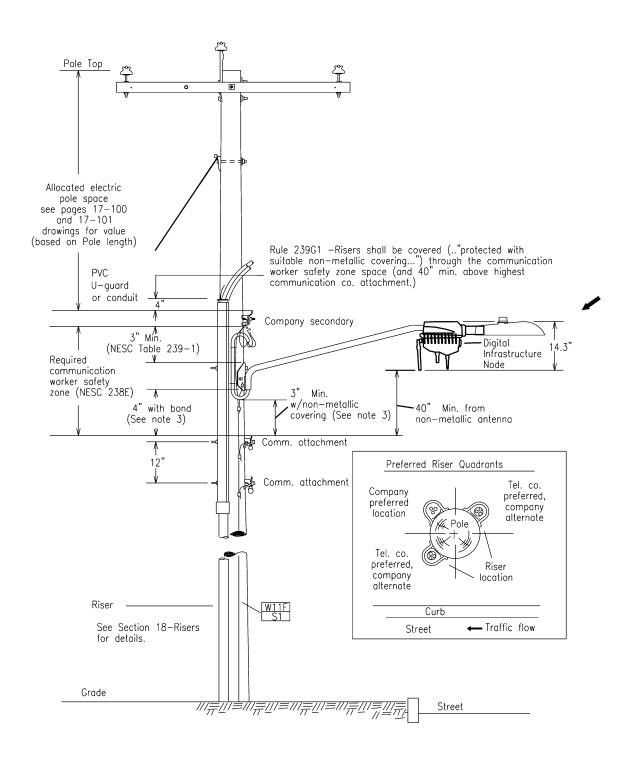
© 2022 PPL Corporation. All rights reserved. Doc. # ST. 17.00.002

JOINT POLE SPACE ALLOCATION

	JOINT POLE SPACE ALLOCATION				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/20 ness Use	17-101	OVERHEAD CONSTRUCTION STANDARD	ppl	

Doc. # ST. 17.00.002

BLANK


OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

17-BLANK

7/20

Business Use

Related NESC References:

- Preferred Levels: Supply conductors should be carried at the higher level. (NESC Rule 220B1).
- Vertical runs of supply conductors shall have a clearance of 2" from communication messengers, cables, attachment bolts and hardware, except ground wires may have a clearance of 1" from messengers, cables, attachment bolts and hardware. (NESC Rule 239G5).

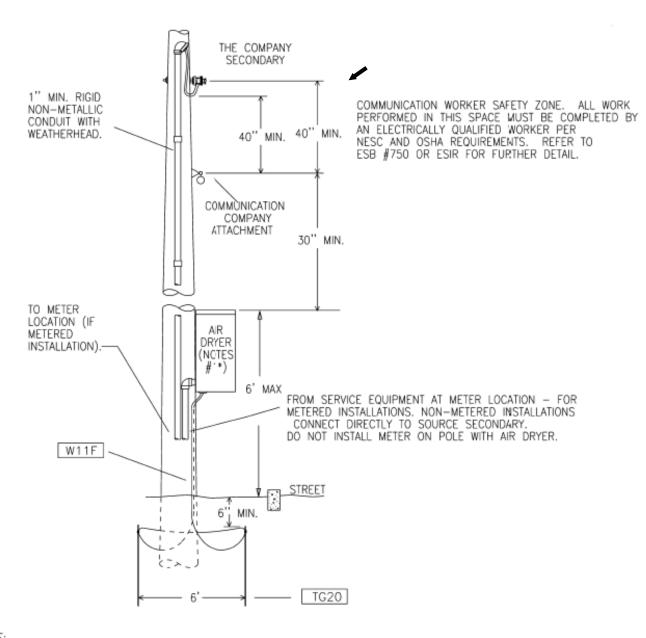
RELATIVE LEVELS AND SPACING ON JOINT USE POLES – 15 KV					
ISSUE	PAGE NUMBER		WWZ		
7/20	17-101	OVERHEAD CONSTRUCTION STANDARD	ppl		

Doc. # ST. 17.00.002

- Within 8' of the ground, all vertical conductors and cables shall be appropriately guarded. Supply conductors shall be in metallic conduits and ground wires shall be guarded using ground wire molding. (NESC Rule 239D).
- 2. Minimum Attachment Heights: See Section 7 Clearances for information about clearances above ground and minimum attachment heights.
- 3. Outdoor Lighting and Communications:
 - For new pole installations and new streetlight installations on existing poles:
 - Streetlight brackets shall be bonded to the secondary or system neutral and drip loops shall be covered with non-metallic flexible conduit.
 - Vertical clearance between the grounded streetlight bracket and the communication messengers, cables, attachment bolts or hardware shall be at least 4".
 - Vertical clearance between the drip loop, covered with non-metallic flexible conduit, and the communication messengers, cables, attachment bolts or hardware shall be at least 3".
 - For new communication facilities on or after February 1, 2017 on existing poles:
 - If the streetlight bracket is not bonded to the secondary or system neutral, maintain 40" vertical clearance between the streetlight bracket and the communication messengers, cables, attachment bolts and hardware. If the streetlight bracket is bonded to the system neutral, vertical clearance between the streetlight bracket and the communication messengers, cables, attachment bolts or hardware may be reduced to 4".
 - If the drip loop is not covered with non-metallic flexible conduit, maintain 12" vertical clearance between the drip loop and the communication messengers, cables, attachment bolts and hardware. If the drip loop is covered with non-metallic flexible conduit, vertical clearance between the drip loop and the communication messengers, cables, attachment bolts or hardware may be reduced to 3".
 - For existing communication facilities installed prior to February 1, 2017 on existing poles:
 - If the streetlight bracket is not bonded to the secondary or system neutral, maintain 20" vertical clearance between the streetlight bracket and the communication messengers, cables, attachment bolts and hardware. If the streetlight bracket is bonded to the system neutral, vertical clearance between the streetlight bracket and the communication messengers, cables, attachment bolts or hardware may be reduced to 4".
 - If the drip loop is not covered with non-metallic flexible conduit, maintain 12" vertical clearance between the drip loop and the communication messengers, cables, attachment bolts and hardware. If the drip loop is covered with non-metallic flexible conduit, vertical clearance between the drip loop and the communication messengers, cables, attachment bolts or hardware may be reduced to 3".
 - Streetlights should be mounted in the Communication Worker Safety Zone (CWSZ) between the supply and communication spaces on the pole. Streetlights may be mounted between communication messengers and cables <u>only</u> where streetlights mounted in the CWSZ cannot provide adequate illumination. When such installations must be made:
 - The streetlight bracket shall be grounded and the vertical clearance between the grounded streetlight bracket and the communication messengers, cables, attachment bolts or hardware above and below the streetlight shall be at least 4".
 - The drip loop shall be covered with non-metallic flexible conduit and the vertical clearance between the
 covered drip loop and the communication messengers, cables, attachment bolts or hardware shall be at
 least 3".
 - A CWSZ shall be established between (i) the communication attachment above the streetlight and (ii) the electric primary, neutral and secondary wires.
 - See Section 19 Lighting OH for additional notes regarding outdoor lighting on joint use poles, including: bracket location and restraint and protection of supply conductors.

RELATIVE LEVELS AND SPACING ON JOINT USE POLES – 15 KV						
SMIZZ		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD		7/19			

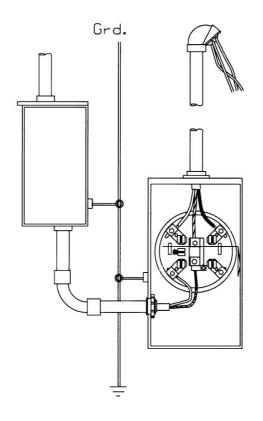
Doc. # ST. 17.00.002

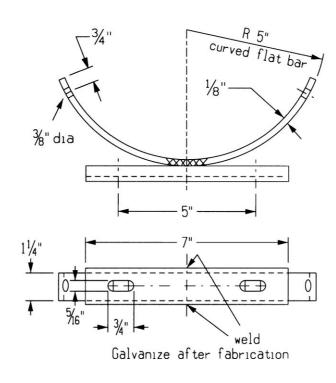

THIS PAGE LEFT INTENTIONALLY BLANK.

35 KV MAX. DISTRIBUTION WOOD POLE MOUNTED METER POWER SUPPLY
INSTALLATION

ISSUE	PAGE NUMBER
7/19	17- BLANK

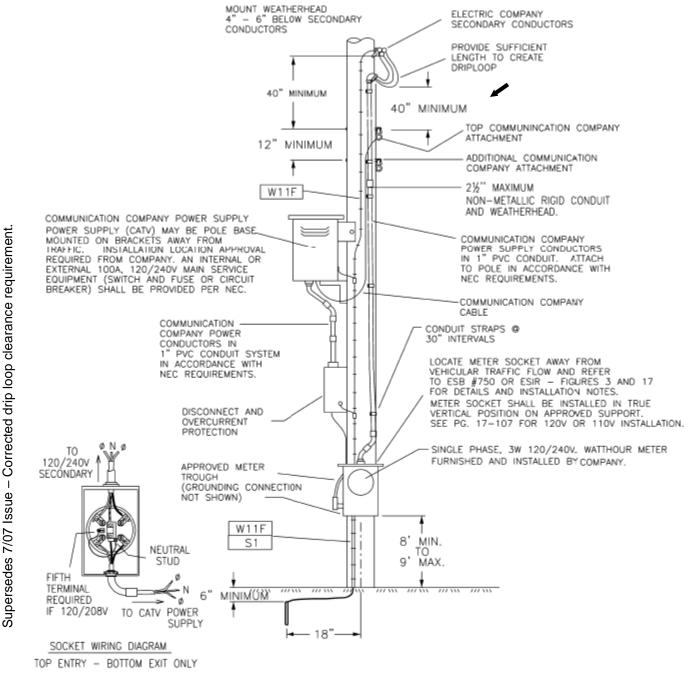
NOTE:


- 1 AIR DRYER AND ATTACHMENTS (CONDUIT, SUPPLY CONDUCTOR AND GROUNDING) SHALL BE FURNISHED AND INSTALLED BY COMMUNICATION COMPANY.
- 2. AVOID DRYER INSTALLATION ON POLES REQUIRING REPEATED CLIMBING, JUNCTION POLES, OR FOLE USED FOR
- OTHER EQUIPMENT. BILLING METERINGEQUIPMENT SHALL NOT BE LOCATED ON THE SAME POLE.


 3. THE SUPPLY CONDUCTOR (FURNISHED BY COMMUNICATION COMPANY) SHALL BE 600V TW CABLE LONG ENOUGH TO EXTEND 3' ABOVE THE COMPANY SECONDARY.
- 4. COMMUNICATION CO. TO PROVIDE NEC APPROVED SERVICE EQUIPMENT IF FLATE RATE BILLED. IF METERED, SERVICE EQUIPMENT TO BE LOCATED AT METER LOCATION. SEE ESB #750 FI REQUIREMENTS FOR ELECTRIC SERVICE FIGURE 904 DEPENDING ON LOCATION. SEE ESB #750 FIGURE 29, OR INFORMATION AND

COMMUNICATION CO. AIR DRYER INSTALLATION ON JOINTLY OWNED POLES

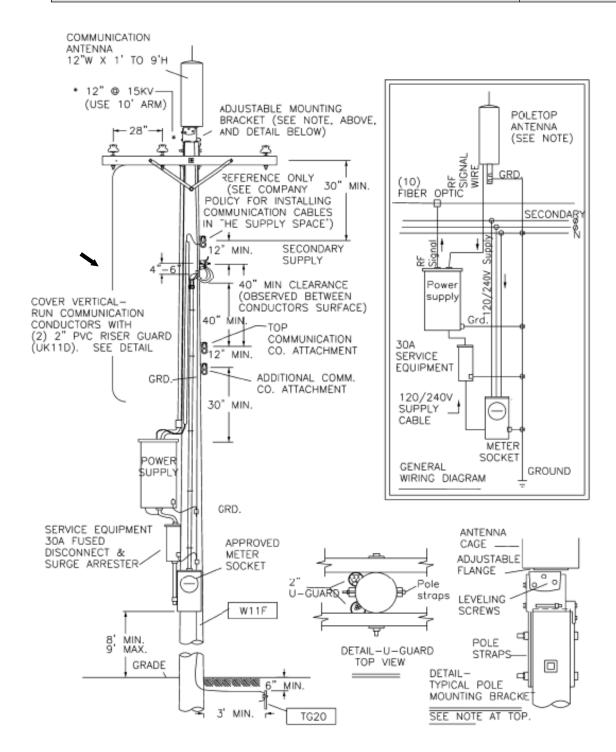
OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 17-105 7/22



	METER SOCKET BRACKET AND CONNECTIONS FOR POLE MOUNTED METER INSTALLATIONS					
	ISSUE	PAGE NUMBER		WHZ.		
Busi	1/06 ness Use	17-107	OVERHEAD CONSTRUCTION STANDARD	ppl		

Doc. # ST. 17.00.002

ELECTRIC COMPANY

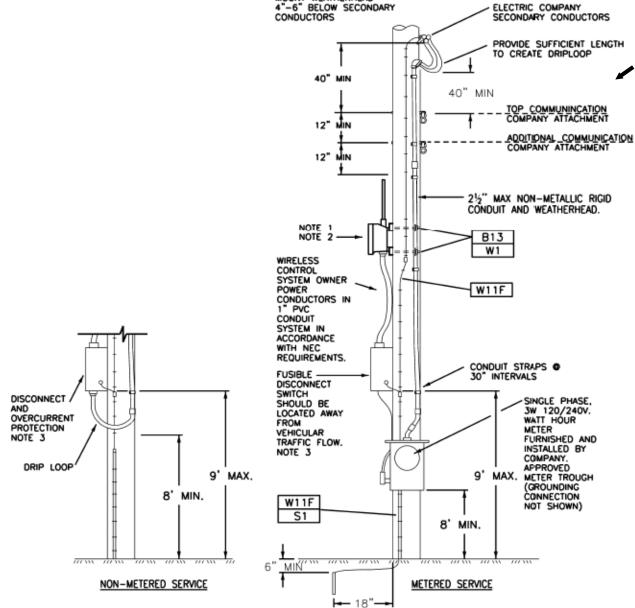

NOTES:

- ALL NEW OR REPLACEMENT POWER SUPPLIES ARE TO BE METERED. COMM. CO. POWER SUPPLY INSTALLATIONS SHOULD BE AVOIDED ON POLES WITH OTHER EQUIPMENT. POLES SHALL BE ACCESSIBLE BY BUCKET AND THE PROPOSED INSTALLATION SHALL BE FIELD REVIEWED AND APPROVED BY THE COMPANY AND ANY JOINT POLE OWNERS PRIOR TO WORK.
- COMM. CO. SHALL FURNISH, INSTALL OWN AND MAINTAIN ALL MATERIAL AND EQUIPMENT SHOWN ABOVE EXCEPT AS NOTED. REFER TO ESB #750 OR ELECTRIC SERVICE INFORMATION REQUIREMENTS (ESIR) FIGURE 923 DEPENDING ON LOCATION.

| Designer | Drowing | Dote | | Designer | Drowing | Dote | Designer | Design

35 KV MAX. DISTRIBUTION WOOD POLE MOUNTED METER POWER SUPPLY **INSTALLATION** PAGE NUMBER ISSUE ppl **OVERHEAD** CONSTRUCTION STANDARD 17-108 7/22

Business Use



- This arrangement is representative of a typical installation. Similar wireless pole top equipment may be accommodated while maintining the specified clearance requirements. Relocating existing facilities, pole replacement, or installing alternate equipment shall be considered when required.
- 2. ADFO communication cables may be installed in the supply space of distribution poles <u>only</u> by attachers having an agreement allowing such attachments made prior to January 1, 2010.

15 KV MAX. DISTRIBUTION WOOD POLE MOUNTED ANTENNA INSTALLATION					
ISSUE	PAGE NUMBER		WIII		
7/22	17-109	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved. Doc. # ST, 17,00,002

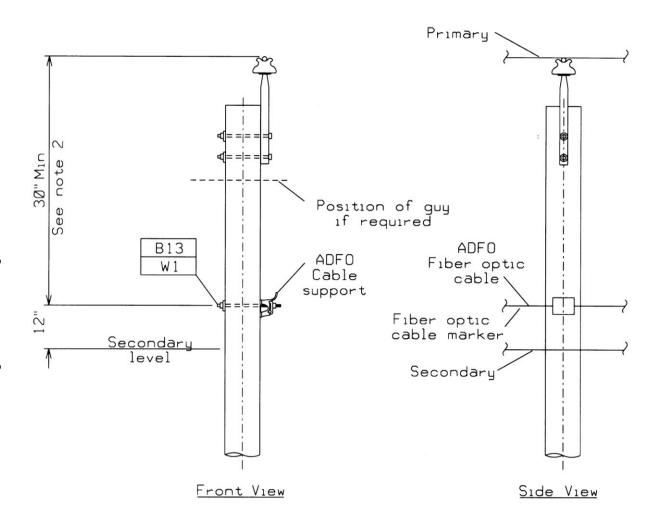
MOUNT WEATHERHEAD

NOTES:

- 1.CONNECTED GRID ROUTER INSTALLATIONS SHOULD BE AVOIDED ON POLES WITH OTHER EQUIPMENT. POLES SHALL BE ACCESSIBLE BY BUCKET AND THE PROPOSED INSTALLATION SHALL BE FIELD REVIEWED AND APPROVED BY THE COMPANY AND ANY JOINT POLE OWNERS PRIOR TO WORK.
- 2.WIRELESS CONTROL SYSTEM OWNER SHALL FURNISH, INSTALL OWN AND MAINTAIN ALL MATERIAL AND EQUIPMENT SHOWN ABOVE EXCEPT AS NOTED. REFER TO ESB∦750 OR ELECTRIC SERVICE INFORMATION REQUIREMENTS (ESIR) FIGURE 923.
- 3.LOCATE METER SOCKET AWAY FROM VEHICULAR TRAFFIC FLOW AND REFER TO ESB #750 OR ESIR FIGURES 3 AND 17 FOR DETAILS AND INSTALLATION NOTES. METER SOCKET SHALL BE INSTALLED IN TRUE \(\) APPROVED SUPPORT. SEE PG. 17-107 FOR \(\) 120V OR \(\) 110V INSTALLATION.

5-15kV DISTRIBUTION WOOD POLE MOUNTED COMMUNICATION EQUIPMENT – MOUNTED BELOW COMMUNICATION SPACE PAGE NUMBER ISSUE

OVERHEAD CONSTRUCTION STANDARD


17- 109A 7/22

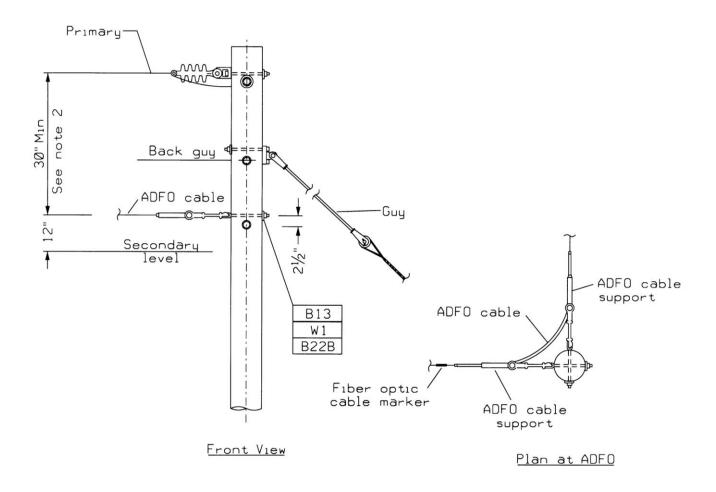
Supersedes 7/21 Issue - Corrected drip loop clearance requirement.

This page left intentionally blank.

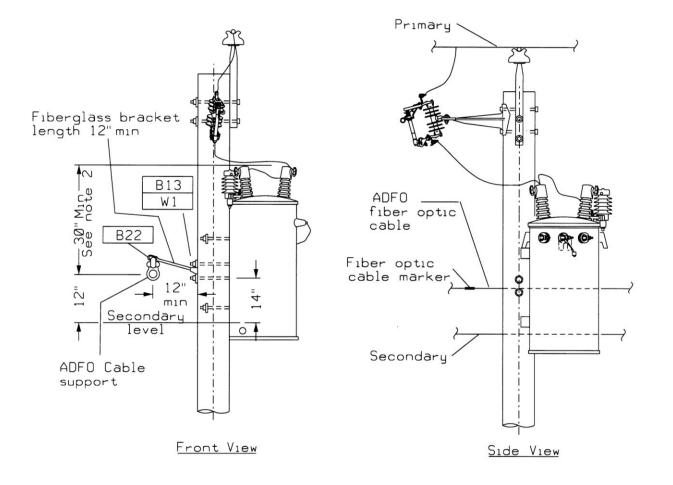

	JOINT USE				
	ISSUE	PAGE NUMBER		WIN	
Busi	7/20 ness Use	17-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl	

Doc. # ST. 17.00.002

- 1. Maximum line angle for ADFO = 20 degrees.
- 2. Distance between primary wire and ADFO cable shall be a minimum of 30 inches in any direction.
- 3. ADFO communication cables may be installed in the supply space of distribution poles <u>only</u> by attachers having an agreement allowing such attachments made prior to January 1, 2010.


SINGLE PHASE ANGLE WITH ADFO FIBER OPTIC CABLE BETWEEN PRIMARY AND SECONDARY						
PAGE NUMBER ISSUE						
ppl	OVERHEAD CONSTRUCTION STANDARD	17- 110	7/19			

- 1. Maximum line angle for ADFO = 30 degrees.
- 2. Distance between primary wire and ADFO cable shall be a minimum of 30 inches in any direction.
- 3. Item 5, fiberglass bracket, is for use on tangent and angle structures only. Not for use on deadends.
- 4. ADFO communication cables may be installed in the supply space of distribution poles <u>only</u> by attachers having an agreement allowing such attachments made prior to January 1, 2010.

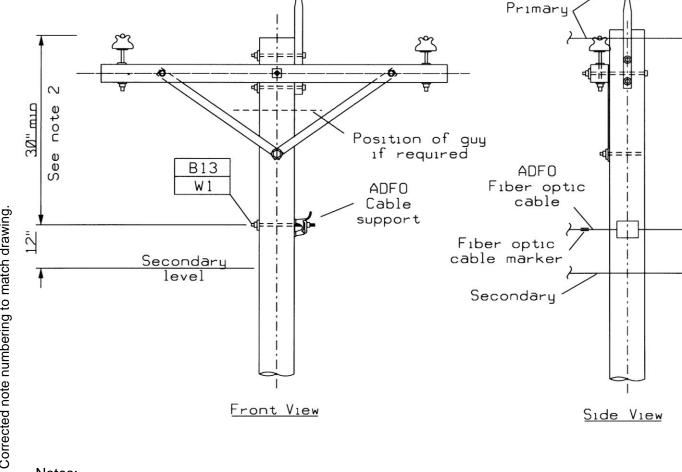

	SINGLE PHASE ANGLE WITH ALL DIELECTRIC FIBER OPTIC (ADFO) CABLE			
	BETWEEN PRIMARY AND SECONDARY ATTACHMENTS			
	ISSUE	PAGE NUMBER		NW.
Busi	7/19 ness Use	17-111	OVERHEAD CONSTRUCTION STANDARD	ppl

Doc. # ST. 17.00.002

- 1. Maximum line angle for ADFO = 90 degrees.
- 2. Distance between primary wire and ADFO cable shall be a minimum of 30 inches in any direction.
- 3. ADFO communication cables may be installed in the supply space of distribution poles <u>only</u> by attachers having an agreement allowing such attachments made prior to January 1, 2010.

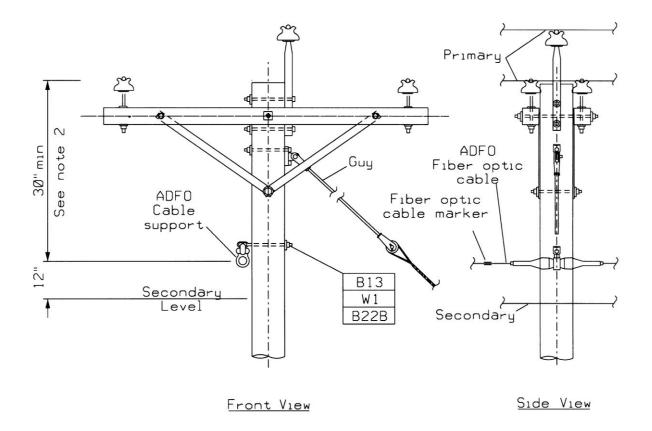
SINGLE PHASE CORNER DEADEND WITH ALL DIELECTRIC FIBER OPTIC CABLE BETWEEN PRIMARY AND SECONDARY ATTACHMENTS			
W/W		PAGE NUMBER	ISSUE
se ppl	OVERHEAD CONSTRUCTION STANDARD	17-112	7/19

- 1. Maximum line angle for ADFO = 30 degrees.
- 2. Distance between primary wire and ADFO cable shall be a minimum of 30 inches in any direction.
- 3. ADFO communication cables may be installed in the supply space of distribution poles <u>only</u> by attachers having an agreement allowing such attachments made prior to January 1, 2010.


SINGLE PHASE TANGENT WITH TRANSFORMER AND ALL DIELECTRIC FIBE	ΞR
OPTIC (ADFO) CABLE BETWEEN PRIMARY AND SECONDARY ATTACHMENT	ΓS

Business Use PAGE NUMBER
7/19
17-113

Doc. # ST. 17.00.002

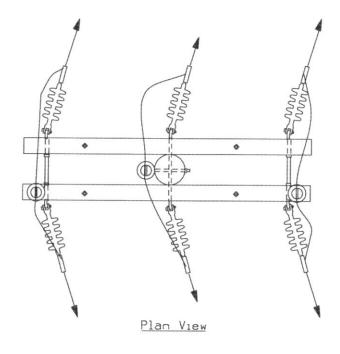


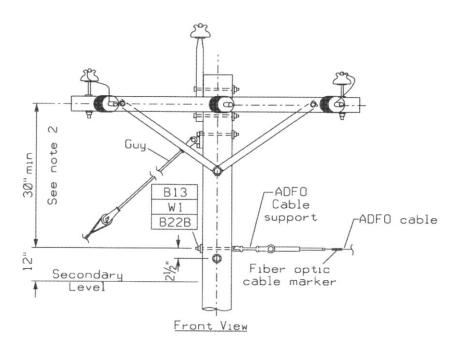
Notes:

- 1. Maximum line angle for ADFO = 20 degrees.
- 2. Distance between primary wire and ADFO cable shall be a minimum of 30 inches in any direction.
- 3. ADFO communication cables may be installed in the supply space of distribution poles <u>only</u> by attachers having an agreement allowing such attachments made prior to January 1, 2010.

THREE PHASE TANGENT SINGLE CROSSARM WITH ALL DIELECTRIC FIBER				
OPTIC (ADFO) CABLE BETWEEN PRIMARY AND SECONDARY ATTACHMENTS				
		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	17-114	7/19	

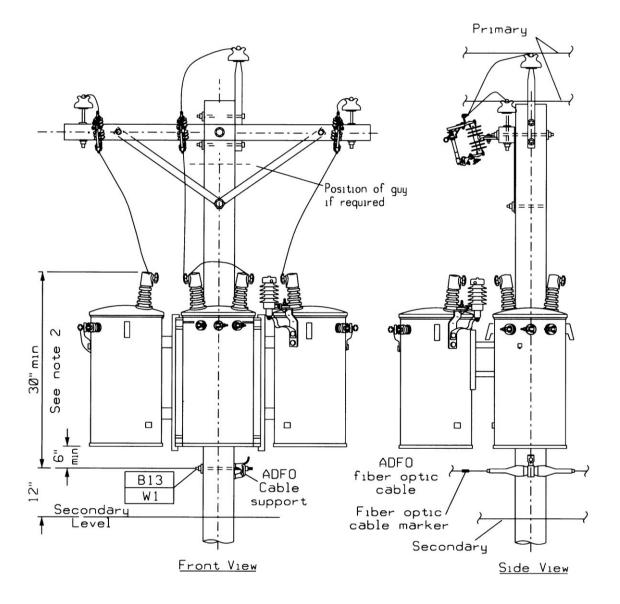
Supersedes 7/10 Issue - Corrected note numbering to match drawing.


- Maximum line angle for ADFO = 30 degrees.
 - 2. Distance between primary wire and ADFO cable shall be a minimum of 30 inches in any direction.
 - 3. ADFO communication cables may be installed in the supply space of distribution poles <u>only</u> by attachers having an agreement allowing such attachments made prior to January 1, 2010.


			OVERHEAD		
	ISSUE	PAGE NUMBER		WILL	
CABLE (ADFO) BETWEEN PRIMARY AND SECONDARY ATTACHMENTS					
	THREE PHASE ANGLE DOUBLE CROSSARM WITH ALL DIELECTRIC FIBER OPT				

Business Use 17-115

OVERHEAD CONSTRUCTION STANDARD

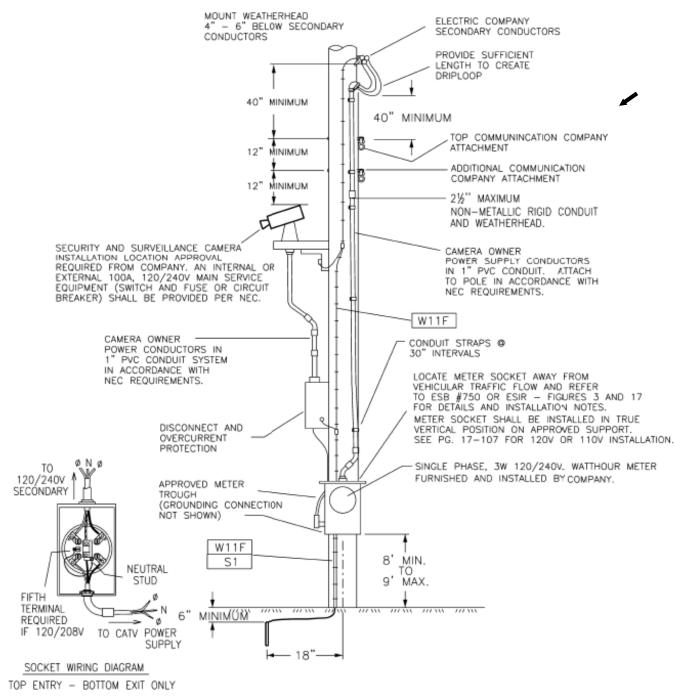

- 1. Maximum line angle for ADFO = 30 degrees.
- 2. Distance between primary wire and ADFO cable shall be a minimum of 30 inches in any direction.
- 3. ADFO communication cables may be installed in the supply space of distribution poles only by attachers having an agreement allowing such attachments made prior to January 1, 2010.

17-116

7/19

THREE PHASE DEADEND DOUBLE CROSSARM WITH ALL DIELECTRIC FIBER OPTIC (ADFO) CABLE BETWEEN PRIMARY AND SECONDARY ATTACHMENTS **PAGE NUMBER** ISSUE ppl **OVERHEAD**

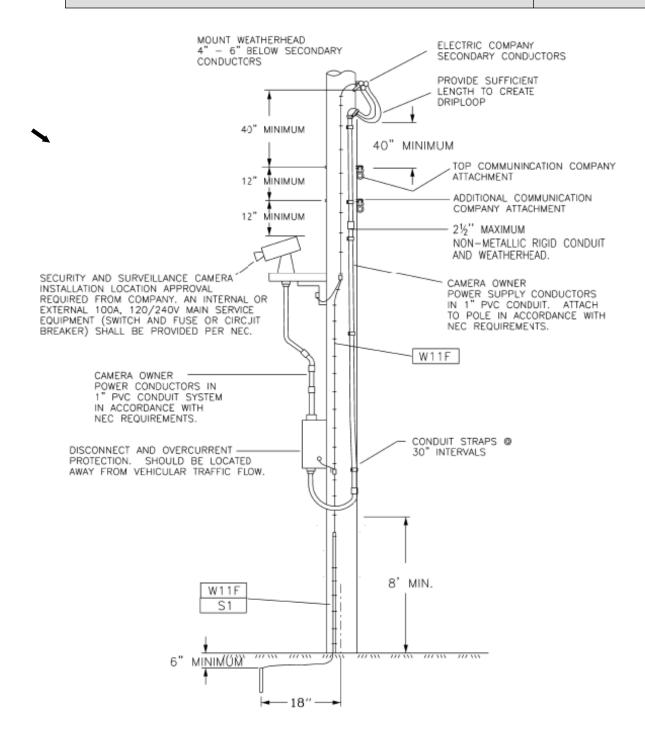
CONSTRUCTION STANDARD


- 1. Maximum line angle for ADFO = 20 degrees.
- 2. Distance between primary wire and ADFO cable shall be a minimum of 30 inches in any direction.
- 3. ADFO communication cables may be installed in the supply space of distribution poles <u>only</u> by attachers having an agreement allowing such attachments made prior to January 1, 2010.

ISSUE PAGE NUMBER					
ISSUE PAGE NUMBER					
OPTIC (ADFO) CABLE BETWEEN PRIMARY AND SECONDARY ATTACHMENTS					
THREE PHASE TANGENT WITH TRANSFORMERS AND ALL DIELECTRIC FIBER					

7/19 Business Use 17-117 OVERHEAD CONSTRUCTION STANDARD

Doc. # ST. 17.00.002


NOTES:

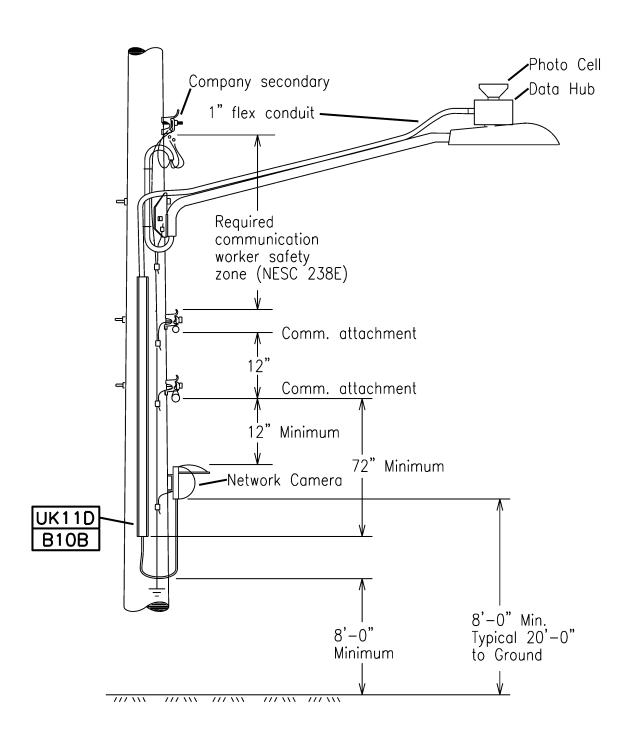
- CAMERA POWER SUPPLY INSTALLATIONS SHOULD BE AVOIDED ON POLES WITH OTHER EQUIPMENT. POLES SHALL BE ACCESSIBLE BY BUCKET AND THE PROPOSED INSTALLATION SHALL BE FIELD REVIEWED AND APPROVED BY THE COMPANY AND ANY JOINT POLE OWNERS PRIOR TO WORK.
- CAMERA OWNER SHALL FURNISH, INSTALL OWN AND MAINTAIN ALL MATERIAL AND EQUIPMENT SHOWN ABOVE EXCEPT AS NOTED. REFER TO ESB #750 OR ELECTRIC SERVICE INFORMATION REQUIREMENTS (ESIR) FIGURE 923 DEPENDING ON LOCATION.

| Designer | Drowing | Dote | | Designer | Drowing | Dote | Designer | Design

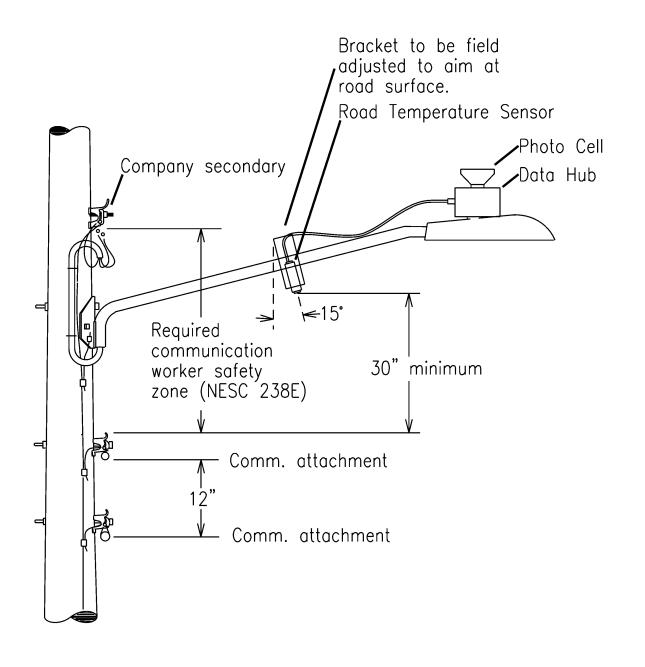
DISTRIBUTION WOOD POLE MOUNTED SECURITY OR SURVEILLANCE CAMERA METERED SERVICE OVERHEAD CONSTRUCTION STANDARD 17- 118 7/22

od17119 11/15/21

NOTES:

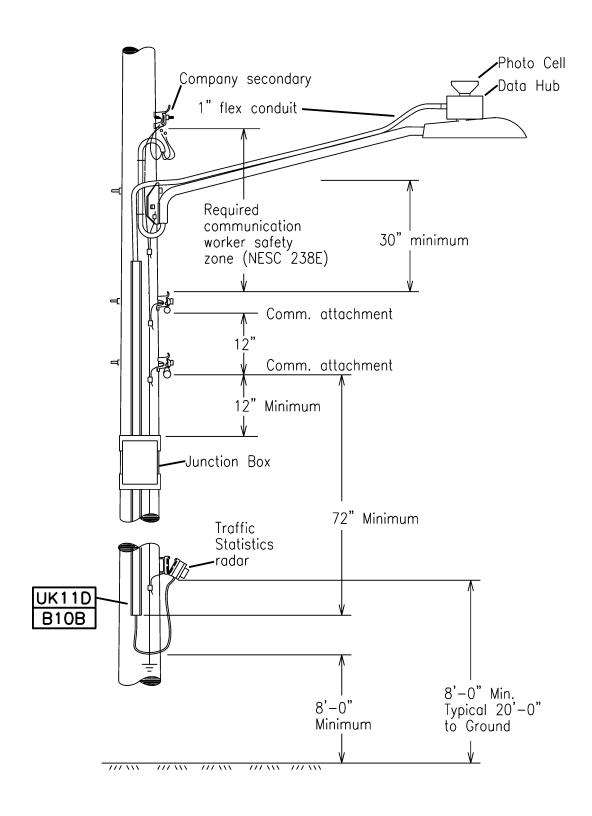

- CAMERA POWER SUPPLY INSTALLATIONS SHOULD BE AVOIDED ON POLES WITH OTHER EQUIPMENT. POLES SHALL BE ACCESSIBLE BY BUCKET AND THE PROPOSED INSTALLATION SHALL BE FIELD REVIEWED AND APPROVED BY THE COMPANY AND ANY JOHNT POLE OWNERS PRIOR TO WORK.
- 2. CAMERA OWNER SHALL FURNISH, INSTALL OWN AND MAINTAIN ALL MATERIAL AND EQUIPMENT SHOWN ABOVE EXCEPT AS NOTED. REFER TO ESB #750 OR ELECTRIC SERVICE INFORMATION REQUIREMENTS (ESIR) FIGURE 923 DEPENDING ON LOCATION.

 Designer Drowing | Dote


DISTRIBUTION WOOD POLE MOUNTED SECURITY OR SURVEILLANCE CAMERA NON-METERED SERVICE

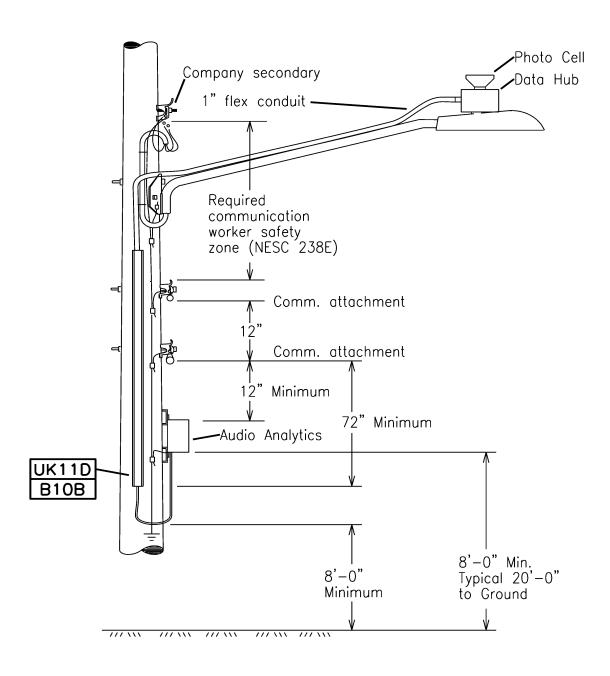
NON-METERED SERVICE				
ISSUE	PAGE NUMBER		SWW.	
7/22	17-119	OVERHEAD CONSTRUCTION STANDARD	ppl	

Doc. # ST. 17.00.002


5-15kV DISTRIBUTION WOOD POLE MOUNTED COMMUNICATION EQUIPMENT -				
SMART CITY DATA HUB CONNECTED NETWORK CAMERA				
	177		PAGE NUMBER	ISSUE
ppl ppl	***	OVERHEAD CONSTRUCTION STANDARD	17-122	7/20

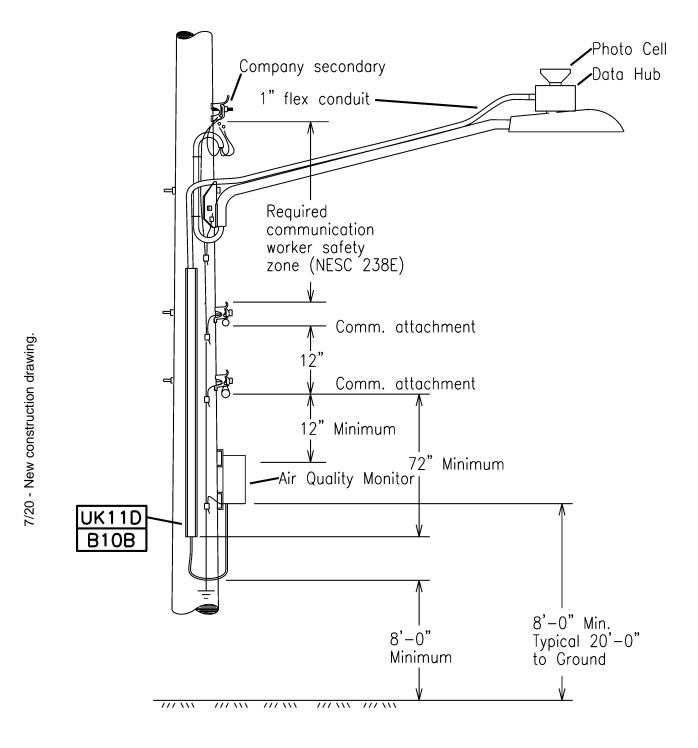
5-15kV DISTRIBUTION WOOD POLE MOUNTED COMMUNICATION EQUIPMENT –					
SMART CITY DATA HUB CONNECTED TEMPERATURE SENSOR					
ISSUE	PAGE NUMBER		WW.		
		OVERHEAD			

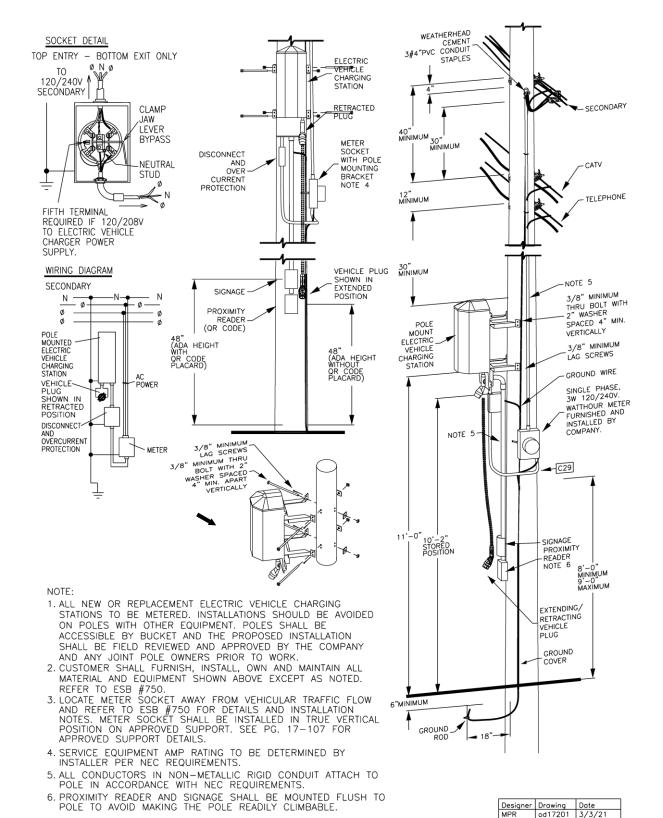
Business Use 17-123 **CONSTRUCTION STANDARD**



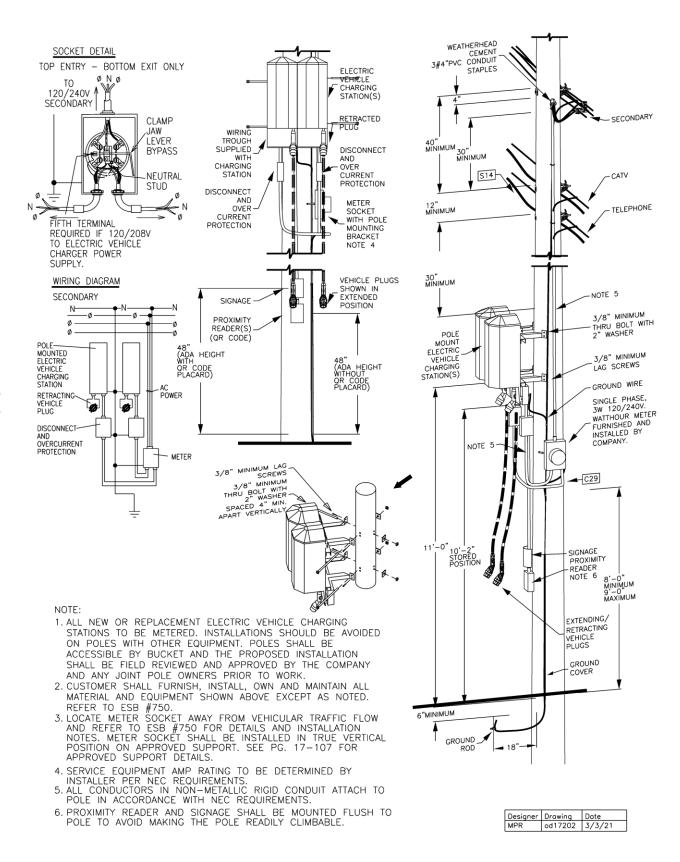
5-15kV DISTRIBUTION WOOD POLE MOUNTED COMMUNICATION EQUIPMENT –						
SMART CITY DATA HUB CONNECTED TRAFFIC ANALYTICS						
PAGE NUMBER ISSUE						
100000000000000000000000000000000000000	OVERLIEAR	· · · · · · · · · · · · · · · · · · ·				

OVERHEAD CONSTRUCTION STANDARD


17- 124 7/20


5-15kV DISTRIBUTION WOOD POLE MOUNTED COMMUNICATION EQUIPMENT –						
	SMART CITY DATA HUB CONNECTED AUDIO ANALYTICS					
ISSUE PAGE NUMBER OVERHEAD						
		OVERHEAD	A STATE OF THE STA			

7/20 17-125 OVERHEAD CONSTRUCTION STANDARD



5-15kV DISTRIBUTION WOOD POLE MOUNTED COMMUNICATION EQUIPMENT –						
SMART CITY DATA HUB CONNECTED AIR QUALITY MONITOR						
SMD		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	17- 126	7/20			

	DISTRIBUTION WOOD POLE MOUNTED ELECTRIC VEHICLE CHARGING STATION – SINGLE CHARGERI				
ISSUE	PAGE NUMBER		WIN		
7/21	17-201	OVERHEAD CONSTRUCTION STANDARD	ppl		

DISTRIBUTION WOOD POLE MOUNTED ELECTRIC VEHICLE CHARGING STATION – DUAL CHARGER				
	PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	17- 202	7/21	

Version	Date	Modification	Author(s)	Approval by (Name/Title)
8	7/22	Corrected drip clearance in 17-105, 17-108, 17-109, 17-109A, 17-118, and17-119.		
7	7/21	 Revised ground clearance dimensions in 17-109A. Add bracket to move charging station off pole face in 17-201 and 17-202. 		
6	7/20	 Revised Space Allocation Table on 17-100 to reflect current agreement with Verizon. Revised 17-102 to show clearances for streetlight mounted communication equipment. Added new drawings 17-122 through 17-206 for Smart City applications. Added new drawings 17-201 and 17-202 for distribution pole mounted electric vehicle chargers. 		
5	7/19	 Revised footnotes 2 and 4, and deleted footnote 3 to tables on page 17-100. Updated Note 3 on 17-103. Corrected note numbering to match drawings in 17-110 through 17-117. 		
4	7/16	 Revised 17.6.30 limits on antenna locations. Revised antenna clearances and title on drawing 17-109. 		
3	7/15	 Revised 17.6.30 limits on antenna locations. Corrected issue dates on pages 17-109, 17-110, 17-111, 17-112, 17-113, 17-114, 17-115, 17-116, 17-117. 		
2	7/12	Added communication messenger spacing requirement in section 17.4.		
1	07/10	 Revised section 17.7.10 and drawings 17-109 through 17-117 to limit supply space communication cables to agreements made prior to January 1, 2020. Revised drawing on page 17-102 and associated notes on new page 17-103. 		

	SUMMARY OF RECENT CHANGES				
ISSUE	PAGE NUMBER		WIII		
7/21	17-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl		

SECTI	ON	PAGE
•	18.0 GENERAL	18-1
•	18.1 TERMINATIONS	18-1
•	18.2 CABLES	18-2
•	18.3 ARRESTERS	18-3
•	18.4 ANIMAL GUARDS	18-3
•	18.5 RISER GUARDS	18-4
•	18.6 CONDUIT SEALING	18-5
•	18.7 RISER ACCESSIBILITY	18-5
	18.8 RAISING TERMINATIONS ON A POLE	18-5 & 18-6
•		18-6 & 18-7
•	18.9 RISERS IN SUBSTATIONS	-
•	18.10 RISER CONDUIT DRAINAGE	18-7
•	CONSTRUCTION DRAWINGS #2 UG Cable Termination & Concentric Neutral Attachment Detail	18-104
0	UG Cable Termination & Concentric Neutral Attachment Detail For UG	10-104
0	Cables Larger Than #2	18-107
0	Typical Single Phase or Three Phase Secondary Riser Details for Single Riser Pipe Installation	18-109
0	Typical Single Phase or Three Phase Secondary Riser Details for Multiple Riser Pipe Installations	18-110
0	Typical Conduit Termination Detail for Spare Conduits	18-111
0	Riser Installation with Conduit Standoff Brackets	18-112
0	Single Phase Step-Up 5 kV Delta X 15 kV Wye Transformer Installation And Single Cable Riser	18-115
0	Single Phase Step-Up 5 kV Delta X 15 kV Wye Transformer Installation And Single Cable Riser – Backyard Construction	18-115B
0	Single Phase Step-Up 5 kV Wye X 15 kV Wye Transformer Installation And Cable Riser	18-116
0	Single Phase 5 kV Delta X 15 kV Wye Step-Up Ratio Transformer With Double Single Phase 200 A Cable Riser	18-117
0	Single Phase Step-Up 5 kV Delta X 15 kV Wye Transformer Installation And Single Cable Riser Deadend	18-118
0	Single Phase Open Wire Riser with Fused Cutout – 15 kV	18-124
0	Single Phase Riser Deadend With Fused Cutout -15KV	18-124A
0	Single Phase Open Wire Riser with Fused Cutout – 35 kV (Maintenance Only)	18-124M
0	Single Phase Riser with Crossarm Mounted Fused Cutout – 15kV	18-125
0	Single Phase Riser with Crossarm Mounted Fused Cutout – 35kV (Maintenance Only)	18-125M
0	15 – 35 kV Three Phase Riser Pole With Fused Cutouts – 200A Max.	18-126
0	15 – 35 kV Three Phase Riser Pole With Fused Cutouts – 200A Max – Delta Circuits	18-126D
0	15 – 35 kV Three Phase Riser Deadend Pole With Fused Cutouts – 200A Max.	18-127
0	15 – 35 kV Double Three Phase 200A Riser Installation	18-128
0	Three Phase Primary 600A Riser Pole With Disconnect Switches	18-335
0	Three Phase Primary 600A Deadend Riser Pole With Disconnect Switches	18-336
0	Three Phase Primary 600A Deadend Riser Pole With Disconnect Switches – Delta Circuits	18-336D

PAGE NUMBER ISSUE OVERHEAD CONSTRUCTION STANDARD 18-i 7/21

,	SECTIO	ON	PAGE
	0	Three Phase Primary Sectionalizing - Loadbreak Switch Riser Pole, 15-35kV	18-337
	0	Three Phase Riser with Hookstick Switch – 15kV	18-338
	0	Three Phase Deadend Riser with Recloser and Disconnect Switches (Maintenance Only)	18-340
	0	Three Phase Riser with Recloser and Disconnect Switches on Open Wire (0 TO 10 Degrees)	18-341
	0	Three Phase Primary 600A Riser Pole With 40,000A Power Fuses	18-353
	0	Substation Riser – Three Phase	18-370
\	0	Single Phase Spacer Cable Riser – 15kV	18-400
١L	0	Single Phase Spacer Cable Riser – 35kV (Maintenance Only)	18-400M
	0	Three Phase Spacer Cable Riser – 35kV Maximum Distribution	18-405
	0	Underground Urban Area Sectionalizing Riser Pole With Enclosed Cutouts – For Backyard Construction (Maintenance Only)	18-734
	0	Main Line (Wye System) Riser Pole With Enclosed Disconnect Switches – For Backyard Construction (Maintenance Only)	18-735
	0	Main Line (Delta System) Riser Pole With Enclosed Disconnect Switches – For Backyard Construction (Maintenance Only)	18-736
	0	Underground Urban Area Sectionalizing Riser Pole For Backyard Construction – 5kV	18-737
	0	Underground Urban Area Single Phase Riser With Transformer For Backyard Construction-5kV	18-738
	0	Underground Urban Area Three Phase Riser With Transformers For Backyard Construction-5kV	18-739
	0	Sub-Transmission Riser With Vertical Load-break – 23/35kV	18-1273A
`	0	Sub-Transmission Riser With Load-break/Power Fuse – 35kV	18-1277A
Ĺ	0	Sub-Transmission Riser With Load-break/Power Fuse – 46kV	18-1277B
L	0	Notes	18-NOTES

	RISERS INDEX				
	ISSUE	PAGE NUMBER		AMIZ	
Busi	7/19 ness Use	18-ii	OVERHEAD CONSTRUCTION STANDARD	ppl	

18.0 GENERAL

The following Standard is the practice to be followed when designing and installing single-phase or three-phase risers on the Company's distribution system operating at 35kV and below. This Standard shall apply to primary and secondary single phase or three-phase risers installed by both the Company and/or customers. Further details for primary pole-tops are in Section 9 - Primaries.

All risers shall demonstrate the protective fusing and surge arrester protection as shown on the accompanying construction drawings. Primary dips shall be protected at each end-riser with surge arresters and isolating disconnects. Non-fused disconnects (Std. Item D5) may be used for simple sectionalizing or where over-current protection is better provided elsewhere.

Installations and ownership of customer service laterals and risers generally are the responsibility of the customer and shall be in compliance with Company requirements.

18.1 <u>TERMINATIONS</u>

Exposed cable ends shall never be left unsealed. High voltage applications (above 600V) are provided with terminating kits designed to seal the cable end, increase surface leakage current distance (by use of weathershed skirts), and provide electrical stress relief. Dielectric stress introduced by abrupt separation of the ground-potential shield from the outside of the cable could lead to early failure of the termination. Low voltage or secondary cables (600V or less) can be sealed while energized with cold-shrink-end caps (Std. Item UC90).

Any de-energized cable, whether it is still on the reel in the yard or recently installed and awaiting terminations, shall have cold-shrink end caps applied to all exposed cable ends. Tape wraps are not adequate for sealing out moisture.

Final termination assembly should be kept relatively straight and as vertical as practical. Rain shield skirts should never be oriented more than 45 degrees from a vertical orientation. The cable should first be trained into final position before application of the termination kit to minimize subsequent bending stress on the termination/connector assembly. All cables shall be tagged.

Terminations for #2 underground cables shall consist of a bayonet, or pin, style compression connection where bolted vise connectors are utilized to secure arrester and tap leads located within the appropriate animal guard (refer to Page 18-104 for details).

Terminations for underground cables larger than #2 shall utilize NEMA pad style compression connections where arrester and tap leads are secured using the appropriate size primary connection as outlined in Section 5 - Connectors (refer to Page 18-107 for details).

Refer to Page 18-104 for termination and concentric neutral connection and wiring detail for #2 underground riser cables and Page 18-107 for underground riser cables that are larger than #2. Further termination detail can be found in Section 37 - Terminations in the Underground Construction Standards manual.

	RISERS		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	18-1	7/11

Supersedes 7/11 Issue - Edited termination labeling requirement (Section 18.2.20).

18.2 **CABLES**

The following cables are standard for all normal in-conduit or direct burial 15-35 kV underground circuits. Detailed descriptions of these and other underground cables are shown in Section 35 - Cables in the Underground Construction Standards manual.

Table 1
Standard Primary Conductors

Voltage (kV)	Conductor	Packaging	Std. Item
15	#2 AL	3-1/C Parallel	UC11BJ
15	#2 CU	1-1/C	UC11BK
15	#2 CU	3-1/C Parallel	UC11BL
15	#4/0 CU	3-1/C Parallel	UC11E
15	350 CU	3-1/C Parallel	UC12F
15	500 AL	3-1/C Parallel	UC12GG
15	500 CU	3-1/C Parallel	UC17
15	750 AL	3-1/C Parallel	UC12HG
15	1000 AL	3-1/C Parallel	UC12TA
15	1000 AL	1-1/C	UC12TB
15	1000 CU	3-1/C Parallel	UC12TC
25	#1/0 CU	3-1/C Parallel	UC23CJ
25	#4/0 CU	3-1/C Parallel	UC23EC
25	350 AL	3-1/C Parallel	UC23FA
25	350 CU	3-1/C Parallel	UC23FJ
25	500 AL	3-1/C Parallel	UC23GA
25	500 CU	3-1/C Parallel	UC23GJ
25	1000 CU	3-1/C Parallel	UC23TC
25	1000 AL	3-1/C Parallel	UC23TA
35	#1/0 AL	1-1/C	UC35C1
35	#1/0 AL	3-1/C Parallel	UC35C3
35	#2/0 CU	3-1/C Parallel	UC35DJ
35	500 CU	3-1/C Parallel	UC35GJ
35	750 CU	3-1/C Parallel	UC35HJ
35	1000 CU	3-1/C Parallel	UC35TC
35	1000 AL	3-1/C Parallel	UC35TJ

18.2.10 Cable Ampacity

Allowable ampacity varies widely due to different cable arrangements. Ampacity is affected by the proximity and loading of adjacent circuits, ambient temperatures, etc. Contact Standards Engineering for ampacity ratings of circuits as necessary.

18.2.20 <u>Cable Identification Tags</u>

Primary riser terminations shall be labeled in accordance with Section 35.16.10 (Terminations). Secondary riser terminations shall be labeled in accordance with Section 35.16.20 (Including secondary services at pole end served from overhead transformers). See Tag Holder location on Std 18-109 and Std 18-110.

	RISERS			
	ISSUE	PAGE NUMBER		SMI/Z
Busi	7/14 ness Use	18-2	OVERHEAD CONSTRUCTION STANDARD	ppl

18.2.30 Phase and Feeder Numbering

Phase and feeder identification, when requested, is shown on Drawing 2-112 in Section 2-Poles. For new construction, the first pole out of a substation shall always include phase markings. Prior to any work on multi-phase lines, phase identification shall always be confirmed with proper testing equipment (e.g. phase tester).

18.3 ARRESTERS

Arresters at locations other than the cable termination point do not adequately protect the cable. One significant variable under user control is total connection lead length. This is comprised of the line lead length and the ground lead length. Line lead length is the distance from the phase conductor tap to the line terminal of the arrester. The ground lead length is the distance that the surge current flows from the arrester ground to the common ground/neutral connection with the cable metallic shield. By keeping the total connection lead length as short as possible, the total impressed transient voltage developed by the arrester installation is minimized. A minimum margin of protection greater than or equal to 20% is required for sufficient protection. Additionally, riser type surge arresters denoted with a yellow band are required for all riser pole applications.

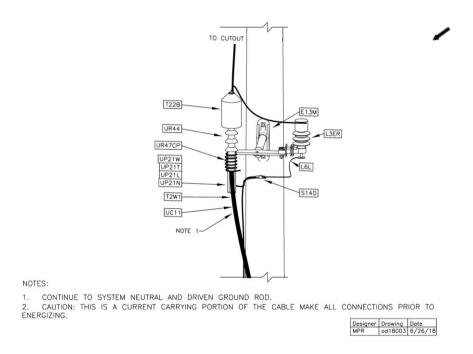


Figure 1 - Grounding for riser arresters.

18.4 ANIMAL GUARDS

Animal guards shall be installed on all riser pole terminators to protect terminations from incidental flashover. The guard shall be placed over the top skirt of the termination.

		RISERS		
	SMI		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	18-3	7/18

18.5 RISER GUARDS

Vertical electrical supply conductors on riser poles shall be protected by a covering that gives suitable mechanical protection to a minimum of 4 inches above secondary cables for primary risers, and a minimum of 40 inches above communication cables for a secondary riser. For primary risers, the first 8 feet above ground shall be galvanized steel. The remainder shall be either u-duct or Schedule 40 PVC conduit. For secondary risers, Schedule 80 PVC conduit may be used as an alternate for the first 8 feet above ground. Secure conduit with galvanized steel straps located at 30" intervals. The remaining cable covering shall be either u-duct or Schedule 40 PVC conduit.

Risers built to the old direct buried standard did not require a metallic sweep and a metallic conduit the first 8 feet up the pole. When maintenance is performed on these risers and the pole does not require replacement a galvanized steel U duct (Std. Item UK12) shall replace the existing plastic U duct and a bond clamp (Std. Item UK39) shall be used to ground the metallic U duct.

Risers should be located on the pole in the safest available position with respect to climbing space and exposure to traffic damage (NESC Rule 362-A).

To prevent induction heating, all 3 cables of a three-phase circuit shall be installed in a single galvanized steel conduit. Where a galvanized steel conduit is used, it shall be bonded to the down ground as shown in Figure 2. This connection shall be made utilizing a compression connector. All spare galvanized steel riser pipes shall be bonded in the same manner. Locations where threaded grounding bushings are used at end of metallic conduit and u-duct will not fit over bushings, a riser reducer guard (Std. Item UK14GF) shall be installed to cover conduit and cables.

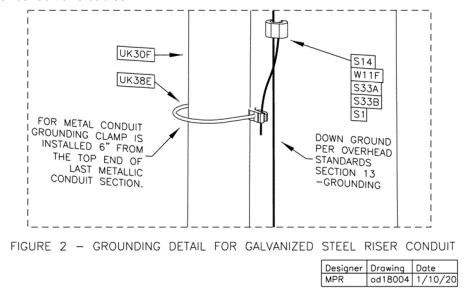


Figure 2 - Grounding detail for galvanized steel riser conduit.

Drawing 18-112 displays an alternate riser construction using conduit standoff brackets. This construction can be used where the riser will not interfere with pedestrian or vehicular traffic. Using conduit standoff brackets allows for easier pole climbing and easier pole replacement. U-guard (Std. Item UK11) shall be used at riser locations above the specified 8 foot minimum section of conduit to the point of secondary/neutral bracket installation where conduit (schedule 80 PVC or galvanized steel) is not used to cover the riser cables to the point of secondary/neutral bracket installation.

	RISERS			
	ISSUE	PAGE NUMBER		SMI
Busi	7/20 ness Use	18-4	OVERHEAD CONSTRUCTION STANDARD	ppl

18.6 CONDUIT SEALING

All conduits used for risers and all spare riser pipes shall be sealed to prevent water from entering the conduit. Use Std. Item UF10 to seal all riser conduits at the top of the last piece of conduit used. This UV-resistant expanding foam can be applied in temperatures ranging from 41°F to 95°F and can withstand temperatures as low as -22°F and as high as 176°F after it has cured. The foam should be stored in a warm environment before applying as the foam tends to become clogged in the nozzle if kept in cooler storage areas. **Do not** use Std Item UF20 to seal riser conduits. UF20 is for fire sealing conduits in manholes and does not contain a UV inhibitor.

18.7 RISER ACCESSIBILITY

When constructing risers in backyards or other locations where the riser is not accessible by bucket truck, the riser shall be built so that it is easily climbable. Use of conduit standoff brackets (see Drawing 18-112 for details) are strongly recommended in these situations.

18.8 RAISING TERMINATIONS ON A POLE

This may be done to accommodate new attachments on a pole, to increase ground clearance of lines or when relocating a pole. This work may include replacing a pole with a taller pole or rearranging facilities on an existing pole.

18.8.10 Primary Cable in Conduit

Single phase and three phase #2 cable can be spliced on the pole. Splices must be located above the 8' galvanized steel conduit and shall be staggered if 3 phases are being spliced such that all of the splices are completely covered by the riser guard (u-duct). If the riser is located at the bottom of a hill where water in the conduit is an issue, install a pull box at the base of the riser to allow water to drain (see alternate detail on most riser construction drawings).

For cables larger than #2, the cable shall be replaced from the first existing access point away from the pole (padmounted switchgear, handhole/manhole, pull box, etc.).

18.8.20 <u>Direct Buried Primary Cable</u>

When the primary underground cable away from the pole is direct buried, replacing the cable from the pole to an existing access point requires excavation. A galvanized steel sweep and riser pipe are required for all risers; install these items when relocating terminations on the pole if they were not previously installed. To minimize the required excavation either:

A. Direct bury the splices:

Splice the new cables to the existing cables near the base of the pole beyond the underground end of the riser sweep pipe, or

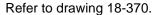
B. Install a new handhole or pull box:

Install a new handhole or pull box at the underground end of the riser sweep pipe near the base of the pole along the route of the existing cable and splice the new cables to the existing cables at the handhole or pull box. Install new riser and terminations at the new primary level on the pole. Refer to Standards Section 33.0.10 to select the appropriate handhole or pull box for the location, voltage, and cable size.

RISERS			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	18-5	7/11

18.8.30 <u>Secondary Risers</u>

Secondary cables may be spliced on the pole to allow secondary riser connections to be raised on a pole. Splice the new cable to the existing cable using underground splices. Stagger the individual splices on the pole so they will fit under the u-guard. Install the splices below communication wires and at least 8 feet above ground. Install new connections at the new secondary level on the pole.


18.8.40 Cost Allocation

Refer to the applicable tariff for cost assignment(s) for the state in which the work will be performed (in Upstate NY, refer to ESB 750 for cost allocation guidelines).

If there are no tariff restrictions, the Company will perform this work and either: (i) the Company is responsible for the costs of the work or (ii) the Customer is responsible for the costs of the work, or (iii) the costs of the work may be paid by a third party as part of a reimbursable project (e.g. reimbursable highway project, third party attachment make-ready, etc.).

18.9 RISERS IN SUBSTATIONS

In general, design of substation facilities is the responsibility of the substation engineering group. However, the installation of cable risers inside substations shall comply with the requirements of Underground Distribution Standards with regards to cable terminations, lightning protection, grounding and cable support.

18.9.10 Terminations

All terminations are to be cold shrink type, standard item UR44_ or UR45_. Lugs shall be standard item UL15_ for copper conductor and standard item UL16_ for aluminum. Do not substitute other lugs as these may not be sealed to prevent water intrusion into the conductor strands. Install an animal guard, standard item T22B on the termination. For additional information, see Section 37 of the Underground Construction Standards.

18.9.20 <u>Lightning Arresters</u>

A riser class lightning arrester, standard item UL3_, shall be mounted immediately adjacent to each cable termination. Install a flex ground lead, standard item L6 or L6L, from the ground terminal to station ground bus. Use #2 soft drawn, covered lead wire, standard item W13E to connect the arrester to the phase. Both the phase lead and the ground lead should be as short as possible for the best cable insulation protection.

18.9.30 <u>Grounding</u>

The concentric neutral from each phase termination is to be connected to the 4/0 copper ground bus. The ground bus should be connected to the below grade ground grid in a minimum of 2 places. For optimal cable insulation protection, connect the concentric neutral and the arrester ground lead to the station ground bus using a single connector, standard item S14J. If the concentric neutral leads need to be extended, see Table 2 in Section 37 of the Underground Construction Standards.

	RISERS			
	ISSUE	PAGE NUMBER		AMIZZ
Busi	7/16 ness Use	18-6	OVERHEAD CONSTRUCTION STANDARD	ppl

18.9.40 Cable Support

Install cable positioners to support the weight of the cable. Install a minimum of 1 positioner a maximum of 2" below the bottom of the termination. Install additional positioners such located so that the maximum distance from grade to the first positioner is less than 10' and the distance between positioners does not exceed 7'. These positioners are necessary to prevent excessive cable movement during fault current events which can put undue stress on the connection points. Do not use the lug to support the weight of the cable.

18.9.50 Riser Conduit

Install a fairleader, standard item UK49B, to protect the cable from damage due to contact with the edge of the conduit. Fill the space between the fairleader and the cable with expanding foam, standard item UF10. For metallic riser conduit, install a grounding clamp, standard item UK38_ and connect it to the station ground grid with 4/0 copper wire, standard item W19G.

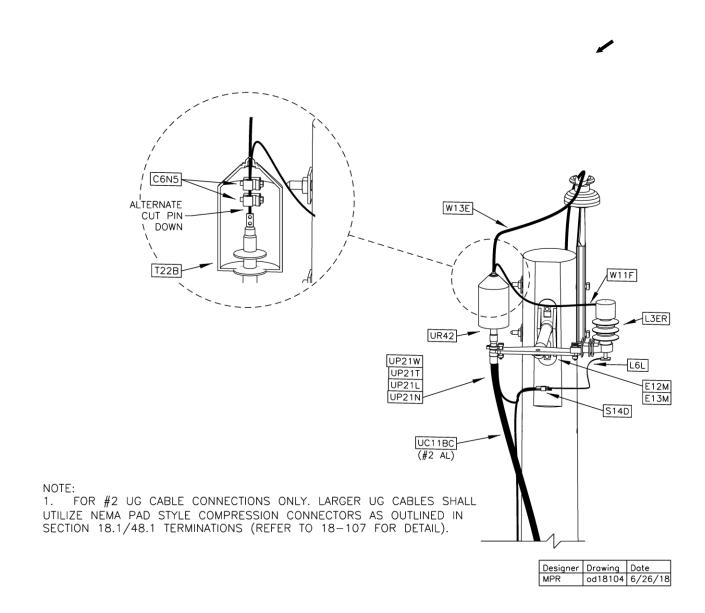
18.9.60 Bus Supports

The maximum distance between the terminal lug on the top of the terminator and the first support for the station bus is 5'. This maximum distance is required to prevent undue forces from being imposed on the terminal lug / cable during high current faults. If the distance to the first bus support exceeds 5', install additional supports as needed.

18.9.70 <u>Minimum Approach Distance</u>

The first disconnecting means above the cable termination must be sufficiently far from the termination to allow connection / disconnection of the termination without violating the minimum approach distance as stated in the Safety Manual. This clearance will also be required to cable testing and maintenance. To determine the appropriate distance, add 3'6" to the minimum approach distance as stated in the safety manual for the circuit voltage.

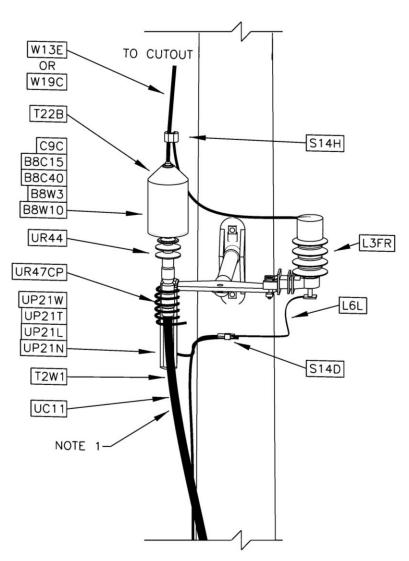
18.10 RISER CONDUIT DRAINAGE


Primary cables in conduit risers located at a lower grade (level) may require the installation of a pullbox (Item UR6) to drain away water run-off from equipment and conduit located at a higher grade. We want to avoid water settling at conduit sweeps located on riser poles and that could freeze up with very low temperatures thus damaging the primary cable inside conduit. An "Alternate Detail" drawing is provided in Standard 18-124 for these lower grade riser pole cases. Consult with Standards Engineering if needed.

RISERS			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	18-7	7/14

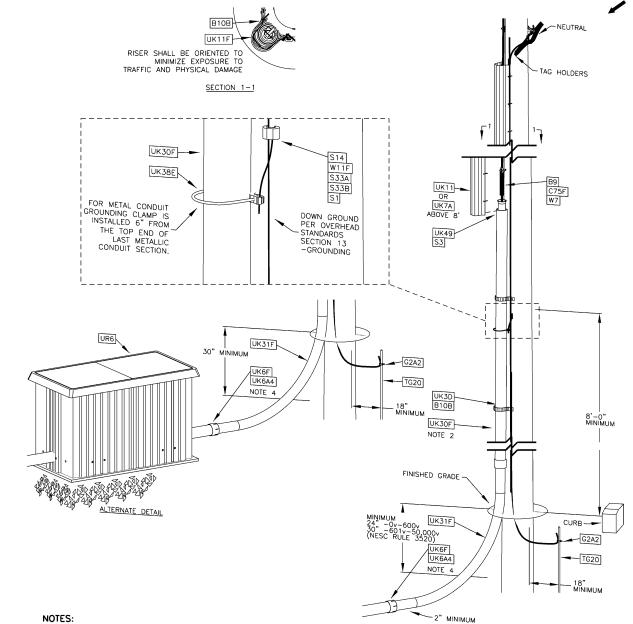
This page left intentionally blank

	RISERS			
	ISSUE	PAGE NUMBER		WIN
Busi	7/12 ness Use	18-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl


CU = CCSCT15K2R	Cold Shrink Cable Termination 15kV #2AL 1PH Riser
CU = PE12M	Equipment Mount Fiberglass 3PH
CU = PE13M	Equipment Mount Fiberglass 1PH
CU = CAL(X)KRPNE	Arrester Lightning (X)kV UG Riser MOV (X) = Voltage
	Rating

UG CABLE TERMINATION & CONCENTRIC NEUTRAL ATTACHMENT DETAIL FOR
#2 CABLES ONLY

CU = CCSCT(X)K(Y)R	Cold Shrink Cable Termination (X)kV (Y) Riser, (X) = Voltage Rating, (Y) = Cable Size
CU = CCSCT35K1/0ARNE	Cold Shrink Cable Termination 35kV 1/0AL Riser 1Ph
CU = PE12M	Equipment Mount Fiberglass 3PH
CU = PE13M	Equipment Mount Fiberglass 1PH
CU = CAL(X)KRPNE	Arrester Lightning (X)kV UG Riser MOV (X) = Voltage Rating


NOTE:

1. REFER TO DRAWING 5-148 FOR TERMINAL CONNECTOR INSTALLATION NOTES.

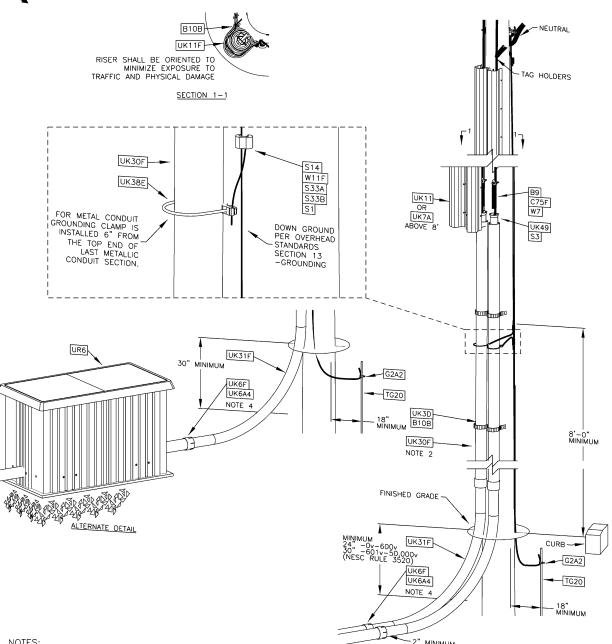
Designer	Drawing	Date
MPR	od18107	6/26/18

	UG CABLE TERMINATION & CONCENTRIC NEUTRAL ATTACHMENT DETAIL FOR CABLES LARGER THAN #2			
			CADLLO LANGLIN ITIAN #2	
	ISSUE	PAGE NUMBER		WHI.
Busi	7/18 ness Use	18-107	OVERHEAD CONSTRUCTION STANDARD	ppl

CU = SER-UG-OH,(X)PH-SEC,(Y)A	Service UG to OH, (X) Phase, to Sec, (Y) Amp, (X) = 1 or 3, (Y) = 200, 400
CU = SER-UG-OH,(X)PH-TRANS,(Y)A	Service UG to OH, (X) Phase, to Transformer, (Y) Amp, (X) = 1 or 3, (Y) = 200, 400, 800
CU=SER-UG-OH, (X)PH,(Y)A,CST	Service UG to OH, (X) Phase to Sec, (Y)Amp, (X)=1 or 3 (Y) = 200 Coastal

INSTALL RISER GUARD SECTIONS BELL-END DOWN. 1. INSTALL RISER GUARD SECTIONS BELL—END DUWN.
2. THE SERVICE LATERAL CABLE, CONDUIT, GROUND CLAMP AND SHORT SECTION OF GROUNDING CONDUCTOR SHALL BE FURNISHED BY THE CUSTOMER. NATIONAL GRID WILL INSTALL GROUND ROD AND COMPLETE BONDING REQUIREMENTS.
3. IF THE ENDS OF THE CUSTOMER OWNED SERVICE LATERAL CABLES ARE WITHOUT SUITABLE MOISTURE PREVENTING SEALS, (RUBBER CAPS OR TAPE) DO NOT ATTACH. NOTIFY SUPERVISOR IMMEDIATELY.
4. OMIT CONDUIT ON DIRECT BURIED INSTALLATIONS AND INSTALL A LEADER GUARD (UK49) IN PLACE OF THE CONDUIT ADAPTER (UK6F).
5. TO PREVENT INDUCTION HEATING OF THE METALLIC CONDUIT DO NOT SEPARATE THE PHASE CONDUCTORS OF A THREE PHASE CIPCUIT INTO SEPARATE CONDUITS. E CIRCUIT INTO SEPARATE CONDUITS.

ON POLES NOT ACCESSIBLE BY BUCKET TRUCK, "THE NUMBER, SIZE, AND LOCATION OF RISER DUCTS OR GUARDS SHALL BE LIMITED TO ALLOW ADEQUATE ACCESS FOR CLIMBING", NESC RULE 362B. Designer Drowing Dote MPR od18109 1/16/20


TYPICAL SINGLE OR THREE PHASE SECONDARY RISER DETAILS FOR SINGLE RISER PIPE INSTALLATION

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER ISSUE** 18-109 7/20

Supersedes 7/18 - Corrected reference to compression connector Std Item S14

SEE PAGE 18-109 FOR CUS

-2" MINIMUM ON POLES NOT ACCESSIBLE BY BUCKET TRUCK, "THE NUMBER, SIZE, AND LOCATION OF RISER DUCTS OR GUARDS

SHALL BE LIMITED TO ALLOW ADEQUATE ACCESS FOR CLIMBING", NESC RULE 362B.

2. THE SERVICE LATERAL CABLE, CONDUIT, GROUND CLAMP AND SHORT SECTION OF GROUNDING CONDUCTOR SHALL BE FURNISHED BY THE CUSTOMER. NATIONAL GRID WILL INSTALL GROUND ROD AND COMPLETE BONDING REQUIREMENTS.

3. IF THE ENDS OF THE CUSTOMER OWNED SERVICE LATERAL CABLES ARE WITHOUT SUITABLE MOISTURE PREVENTING SEALS, (RUBBER CAPS OR TAPE) DO NOT ATTACH. NOTIFY SUPERVISOR IMMEDIATELY.

4. OMIT CONDUIT ON DIRECT BURIED INSTALLATIONS AND INSTALL A LEADER GUARD (UK49) IN PLACE OF THE CONDUIT

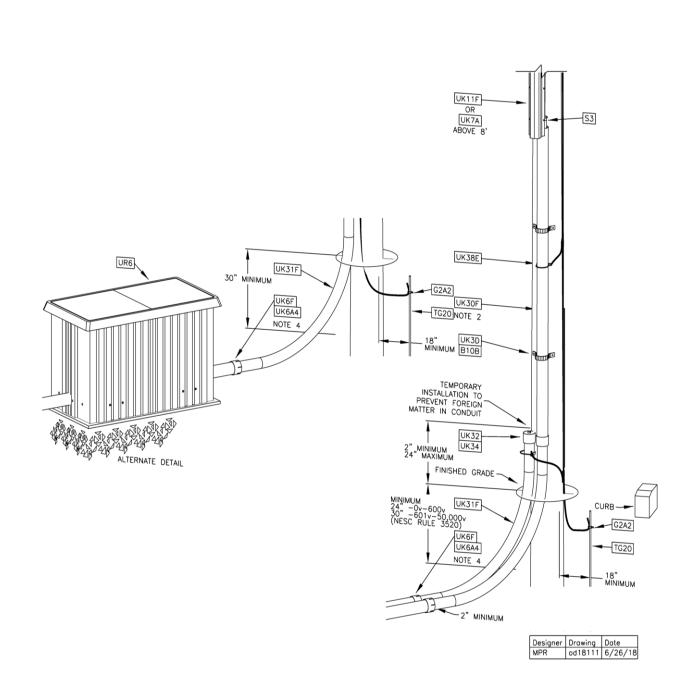
ADAPTER (UK6F).

5. TO PREVENT INDUCTION HEATING OF THE METALLIC CONDUIT DO NOT SEPARATE THE PHASE CONDUCTORS OF A THREE

CIRCUIT INTO SEPARATE CONDUITS.

MAY PUT RISERS OF DIFFERENT VOLTAGES ON THE SAME POLE.

Designer	Drawing	Date
MPR	od18110	1/22/20

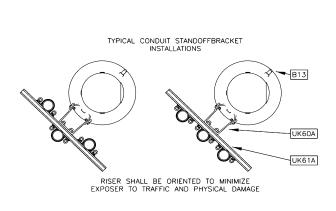

TYPICAL SINGLE OR THREE PHASE SECONDARY RISER DETAILS FOR MULTIPLE DICED DIDE INICTALL ATIONS

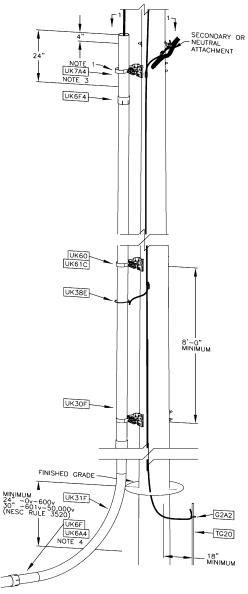
	RISER PIPE INSTALLATIONS			
ISSUE	PAGE NUMBER		SMI/A	
7/20	18-110	OVERHEAD CONSTRUCTION STANDARD	ppl	

CU - RISERSPARESWEEP(X)IN

(X) = 2 or 3 or 4 or 5 or 6

TYPICAL CONDUIT TERMINATION DETAIL	L FOR SPARE CONDUIT

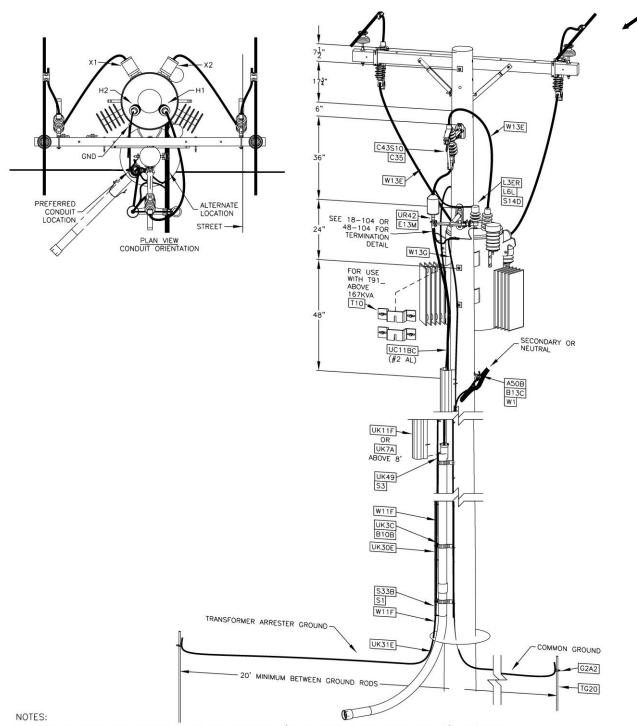



OVERHEAD CONSTRUCTION STANDARD

 PAGE NUMBER
 ISSUE

 18-111
 7/18

CU = RCSBUK60	Riser Conduit Standoff Bracket Pole Mount
CU = RCSK(X)(Y)	Riser Conduit Strap Kits (X) = Std. ID, (Y) = Conduit Size

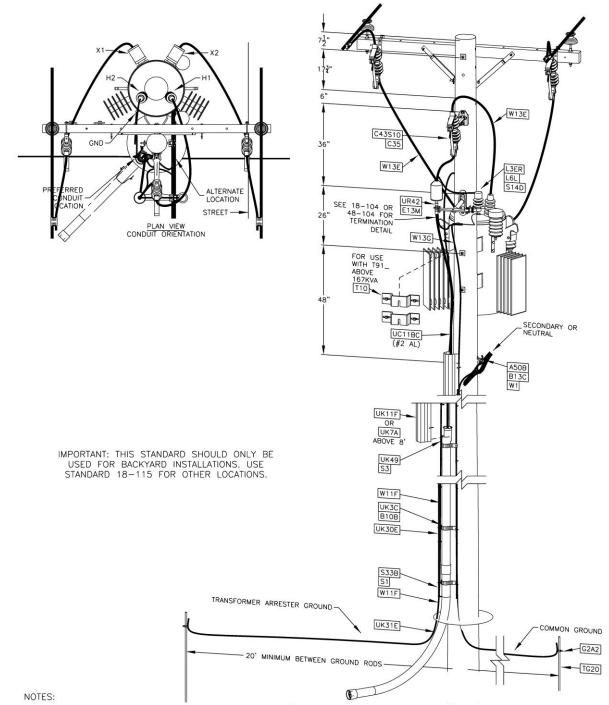

NOTES:

- 1. INSTALL THE INTERMEDIATE STANDOFF BRACKET EQUIDISTANT FROM THE UPPER AND LOWER BRACKETS.
- 2. RISER PIPES SHALL BE BONDED TO THE DOWN GROUND SEE 18-111/48-111 FOR DETAILS.
- 3. SECONDARY SERVICES REQUIRE ELECTRICIANS TO INSTALL THE FIRST 10' OF CONDUIT UP THE POLE. NATIONAL GRID CREWS INSTALL STAND OFF BRACKETS AND 2'-10" SECTIONS OF THE PVC CONDUIT AT TOP.
- 4. THIS INSTALLATION CAN BE USED FOR PRIMARY RISERS. CONSULT WITH STANDARDS ENGINEERING.

Designer	Drawing	Date
MPR	od18112	12/10/18

	RISER INSTALLATION WITH CONDUIT STANDOFF BRACKETS			
	ISSUE	PAGE NUMBER		SMIZZ
Вι	7/19 ısiness Us	se 18-112	OVERHEAD CONSTRUCTION STANDARD	ppl

RISER MU = $@18-125CC(Y)K(I)(X)$	Single Phase Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Riser Guard
RISER MU = $@18-125CC(Y)K(I)(X)C$	Single Phase Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Conduit
RATIO MIJ = $@(W)K(X)P(Y)S(Z)T1PSU(A)(B)$	(W) kVA Size (X) Pri Code (Y) Sec Code (7) Tap Code 1 Phase (A) Source Voltage (B) Load Voltage

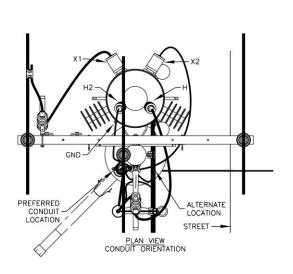

- 1. REMOVE HIGH-SIDE ARRESTERS ON TRANSFORMER (AT H1 AND IF ONE EXISTS AT H2). CONNECT
- H2, CONCENTRIC NEUTRAL AND RISER ARRESTER LEAD TO THE COMMON GROUND.
- CONNECT THE LOW-SIDE ARRESTERS ON THE TRANSFORMER (AT X1 AND X2) AND THE TANK GROUND TO THE SEPARATE TRANSFORMER GROUND. Designer Drawing Date MPR od18115 6/26/18
- DO NOT CONNECT TRANSFORMER ARRESTER GROUND TO THE SECONDARY/NEUTRAL.

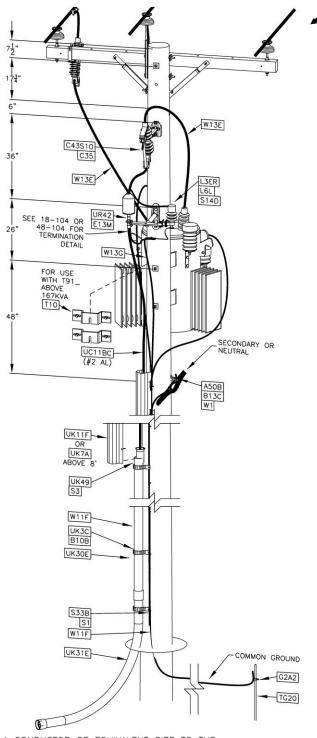
SINGLE PHASE STEP-UP 5 kV DELTA X 15 kV WYE TRANSFORMER INSTALLATION AND SINGLE CABLE RISER

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 18-115 7/18

RISER MU = $@18-125CC(Y)K(I)(X)$	Single Phase Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Riser Guard
RISER MU = $@18-125CC(Y)K(I)(X)C$	Single Phase Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Conduit
RATIO MU = $@(W)K(X)P(Y)S(Z)T1PSU(A)(B)$	(W) kVA Size, (X) Pri Code, (Y) Sec Code, (Z) Tap Code, 1 Phase, (A) Source Voltage, (B) Load Voltage

- REMOVE HIGH-SIDE ARRESTERS ON TRANSFORMER (AT H1 AND IF ONE EXISTS AT H2). CONNECT
- H2, CONCENTRIC NEUTRAL AND RISER ARRESTER LEAD TO THE COMMON GROUND.
- CONNECT THE LOW-SIDE ARRESTERS ON THE TRANSFORMER (AT X1 AND X2) AND THE TANK GROUND TO THE SEPARATE TRANSFORMER GROUND. | Designer | Drawing | Date | | MPR | od18115B | 6/26/18 |
- DO NOT CONNECT TRANSFORMER ARRESTER GROUND TO THE SECONDARY/NEUTRAL.


	SINGLE PH	ASE STEP-UP 5 kV DELTA X 15 k	V WYE
TRA	ANSFORMER INSTA	LLATION AND SINGLE CABLE RI	SER – BACKYARD
ISSUF	PAGE NUMBER		. 117.

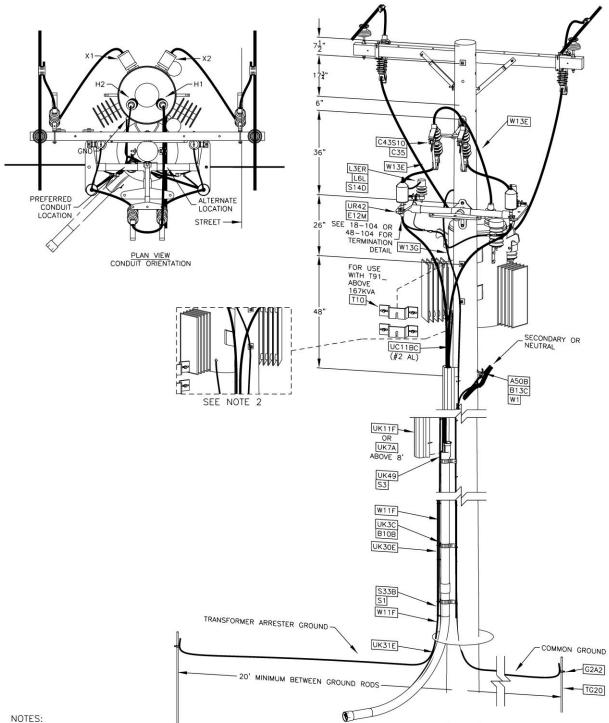

Business Use

18-115B

OVERHEAD CONSTRUCTION STANDARD

NOTES:

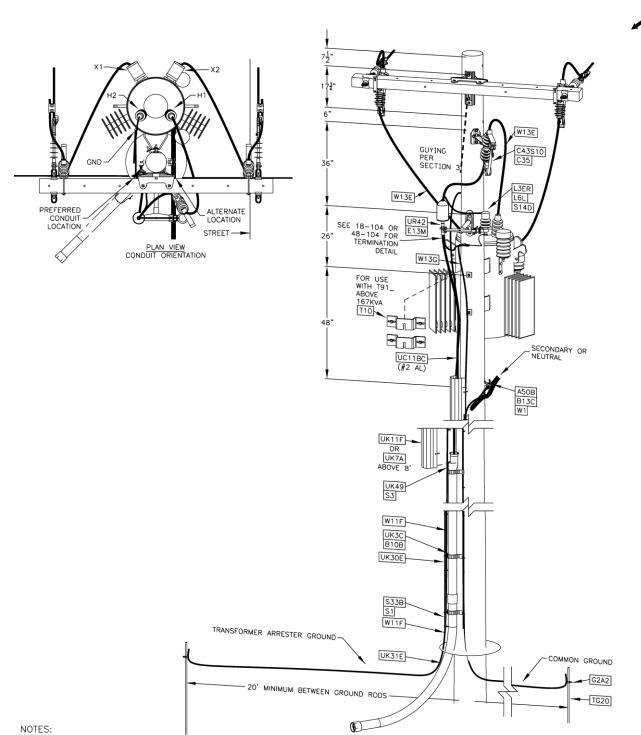
CONTINUE CONCENTRIC NEUTRAL TO SYSTEM NEUTRAL USING A CONDUCTOR OF EQUIVALENT SIZE TO THE UNDERGROUND CABLE CONCENTRIC NEUTRAL (I.E. #2 OR 2/0).


Designer Drawing Date MPR od18116 6/26/18

SINGLE PHASE STEP-UP 5 kV WYE X 15 kV WYE TRANSFORMER INSTALLATION AND CABLE RISER

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 18-116 7/18

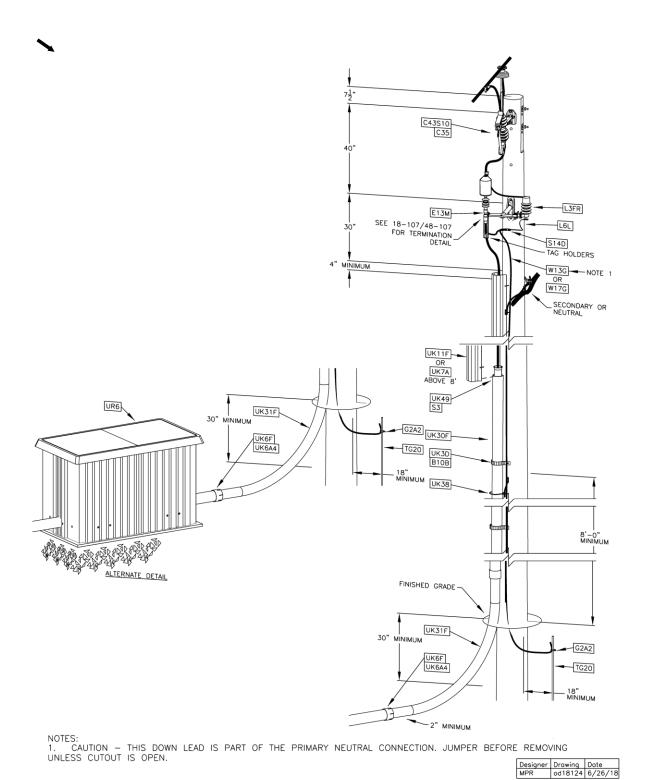

- 1. REMOVE HIGH-SIDE ARRESTERS ON TRANSFORMER (AT H1 AND IF ONE EXISTS AT H2). CONNECT
- H2, CONCENTRIC NEUTRAL AND RISER ARRESTER LEAD TO THE COMMON GROUND. CONNECT THE LOW-SIDE ARRESTERS ON THE TRANSFORMER (AT X1 AND X2) AND THE TANK GROUND TO THE SEPARATE TRANSFORMER GROUND. Designer Drawing Date MPR od18117 6/26/18
- DO NOT CONNECT TRANSFORMER ARRESTER GROUND TO THE SECONDARY/NEUTRAL.

SINGL	E PHASE 5kV DELT	A x 15kV WYE STEP-UP RATIO T	RANSFORMER WITH
	DOUBLE	SINGLE PHASE 200A CABLE RIS	SER
ISSUE	PAGE NUMBER		1111

Business Use 18-117

OVERHEAD CONSTRUCTION STANDARD

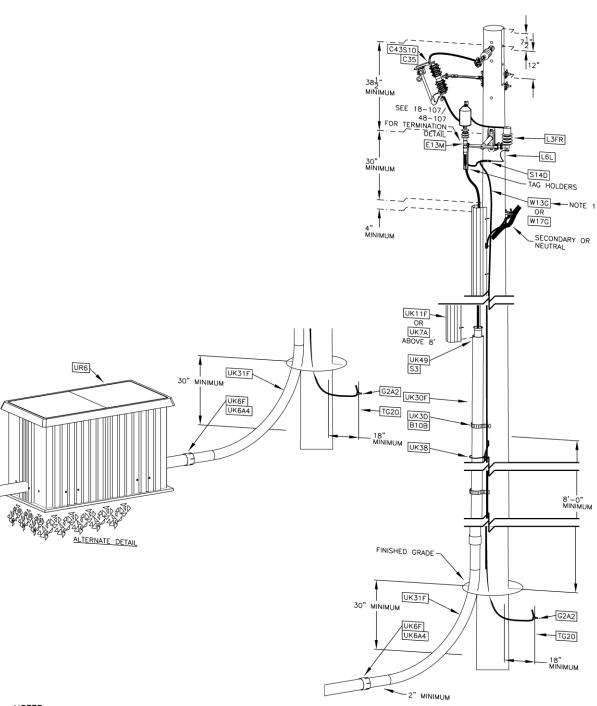
- 1. REMOVE HIGH-SIDE ARRESTERS ON TRANSFORMER (AT H1 AND IF ONE EXISTS AT H2). CONNECT
- H2, CONCENTRIC NEUTRAL AND RISER ARRESTER LEAD TO THE COMMON GROUND.
- 2. CONNECT THE LOW-SIDE ARRESTERS ON THE TRANSFORMER (AT X1 AND X2) AND THE TANK GROUND TO THE SEPARATE TRANSFORMER GROUND.
- 3. DO NOT CONNECT TRANSFORMER ARRESTER GROUND TO THE SECONDARY/NEUTRAL.
- 4. GUYING OF POLE TO BE DONE FOR THE DELTA CIRCUIT WITH TWO 54" FIBERGLASS RODS (STANDARD 3.4.20)


Designer	Drawing	Date
MPR	od18118	6/26/18

SINGLE PHASE STEP-UP 5 kV DELTA x 15 kV WYE TRANSFORMER INSTALLATION AND SINGLE CABLE RISER DEADEND

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 18-118 7/19


SINGLE PHASE OPEN WIRE RISER WITH FUSED CUTOUT – 15kV

ISSUE PAGE NUMBER
OVERHEAD

7/18 18-124

OVERHEAD CONSTRUCTION STANDARD

NOTES:

1. CAUTION - THIS DOWN LEAD IS PART OF THE PRIMARY NEUTRAL CONNECTION. JUMPER BEFORE REMOVING UNLESS CUTOUT IS OPEN.

Designer Drowing Ladge Couled

Designer Drowing Date
MPR od18124A 7/22/21

SINGLE PHASE RISER WITH FUSED CUTOUT DEADEND – 15kV				
SMA		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	18-124A	7/21	

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 18.00.002

This Page Intentionally Left Blank

RISERS - BLANK			
ISSUE	PAGE NUMBER		WHILE
7/21	18-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

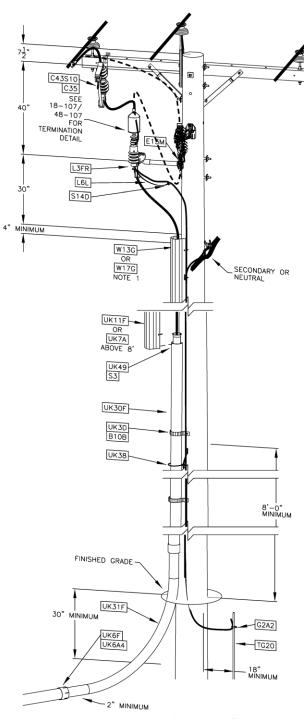
MU = @18-125CC27K(I)(X)	Single Phase Riser, 35kV, (I) Cutout Body Size, (X) Fuse Type, In Riser Guard
MU = @18-125CC27K(I)(X)C	Single Phase Riser, 35kV, (I) Cutout Body Size, (X) Fuse Type, In Conduit

S14F T22B UR45B1 L3ER SEE 18-107/48-107 FOR TERMINATION DETAIL L6L S14C TAG HOLDERS W13G OR W17G SECONDARY OR NEUTRAL UK30F UK3D B10B UK38 8'-0" MINIMUM FINISHED GRADE UK31F G2A2 TG20 UK6A4 18" MINIMUM

NOTES:

1. CAUTION - THIS DOWN LEAD IS PART OF THE PRIMARY NEUTRAL CONNECTION. JUMPER BEFORE REMOVING UNLESS CUTOUT IS OPEN.

Designer Drawing Date MPR od18124M 12/3/18



OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 18-124M 7/19

Supersedes 7/18- Updated drawing, Item T22B

MU = @18-125CC(Y)K(I)(X)	Single Phase Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X)Fuse Type, In Riser Guard
MU = @18-125CC(Y)K(I)(X)C	Single Phase Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Conduit

NOTES:
1. CONTINUE CONCENTRIC NEUTRAL TO SYSTEM NEUTRAL USING A CONDUCTOR OF EQUIVALENT SIZE TO THE UNDERGROUND CABLE CONCENTRIC NEUTRAL (I.E. #2 OR 2/0).

Designer Dro. MPP on the MPP of

Designer Drowing Date
MPR od18125 6/26/18

SINGLE PHASE RISER WITH CROSSARM MOUNTED FUSED CUTOUT - 15KV

Business Use PAGE NUMBER

7/18
18-125

OVERHEAD CONSTRUCTION STANDARD

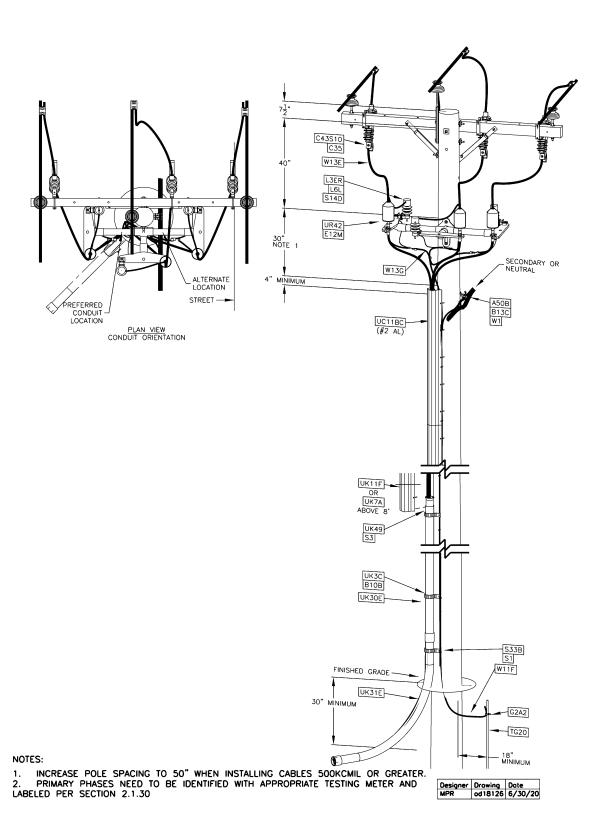
MU = @18-125CC27K(I)(X)Single Phase Riser, 35kV, (I) Cutout Body Size, (X) Fuse Type, In Riser Guard MU = @18-125CC27K(I)(X)CSingle Phase Riser, 35kV, (I) Cutout Body Size, (X) Fuse Type, In Conduit

> SEE 18-107/ 48-107 FOR TERMINATION DETAIL L3FR L6L W13G OR W17G NOTE 1 SECONDARY OR NEUTRAL OR UK7A ABOVE 8 UK49 S3 UK30F UK3D B10B UK38 8'-0" MINIMUM FINISHED GRADE UK31F G2A2 TG20 . 18" MINIMUM

NOTES:
1. CONTINUE CONCENTRIC NEUTRAL TO SYSTEM NEUTRAL USING A CONDUCTOR OF EQUIVALENT SIZE TO THE UNDERGROUND CABLE CONCENTRIC NEUTRAL (I.E. #2 OR 2/0).

| Designer | Drowing | Dote

SINGLE PHASE RISER WITH CROSSARM MOUNTED FUSED CUTOUT - 35KV **MAINTENANCE ONLY**

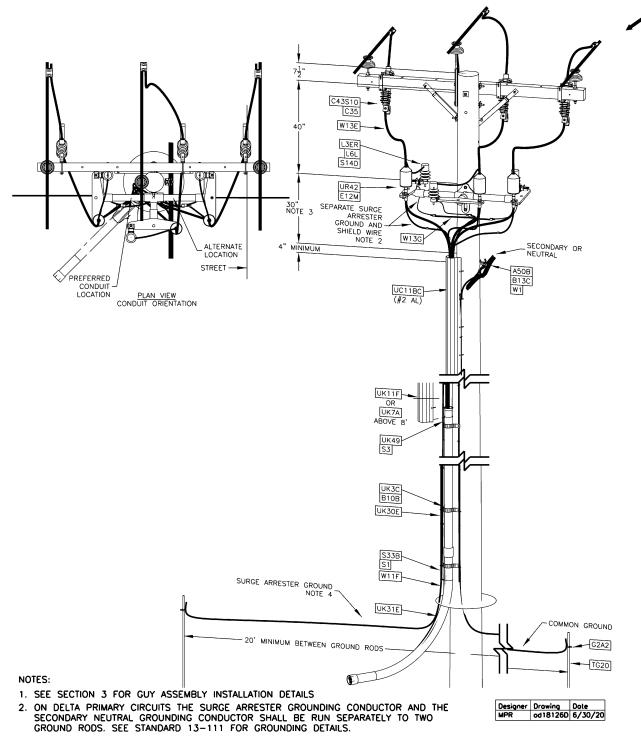


OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 18-125M 7/19

Designer Drawing Date MPR od18125M 12/3/18

Supersedes 7/18 - Updated drawing, Item T22B

MU = @18-126CC(Y)K(I)(X)	3 Ph Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Riser Guard
MU = @.18-126CC(Y)K(I)(X)C	3 Ph Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Conduit


	15 – 35 kV THREE PHASE RISER POLE WITH FUSED CUTOUTS			
	200 A MAXIMUM			
	ISSUE	PAGE NUMBER		sMIZ.
Busi	7/20 ness Use	18-126	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @18-126CC(Y)K(I)(X)

3 Ph Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Riser Guard

MU = @18-126CC(Y)K(I)(X)C

3 Ph Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Conduit

- 3. INCREASE POLE SPACING TO 50" WHEN INSTALLING CABLE 500KCMIL OR GREATER.
- DESIGNER TO MANUALLY ADD ADDITIONAL GROUND CU TO 18-126 MU'S FOR DELTA APPLICATIONS.
- 5. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

15 – 35 kV THREE PHASE RISER POLE WITH FUSED CUTOUTS				
200 A MAXIMUM – DELTA CIRCUITS				
		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	18-126D	7/20	

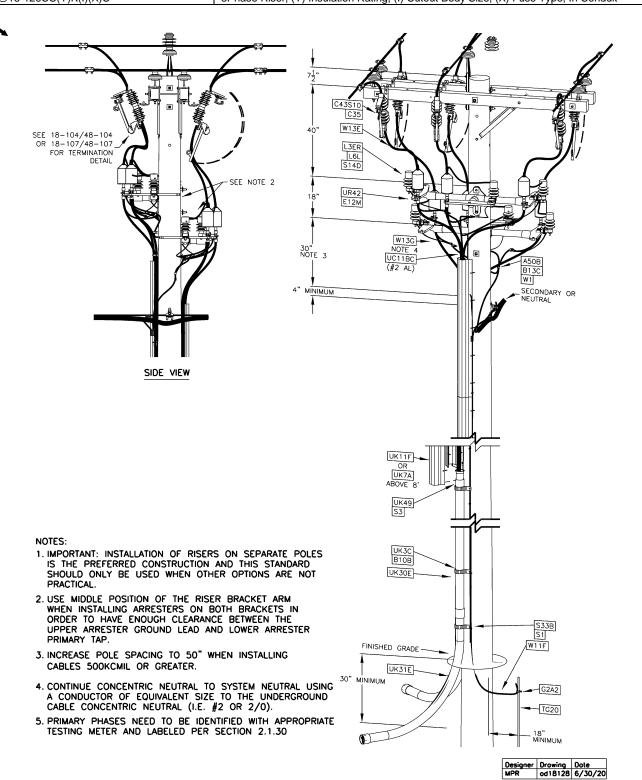
Supersedes 7/19 - Note 5 added

This Page Intentionally Left Blank

RISERS			
ISSUE	PAGE NUMBER		WHA
7/18	18-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

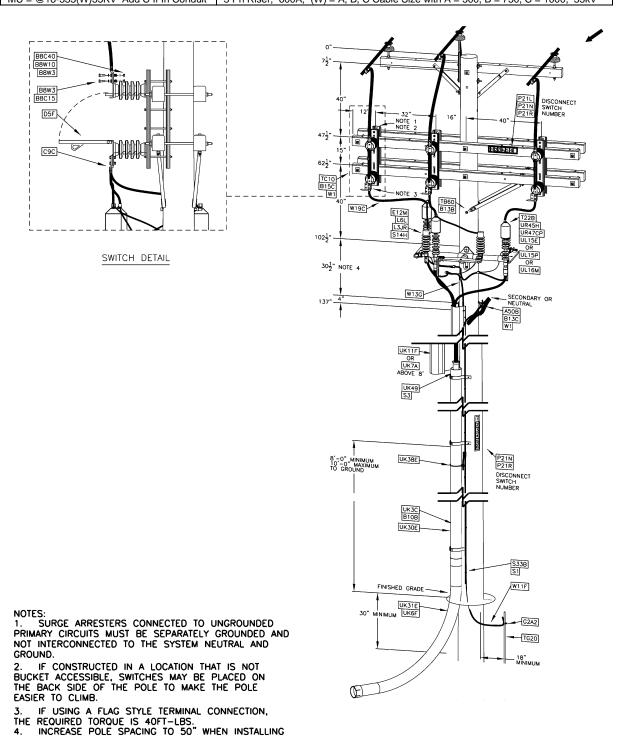
SEE PAGE 18-126 FOR MACROS

NOTES:


- 1. CONTINUE CONCENTRIC NEUTRAL TO SYSTEM NEUTRAL USING A CONDUCTOR OF
- CONTINUE CONCENTRIC NEUTRAL TO STSTEM NEUTRAL USING A CONDUCTOR OF THE UNDERGROUND CABLE CONCENTRIC NEUTRAL (I.E. #2 OR 2/0).

 Designer Drowing Date

 MPR 0d18127 11/30/20 2. SURGE ARRESTERS PROTECTING THE OVERHEAD LINE SHALL BE INSTALLED WITHIN 300' FROM THE DISCONNECT DEVICE.
- 3. INCREASE POLE SPACING TO 50" WHEN INSTALLING CABLES 500KCMIL OR GREATER.
- PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION


15-35KV THREE PHASE RISER DEADEND POLE WITH FUSED CUTOUTS 200A MAXIMUM **PAGE NUMBER** ISSUE ppl **OVERHEAD CONSTRUCTION STANDARD** 18-127 7/21

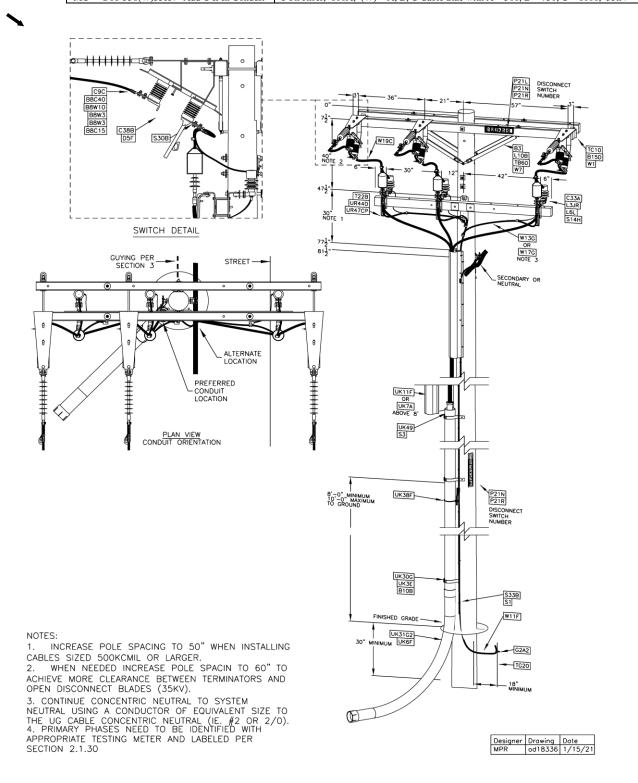
MU = @18-126CC(Y)K(I)(X)	3Phase Riser, (Y) Insulation Rating, (I) Cutout Body Size, (X) Fuse Type, In Riser Guard
MII = @18-126CC(Y)K(I)(X)C	3Phase Riser (Y) Insulation Rating (I) Cutout Body Size (X) Fuse Type In Conduit

		15-35kV D	ouble Three Phase 200A Riser Insta	allation
	ISSUE	PAGE NUMBER		SMIZ
Busi	7/20 ness Use	18-128	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @18-335(W) Add C If In Conduit 3 Ph Riser, 600A, (W) = A, B, C Cable Size with A = 500, B = 750, C = 1000, 15kV MU = @18-335(W)35KV Add C If In Conduit 3 Ph Riser, 600A, (W) = A, B, C Cable Size with A = 500, B = 750, C = 1000, 35kV

	Drawing	
MPR	od18335	6/30/20

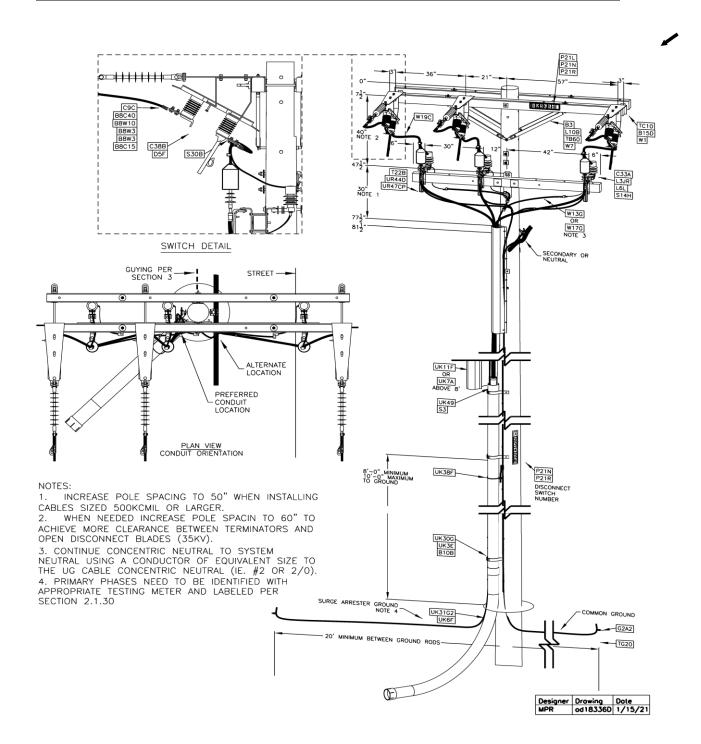
THREE PHASE PRIMARY 600A RISER WITH DISCONNECT SWITCHES


CABLES SIZED 500KCMIL OR LARGER.

5. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 18-335 7/20


MU = @18-336(W) Add C If In Conduit	3 Ph Riser, 600A, (W) = A, B, C Cable Size with A = 500, B = 750, C = 1000, 15kV
MU = @18-336(W)35KV Add C If In Conduit	3 Ph Riser 600A (W) = A B C Cable Size with A = 500 B = 750 C = 1000 35kV

THREE PHASE PRIMARY 600A DEADEND RISER WITH DISCONNECT SWITCHES

ISSUE	PAGE NUMBER		SMI
7/21	18-336	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @18-336(W) Add C If In Conduit	3 Ph Riser, 600A, (W) = A, B, C Cable Size with A = 500, B = 750, C = 1000, 15kV
MII - @18-336(W)35KV Add C If In Conduit	3 Ph Riser 600A (W) - A R C Cable Size with A - 500 R - 750 C - 1000 35kV

THREE PHASE PRIMARY 600A DEADEND RISER POLE WITH DISCONNECT SWITCHES – DELTA CIRCUITS PAGE NUMBER ISSUE

NOTES:

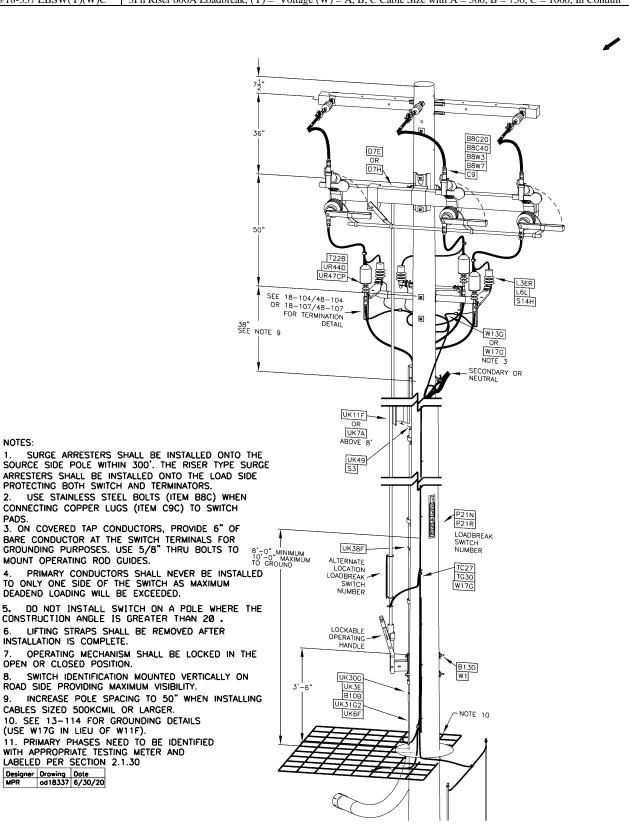
PADS

MOUNT OPERATING ROD GUIDES.

INSTALLATION IS COMPLETE.

OPEN OR CLOSED POSITION.

LABELED PER SECTION 2.1.30 Designer Drawing Date MPR od18337 6/30/20


DEADEND LOADING WILL BE EXCEEDED.

ROAD SIDE PROVIDING MAXIMUM VISIBILITY.

10. SEE 13-114 FOR GROUNDING DETAILS (USE W17G IN LIEU OF W11F).

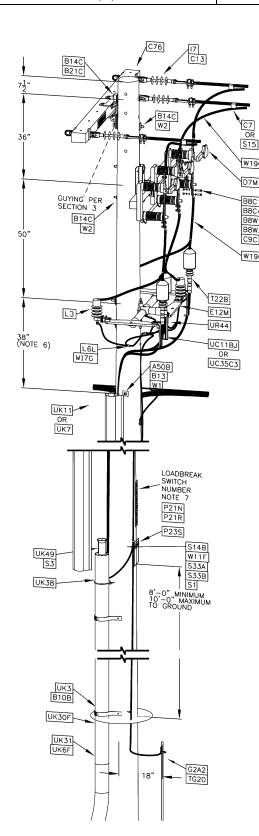
CABLES SIZED 500KCMIL OR LARGER.

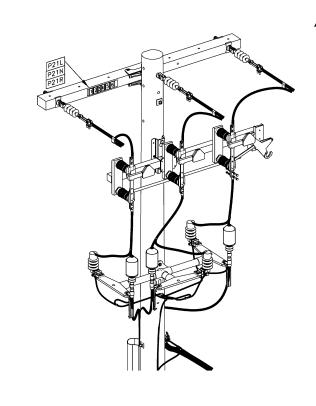
MU = @18-337 LBSW(Y)(W)	3Ph Riser 600A Loadbreak, (Y) = Voltage (W) = A, B, C Cable Size with A = 500, B = 750, C = 1000
MII = @19.337 I RSW(V)(W)C	3Dh Diser 600A Loadhrack (V) - Voltage (W) - A B C Cable Size with A - 500 B - 750 C - 1000 In Conduit

THREE PHASE PRIMARY SECTIONALIZING - LOADBREAK SWITCH RISER POLE 15-35K\/

		13-331(1	
ISSUE	PAGE NUMBER		
7/20	18-337	OVERHEAD CONSTRUCTION STANDARD	pj

W19C **D7**М


B8C40


B8W10

B8w3

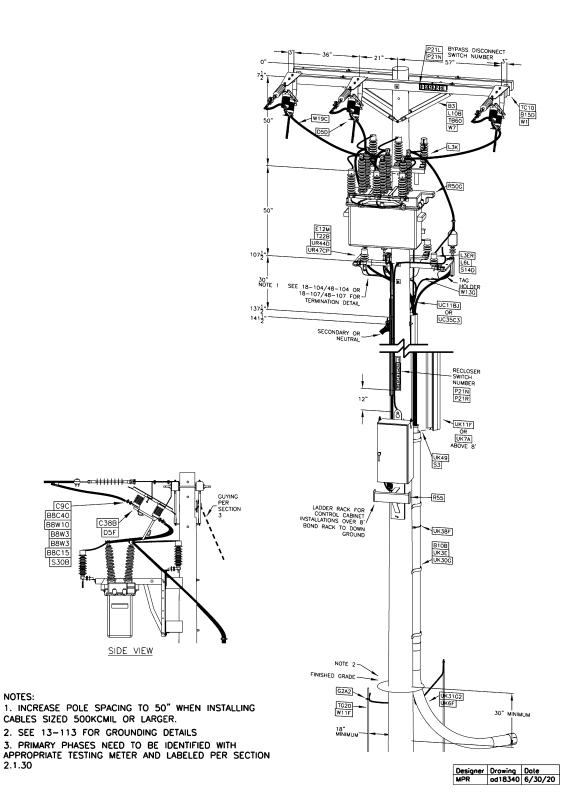
W19C

C9C

- 1.USE STAINLESS STEEL BOLTS (ITEM B8C) WHEN CONNECTING COPPER LUGS (ITEM C9C) TO SWITCH PADS.
- 2.0N COVERED TAP CONDUCTORS, PROVIDE 6' OF BARE CONDUCTOR AT THE SWITCH TERMINALS FOR GROUNDING **PURPOSES**
- 3.DO NOT INSTALL SWITCH ON A POLE WHERE THE CONSTRUCTION ANGLE IS GREATER THAN 20°.
- 4.LIFTING STRAPS SHALL BE REMOVED AFTER INSTALLATION IS COMPLETE.
- 5.SWITCH IDENTIFICATION MOUNTED VERTICALLY ON ROAD SIDE PROVIDING MAXIMUM VISIBILITY.
- 6.INCREASE POLE SPACING TO 50" WHEN INSTALLING CABLES 500 KCMIL OR LARGER.
- AT THIS RISER POLE, IF SWITCHING IS PERFORMED FROM GROUND LEVEL, THE SWITCH PERSON SHALL WEAR EH OVERSHOES RATED AT 15KV OR GREATER FOR PROTECTION AGAINST STEP POTENTIAL THAT MAY OCCUR DURING SWITCHING. STUDIES HAVE SHOWN STEP POTENTIAL GRADIENT VOLTAGE IN THE GROUND MAY EXCEED NORMAL WORK BOOT EH RATING.
- 8.PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION

Designer	Drowing	Date
MPR	od18338	6/30/20

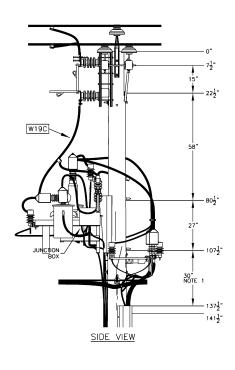
THREE PHASE RISE WITH HOOKSTICK SWITCH - 15kV

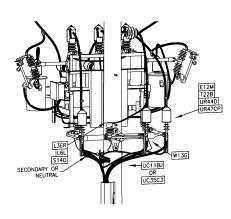


OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 18-338

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 18.00.002

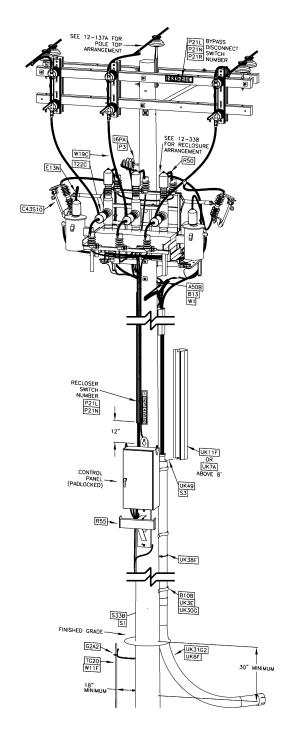

RISER MU = @18-336(X) Add C if in Conduit	3Ph Riser 600A Loadbreak, (X) = A, B, C Cable Size with A = 500, B = 750, C = 1000 15 kV
RISER $MU = @18-336(X)35kV$ Add C if in Conduit	3Ph Riser 600A Loadbreak, (Y) = A, B, C Cable Size with A = 500, B = 750, C = 1000, 35 kV
RECLOSER MU	See Page 12-333 For Recloser MU's



	THREE PHASE DEADEND RISER WITH RECLOSER AND DISCONNECT SWITCHES			
	MAINTENANCE ONLY			
	ISSUE	PAGE NUMBER		WW.
Busi	7/20 ness Use	18-340	OVERHEAD CONSTRUCTION STANDARD	ppl

Supersedes 7/19 Issue - Switch numbering on crossarm and notes 2 and 3 added

RISER MU = @18-341(W)(Y)(Z) Add C if in Conduit 3Ph Riser 600A Loadbreak, (W) = A, B, C Cable Size with A = 500, B = 750, C = 1000, 15 kV RECLOSER MU See Page 12-335 For Recloser MU's

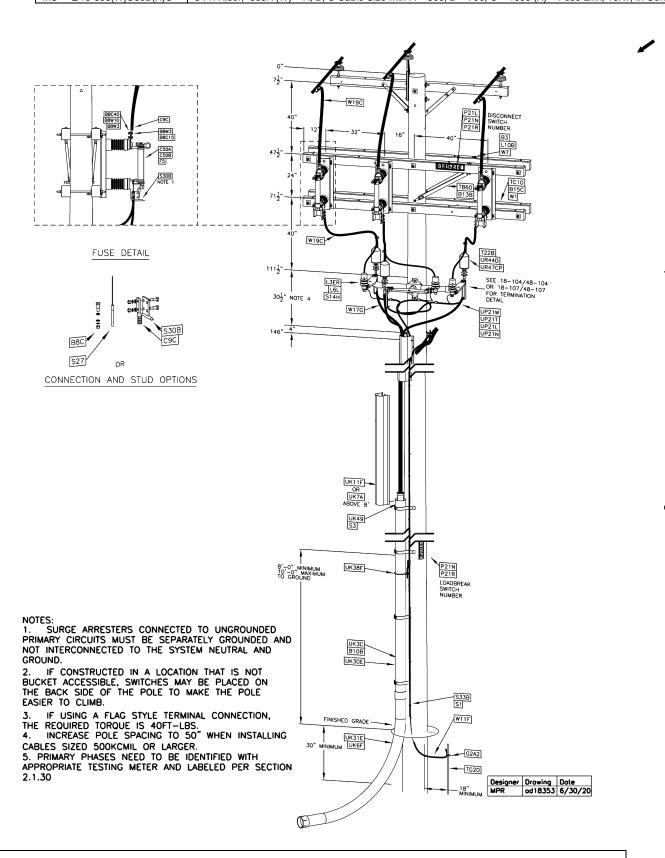


NOTES:

1. INCREASE POLE SPACING TO 50" WHEN INSTALLING CABLES SIZED 500KCMIL OR LARGER.

2. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

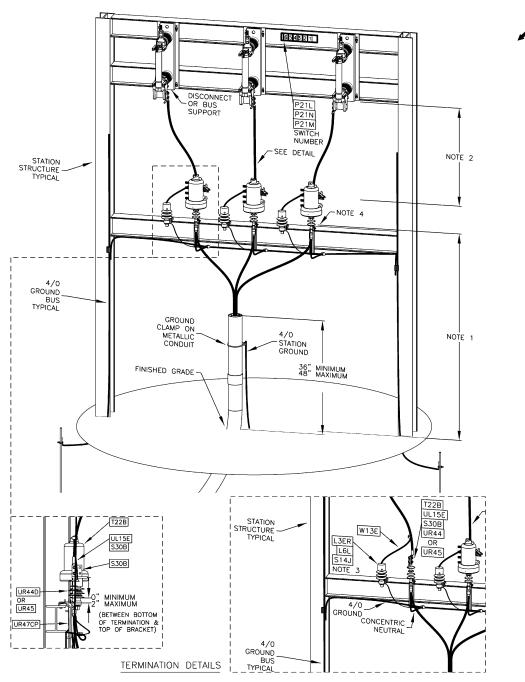
Designer Drawing Date MPR od18341 6/30/20


THREE PHASE RISER WITH RECLOSER AND DISCONNECT SWITCHES ON OPEN WIRE (0 TO 10 DEGREES)

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 18-341 7/20

Supersedes 7/19 Issue - Switch numbering on crossarm and note 2 added

MU = @18-353(W)C50B(X) 3 Ph Riser, 600A (W) = A, B, C Cable Size with A = 500, B = 750, C = 1000 (X) = Fuse Link, 15kV MU = @18-353(W)C50B(X)C 3 Ph Riser, 600A (W) = A, B, C Cable Size with A = 500, B = 750, C = 1000 (X) = Fuse Link, 15kV, In Conduit



THREE PHASE PRIMARY 600A RISER WITH 40,000A POWER FUSES

ISSUE	PAGE NUMBER
7/20	18-353

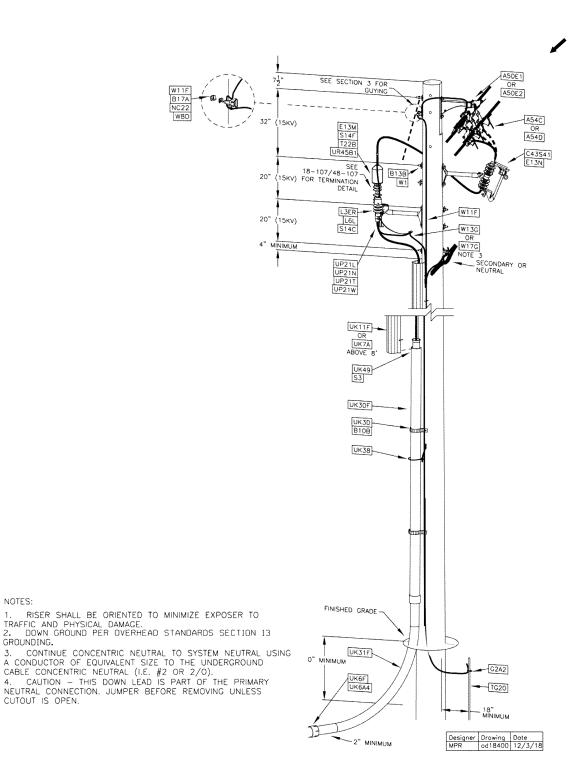
OVERHEAD CONSTRUCTION STANDARD

NOTES:

- 1. DISTANCE TO LIVE PARTS PER ST.02.00.002 ELECTRICAL STATION CLEARANCES.
- 2. MAXIMUM DISTANCE TO BUS SUPPORT IS 5'. ALLOW SUFFICIENT DISTANCE BETWEEN THE DISCONNECTING DEVICE AND THE CABLE TERMINATION FOR MAINTENANCE AND CABLE TESTING WITHOUT VIOLATING MINIMUM APPROACH DISTANCE. ADD 3'-6" TO THE MINIMUM APPROACH DISTANCE VALUES IN THE EMPLOYEE SAFETY HANDBOOK.
- 3. RUN 4/O HORIZONTAL GROUND IN WEB IF AN "I" BEAM, OR UNDERNEATH OTHER SUPPORTING STRUCTURE. CONNECT ARRESTER GROUND LEAD AND CONCENTRIC NEUTRAL TO GROUND BUS WITH SINGLE C CRIMP CONNECTOR, STANDARD ITEM \$14J. KEEP LEADS AS SHORT AS POSSIBLE.
- STANDARD ITEM S14J. KEEP LEADS AS SHORT AS POSSIBLE.

 4. IF THE DISTANCE FROM GRADE TO THE TERMINATION SUPPORT IS GREATER THAN 10', INSTALL ADDITIONAL STRUCTURAL MEMBERS BELOW AND HOLD CABLE WITH CABLE POSITIONER STANDARD ITEM UR47CP. THE DISTANCE BETWEEN CABLE POSITIONERS SHALL NOT EXCEED 7'.
- 5. PRIMARY PHASES NEED TO BE IDENTIFIED WITH APPROPRIATE TESTING METER AND LABELED PER SECTION 2.1.30

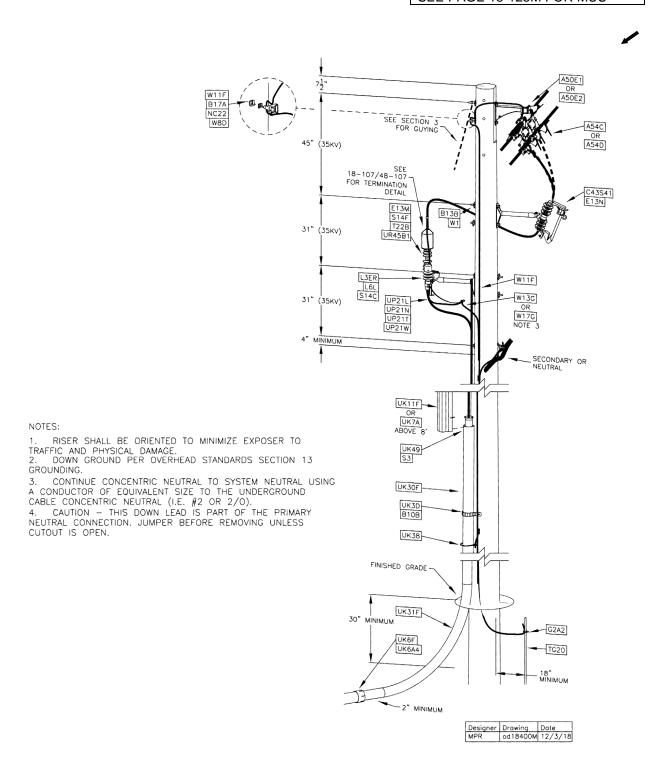
Designer	Drawing	Date
MPR	od18370	6/30/20



SUBSTATION RISER - THREE PHASE

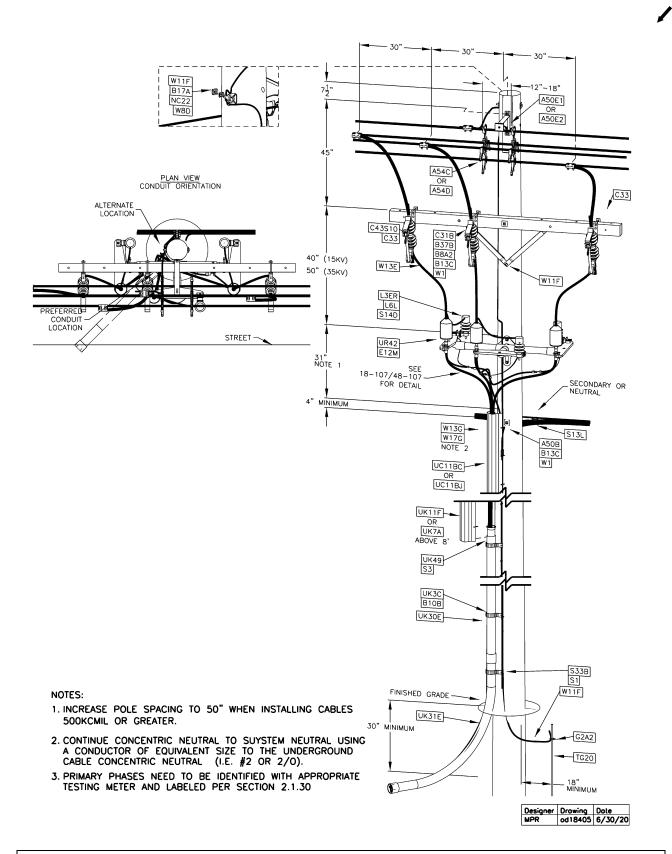
GROUNDING.

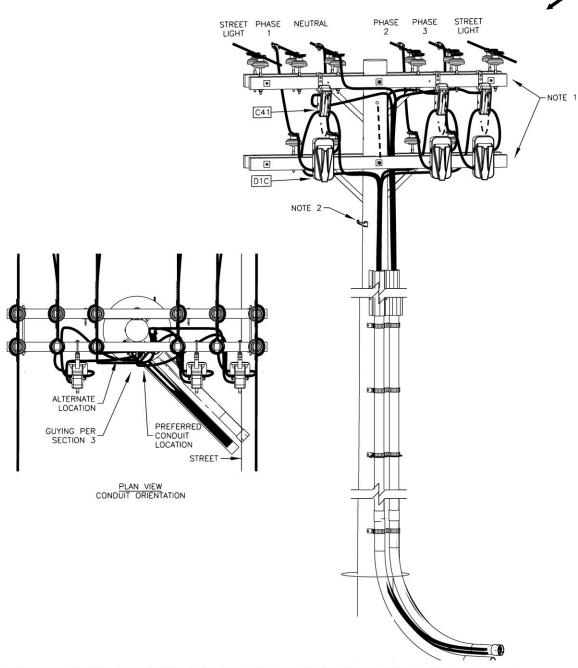
Supersedes 7/18 Issue -Updated Item T22B


SEE PAGE 18-125 FOR MUS

SINGLE PHASE SPACER CABLE RISER - 15KV

PAGE NUMBER ISSUE **OVERHEAD** Business Use 18-400 **CONSTRUCTION STANDARD**


SEE PAGE 18-125M FOR MUS


SINGLE PHASE SPACER CABLE RISER - 35KV MAINTENANCE ONLY OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 18-400M 7/19

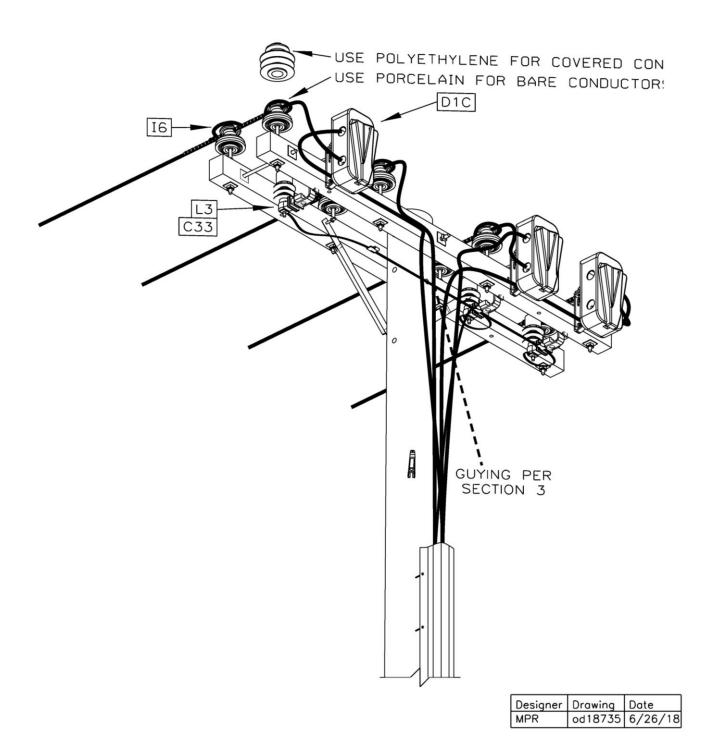
ppl

SEE PAGE 18-126 FOR MUS

	THREE PHASE SPACER CABLE RISER - 35kV MAXIMUM DISTRIBUTION				
	ISSUE	PAGE NUMBER		SAHZ	
Busi	7/20 ness Use	18-405	OVERHEAD CONSTRUCTION STANDARD	ppl	

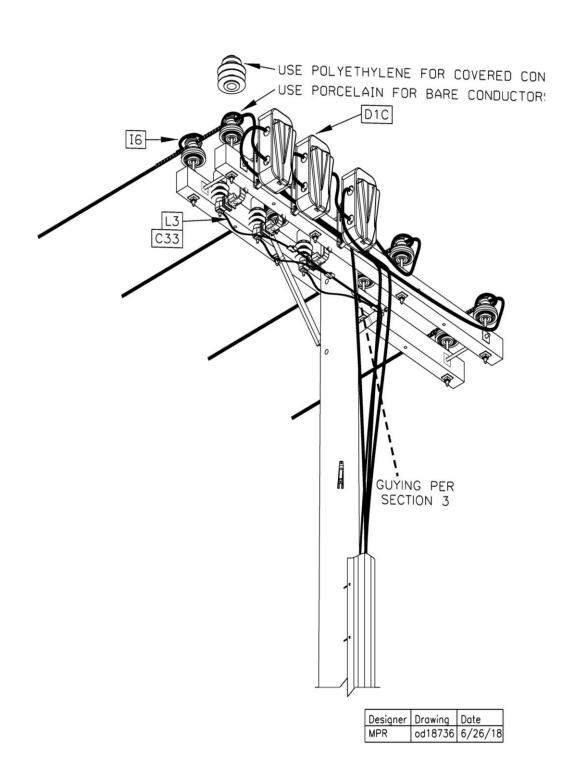
NOTES: 1. IN WIND AREAS USE SPREAD CONSTRUCTION ON TOP ARM AND PLACE STREET LIGHT WIRES ON BOTTOM

ARM.
2. THIS DRAWING SHOWS GENERAL ARRANGEMENT ONLY. FOR DETAILS SEE DRAWINGS WD-237-B AND WD-237-C.


3. STEP POLE IN APPROVED MANNER.

Designer	Drawing	Date
MPR	od18734	6/26/18

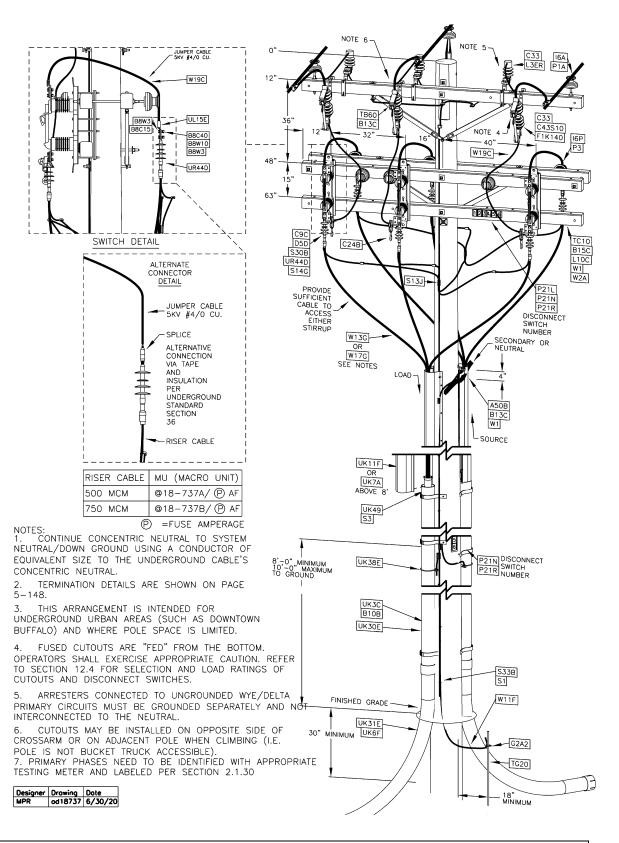
UG URBAN AREA SECTIONALIZING RISER POLE WITH ENCLOSED CUTOUTS -FOR BACKYARD CONSTRUCTION (MAINTENANCE ONLY)



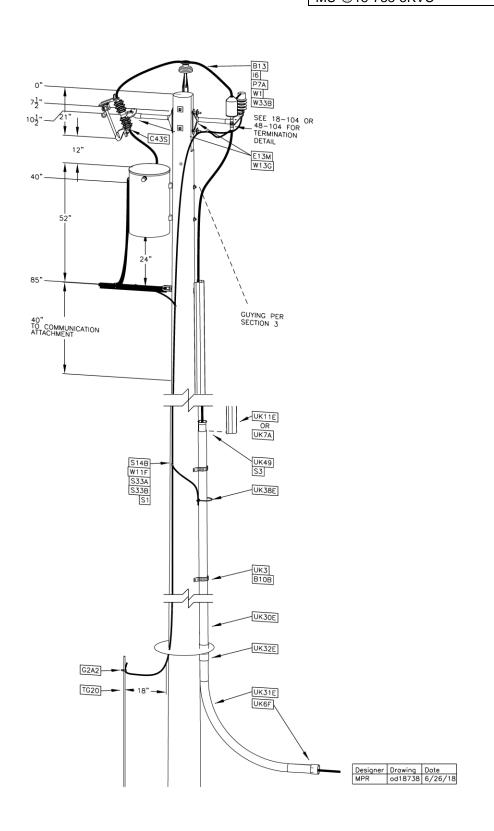
OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 18-734 7/18

MAIN LINE WYE SYSTEM RISER POLE WITH ENCLOSED DISCONNECT SWITCHES - FOR BACKYARD CONSTRUCTION (MAINTENANCE ONLY)					
ISSUE	PAGE NUMBER		SMIZ		
7/18	18-735	OVERHEAD CONSTRUCTION STANDARD	ppl		

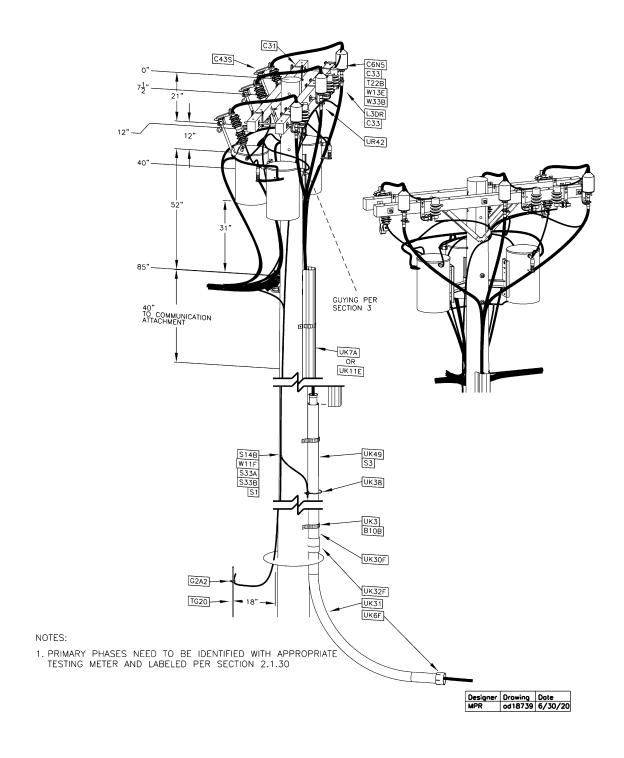
Business Use 18-735



MAIN LINE DELTA SYSTEM RISER POLE WITH ENCLOSED DISCONNECT SWITCHES - FOR BACKYARD CONSTRUCTION (MAINTENANCE ONLY)

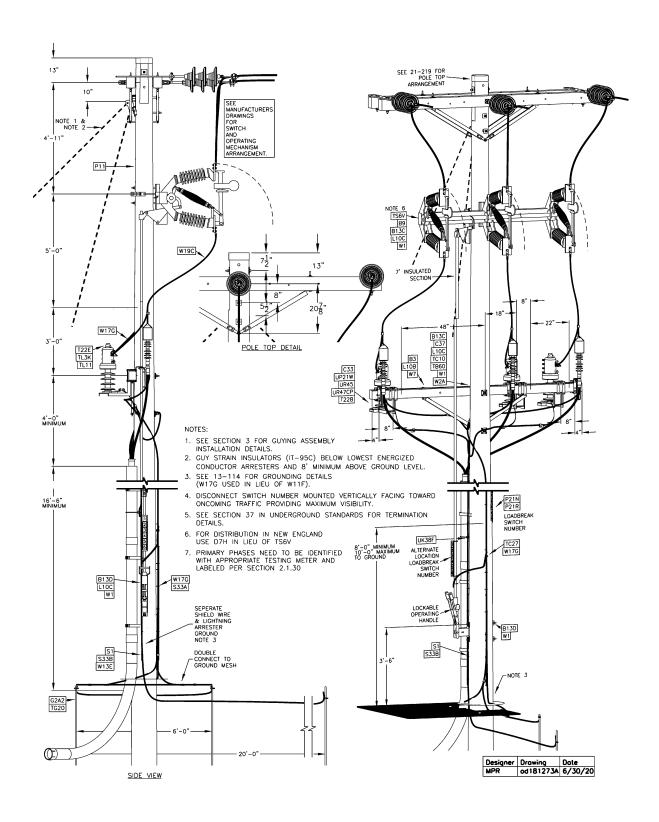

OVERHEAD CONSTRUCTION STANDARD

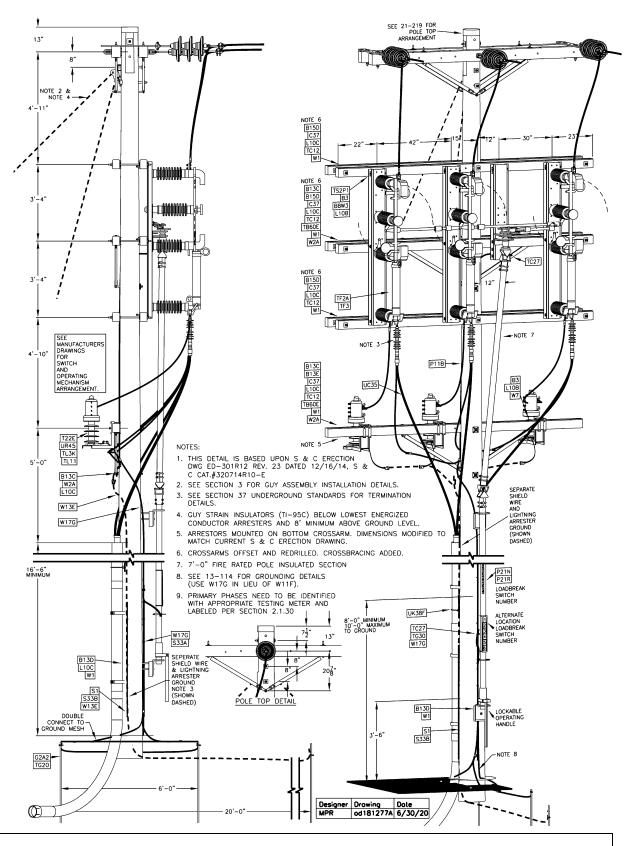
PAGE NUMBER ISSUE 18-736 7/18


	UG URBAN AREA SECTIONALIZING RISER POLE - FOR BACKYARD CONSTRUCTION, 5kV					
	ISSUE	PAGE NUMBER		WW		
ı	7/20 Business	18-737 Use	OVERHEAD CONSTRUCTION STANDARD	ppl		

MU @18-738-5KV MU @18-738-5KVC

UG U	UG URBAN AREA SINGLE PHASE RISER WITH TRANSFORMER FOR BACKYARD					
	CONSTRUCTION – 5KV					
			PAGE NUMBER	ISSUE		
دد ا ادم	ppl	UNDERGROUND CONSTRUCTION STANDARD	18-738	7/18		

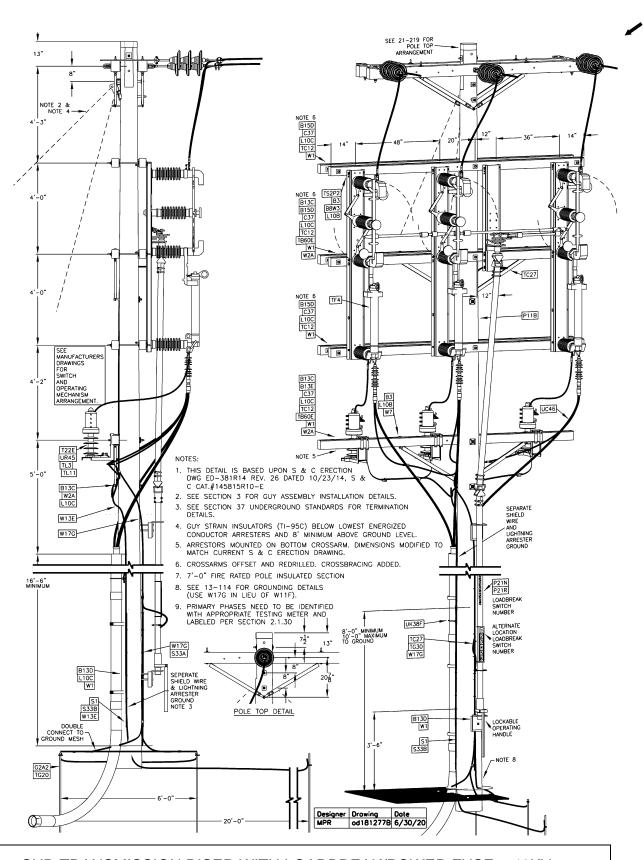

MU @18-739-5KV MU @18-739-5KVC


UG	UG URBAN AREA THREE PHASE RISER WITH TRANSFORMERS - FOR BACKYARD CONSTRUCTION, 5kV					
ISSUE	PAGE NUMBER		SMAC.			
7/20	18-739	UNDERGROUND CONSTRUCTION STANDARD	ppl			

MU=@18-1273A(X)KV(W)

3Ph Riser 600A LDBRK, 23/35KV, (W)=OH Conductor 1/0, 336 or 477

SUB-TRANSMISSION RISER WITH VERTICAL LOADBREAK – 23/35KV					
WIII.		PAGE NUMBER	ISSUE		
ppl	UNDERGROUND CONSTRUCTION STANDARD	18-1273A	7/20		



SUB-TRANSMISSION RISER WITH LOADBREAK/POWER FUSE - 35KV

ISSUE	PAGE NUMBER	
7/20	18-1277A	

UNDERGROUND CONSTRUCTION STANDARD

SUB-TRANSMISSION RISER WITH LOADBREAK/POWER FUSE - 46KV

UNDERGROUND CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 18-1277B

7/20

This Page Intentionally Left Blank

		RISERS	
ISSUE	PAGE NUMBER		SMI
7/19	18-BLANK	UNDERGROUND CONSTRUCTION STANDARD	ppl

Version	Date	Modification	Author(s)	Approval by (Name/Title)
12	7/21	Added Drawing: 18-124ARevised Drawings: 18-127, 18-336 & 18-336D		
11	7/20	 Revised Drawings: 18-004, 18-109, 18-110, 18-126, 18-126D, 18-127, 18-128, 18-335, 18-336, 18-336D, 18-337, 18-338, 18-340, 18-341, 18-353, 18-370, 18-405, 18-737, 18-739, 18-1273A, 18-1277A, 18-1277B 		
10	7/19	 Revised Drawings: 18-112, 18-124M, 18-125M, 18-126, 18-126D, 18-335, 18-336, 18-336D, 18-337, 18-340, 18-341, 18-353, 18-400, 18-400M, 18-737, 18-1273A, 18-1277A & 18-1277B 		
9	7/18	 3D Drawing Conversions 18-104 – 18-337 & 18-340 – 18-738 & 18-1273A – 18-1277B 3D Drawing Conversions for figures 1 and 2 		
8	7/17	 Revised Index New Standard 18-126D New Standard 18-136D Revised Standard 18-336 New Standard 18-338 Revised Standard 18-1273A 		
7	7/16	 Revised Pages 18-4 and 18-6. Updated Drawings 18-115B, 18-118, 18-127, 18-336, 18-337, 18-340 and 18-370 New Std. 18-738 New Std. 18-739 New Std. 18-1273A New Std. 18-1277A New Std. 18-1277B 		
6	7/15	 Text edits in 18.5 Revised drawing reference 18.9 Minor text change in title block 18-115B Drawing change 18-124 Added grounding clips to 18-400, 18-400M and 18-405. 		
5	7/14	 Minor text change to Stds 18-109, 18-110, 18-112, 18-115, 18-116, 18-117, 18-118, 18-124, 18-128 & 18-336. New Std 18-115B 	_	
4	7/13	 Minor text change to stds 18-109, 18-110 and 18-111. Revised Std 18-124 & 18-124M Revised std 18-128. Added note for pole spacing for stds 18- 		

SUMMARY OF RECENT CHANGES				
WWZ		PAGE NUMBER	ISSUE	
ppl	UNDERGROUND CONSTRUCTION STANDARD	18-NOTES	7/21	

		126, 18-127, 18-128, 18-335, 18-336, 18-337, 18-340 and 18-353. • Added new standard 18-341	
3	7/12	 Minor text change for 18-111, 18-112 and 18-336 Std 18-128 is being reviewed for clearances and position of riser brackets. New Std 18-370 for sub-station risers 	
2	7/11	 Added requirement for ground rod placement (18" from center of pole) on drawings where the ground rod is shown. Removed guy wire materials on drawings where guys are shown - refer to Section 3 for all guying requirements. Minor editorial corrections in the text portion of the section. Corrected animal guard placement on most drawings where terminations are shown. 	
1	7/09	 Text portion of the section has been completely re-written in order to combine what was previously in Section 18 and Section 18. Updates were made to all drawings that were previously in Section 18. Some of the drawings that had previously been in Section 18 are now in this section. Brand new drawings were introduced - particularly 18-112, 18-124M, 18-125M, 18-340, and 18-400M. Many of the CUs and MUs listed on the drawings have either been added or updated. 	

SUMMARY OF RECENT CHANGES				
ISSUE	PAGE NUMBER		WIII	
7/21	18-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl	

SECTION	PAGE
• 19.0 GENERAL	19-1 THRU 19-2
19.1 GLOSSARY OF DEFINITIONS	19-3 THRU 19-4
 19.2 IES LIGHT DISTRIBUTION PATTERNS 	19-4 THRU 19-6
 19.3 HORIZONTAL ROADWAY LUMINAIRES 	19-7 THRU 19-9
19.4 FLOODLIGHT LUMINAIRES	19-10 THRU 19-12
19.5 ROADWAY LUMINAIRES	19-13 THRU 19-20
• 19.6 BRACKETS	19-21
 19.7 OUTDOOR LIGHTING FIXTURE CONDUCTORS 	19-21
 19.8 CUSTOMER OWNED STREET LIGHTING EQUIPMENT ATTACHED TO COMPANY OWNED DISTRIBUTION 	19-22 THRU 19-29
CONSTRUCTION DRAWINGS	
 Clearances from Overhead Conductors 	19-100
 Mechanical Protection for Street Lighting Fixture Conductors 	19-101
 Grounding of Overhead Supplied Outdoor Lighting 	19-102
Street Light Luminaire – Installation on Wood Pole	19-110 THRU 19-112
Flood Light Luminaire – Installation on Wood Pole	19-120 THRU 19-122
Residential Security Luminaire – Installation on Wood Pole	19-130 THRU 19-131
Teardrop Luminaire – Installation on Wood Pole	19-140 THRU 19-141

INDEX - OUTDOOR LIGHTING - OVERHEAD

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 46.00.009

	INDEX - OUTDOOR LIGHTING - OVERHEAD			
	ISSUE	PAGE NUMBER		WWZ
Busi	7/15 ness Use	19-ii	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

19.0 GENERAL

This Standards section provides installation details about all types of outdoor lighting installations installed on wooden distribution poles throughout the Company service territory. The intent is to provide the user with a basic knowledge of the limitations and capabilities of the luminaires offered by the Company that can be passed on to customers as an aid in selecting the luminaire that will best meet their lighting need. This is not intended to be a substitute for a formal lighting layout.

19.0.10 Light Sources

All of the Company's luminaires use the following lamp sources.

Table 1 Lamp Sources

Light Source	Color Output	Comment
Mercury Vapor (MV)	Blue / White	Obsolete light source. Luminaires can no longer be purchased. Lamps are available for maintenance of existing installations.
High Pressure Sodium Vapor (HPS)	Orange	Most efficient light source used for all general illumination requirements.
Probe Start Metal Halide (MH)	White	Obsolete light source. Luminaires can no longer be purchased. Lamps are available for maintenance of existing installations.
Pulse Start Metal Halide (PSMH)	White	Used where light output color is a primary concern.
Light-Emitting Diode (LED)	White	Approved for use in roadway applications only in towns with tariff agreements. This source will eventually become predominant luminaire.

19.0.20 <u>Lighting Controls</u>

Company luminaires are designed for dusk to dawn operation using photoelectric controls. Photoelectric controls are factory calibrated to "turn on" the luminaire when the natural light level falls to 1.5 foot-candles. This occurs at approximately 16 minutes after sunset and results in approximately 4,175 luminaire burning hours per year.

19.0.30 Horizontal Roadway Luminaires

Horizontal roadway luminaires are designed for roadway illumination applications. A horizontal roadway luminaire will produce an oval shaped light pattern designed to throw the light output up and down the roadway a greater distance than across the roadway. The area a horizontal roadway luminaire can cover is directly dependent on the mounting height of the luminaire.

OUTDOOR LIGHTING – OVERHEAD			
MIZZ		PAGE NUMBER	ISSUE
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-1	07/19

19.0.40 Floodlight Luminaires

Floodlight luminaires are designed to meet the needs of non-roadway illumination applications. They are designed to focus a high level of illumination on a specific area. Their primary application is commercial and industrial security lighting.

19.0.50 Private Area Luminaires

Private area luminaires are general purpose luminaires designed for non-roadway illumination applications. They produce a circular light pattern in a small concentrated area. These luminaires are primarily designed for residential security applications.

19.0.60 <u>Teardrop Luminaires</u>

Teardrop luminaires are decorative luminaires designed for roadway illumination applications. They are mounted at a nominal 25 foot height and produce an oval shaped light pattern identical to horizontal roadway luminaires. Specific decorative poles are available to complement the historic teardrop luminaire style.

	OUTDOOR LIGHTING – OVERHEAD			
	ISSUE PAGE NUMBER			
Busi	07/19 ness Use	19-2	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

19.1 <u>DEFINITIONS</u>

Business Use

Table 2
Commonly Used Outdoor Lighting Terms Defined

TERM	DEFINITION
I EIXIVI	A failure mode for a high intensity discharge lamp where the vacuum is lost within the glass
Air Lamp:	bulb and the lamp becomes filled with air.
Arc Tube:	A gas filled glass tube within a high intensity discharge lamp that gives off illumination when energized with an electric current.
Ballast Transformer:	An auxiliary device used with a high intensity discharge lamp to obtain necessary circuit conditions for starting and operating the lamp. Reactor Ballast = A single winding ballast transformer. CWA Ballast = Constant-Wattage Autotransformer. = A two winding ballast transformer.
Bird Guard:	A device in a horizontal roadway luminaire used to prevent birds and squirrels from entering the luminaire housing.
Bracket:	A device installed on a wooden distribution pole which is used to extend and hold a luminaire out over a roadway surface.
Bulb:	The glass envelope component of a lamp.
Button Control:	A photoelectric control used in a decorative luminaire where only the light sensing device is visible from the outside of the luminaire.
Cobra-Head:	Another name for a horizontal roadway luminaire.
Cutoff:	An IES term used to describe how much illumination an outdoor luminaire allows to go skyward.
Cycling:	A failure mode of a high pressure sodium vapor lamp where the lamp continuously cycles "on" and "off".
Effective Projected Area: (EPA)	A measurement in square feet to describe the area of a luminaire with respect to wind displacement.
NEMA:	National Electrical Manufacturers Association.
NEMA Luminaire:	A type of luminaire commonly used in rural or residential security lighting installations.
Optical Assembly:	The refractor and reflector components of a luminaire that control the illumination output.
PECR:	Photo-Electric Control Receptacle.
Photoelectric control: (PEC)	A device that switches luminaires on or off in response to natural light levels.
Photometrics:	A description of illumination output qualities and characteristics of a luminaire.
Red Cap:	A device used in place of a twistlock photoelectric control to leave the lamp load permanently "off".
Reflector:	A surface of polished or painted metal, mirrored glass, or plastic, shaped to control and redirect the illumination output.
Restrike Time:	The amount of time needed for an HID lamp source to restart after a momentary interruption in electrical power.
Shorting Receptacle Cap:	A device used in place of a twistlock photoelectric control to leave the lamp load permanently "on".
Slipfitter:	The portion of a luminaire whose purpose is to attach the luminaire to an arm or bracket.

OUTDOOR LIGHTING – GLOSSARY OF DEFINITIONS				
ATT PAGE NUMBER I				
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-3	07/19	

TERM	DEFINITION
Starter:	An electronic device utilized to provide voltage and current for initial illumination of an HID lamp.
Vandal Shield:	An accessory device used on an outdoor luminaire to provide protection from vandalism.
Visor:	An accessory device used on an outdoor luminaire to restrict and limit the outer limits of the illumination output.

19.2 <u>IES LIGHT DISTRIBUTION PATTERNS</u>

The Illuminating Engineering Society (IES) has a three part system to define the light output pattern of horizontal roadway, post top, and other luminaires commonly used in roadway lighting service.

19.2.10 Spacing Classification

This defines how far up and down the length of the roadway the luminaire can cover. This distance is expressed as a factor of the mounting height (MH) of the luminaire.

Table 3

Spacing Classification	Length of Main Beam	Maximum Pole Spacing
SHORT	1.0 to 2.25 MH	4.5 MH
MEDIUM	2.25 to 3.75 MH	7.5 MH
LONG	3.75 to 6.0 MH	12.0 MH

Figure 1 IES Spacing Classification

	IES LIGHT DISTRIBUTION PATTERNS				
ISSUE	PAGE NUMBER		SMI		
07/19	19-4	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl		

19.2.20 Glare Control Classification

The glare control classification defines how much of the light output is allowed to go above the 80 degree and 90 degree horizontal plane (skyward) of the luminaire.

Table 4

Glare Classification	Allowable Illumination Between the 80° and 90° Plane	Allowable Illumination Above the 90° Plane
FULL CUTOFF	< = 10 %	0 %
CUTOFF	< = 10 %	< = 2.5 %
SEMI-CUTOFF	< = 20 %	< = 5.0 %
NON-CUTOFF	no limitation	no limitation

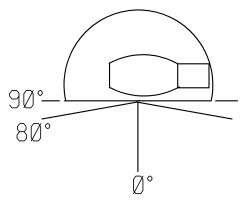
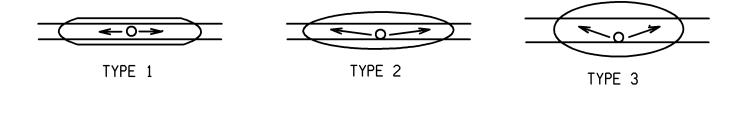


Figure 2
Glare Control Classification


IES LIGHT DISTRIBUTION PATTERNS			
	OUTDOOR LIGHTING CONSTRUCTION STANDARD	PAGE NUMBER	ISSUE
		19-5	07/19

19.2.30 Width Classification

This defines how far across the width of the roadway the main beam will shine. This distance is expressed as a factor of the mounting height (MH) of the luminaire.

_	_	_	_	_
	-	n		-

Width Classification	Definition	
Type I	Intended to be located over the center of relatively narrow residential roadways.	
Type II	Intended to be located near the side of a roadway not exceeding 1.75 MH in width.	
Type III	Intended to be located near the side of a roadway not exceeding 2.75 MH in width.	
Type IV	Intended to be located near the side of a roadway greater than 2.75 MH in width.	
Type V	Provides a circular light pattern of equal intensity in all directions.	

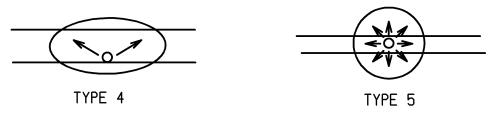


Figure 3
Width Classification

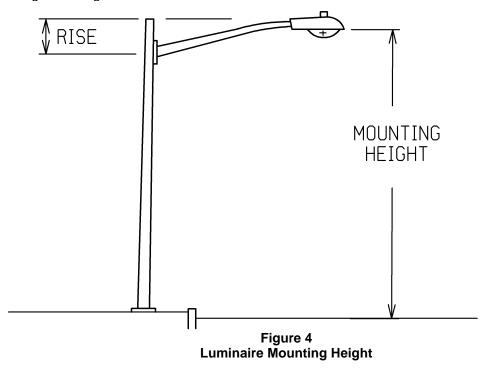
19.2.40 <u>Company Luminaires</u>

The IES Classification information for all luminaires used by the Company is found in STANDARDS Section 23 – Materials Catalog – Outdoor Lighting.

IES LIGHT DISTRIBUTION PATTERNS				
ISSUE	PAGE NUMBER		SMIZZ	
07/19	19-6	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl	

19.3 HORIZONTAL ROADWAY LUMINAIRES

This Section provides information for the proper application of horizontal roadway luminaires and other decorative pendant style luminaires with an IES type II or III distribution.


19.3.10 Mounting Height

Roadway luminaires must be installed at a sufficient height to minimize the glare to approaching traffic and at the same time provide an acceptable level of illumination at the roadway surface. The mounting height of a light source will affect the intensity of illumination, uniformity of brightness, area covered, and relative glare produced by the luminaire. Higher mounting heights will provide greater area coverage, more uniformity, and a reduction of glare, but a lower overall illumination level.

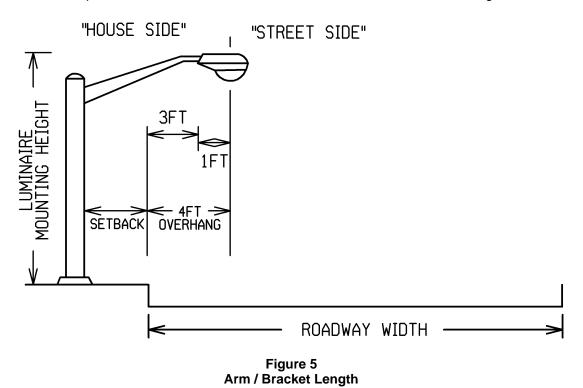
19.3.20 Overhead Supplied Installations

For lighting installations on wood distribution poles, the actual luminaire mounting height will be affected by other distribution equipment on the pole. In every case, adequate clearances, as specified in Construction Drawing 19-100, must be maintained. The roadway bracket rise will typically add 30 inches (±) to the luminaire mounting height as measured from the bracket through bolt height.

19.3.30 Recommended Minimum Roadway Luminaire Mounting Heights

Table 6

Luminaire Wattage	Minimum Mounting Height
50 Watt - 250 Watt	20 Feet
400 Watt	30 Feet
1,000 Watt	35 Feet


ROADWAY LUMINAIRES – APPLICATION			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-7	07/19

19.3.40 Arm / Bracket Length

The luminaire arm / bracket must have sufficient length to properly place the luminaire over the roadway surface in order to take best advantage of the luminaire light distribution pattern. Roadway luminaires with IES type II or III light distribution are designed to be mounted over the roadway surface near one side and still project useful light output across the entire roadway width. Common practice is to have the luminaire's refractor overhang the roadway surface by four feet.

19.3.50 To Determine Arm / Bracket Length

Add setback distance (determined by field measurement) to arm / bracket overhang distance (always 3 feet). The result will be the minimum arm / bracket length required. Installation of the luminaire will provide the additional distance needed to create a four foot overhang.

19.3.60 Roadway Width

Roadway luminaires with an IES type II light distribution pattern are designed for roadways where the width does not exceed 1.75 times the luminaire mounting height. IES type III roadway luminaires are designed for roadway widths up to 2.75 times the luminaire mounting height.

If the roadway has multiple travel lanes or is divided, a roadway luminaire with Type II or Type III distribution will not be able to adequately illuminate the entire roadway width. A possible solution is to install luminaires on both sides of the roadway opposite one another.

19.3.70 <u>Luminaire Adjustment</u>

Tilting the luminaire five degrees upward will increase the "street side" illumination (and decrease the "house side" illumination). This may be a solution when a shorter arm / bracket must be used because of insufficient pole space or clearances.

ROADWAY LUMINAIRES – APPLICATION			
ISSUE	PAGE NUMBER		WIN
07/19	19-8	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

19.3.80 Exceptions

Field conditions, such as trees, may necessitate using a different arm / bracket length than would normally be called for.

19.3.90 Luminaire Spacing

Luminaires should be spaced to allow the light output between adjacent luminaires to overlap. This will eliminate dark spots midway between two luminaires and contribute uniformity to the overall lighting installation.

19.3.100 Roadway Luminaire Selection

PPL offers horizontal roadway luminaires with semi-cutoff distribution (globe) and full cutoff distribution (flat glass). In the absence of specific direction from the customer, the default luminaire choice for horizontal roadway luminaires shall be the cutoff / full cutoff (flat glass) units.

ROADWAY LUMINAIRES – APPLICATION

19.4 FLOODLIGHT LUMINAIRES

This Section provides information for proper application of floodlight luminaires.

19.4.10 Mounting Height

Floodlight luminaires must be installed at a sufficient height in order to maximize the efficiency of the illumination output and at the same time control glare. The recommended mounting height for a floodlight luminaire is one half the distance across the area to be illuminated.

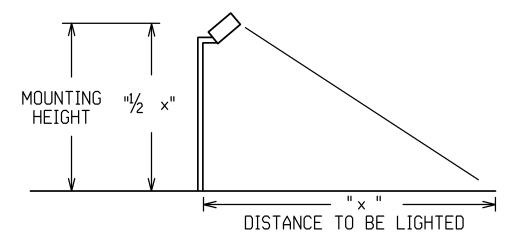


Figure 6
Floodlight Mounting Height

19.4.20 Clearance to Overhead Conductors

For floodlight installations mounted on wood distribution poles, the actual floodlight mounting height may be limited by other distribution equipment on the pole. In every case, adequate clearances, as specified in Construction Drawing 19-100, must be maintained.

19.4.30 Floodlight Aiming

Floodlight luminaires must be properly aimed in order to obtain the desired illumination. Some floodlight luminaires have a sight aiming guide molded into the top of the housing. Follow the manufacturer's instructions.

19.4.40 <u>Vertical Aiming</u>

Vertical floodlight aiming affects the distance a floodlight luminaire can cover. To maximize the useful light output, the floodlight should be aimed $\frac{2}{3}$ across the distance to be lighted, or approximately two times the mounting height, whichever value is lower. To minimize glare, a floodlight's vertical aiming point distance should never exceed twice the mounting height. See Figure 7 for details.

	FLOODLIGHT LUMINAIRES - APPLICATION					
ISSUE	SUE PAGE NUMBER ANI/A					
07/19	19-10	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl			

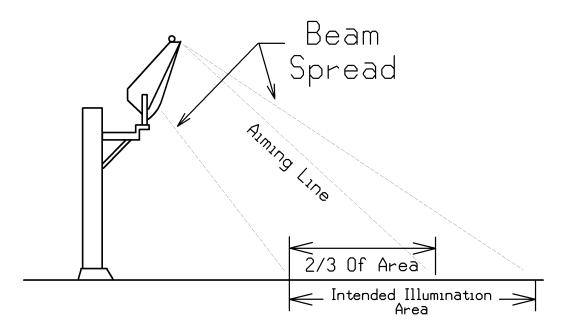


Figure 7
Floodlight Aiming – Vertical

19.4.50 Horizontal Aiming

Horizontal aiming must be considered when more than one floodlight is contributing to the illumination output. A floodlight's horizontal beam spread will extend 45 degrees on either side of the aiming line. Floodlight luminaires should be horizontally aimed to allow the light output between adjacent luminaires to overlap. This will contribute to overall uniformity to the overall lighting installation.

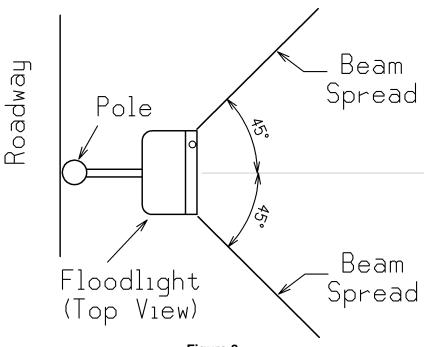


Figure 8
Floodlight Aiming – Horizontal

FLOODLIGHT LUMINAIRES - APPLICATION						
SMIZZ		PAGE NUMBER	ISSUE			
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-11	07/19			

19.4.60 Pole Spacing

When a floodlighting installation consists of multiple luminaires mounted on different poles, pole spacing needs to be considered. In general, the spacing between adjacent floodlight poles should equal 4 times the luminaire mounting height.

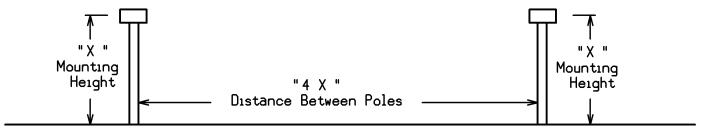


Figure 9
Floodlight Pole Spacing

19.4.70 <u>Light Pollution</u>

Use care in the aiming of floodlights. Never allow a floodlight's light output to extend onto an adjacent roadway into the face of oncoming traffic. Never install a floodlight across a roadway from the intended illumination area. Always be sensitive to the spilling of unwanted light onto adjacent properties. For tighter control of the light output, consider installing a floodlight visor

	FLOODLIGHT LUMINAIRES - APPLICATION					
ISSUE	PAGE NUMBER		SMA			
07/19	19-12	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl			

19.5 ROADWAY LUMINAIRES

This Section provides general requirements for all luminaires used throughout the Company service territory.

High pressure sodium vapor luminaires that are removed from service in good working order shall be returned to Stores for re-use, or disposed of for scrap metal value if found to be damaged. All mercury vapor luminaires shall be disposed of for scrap metal value. Salvage parts such as refractors or door assemblies as necessary for use in maintaining other luminaires.

LED luminaires will not be maintained as they do not have replaceable parts. LED luminaires that fail will simply be replaced with a new luminaire. LED luminaires that fail before the 10 year warrantee period expires are subject for a refund.

All horizontal roadway and floodlight luminaires have the date of manufacture identified inside the luminaire. Luminaires that fail within five years of the date of manufacture should be returned to Stores for possible warranty credit.

19.5.10 Utility Grade

All luminaires shall be designed for long term reliable use in street and area lighting applications. Replacement parts are stocked for all HID luminaires including starters, ballasts and lamps. LED luminaires have no replaceable parts.

19.5.20 Voltage Rating

The standard Company luminaire is designed to operate from a 120 VAC, 2 wire source. Luminaires with other voltage ratings are available as non-standard luminaires to meet specific application needs.

19.5.30 Ballast Selection

All Company luminaires using high intensity discharge lamp sources require an internally mounted ballast transformer. LED's do not require ballasts. Two types of ballast transformers are available for use.

Table 7
Ballast Selection

Ballast Type	Ballast Features					
Reactor Ballast	 Single coil ballast wired in series with the lamp. Non-regulating – normal power factor ballast. Lowest ballast losses = least wasted energy. Tolerates line voltage variations to within + or – 5%. Standard ballast used in HPS luminaires below 250 Watts. Most economical purchase cost. 					
Regulated (CWA) Ballast	 Two coil ballast. – Constant Wattage Autotransformer Regulating – high power factor ballast Higher ballast losses than reactor ballast. Tolerates line voltage variations to within + or – 10%. Standard ballast used in HPS luminaires 250 Watts & above. Standard ballast used in all mercury vapor and metal halide luminaires. Higher purchase cost than reactor ballast. 					

Note: The lamp wattage and light source of any HID lamp must match the lamp wattage and light source rating of the HID luminaire it is to be used in. Lamps and luminaires with different wattage ratings or different light sources are not interchangeable.

	ROADWAY LUMINAIRES		
SMIZE		PAGE NUMBER	ISSUE
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-13	07/19

19.5.40 Starting Aids

All high pressure sodium vapor luminaires require a separate starter to ignite the lamp. The Company Standard is to require a field replaceable plug-in starting aid whenever possible.

19.5.50 Terminal Block

Whenever possible, all Company luminaires shall have a terminal connection block for attachment of the source wiring.

Standard 2 wire, 120 Volt luminaires shall have a three terminal block with the middle terminal connected to the luminaire metal housing with a green housing ground wire.

Non-standard voltage luminaires shall have a two terminal connection block or three terminal connection block as needed.

		ROADWAY LUMINAIRES	
ISSUE	PAGE NUMBER		WIIV
07/19	19-14	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

19.5.60 <u>Luminaire Electrical Load Data</u>

Table 8 HID Luminaire Data

Luminair	e Description			e Component	Loads		
Wattage & Light Source	Ballast Type	Source Voltage	Rated Lamp Wattage	Ballast Wattage	Photo Control Wattage	Total Wattage Load	Maximum Input * Amperage
100 Watt – MV ANSI H-38	Regulated	120 VAC	100 Watts	29 Watts	1 Watt	130 Watts	1.1 A
175 Watt – MV <i>ANSI H-</i> 39	Regulated	120 VAC	175 Watts	35 Watts	1 Watt	211 Watts	1.7 A
250 Watt – MV <i>ANSI H-37</i>	Regulated	120 VAC	250 Watts	56 Watts	1 Watt	307 Watts	2.8 A
400 Watt – MV <i>ANSI H-</i> 33	Regulated	120 VAC	400 Watts	76 Watts	1 Watt	477 Watts	4.0 A
1,000 Watt – MV <i>ANSI H-36</i>	Regulated	120 VAC	1,000 Watts	94 Watts	1 Watt	1,095 Watts	2.5 A
50 Watt - HPS <i>ANSI S-68</i>	Reactor	120 VAC	50 Watts	10 Watts	1 Watt	61 Watts	1.5 A
70 Watt - HPS <i>ANSI S-62</i>	Reactor	120 VAC	70 Watts	15 Watts	1 Watt	86 Watts	2.0 A
70 Watt - HPS <i>ANSI S-62</i>	Regulated	120 VAC	70 Watts	19 Watts	1 Watt	90 Watts	0.8 A
100 Watt - HPS <i>ANSI S-54</i>	Reactor	120 VAC	100 Watts	17 Watts	1 Watt	118 Watts	3.2 A
100 Watt - HPS <i>ANSI S-54</i>	Regulated	120 VAC	100 Watts	23 Watts	1 Watt	124 Watts	1.2 A
150 Watt - HPS <i>ANSI S-55</i>	Reactor	120 VAC	150 Watts	22 Watts	1 Watt	173 Watts	4.4 A
150 Watt - HPS <i>ANSI S-55</i>	Regulated	120 VAC	150 Watts	36 Watts	1 Watt	187 Watts	1.6 A
250 Watt - HPS <i>ANSI S-50</i>	Regulated	120 VAC	250 Watts	53 Watts	1 Watt	304 Watts	2.5 A
400 Watt - HPS <i>ANSI S-51</i>	Regulated	120 VAC	400 Watts	69 Watts	1 Watt	470 Watts	3.9 A
1,000 Watt - HPS <i>ANSI S-52</i>	Regulated	120 VAC	1,000 Watts	105 Watts	1 Watt	1,106 Watts	9.7 A
175 Watt – MH <i>ANSI M-57</i>	Regulated	120 VAC	175 Watts	31 Watts	1 Watt	207 Watts	1.8 A
250 Watt – MH <i>ANSI M-58</i>	Regulated	120 VAC	250 Watts	44 Watts	1 Watt	295 Watts	2.6 A
400 Watt – MH <i>ANSI M-59</i>	Regulated	120 VAC	400 Watts	50 Watts	1 Watt	451 Watts	4.0 A
1,000 Watt – MH <i>ANSI M-47</i>	Regulated	120 VAC	1,000 Watts	77 Watts	1 Watt	1,078 Watts	9.0 A
175 Watt – PSMH ANSI M-152E	Regulated	120 VAC	175 Watts	23 Watts	1 Watt	199 Watts	1.78 A
250 Watt – PSMH <i>ANSI M-153E</i>	Regulated	120 VAC	250 Watts	30 Watts	1 Watt	281 Watts	2.5 A
400 Watt – PSMH <i>ANSI M-155E</i>	Regulated	120 VAC	400 Watts	48 Watts	1 Watt	449 Watts	4.0 A

^{* =} Maximum input amperage = Starting amperage. Operating amperage will be lower.

	ROADWAY LUMINAIRES		
SMIZZ		PAGE NUMBER	ISSUE
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-15	07/19

Business Use

Table 8A OH LED Luminaire Data						
Standard ID	Description	Source Voltage*	Lumens	Wattage		
SK06A1	"Local" Roadway Luminaire	120 - 277 VAC	≤ 2000	20		
SK06A	"Local" Roadway Luminaire	120 - 277 VAC	2,001 - 4,000	25		
SK06C	"Collector" Roadway Luminaire	120 - 277 VAC	4,001 – 8,000	48		
SK06G	"Major" Roadway Luminaire	120 - 277 VAC	8,000 – 14,000	96		
SK06H	"Expressway" Roadway Luminaire	120 - 277 VAC	20,000 – 30,000	210		
SJ06A	"Standard Area" Floodlight	120 - 277 VAC	17,500 – 22,500	150		
SJ06B	"Large Area" Floodlight	120 - 277 VAC	37,500 – 42,500	275		

		ROADWAY LUMINAIRES	
ISSUE	PAGE NUMBER		WIV
07/19	19-16	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

Table 8B HID to LED Roadway Equivalent Conversion Table

(Note: LED luminaires shall only be installed in cities/towns with established rate agreements.

Contact Outdoor Lighting if uncertain.)

HID Luminaire							LED Equivalent
Standard Item	SAP Item	Туре	Description	Line Voltage	Standard Item	SAP Item	Description
SK03A	9309606	HPS	50 Watt				LED, Horizontal Roadway, 20 watts ±, ≤
SK03A1	9309717	HPS	50 Watt			9390299	2000 delivered lumens, 120-277 VAC, IES
SK03B	9314688	HPS	70 Watt	120 VAC	SK06A1		LED, Horizontal Roadway, 25 watts ±,
SK03B1	9315139	HPS	70 Watt		SK06A	9389768	2,001 – 4,000 delivered lumens ±, 120-
SK03B2	9300855	HPS	70 Watt			3303700	277 VAC, IES full cutoff, type II.
SK03C	9314705	HPS	100 Watt				
SK03C1	9314656	HPS	100 Watt				
SK03C2	9311847	HPS	100 Watt				LED, Horizontal Roadway, 48 watts ±,
SK03D	9314704	HPS	150 Watt	120 VAC	SK06C	9389795	4,001 – 8,000 delivered lumens ±, 120-
SK03D1	9314687	HPS	150 Watt				277 VAC, IES full cutoff, type II.
SK03D2	9312004	HPS	150 Watt				
SK03G	9314703	HPS	250 Watt	120 VAC	SK06G	9389786	LED, 96 watts ±, 8,000 – 14,000 Delivered Lumens ±, 120-277 VAC, IES full cutoff,
SK03G1	9314706	HPS	250 Watt	120 VAC	120 VAC SKU6G	3303760	type III.
SK03H	9313589	HPS	400 Watt				LED, 210 watts ±, 20,000 – 30,000
SK03H1	9314700	HPS	400 Watt	120 VAC	SK06H	9389785	Delivered Lumens ±, 120-277 VAC, IES
SK03K	9314701	HPS	1,000 Watt				full cutoff, type III.
SK05H	9306796	PSMH	400 Watt	120 VAC	SK06H	9389785	LED, 210 watts ±, 20,000 – 30,000 Delivered Lumens ±, 120-277 VAC, IES full cutoff, type III.
SK20C	9317388	HPS	100 Watt	277.VAC	SKUEC	9389795	LED, Horizontal Roadway, 48 watts ±, 4,001 – 8,000 delivered lumens ±, 120-
SK20D	9317387	HPS	150 Watt	277 VAC	SK06C	9389795	277 VAC, IES full cutoff, type II.
SK20G	9317386	HPS	250 Watt	277 VAC	SK06G	9389786	LED, 96 watts ±, 8,000 – 14,000 Delivered Lumens ±, 120-277 VAC, IES full cutoff, type III.
SK20H	9309716	HPS	400 Watt	277 VAC	SK06H	9389785	LED, 210 watts ±, 20,000 – 30,000 Delivered Lumens ±, 120-277 VAC, IES full cutoff, type III.

ROADWAY LUMINAIRES						
SMIZZ		PAGE NUMBER	ISSUE			
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-17	07/19			

Table 8C

HID to LED Floodlight Equivalent Conversion Table
(Note: LED luminaires shall only be installed in cities/towns with established rate agreements. Contact Outdoor Lighting if uncertain.)

HID Luminaire					LED Equivalent			
Standard Item	SAP Item	Туре	Description	Line Voltage	Standard Item	SAP Item ID	Description	
SJ03B	9314705	HPS	70 Watt	120 VAC			LED, "Standard Area" Floodlight, 150	
SJ03D	9305870	HPS	150 Watt	120 VAC	SJ06A	9390958	watts ±, 17,500 – 22,500 delivered lumens ±, 120-277 VAC, IES NEMA 6x6 or	
SJ03G	9314672	HPS	250 Watt	120 VAC			7x6.	
SJ03H	9314671	HPS	400 Watt	120 VAC				
SJ03H1	9306198	HPS	400 Watt	277 VAC			LED, "Large Area" Floodlight, 275 watts	
SJ03K	9314670	HPS	1,000 Watt	120 VAC	SJ06B S	SJ06B 93909	9390956	±, 37,500 – 42,500 delivered lumens ±,
SJ05H	9306795	PSMH	400 Watt	120 VAC			120-277 VAC, IES NEMA 6x6 or 7x6.	
SJ04K	9314669	PSMH	1,000 Watt	120 VAC				

		ROADWAY LUMINAIRES	
ISSUE	PAGE NUMBER		WIII
07/19	19-18	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

19.5.70 <u>LUMINAIRE HID LAMP IDENTIFICATION</u>

This section covers the labeling systems used on all mercury vapor, high pressure sodium vapor, metal halide and LED luminaires for field identification of the lamp wattage, light source and LED type.

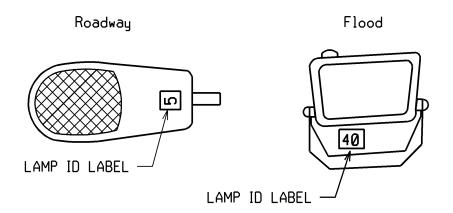


Figure 10
Typical Label Placement on Common Luminaires

Lamp Identification (HID)

Business Use

A number / color code label system is used to identify the wattage and light source of all HID luminaires. All roadway and floodlight HID luminaires use a 3 inch square label. All post top HID luminaires use a 1 inch square label. New HID luminaires come with factory installed labels. Replacement labels are available from Stores for maintenance.

Table 9
Wattage Code Numbers

Wattage Code Numbers				
Wattage	Wattage Code Number			
50	"5"			
70	"7"			
100	"10"			
150	"15"			
175	"17"			
250	"25"			
400	"40"			
1,000	"X1"			

Table 10
Light Source Color Code

Light Source	Label Background Color
Mercury Vapor	Blue
High Pressure Sodium Vapor	Yellow
Metal Halide – Probe Start	Red
Metal Halide – Pulse Start	Red / White

OUTDOOR LIGHTING – OVERHEAD			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-19	07/19

19.5.80 <u>LED Roadway Luminaire Identification</u>

Two external labels shall be affixed to the underside of the LED roadway luminaire. The first label shall be a 3-inch by 3-inch, black letter on white background wattage label in accordance with ANSI C136.15, latest issue. The second external identification label is for the purpose of PPL to associate the installed luminaire with its internal Item ID number. The font shall be 1-1/4-inch in height. (See Table 11 for label code).

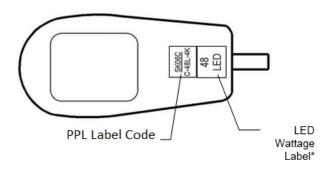
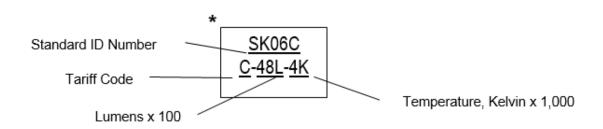



Table 11
LED Roadway Luminaire Label Codes

Standard ID Number	Description	Item ID Number	Lumens	Wattage	Label Code*
SK06A1	"Local" Roadway Luminaire	9390299	1 - 2,000	20	<u>SK06A1</u> <u>A-20L-4K</u>
SK06A	"Local" Roadway Luminaire	9389768	2,001 – 4,000	25	<u>SK06A</u> B-26L-4K
SK06C	"Collector" Roadway Luminaire	9389795	4,001 – 8,000	48	<u>SK06C</u> C-48L-4K
SK06G	"Major" Roadway Luminaire	9389786	8,000 – 14,000	96	<u>SK06G</u> D-116L-4K
SK06H	"Expressway" Roadway Luminaire	9389785	20,000 – 30,000	210	<u>SK06H</u> F-250L-4K

		ROADWAY LUMINAIRES	
ISSUE	PAGE NUMBER		WHA
07/19	19-20	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

19.6 BRACKETS

Table 12 identifies the horizontal roadway luminaire loading allowed on standard wood pole street lighting brackets.

Table 12

STD. Item	Bracket	Use For:
CD04	4' Lineure en	50 W – 400 W HID and all LED roadway
SB04	4' Upsweep	luminaires
ODOG	67.11	50 W - 250 W HID and all LED roadway
SB06	6' Upsweep	luminaires
00004	O. T LEW et al.	400 W & 1,000 W HID and all LED
SB06A	6' Tapered Elliptical	roadway luminaires
0000	0.11	50 W - 250 W HID and all LED roadway
SB08	8' Upsweep with Underbrace	luminaires
00004	O. T LEWest and	400 W & 1,000 W HID and all LED
SB08A	8' Tapered Elliptical	roadway luminaires
0040	40' Tanana I Tura	50 W – 400 W HID and all LED roadway
SB10	10' Tapered Truss	luminaires
0040	40' Tanana d Tanana	50 W - 400 W HID and all LED roadway
SB12	12' Tapered Truss	luminaires
CD4C	10' Tanarad Trusa	50 W - 400 W HID and all LED roadway
SB16	16' Tapered Truss	luminaires
CDOO	20' Tananad Turaa	50 W - 400 W HID and all LED roadway
SB20	20' Tapered Truss	luminaires

All brackets removed from service shall be inspected and returned to Stores for reuse, or disposed of for scrap metal value if found to be an obsolete design or damaged. All 1-1/4 inch aluminum brackets and all steel brackets shall be disposed of for scrap metal value

19.7 OUTDOOR LIGHTING FIXTURE CONDUCTORS

All street and floodlight luminaire installations shall use 2-1/C #10 AWG copper conductors – BLACK-WHITE twisted pair (STD Item SY4A2) to connect the luminaire to the secondary supply.

Prior to the adoption of the standard SY4 street lighting conductors, many luminaire installations were wired with #12 AWG conductors with THHN insulation.

With the exception of lamp and photocontrol maintenance, whenever the need arises to work on a luminaire wired with the older #12-THHN or #10-XHHW conductors, or when the existing conductor insulation is found to be cracked or deteriorated, the luminaire shall be completely rewired using STD Item SY4 conductors.

When the need arises to extend the length of existing luminaire conductors, the luminaire shall be completely rewired using STD Item SY4 conductors.

In no cases shall luminaire conductors be spliced be any method to create the desired length.

		OUTDOOR LIGHTING – OVERHE	EAD	
	SMIZZ		PAGE NUMBER	ISSUE
Business U	se ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-21	07/19

19.8 CUSTOMER OWNED STREET LIGHTING EQUIPMENT INSTALLED ON COMPANY OWNED DISTRIBUTION POLES

This document contains information that is provided for reference purposes only, and should not be construed or used as a substitute for an analysis of the applicable tariffs, agreements, and safety regulations specific to each particular customer.

19.8.10 Safety

The number 1 priority of every job is:

SAFETY!

PPL's distribution poles carry electric lines that operate at voltages as high as 34,500 volts and can carry very high amperages.

PPL's underground infrastructure carries the same very high distribution voltages and amperages in a confined space and may also carry sub-transmission or transmission lines that operate at even higher voltage levels.

Outdoor street and area lights are installed within the electric space on a distribution pole. Performing work on outdoor lights may require the worker to be in close proximity to the distribution lines.

It is the responsibility of the customer that owns, operates and maintains outdoor lighting to ensure that all personnel working on the outdoor lighting system are qualified to work in the designated electric supply space of the Company's electric distribution system in accordance with OSHA 1910.269. An executed copy of the Company's ACKNOWLEDGEMENT FOR THE USE OF QUALIFIED ELECTRICAL WORKERS form is mandatory.

OVERHEAD DISTRIBUTION

07/19

No customer, customer's employees, or contractors are ever allowed to perform any work on PPL's 120/240 volt or 120/208 volt secondary conductors.

UNDERGROUND DISTRIBUTION

19-22

No customer, customer's employees, or contractors are ever allowed to enter a PPL manhole, handhole or other structure for any reason without PPL safety supervision personnel being present on site.

IF UNSURE: - **STOP** – Call PPL for assistance.

No outdoor lighting repair is too important to sacrifice personal safety.

CUSTOMER OWNED STREET LIGHTING EQUIPMENT CONNECTED TO COMPANY				
OWNED DISTRIBUTION FACILITIES				
ISSUE PAGE NUMBER OUTDOOR LIGHTING	WHAL			

CONSTRUCTION STANDARD

ppl 🎘

19.8.20 GENERAL: These Standards identify requirements to enable a customer to safely install, remove, and maintain a customer owned outdoor lighting system which is installed on PPL distribution poles and/or connected to PPL overhead or underground secondary conductors.

All customer owned outdoor lighting shall be in compliance with the applicable provisions of the National Electric Safety Code, (NESC) latest edition, and the applicable PPL Construction Standards.

The customer shall be responsible to own, operate, and maintain all outdoor lighting equipment beyond the service tap connections to PPL. This shall include, but not be limited, to the following:

- 1. Supplying all material and labor.
- 2. Transferring an overhead supplied outdoor light attachment to a new pole in the event of a pole replacement.
- 3. Relocating an overhead supplied outdoor light attachment to accommodate other construction activities on the pole.
- 4. Performing any work required on the outdoor lighting underground conduit system, conductors, foundation, pole, arm and luminaire.
- 5. Emergency 24 hour response to remove or make safe:
 - (a) the outdoor light attachment in the event of a damaged/broken pole.
 - (b) the underground sourced outdoor light in the event of a damaged/structurally failed lighting standard or supporting structure.

<u>NOTE</u>: In an emergency, (i.e. 911 notification response, weather related storm or natural disaster restoration, etc.) PPL personnel may perform, at customer expense, any customer outdoor lighting work PPL deems necessary to maintain public or employee safety.

Electrical Separation: The customer is responsible to create an electrical separation between the PPL secondary conductors and the customer owned outdoor lighting conductors. This is required to insure the safety of PPL and customer employees. This is accomplished by installing, at a minimum, a dual pole in-line fuse holder with a midget cartridge style fuse on every outdoor light supply located as near as possible to the connection to the PPL owned secondary conductors. This fuse/disconnect device, in addition to providing electrical protection, shall serve as a future disconnect point for the customer owned outdoor light. Once installed, the customer may disconnect or reconnect a customer owned outdoor light only by means of the in-line fuse holder/disconnect device. See Figure 12 for overhead supplied outdoor lights, and Figures 13 or 14 for underground supplied outdoor lights. See Figure 11 for in-line fused disconnect details. The in-line fuse holder/disconnect device does not define where PPL ownership ends, and customer ownership begins. The point of ownership demarcation is at the point of connection to the distribution system. The company owns up to and including the connector.

CUSTOMER OWNED OUTDOOR LIGHTING – GENERA
--

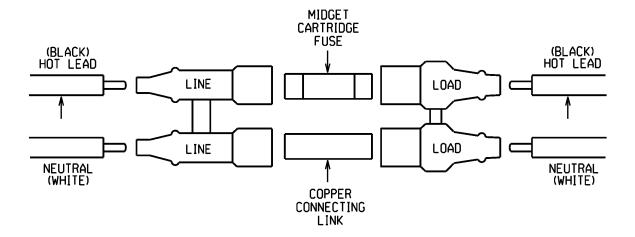


Figure 11- In-Line Fused Disconnect Details

1. All customer owned outdoor lighting equipment shall be fused using a dual pole, watertight, in-line fuse holder and cartridge style fuse. This fuse, in addition to providing electrical protection, shall serve as a disconnection point for the customer owned outdoor lighting equipment.

2. Fuse Holder

The fuse holder shall be a watertight device suitable for use in an outdoor environment.

The fuse holder shall be totally insulated, thus having no exposed energized parts.

The fuse holder shall accept #14 AWG - #6 AWG stranded copper conductors on both ends.

The fuse holder shall be a dual pole device allowing simultaneous disconnection of both the 120 VAC hot lead (black wire) and the neutral conductor (white wire).

The fuse holder shall be designed such that, when separated, the midget cartridge fuse and copper connecting link shall be held captive in the load end of the fuse holder.

The fuse holder shall be polarized to prevent accidental reversal of the live leg and neutral connections.

3. Cartridge Fuse

The fuse shall be a non-glass type, midget style cartridge fuse. Fuse dimensions shall be 13/32" diameter x 1½" length.

4. Neutral Connection

The neutral conductor shall not be fused. Install a 13/32" diameter x $1\frac{1}{2}$ " length copper connecting link in place of a cartridge fuse.

5. Always provide sufficient slack in wiring to facilitate fuse replacement.

	IN-LINE FUSED DISCONNECT DETAILS				
	ISSUE	PAGE NUMBER		SMI//2	
Busi	07/19 ness Use	19-24	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl	

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 46.00.009

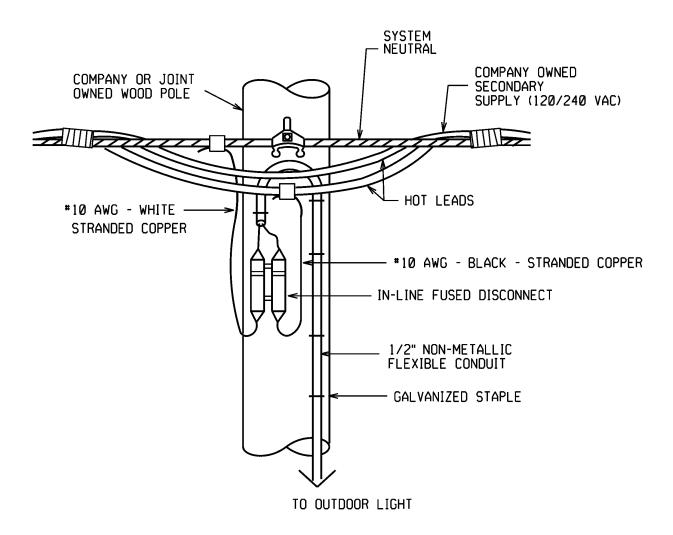


Figure 12 – Connection of Overhead Supplied Customer Owned Outdoor Light to PPL Overhead Secondary Conductors

- 1. Every customer outdoor light shall have an in-line fused disconnect as described above in "Electrical Separation". See Figure 11 for details on the in-line fused disconnect.
- 2. Secure the in-line fused disconnect to the pole using a spring loaded conduit clip or galvanized staple.
- 3. Provide sufficient slack in the luminaire wiring to facilitate fuse replacement.

Business

4. Outdoor lighting fixture wiring shall be #10 AWG 7-strand copper BLACK-WHITE with RHH/RHW/USE-2

	CONNECTION OF CUSTOMER OWNED OUTDOOR LIGHTING TO PPL OVERHEAD SECONDARY CONDUCTORS				
PAGE NU				ISSUE	
: U	se ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-25	07/19	

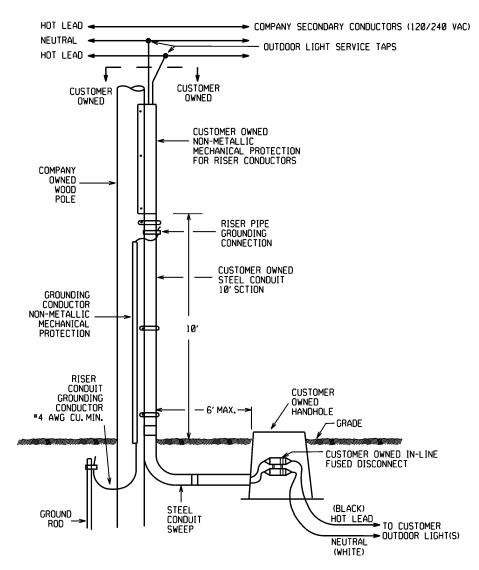


Figure 13 - Connection of Customer Owned Outdoor Lighting Riser to PPL Overhead Secondary Conductors

- 1. Install customer owned handhole as shown. Customer owned handhole shall house the in-line fused disconnect. See Figure 11 for details on the in-line fused disconnect.
- 2. Always install the riser conduit away from vehicle traffic.
- 3. No more than (2) riser conduits may be attached to a pole. Consult PPL Engineering if more than (2) risers are desired.
- 4. Underground supply conductors shall be #6 AWG 7-strand copper (minimum) with RHH/RHW/USE-2 insulation. Conductors shall be color coded BLACK = Hot lead, WHITE = Neutral.

CONNECTION OF CUSTOMER OWNED OUTDOOR RISER TO PPL OVERHEAD SECONDARY CONDUCTORS - PREFERRED				
ISSUE	PAGE NUMBER		WIN	
07/19	19-26	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl	

Busin

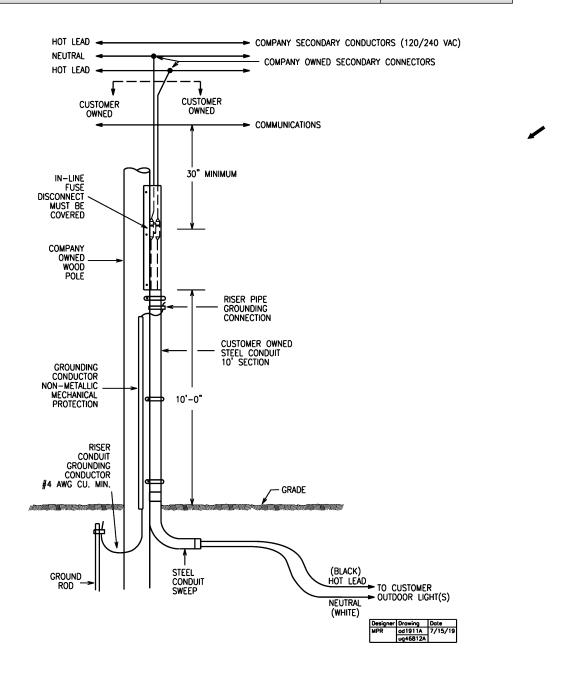


Figure 14 – Alternate Connection of Customer Owned Outdoor Lighting Riser to PPL Overhead Secondary Conductors

- 1. Install customer owned disconnects under conductor covering. See Figure 11 for details on the in-line fused disconnect.
- 2. Always install the riser conduit away from vehicle traffic.
- 3. No more than (2) riser conduits may be attached to a pole. Consult PPL Engineering if more than (2) risers are desired.
- 4. Underground supply conductors shall be #6 AWG 7-strand copper (minimum) with RHH/RHW/USE-2 insulation. Conductors shall be color coded BLACK = Hot lead, WHITE = Neutral.

	CONNECTION OF CUSTOMER OWNED OUTDOOR RISER TO PPL OVERHEA SECONDARY CONDUCTORS - ALTERNATE			
	WW.		PAGE NUMBER	ISSUE
ness Us	ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-27	07/19

19.8.40 Ownership Identification: The customer is responsible to label all customer owned outdoor lighting luminaires in accordance with PPL Construction Standards. See Figures 15 and 16.

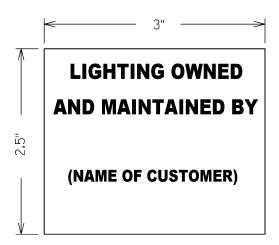


Figure 15 – Ownership Identification Label for Customer Owned Outdoor Luminaires

- 1. All customer owned outdoor light luminaires shall be identified with a label to clearly define ownership and maintenance responsibilities.
- 2. Ownership identification labels shall be reflective white with black lettering.

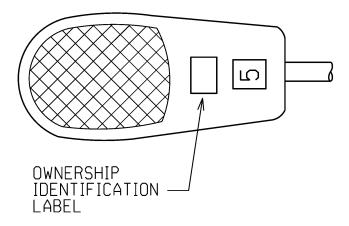
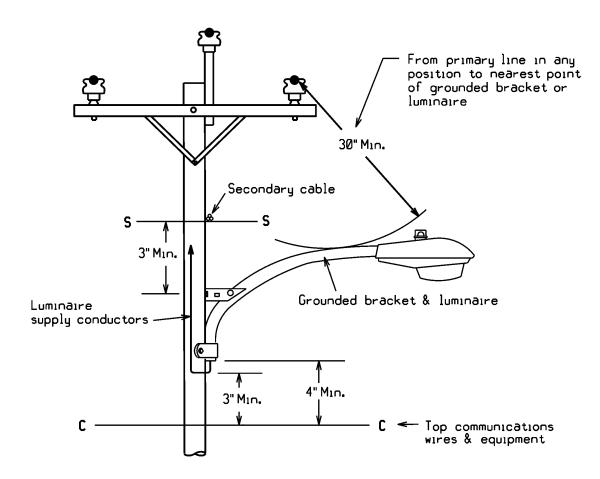


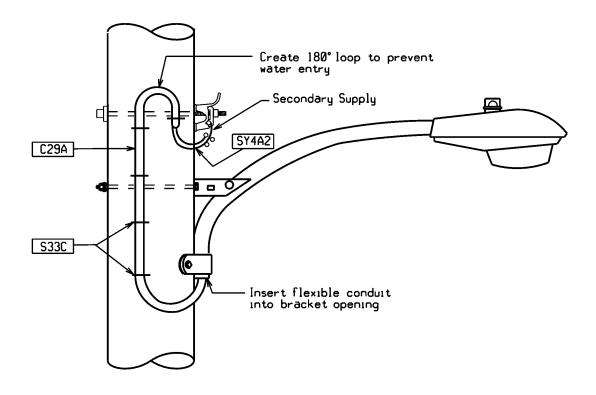
Figure 16- Installation of Ownership Identification Label


- 1. Ownership identification label shall be installed on the lower door of a horizontal roadway luminaire such that it is clearly visible from the ground.
- 2. For post top, floodlight, and other luminaires, the ownership identification label shall be installed on the luminaire housing in a location such that it is clearly visible from the ground.

OWNERSHIP IDENTIFICATION OF CUSTOMER OWNED LIGHTING				
ISSUE	PAGE NUMBER		WIV	
07/19	19-28	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl	

19.8.50 Final Connections to PPL 120/240 VAC or 120/208 VAC Secondary Conductors: PPL personnel and/or their designee shall make all connections and disconnections of customer owned street light supply conductors to the Company owned secondary and grounding conductors. Customer employees or their contractors are never allowed to perform any work on Company owned secondary or grounding conductors.

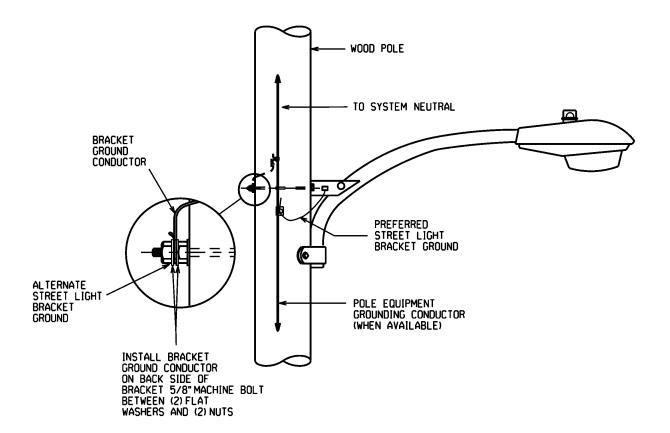
CUSTOMER OWNED OUTDOOR LIGHTING - GENERA
--


Clearances from Overhead Conductors

- 1. <u>Primary Conductors</u> Maintain minimum 30-inch clearance from any primary conductor or cable to nearest point of grounded luminaire or bracket.
- 2. <u>Secondary Conductors</u> Maintain minimum 3-inch vertical clearance from secondary wires or cable to nearest point of grounded luminaire bracket. (NESC Table 239-1)
- 3. <u>Communications Cables</u> Maintain minimum 4-inch vertical clearance from closest communication cable to nearest point of grounded luminaire bracket. (NESC Table 238-2)

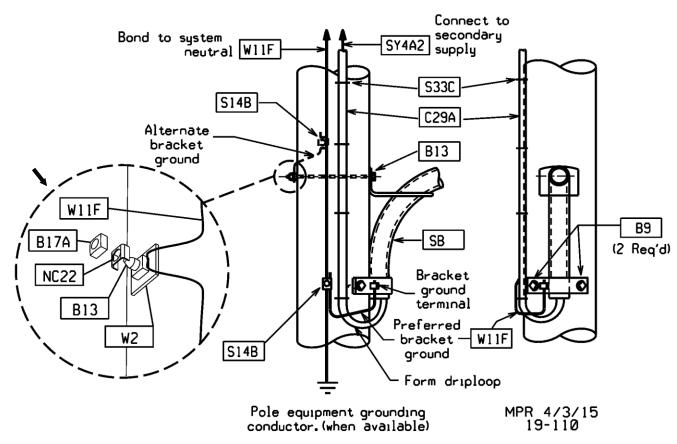
Maintain minimum 3-inch clearance from closest communications cable to nearest point of luminaire supply conductors drip loop. Luminaire supply conductors must be covered with non-metallic flexible conduit. (NESC 238D)

4. See Standards Section 17 for additional information on Clearances.


CLEARANCES FROM OVERHEAD CONDUCTORS			
ISSUE	PAGE NUMBER		WHA
07/19	19-100	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

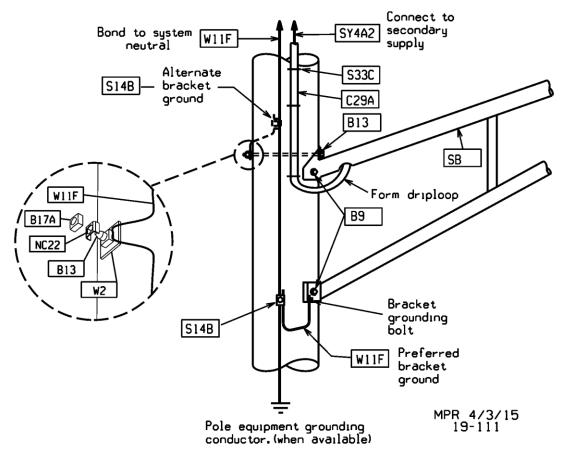
Mechanical Protection of Outdoor Lighting Fixture Conductors

- 1. NESC Table 239G1 requires that all luminaire supply conductors (#10 AWG) shall have mechanical protection (1/2" non-metallic flexible conduit) installed from the point where they leave the pole end of the bracket to the connection to the secondary supply in order to take advantage of the clearance dimensions shown on Standards page 19-100.
- 2. Insert the non-metallic flexible conduit into the bracket opening and extend up the pole to above the secondary supply.
- 3. Create a 180 degree loop at the secondary supply to prevent rain water from becoming trapped inside the flexible conduit.
- 4. Secure the non-metallic flexible conduit with galvanized staples spaced 12-inches apart or closer as necessary.


MECHANICAL PROTECTION FOR OVERHEAD OUTDOOR LIGHTING FIXTURE				
CONDUCTORS				
WIIIz		PAGE NUMBER	ISSUE	
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-101	07/19	

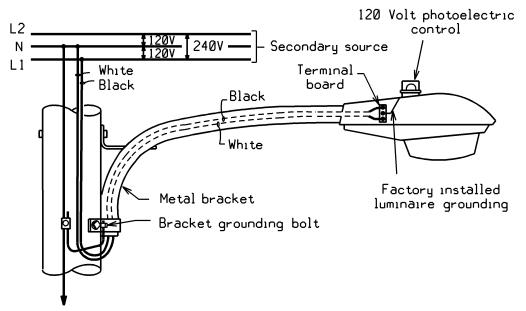
Grounding of Overhead Supplied Outdoor Light

- 1. Every outdoor light bracket shall be grounded. Install a #4 AWG stranded copper conductor with enough length to connect to the pole equipment grounding conductor (when available) or to the secondary system neutral. Final connections to PPL conductors are made by PPL personnel or their designee.
- 2. Many brackets have a bracket grounding bolt located near the wood pole end of the bracket. If none exists, install a bracket grounding bolt on the bracket or connect grounding conductor to the back side of the 5/8" square head machine bolt which secures the bracket to the pole.

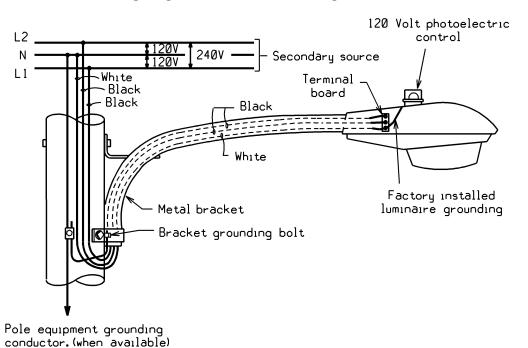

GROUNDING OF OVERHEAD SUPPLIED OUTDOOR LIGHTING				
ISSUE	PAGE NUMBER		WIIV	
07/19	19-102	UNDERGROUND CONSTRUCTION STANDARD	ppl	

Street Light Installation Using Upsweep or Tapered Elliptical Bracket

- 1. Before installation, always check luminaire nameplate to insure desired wattage and operating voltage.
- 2. Follow manufacturer's guidelines (supplied with every luminaire) for proper installation. Level luminaire using slipfitter hardware supplied.
- 3. Adequate clearances from overhead conductors must be maintained. See Standards page 19-100 for details.
- 4. Install ½" flexible conduit to protect wiring. See Standards page 19-101 for details.
- 5. All installations require one 5/8 inch square head machine bolt and two 1/2 inch x 4 inch lag screws. Both required lag screws must be installed in order for bracket to withstand horizontal wind loading forces. Never drive lag screws during bracket/luminaire installation with lamp installed. Lamp life will be reduced. Always install photoelectric control last.
- 6. Every bracket shall be grounded. Connect #4 AWG copper bracket grounding conductor to the pole equipment grounding conductor when available. Otherwise, connect bracket equipment ground conductor to system neutral.
- 7. All luminaries come equipped with a factory installed, black plastic, or metal, wildlife guard which is designed to prevent birds from entering the luminaire at the opening where the bracket is inserted. To insure luminaire reliability, make sure this guard remains in place after the luminaire is attached to the bracket.
- 8. When opening the luminaire's lower door, never allow the door to freely swing open.

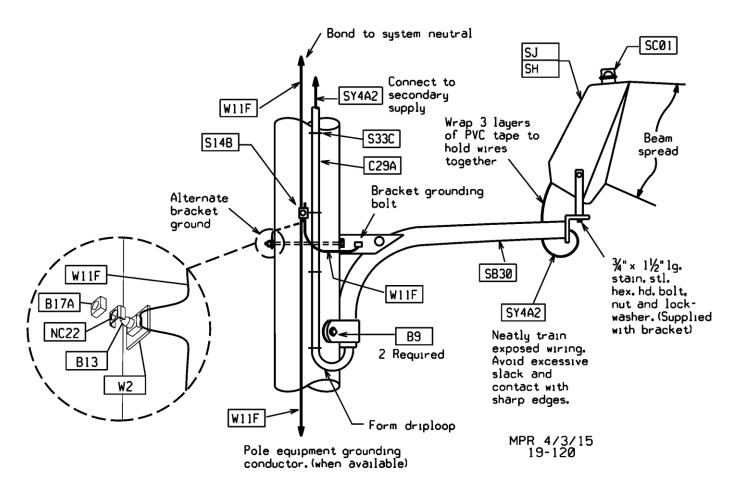

STREET LIGHT LUMINAIRE - INSTALLATION ON WOOD POLE				
	WHZ.		PAGE NUMBER	ISSUE
Use	ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-110	07/19

Street Light Installation Using Tapered Truss Bracket


- 1. Before installation, always check luminaire nameplate to insure desired wattage and operating voltage.
- 2. Follow manufacturer's guidelines (supplied with every luminaire) for proper installation. Level luminaire using slipfitter hardware supplied.
- 3. Adequate clearances from overhead conductors must be maintained. See Standards page 19-100 for details.
- 4. Install ½" flexible conduit to protect wiring. See Standards page 19-101 for details.
- 5. All installations require one 5/8 inch square head machine bolt and four 1/2 inch x 4 inch lag screws. All required lag screws must be installed in order for bracket to withstand horizontal wind loading forces. Never drive lag screws during bracket/luminaire installation with lamp installed. Lamp life will be reduced. Always install photoelectric control last.
- 6. Every bracket shall be grounded. Connect #4 AWG copper bracket grounding conductor to the pole equipment grounding conductor when available. Otherwise, connect bracket equipment ground conductor to system neutral.
- 7. All luminaries come equipped with a factory installed, black plastic, or metal, wildlife guard which is designed to prevent birds from entering the luminaire at the opening where the bracket is inserted. To insure luminaire reliability, make sure this guard remains in place after the luminaire is attached to the bracket.
- 8. When opening the luminaire's lower door, never allow the door to freely swing open.
- 9. Never install a tapered truss bracket with any conductor located between the upper and lower truss members.

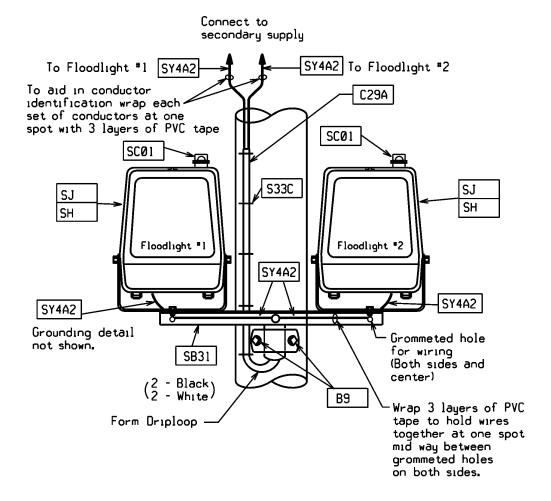
STREET LIGHT LUMINAIRE - INSTALLATION ON WOOD POLE			
ISSUE	PAGE NUMBER		WWZ
07/19	19-111	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

Pole equipment grounding conductor. (when available)


Wiring Diagram for 120 Volt Street Light Luminaire

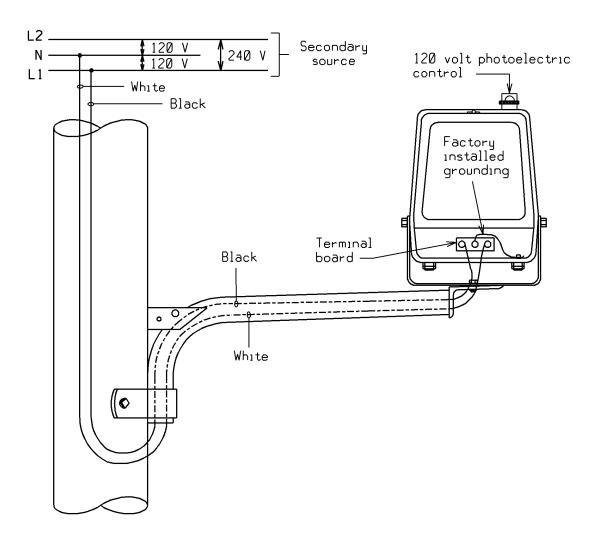
1. The ballast operates at 240 volts and is connected between "L1" and "L2". The photoelectric control switches the "L1" line only and is factory connected for 120 volt between "L1" and "N".

Wiring Diagram for 120/240 Volt Street Light Luminaire

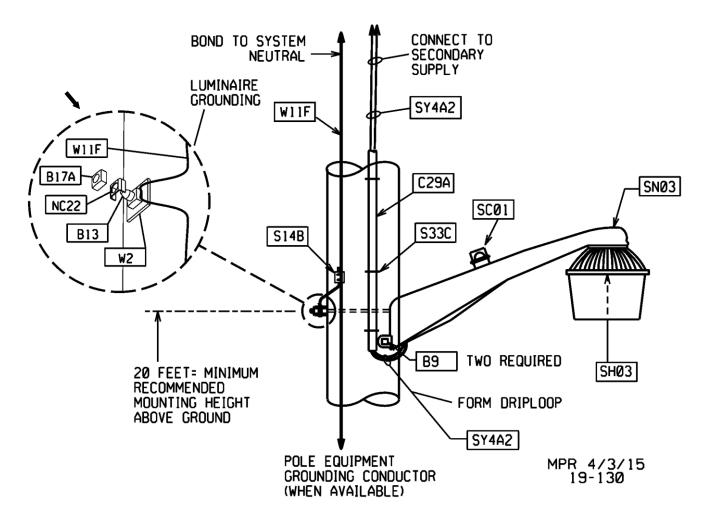


Single Floodlight Installation on Wood Pole

- 1. Before installation, always check luminaire nameplate to insure desired wattage and operating voltage.
- 2. Follow manufacturer's guidelines (supplied with every luminaire) for proper installation.
- 3. Adequate clearances from overhead conductors must be maintained. See Standards page 19-100 for details.
- 4. Install ½" flexible conduit to protect wiring. See Standards page 19-101 for details.
- 5. All installations require one 5/8 inch square head machine bolt and two 1/2 inch x 4 inch lag screws. Both required lag screws must be installed in order for bracket to withstand horizontal wind loading forces. Never drive lag screws during bracket/luminaire installation with lamp installed. Lamp life will be reduced. Always install photoelectric control last.
- 6. Every bracket shall be grounded. Connect #4 AWG copper bracket grounding conductor to the pole equipment grounding conductor when available. Otherwise, connect bracket equipment ground conductor to system neutral.

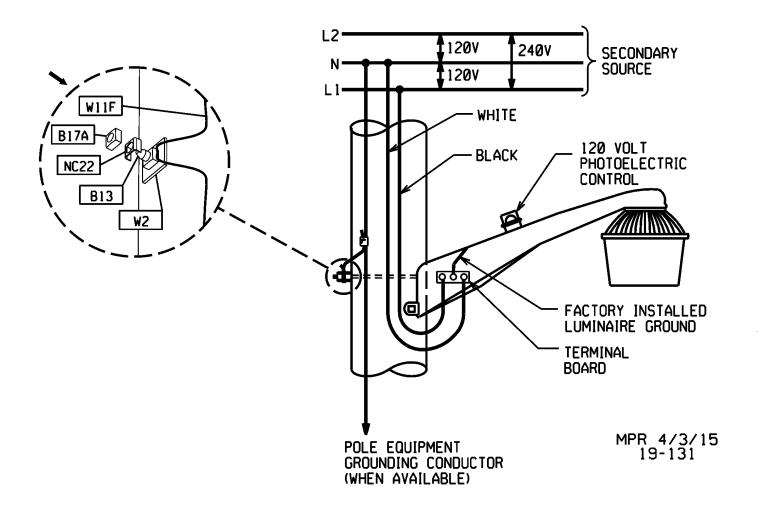

SINGLE FLOOD LIGHT LUMINAIRE - INSTALLATION ON WOOD POLE				
ISSUE	PAGE NUMBER		WIII	
07/19	19-120	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl	

Twin Flood Light Installation on Wood Pole

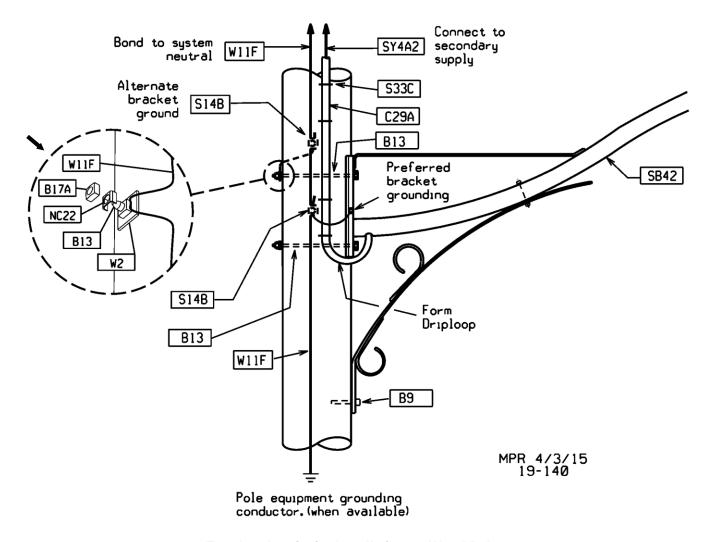

- 1. Before installation, always check luminaire nameplate to insure desired wattage and operating voltage.
- 2. Follow manufacturer's guidelines (supplied with every luminaire) for proper installation.
- 3. Adequate clearances from overhead conductors must be maintained. See Standards page 19-100 for details.
- 4. Install ½" flexible conduit to protect wiring. See Standards page 19-101 for details.
- 5. All installations require one 5/8 inch square head machine bolt and two 1/2 inch x 4 inch lag screws. Both required lag screws must be installed in order for bracket to withstand horizontal wind loading forces. Never drive lag screws during bracket/luminaire installation with lamp installed. Lamp life will be reduced. Always install photoelectric control last.
- 6. Every bracket shall be grounded. Connect #4 AWG copper bracket grounding conductor to the pole equipment grounding conductor when available. Otherwise, connect bracket equipment ground conductor to system neutral

TWIN FLOOD LIGHT LUMINAIRE - INSTALLATION ON WOOD POLE					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-121	07/19		

Wiring Diagram for 120 Volt Flood Light Luminaire

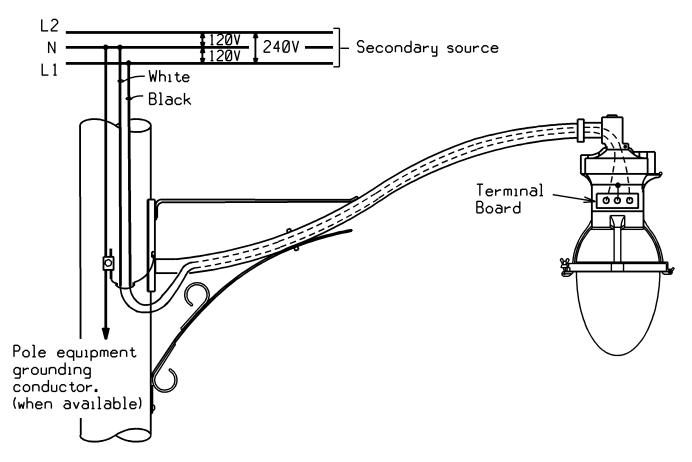

FLOOD LIGHT LUMINAIRE WIRING			
ISSUE	PAGE NUMBER		SMIZZ
07/19	19-122	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl

Residential Security Luminaire Installation on Wood Pole


- 1. Before installation, always check luminaire nameplate to insure desired wattage and operating voltage.
- 2. Follow manufacturer's guidelines (supplied with every luminaire) for proper installation.
- 3. Adequate clearances from overhead conductors must be maintained. See Standards page 19-100 for details.
- 4. Install ½" flexible conduit to protect wiring. See Standards page 19-101 for details.
- 5. All installations require one 5/8 inch square head machine bolt and two 1/2 inch x 4 inch lag screws. Both required lag screws must be installed in order for bracket to withstand horizontal wind loading forces. Never drive lag screws during bracket/luminaire installation with lamp installed. Lamp life will be reduced. Always install photoelectric control last.
- 6. Every bracket shall be grounded. Connect #4 AWG copper bracket grounding conductor to the pole equipment grounding conductor when available. Otherwise, connect bracket equipment ground conductor to system neutral.

RESIDENTIAL SECURITY LUMINAIRE - INSTALLATION ON WOOD POLE				
		PAGE NUMBER	ISSUE	
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-130	07/19	

Wiring Diagram for 120 Volt Residential Security Luminaire


RE	RESIDENTIAL SECURITY LUMINAIRE – INSTALLATION ON WOOD POLE				
ISSUE	PAGE NUMBER	Mills			
07/19	19-131	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl		

Teardrop Luminaire Installation on Wood Pole

- 1. Before installation, always check luminaire nameplate to insure desired wattage and operating voltage.
- 2. Follow manufacturer's guidelines (supplied with every luminaire) for proper installation.
- 3. Adequate clearances from overhead conductors must be maintained. See Standards page 19-100 for details.
- 4. Install ½" flexible conduit to protect wiring. See Standards page 19-101 for details.
- 5. All installations require two 5/8 inch square head machine bolt and one 1/2 inch x 4 inch lag screws. All required bolts and lag screws must be installed in order for bracket to withstand horizontal wind loading forces. Never drive lag screw during bracket/luminaire installation with lamp installed. Lamp life will be reduced. Always install photoelectric control last.
- 6. Every bracket shall be grounded. Connect #4 AWG copper bracket grounding conductor to the pole equipment grounding conductor when available. Otherwise, connect bracket equipment ground conductor to system neutral

	TEARDROP LUMINAIRE – INSTALLATION ON WOOD POLE			
AMIZZ			PAGE NUMBER	ISSUE
Use	ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-140	07/19

Wiring Diagram for 120 Volt Teardrop Luminaire

version	Date	Modification	Author(s)	Approval by
	TE	ARDROP LUMINAIRE – INSTAI	LATION ON WOO	D POLE

	TEARDROI EGIMINAIRE - INSTALLATION ON WOOD FOLL				
ISSUE	PAGE NUMBER		WHA?		
07/19	19-141	OUTDOOR LIGHTING CONSTRUCTION STANDARD	ppl		

			(Name/Title)
7	7/19	 Revised entire section (repaged, renumbered Tables and Figures) Added OH connected lighting information that was previously contained only in Section 46 in UG Standards Changed "Municipal Owned" to "Customer Owned" Added emergency response language Revised electrical separation, clarifying point of ownership for Customer Owned Lighting Added Alternate drawing for connection of customer owned riser to OH secondary Revised wording - Final Connection to PPL secondary 	
6	7/18	 for Customer Owned Lighting Added Table 1A pp 19-1. Added Table 1B pp 19-2. Renamed 19.3 Brackets and 19.4 outdoor Lighting pp 19-3. Expanded Customer Owned Street Light section and added pp 19-5 thru 19-12. 	
5	7/17	 Added Table 1A pp 19-1. Added Table 1B pp 19-2. Renamed 19.3 Brackets and 19.4 outdoor Lighting pp 19-3. Expanded Customer Owned Street Light section and added pp 19-5 thru 19-12. 	
4	7/16	Added statement about LED luminaires 19.1.	
3	7/15	 Added information on street lighting fixture conductors. Added grounding clips to 19-110, 19-111, 19-120, 19-130, 19-131 and 19-140. 	
2	07/13	 Reorganized entire section Added information on municipal owned street lights. Added information on pre- stressed concrete pole installation. 	

SUMMARY OF RECENT CHANGES				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OUTDOOR LIGHTING CONSTRUCTION STANDARD	19-NOTES-2	07/19	

Version	Date	Modification	Author(s)	Approval by (Name/Title)
1	07/08	 Added NESC references and revised dimensions in Figure 1. Revised mercury vapor luminaire disposal instructions under 19.1.60. Replaced MU codes with CU codes in Tables 2 and 3 Replaced MU codes with CU codes in Table 4 Replaced CU code in Table 5 Replaced CU codes in Table 6 Replaced CU codes in Table 7 Changed to ½" flexible conduit under on pages 19-400, 19-401, 19-410, 19-411, 19-420, 19-430, 19-440. 		

SUMMARY OF RECENT CHANGES			
ISSUE	PAGE NUMBER		SMI/Z
07/19	19-NOTES-1	UNDERGROUND CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 46.00.009

SUMMARY OF RECENT CHANGES

OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
19-NOTES-2 07/19

Business Use

30
₽
pdated
\supset
rawings
$\overline{\Box}$
- enssi
<u>∞</u>
Ì
persedes
ಭ

SECTION	PAGE
20.0 GENERAL	20-1
20.1 DESIGN OF PRIMARY FEEDERS	20-1 THRU 20-3
20.2 POLE TOPS	20-4 THRU 20-5
20.3 TYPES OF CONDUCTORS	20-5 THRU 20-6
20.4 SEPARATION OF CONDUCTORS	20-6 THRU 20-7
• 20.5 OTHER	20-7 THRU 20-9
CONSTRUCTION DRAWINGS	
 PHASE POSITIONS 25-35 kV DISTRIBUTION PRIMARY 	20-105
 PRIMARY DEAD – ENDS 25-35 kV DISTRIBUTION PRIMARY 	20-115
 PRIMARY DEAD – ENDS 25-35 kV WITH VISE TOP INSULATORS 	20-116
 HAND WRAPPED TIES 25-35 kV DISTRIBUTION PRIMARY 	20-118
 TIE CONDUCTORS 25-35 kV DISTRIBUTION PRIMARY 	20-120
 SINGLE LOOP HOT LINE TIES 25-35 kV DISTRIBUTION PRIMARY 	20-122
 DOUBLE LOOP HOT LINE TIES 25-35 kV DISTRIBUTION PRIMARY 	20-124
Maximum Spans	20-200 THRU 206
 1Φ AND 3Φ CROSSARM POLE TOP 25 kV – 35 kV – 0° – 10° 	20-411
 1Φ AND 3Φ DOUBLE CROSSARM POLE TOP - 25–35 kV CROSSINGS AND ANGLES 11° – 20° 	20-412
 1Φ AND 3Φ FIBERGLASS DEADEND CROSSARM POLE TOP 25-35 kV – 21° – 60° 	20-415
 1Φ AND 3Φ FIBERGLASS DEADEND CROSSARM POLE TOP 25-35 kV –ANGLES -61° – 90° AND DEADENDS 	20-416
 1Φ AND 3Φ FIBERGLASS DEADEND CROSSARM POLE TOP 25-35 kV DEADENDS 	20-417
 1Φ AND 3Φ CROSSARM POLE TOP 25-35 kV – 0° – 10° TAP TO 1Φ ARMLESS 	20-419
 1Φ AND 3Φ DOUBLE CROSSARM POLE TOP 25-35 kV CROSSINGS 11° – 45° / ANGLES 21° – 45° - 1Φ TAP-PRE. 	20-423
 1Φ AND 3Φ CROSSARM POLE TOP 25-35 kV – 0° – 10° TAP TO 1Φ OR 3Φ CROSSARM 	20-435
PRIMARY MIDSPAN TAP	20-436
 1Φ AND 3Φ SINGLE ALLEY ARM POLE TOP 25-35 kV – 0° – 10° 	20-437
 1Φ AND 3Φ DOUBLE ALLEY ARM POLE TOP 25-35 kV CROSSINGS AND ANGLES 11° – 20° 	20-438
 1Φ AND 3Φ SINGLE ALLEY OFFSET POLE TOP 25-35 kV - 0° - 10° 	20-441

25	25-35 kV DISTRIBUTION PRIMARY INDEX			
AMI/2		PAGE NUMBER	ISSUE	
Business Use ppl	OVERHEAD CONSTRUCTION STANDARD	20-i	7/19	

1111

SECTION		PAGE
0	1Φ ARMLESS POLE TOP 25-35 kV – 0° – 20°	20-711
0	1Φ ARMLESS POLE TOP 25-35 kV – 21° – 60°	20-713
0	1Φ ARMLESS POLE TOP 25-35 kV – 61° – 90° AND DEADEND	20-715
0	1Φ ARMLESS POLE TOP 25-35 kV $-$ 0° $-$ 20° $-$ TAP TO 1 Φ ARMLESS	20-719

	25-35 kV DISTRIBUTION PRIMARY INDEX			
	ISSUE	PAGE NUMBER		
Business U	se 7/19	20-ii	OVERHEAD CONSTRUCTION STANDARDS	ppl

20.0 GENERAL

20.0.10 <u>Scope – Distribution Lines</u>

This standard covers design and construction of new overhead distribution lines up to 35kV voltage classes. Distribution lines are lines generally used to supply customers through transformers that step down directly to customer service voltages. Sub-transmission lines are lines generally used to supply distribution substations, rather than supplying customers through transformers that step down directly to customer service voltages. Occasionally, a few large industrial customers are served directly from sub-transmission lines. For standards applicable to overhead sub-transmission lines at 25kV and 35kV, see Section 21.

20.0.20 <u>Design</u>

This section includes the basic design and construction necessary for new and existing standard overhead distribution lines operating at voltages above 15 kV to 35 kV. The distribution line utilizes crossarm and armless configurations for single and multiple phases built to 35 kV primary distribution specifications. A 25 kV distribution line will be built to 35 kV specifications even if it is operated at 25 kV.

The layout and design of distribution primary circuits should be made as part of an area plan, taking into consideration both present and future loads, and supply sources. Certain guiding policies are discussed in the Engineering Department Procedures (EDP).

20.0.30 Definitions

For the purpose of simplifying the terminology to be used in various descriptions of the following drawings, the definitions below serve as a guide:

25 kV - This designation is generally referred to primary circuit voltages from above 15 kV to 25 kV regardless if the system is effectively grounded or noneffectively grounded.

35 kV - This designation is generally referred to primary circuit voltages from above 25kV to 35 kV regardless if the system is effectively grounded or noneffectively grounded.

20.0.40 <u>Coordination With Other Parties</u>

Contact shall occur with communication companies and municipalities during the initial planning stages so that all parties may properly coordinate their required activities. Construction shall be coordinated to allow for maximum system reliability.

20.1 <u>DESIGN OF PRIMARY FEEDERS</u>

The standard 3 phase distribution feeder shall be 4 wire grounded wye with a neutral. The objective is to secure aesthetically appearing distribution lines that will provide maximum service reliability at a reasonable cost. This can be attained by routing feeders through minimum tree and traffic exposure, employing the proper type of conductors for the conditions along the route, and providing circuit capacity for normal and reasonably probable contingency conditions, including anticipated load growth.

20.1.10 Routing

The route of the feeder should be such that normally only one distribution circuit is placed on a pole line. Where this is not possible, an effort should be made such that one feeder shall serve the local load while additional express feeders in spacer cable configuration are carried through the area.

		25-35 kV DISTRIBUTION PRIMA	RY	
	SMIZZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	20-1	7/15

When feeder construction is necessary along the route of an existing subtransmission circuit, consider underbuilding the subtransmission circuit verses installing a duplicate pole line or major undergrounding. Vertical clearance between upper and lower circuits are recommended for worker safety and must meet NESC codes along with any local working agreements. Consult Engineering Departments for attachment approvals, recommend clearance between circuits, and working agreements.

20.1.20 Basic Impulse Insulation Level (BIL)

BIL refers to the level of overvoltage that equipment on the system is designed to withstand. Surge arresters, coordinated to the BIL of the equipment, are installed to limit the overvoltages on equipment by discharging surge current to ground.

Wood pole tops, phase-to-phase and phase-to-ground distances across cross-arms and poles, are designed to coordinate with the impulse withstand characteristics of the insulators and to provide a minimum 150 kV insulation impulse withstand value. This impulse level is based on the assumed impulse flashover strength of 20 inches or more of wood. Where lightning arresters are used and where grounding conductors are installed, the 20 inches of wood requirement does not apply for the particular conductor having the arrester. In locations where sufficient wood separation is not obtainable, the use of fiberglass strain insulators shall be installed. Fiberglass guy strain insulators shall be installed onto all new primary guy installations maintaining BIL requirements. When designing and constructing pole tops, steel crossarm braces, steel hardware, ground wires, guy wires, etc., may short out the insulation that is provided by air and wood. See Section 7 for additional information and drawings.

20.1.30 Size and Loading of Conductors

The initial load on the conductors of the feeder main and branches shall be limited to allow reasonable load growth before the maximum normal peak load limit is reached. This initial load value should allow for a minimum of 10 years of additional expected load growth. The current values for normal and emergency loads are based on consideration of economy with respect to losses and the thermal limits of the conductor. See Section 6-Primary Conductors.

A. Size of Main Line Conductors

Generally, 25-35kV new main line feeders shall utilize 477 kcmil All Aluminum (AAC) primary conductors. Additional conductors are available upon engineering approval. Existing conductors of adequate size may serve for part of any feeder main (see Section 20.3.50) and use of any other conductor size for this purpose will be considered on a case-by-case basis. See Section 6-Primary Conductors for additional information.

B. <u>Size of Branch Line Conductors</u>

Generally, three phase branches shall utilize #1/0 All Aluminum Alloy Conductor (AAAC) or 477 kcmil All Aluminum Conductor (AAC) primary conductors.

Generally, single phase branches shall use #1/0 AAAC conductor for expected loading up to 100A. Loadings may require the addition of one or more phases to maintain feeder balancing.

In existing branch circuits that have a conductor smaller than #2 where it is not economically feasible to reconductor the line or convert it to a higher voltage, step -down transformers (ratio) should be installed.

			PRIMARY	
	ISSUE	PAGE NUMBER		AMIZ
Busi	7/15 ness Use	20-2	OVERHEAD CONSTRUCTION STANDARD	ppl

C. <u>Size of Grounded Neutral Conductors</u>

Maintain a common neutral with **minimum splices** for effectively grounded circuits. Note: See Sections 13.4 and 13.5 for information on the bonding of circuit neutrals.

All neutral conductors shall be #1/0 aluminum except when a larger size is either existing or necessary as part of a secondary system. Example: #4/0 AAAC is used with 336.4 kcmil multiplex. Use of a larger neutral conductor, or use of any other secondary cable configuration or size, requires that National Electric Safety Code (NESC) clearances for that particular construction be met.

Although not recommended, if existing primary conductors are **smaller** than #1/0 aluminum or equivalent and a neutral conductor exists, it should be used if it is equal size or larger than the primary conductor.

If existing primary conductors are equal to or **larger** than #1/0 aluminum or equivalent and a neutral; conductor exists, it should be used if it is at least equivalent to #1/0 aluminum or #3 copper (#2 ACSR- aluminum cable steel reinforce - is acceptable).

20.1.40 Voltage Regulation and Flicker

It is suggested that a voltage profile be run for each feeder so that regulation can be reviewed. Contact Distribution Engineering.

Voltage regulation on the primary feeder shall be such that voltage to customers can be maintained to the following acceptable levels on a 120 V base:

Rhode Island - 123 V maximum, 113 V minimum

The voltage is controlled by the station load tap changers (LTC) transformers or station regulators, line regulators, and capacitors. Methods of setting regulators are discussed in the Engineering Department Procedures (EDP).

Voltages on lines serving loads such as motors, welders, etc., should be checked to see that any flicker does not exceed the limits given in Section 10. Loads that may cause excessive flicker should be referred to the Distribution Engineering Department.

20.1.50 Radio and Television Interference

Radio and television interference can be caused by loosely connected equipment and materials allowing arcing between parts. The higher the primary voltage, the greater the possibility of creating radio and television interference. This interference can be controlled by taking reasonable care to minimize the creation of sharp projections of energized parts by properly applying insulator ties, by making certain all bolted connections on structures are properly tightened, and by maintaining suitable clearances of pole hardware.

25-35 kV DISTRIBUTION PRIMARY				
,		PAGE NUMBER	ISSUE	
	OVERHEAD CONSTRUCTION STANDARD	20-3	7/07	

20.2 POLE TOPS

The following can be used for pole top constructions and pole considerations.

20.2.10 <u>Selection of Sole Owned and Jointly Owned Poles</u>

There is no standard pole height or class that can positively meet all construction conditions without causing unnecessary expense. Selection of pole height and class requires the coordination of all pole users. Once the correct pole height and class is determined for the most common pole in the project, the remaining pole heights and classes should be easily determined with small changes made to the original calculations. See Section 2 for pole selection information.

Existing poles in sound condition and in the proper locations should be used if pole loading and minimum clearance requirements can be met for the facilities that are being installed.

Prior to changing a jointly owned pole, it should be determined that the communications company is not occupying the Company's space. If the pole must be replaced, or if new poles are to be installed, they shall be selected to provide clearances specified for present and future needs following the Joint Use Contractual Agreements. The Company may be entitled to reimbursement of transfer costs.

Whenever present and future construction requires more pole space, wood pole top extensions should be considered before a new larger pole is installed.

20.2.20 Crossarm Construction

The standard primary 3 phase construction is bare wire on a crossarm, which for a straight line pole consists of a 2-pin-10 foot wood crossarm with wood braces and a 24 inch steel pole top pin, steel crossarm pins, porcelain pin-type insulators for above 15kV to 35kV distribution. This type of construction is also recommended for long span rural lines, for lines in heavy industrial areas, and for locations where its appearance is not objectionable. It may also be necessary to continue this type of construction on existing lines that are rebuilt to maintain consistency of existing crossarm construction. See 9-400 series.

At line angles over 20 degrees, primary deadends, railroad crossings, and limited access highway crossings, double crossarms are required (NESC 261.D.5.c). Double crossarms are also required at navigable waterways requiring waterway crossing permits (NESC 241.C).

Other crossarm sizes and arrangements may be used as field conditions require. They are:

- 1. Six -Pin Heavy Duty (HD) Crossarm (10 foot) Use for 3000 lbs Deadends construction.
- 2. Extension Arms (Alley Arms) Use when this is the only practical method of obtaining clearance from trees, buildings, etc., or for reducing or eliminating an angle in the line. In general, two or more adjacent poles with extension arms shall be used to reduce the excessive lateral stress, which may be caused by one extension arm in a straight line. Side guys or equivalent may be required to support the unbalanced load of a series of extension arms. (9-440 series)
- Offset Arms Use 6 pin with wood braces when the full offset of an extension arm is not required. Refer to Section 7 for adequate BIL separation. See 9-441 for Offset Arm construction drawings.

	25-35 kV DISTRIBUTION PRIMARY			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/07 ness Use	20-4	OVERHEAD CONSTRUCTION STANDARD	ppl

20.2.30 Armless Construction

Single phase armless (vertical) construction, utilizing steel pole top pin, is recommended. Pages 9-700 series have various diagrams pertaining to effectively grounded circuits.

20.2.40 Spacer Cable Construction

Spacer Cable construction is preferred for distribution lines when NESC Clearances, Tree Trimming Clearances, and Right of Way Issues can not be resolved with the recommended crossarm or armless types of construction. It may also be selected for an additional express feeder purpose and/or to improve reliability in an area

20.2.50 Phase Position

Circuits should hold the same relative phase position throughout their entire length as far as practicable following the guidelines shown on Page 20-105. Where there is an established policy on phase position in any operating area, it may be continued.

20.3 TYPES OF CONDUCTORS

The type of conductor shall be selected as follows:

20.3.10 Bare Conductors

Bare open wire primary conductors shall be used where tree conditions do not exist, or where tree conditions are not expected to exist for many years. These areas include roads along cultivated fields, orchards and vineyards, heavily pave areas, and areas regularly trimmed by others. In such areas, these lines are almost trouble-free and they represent the most economical type of construction.

20.3.20 Covered Conductors

PE covered conductor is not approved for new installations but for maintenance purposes only. This conductor is designed to withstand a limited amount of incidental contact.

20.3.30 Tree Conductor

Tree conductor is an approved conductor for new installations on crossarms and armless construction. This conductor is designed to withstand incidental tree contact but is not intended to be installed to permanently eliminate tree trimming. Tree conductor may also be installed when local municipal ordinances mandates that covered primary conductors be installed.

Tree conductor is the only wire to be used in a spacer cable configuration. Spacer cable configuration provides maximum reliability and is to be used in heavy tree areas but is not intended to be installed to permanently eliminate tree trimming. See Section 16-Aerial/Spacer Cable. Tree conductor in a spacer cable configuration is also approved for express or multiple feeder installation on existing poles.

Although tree conductor offers some electrical protection, it is not an insulated conductor. It must be treated as a bare conductor during installation and maintenance.

25-35 kV DISTRIBUTION PRIMARY			
SMA		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	20-5	7/07

Tree conductor contains a layer of semi-conducting material at the aluminum conductor surface.

WARNING: When skinning these conductor coverings, do not allow the removed covering to contact equipment grounds or adjacent live phase conductors as an electrical flash may result.

20.3.40 Preassembled Lashed Aerial Cable (PLAC)

Preassembled Lashed Aerial Cable is not available for 35kV distribution at this time.

20.3.50 Existing Conductors

Primary conductors smaller than #1/0 is not recommended to be operated on 25-35kV Distribution Systems. Consider replacement of conductors smaller than #1/0, if economically feasible, or the installation of step-down transformers

20.4 Separation of Conductors

20.4.10 **General**

Minimum recommended separations between supports and conductors on the same pole are shown on the construction drawings. These should be used on all poles for new lines. They are generally used for pole replacements.

20.4.20 <u>Separation on New Poles</u>

The separation between primary line conductors and neutrals or secondaries on poles for new lines shall generally not be less than 61 inch for 35 kV. These distances are predicated upon the NESC Phase to Ground Approach Distance, plus the dimension of "Reach" based upon the average distance from a line worker's chest to their finger tips with the arms extended. e.g. (NESC Phase to Ground Approach Distance for 35 kV = 31") + (Reach = 30") = 61"

- A. Tangent Poles (wires on pins and crossarms) the vertical separation between the thru bolts for the primary crossarm and the secondary conductor shall be not less than 51 inches for 35 kV.
 e.g. 35 kV The distance from the horizontal center of the crossarm to the top of the insulator holding the primary conductor is 10" + 51" = 61".
- B. Primary Deadend the vertical separation between the thru bolts for the primary crossarm and the secondary conductor shall be not less than 61 inch for 35 kV.

20.4.30 Separation on Existing Poles

When pole tops are being rearranged to accommodate additional facilities or when circuits are cut over to a higher voltage level, the recommended separations between primary line conductors and neutrals or secondaries for work on **New Poles must** be used if possible. This will hold future work to a minimum and allow work on secondaries without covering the primaries (NESC Approach Distance). However, extensive work and pole change outs should not be undertaken solely to reduce work that might possible become necessary in the future. If the primary to secondary/neutral separation for **New Poles** cannot be obtained, reduce spacing can be utilized which may require transformers to be rotated to maintain proper NESC clearances. The minimum separations between conductors and supports on the same pole should be used only when values recommended for new poles are not practicable. See the following for guidelines:

	25-35 kV DISTRIBUTION PRIMARY			
	ISSUE	PAGE NUMBER		SMI
Busi	7/07 ness Use	20-6	OVERHEAD CONSTRUCTION STANDARD	ppl

Generally, the basic primary to secondary conductor separation may be reduced to 53 inches for 35 kV. This minimum separation may accommodate third party attachments without pole replacements.

20.4.40 Space Available on Jointly Owned Poles

Before replacing any jointly owned poles, be certain that communication company attachments cannot be moved to permit the desired construction (Ref.NESC rule 239 F.2 and Table 235 -5)

20.4.50 Separation on Replaced Poles

The separations on poles that are replaced should conform to the requirements for new poles. In some special cases, separation may be reduced, but shall not be less than permitted on existing poles.

20.4.60 Reduction of Separation on Poles

Reduced separations of conductors and facilities made to accommodate communication, CATV or other third party interest shall not be less than "Minimum Dimensions for Existing Poles".

20.5. Other

20.5.10 Surge Arresters

See Section 13

20.5.20 Insulators

- A. Bare Conductor One piece radio free, pin type, porcelain insulators of the appropriate ANSI class shall be used to support the phase conductors. A one piece polymer deadend insulator of proper voltage rating shall be used to deadend the conductor.
- B. Tree Wire and Spacer Cable A one piece, plain top, pin type, polyethylene insulator of the appropriate ANSI class shall be used to support the phase conductor. A one piece polymer deadend insulator of proper voltage rating shall be used to deadend the conductor.

Where severe environmental contamination exists, Line Post Insulators (I13D) with ¾" Studs (P1G) and Pole Top Pins (P12B) should be considered.

20.5.30 Neutral Brackets

An uninsulated metal bracket shall be used to support the common neutral conductor in the secondary position. See Section 10 for information on Secondary.

20.5.40 Conductor Ties

Follow these guidelines to ensure the reliability of primary circuits and to reduce or eliminate interruptions caused by inadequate conductor tie practices.

Line conductors are to be positioned on its insulators that will produce minimum strain on the tie wires. The function of the tie wire is only to hold the line conductor on its insulator. Conductor strain shall be taken by the insulator and pin.

25-35 kV DISTRIBUTION PRIMARY			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	20-7	7/07

Hand wrapped ties are to be used for all types of conductor on lines operating at higher voltages where they are worked dead and grounded. Ties are to be made by hand and without the use of pliers. A tie wire must be neatly and tightly wrapped around the insulator and conductor with free ends wrapped tightly around the conductor. The free ends shall be folded back on the conductor at a distance of 3 inches to facilitate the future removal of the tie with hot sticks.

Hot line ties are to be used when lines are being worked with hot sticks. These also need to be wrapped neatly and tightly around the insulator and conductor. Single loop ties are to be recommended for spans under 160 feet while double loop ties are recommended for conductors with spans of 160 feet and over.

Utilize preformed conductor ties (TT1) for 3000 lb construction.

Care shall be taken to use the proper length and size tie for each conductor specified in the tables on Page 20-120. Refer to Pages 20-118 thru 20-124 for diagrams and information on Hand Wrapped and Hot Line Ties.

Note:

- 1. Type Tie Bridle tie shall be used for all bare and covered conductors larger than #4 AWG regardless of span length.
- 2. Looped Western Union and Cross Top Tie shall be used for all bare and covered conductors # 4 AWG or smaller (#4, #6, etc.).
- 2. Bare Conductor Use bare tie wire. (W22A, W22BA, W22C)
- 3. Tree Wire Use covered tie wire. **Note:** Do **not** use molded plastic ties. Do **not** remove tree wire covering at polyethylene pin type insulator. (W22D)
- 4. Existing Polyethylene and Neoprene Covered Line Wire to be converted to the 35 kV Voltage class Install 35 kV pin type polyethylene insulator and tie with covered tie wire (W22D) where existing covering on conductor has not been previously removed. Where covering has been removed, pin type porcelain insulator and tie with bare tie wire.
- 5. Double insulators shall use ties for single insulators with each tie occupying one-half the available space between insulators same number of turns with closer spacing.

20.5.50 Splicing Conductors

- A. Bare Conductors Use automatic line splice or full tension compression splice per Section 5.
- B. Tree and Covered Conductors Remove covering with approved stripper for given conductor size and covering thickness. Completed splice should have 3 inches of bare conductor on both sides of the splice. DO NOT install splice at or near polyethylene pin insulator but keep the splice a minimum distance of 30 inches from pin insulator. Splices for additional phases should be staggered a minimum distance of 30 inches apart.
 Warning: Always cover unused exposed bare conductors outlined in Section 5. Use automatic line splice or full tension compression splice per Section 5. See Section 16 for more information on Tree Wire.
- C. Spacer Cable Follow procedures outlined in Section 16 when Tree Wire is installed in a spacer cable configuration. An automatic line splice **must not** be used because only the messenger is under tension and not the phase conductors.

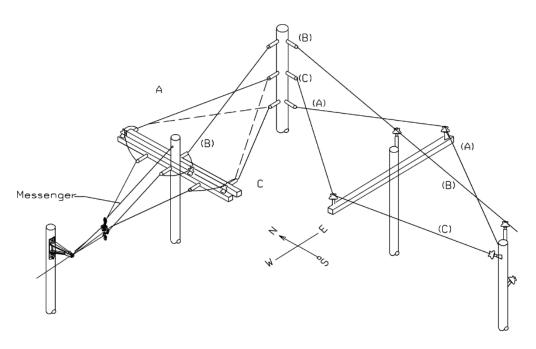
25-35 kV DISTRIBUTION PRIMARY					
ISSUE	PAGE NUMBER		SMIZZ		
7/07	20-8	OVERHEAD CONSTRUCTION STANDARD	ppl		

20.5.60 <u>Deadending Conductors</u>

A. Bare Conductors – Use conventional strain clamps specified in Section 22 - Material Catalog of the Standards.

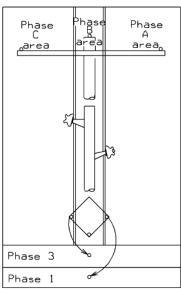
- B. Tree and Covered Wire Remove covering with approved stripper for given conductor size and covering thickness. Use conventional strain clamps chosen from the Material Section of the Standards Manual. Completed deadend shall allow 3 inches of covering removed on the line side of the strain clamp body to accommodate for grounds and jumpers. Do not use preformed deadend grips for tension applications.
- C. Spacer Cable Follow procedures outlined in Section 16 when Tree Wire is installed in a spacer cable configuration.

.


20.5.70 Tapping Conductor

- A. Bare Conductors Use connectors as specified per Section 5 of the Standards.
- B. Tree and Covered Conductors Remove covering with approved stripper for given conductor size and covering thickness. Use connectors as specified per Section 5 of the Standards. Installed connector shall allow 3 inches of bare conductor on both sides of connector ends to accommodate for grounds and jumpers. Do not tape completed connections.
- C. Spacer Cable Follow procedures outlined in Section 16 when Tree Wire is installed in a spacer cable configuration.

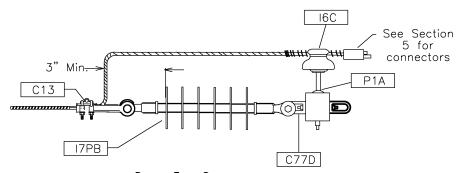
20.5.80 Conductors Installed in Angle Suspension Clamps


- A. Bare Conductors Use appropriate angle suspension clamp. See Section 22 Material Catalog.
- B. Tree and Covered Conductors Remove covering with approved stripper for given conductor size and covering thickness. Use appropriate angle suspension clamp specified in the Material section of the Standards. Complete clamp installation shall allow for 3 inches of bare conductor on both sides of clamp ends.
- C. Spacer Cable Follow procedures outlined in Section 16 when Tree Wire is installed in a spacer cable configuration.

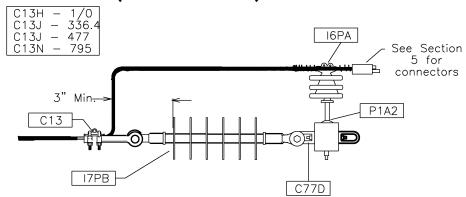
© 2022 PPL Corporation. All rights reserved.

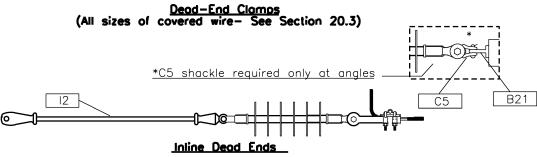
- Notes:

 If there are local rules that have been approved by the division superintendent, these should be followed where practicable. Otherwise use the rules below:
- (1) Put phase A on the northerly or easterly side for horizontal crossarm or spacer cable installation. Put phase A on the bottom for vertical construction.
- (2) Put phase B in the middle or top positoin for horizontal crossarm or for vertical construction. Phase B shall occupy the middle and bottom position for spacer cable in triangular arrangments.
- (3) Put phase C in the remaining position.



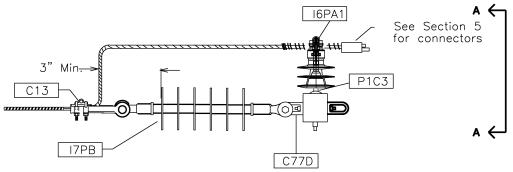
Look north Look east Look west


	PHASE POSTITONS 25-35 kV DISTRIBUTION PRIMARY							
	ISSUE	PAGE NUMBER		SMI//				
Busi	7/07 ness Use	20-105	OVERHEAD CONSTRUCTION STANDARD	ppl				

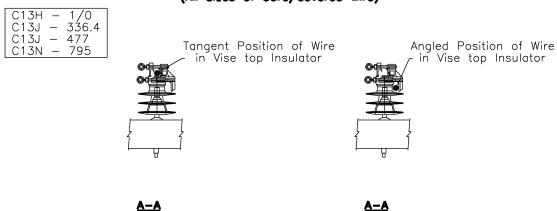


Inline Dead Ends

(All sizes of bore wire)



Notes:


Maintain full impulse and flashover strength; see Section 7. This drawing is for dead—ends on wood crossarms or wood poles.

See 2.8 for information on crossarm. Use 10 foot fiberglass crossarm (C77D) for 3000 lb construction.

	PRIMARY DEAD - ENDS 25-35 kV DISTRIBUTION PRIMARY					
	sMI//z		PAGE NUMBER	ISSUE		
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	20-115	7/18		

Dead-End Clamps with 35kV Vise-Top Insulator (All sizes of bare/covered wire)

Notes:

Always install bottom bolt first. Top bolt second, breaking eyes off bolts. Orient insulator so cable rests on neck or side of insulator.

Maintain full impulse and flash over strength; see Section 7. This drawing is for dead—ends on wood crossarms or wood poles.

See 2.8 for information on crossarm. Use 10 foot fiberglass crossarm (C77D) for 3000 lb construction.

Designer	Drawing	Date
MPR	od20116	7/15/19

	PRIMARY DEAD – ENDS 25-35 kV WITH VISE TOP INSULATORS						
	ISSUE	PAGE NUMBER		SMIZZ			
Busi	7/19 ness Use	20-116	OVERHEAD CONSTRUCTION STANDARD	ppl			

25-35 kV Distribution Primary

ppl

Business Use

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
20-BLANK 7/19

HAND WRAPPED TIES

LOOPED WESTERN UNION (LWU) - SIDE GROOVE TIE FIG I

CROSS TOP (CT) TOP GROOVE TIE FIG II

FIG I & II TO BE USED FOR ALL BARE AND COVERED CONDUCTOR OF #4 AWG OR SMALLER.

BRIDLE TIE SIDE GROOVE FIG III

BRIDLE TIE TOP GROOVE
FIG IV
FIG III & IV TO BE USED ON ALL COPPER & ALUMINUM CONDUCTORS LARGER THAN #4
AWG

	HAND WRAPPED TIES 25-35 kV DISTRIBUTION PRIMARY							
	ISSUE	PAGE NUMBER		SMIZZ				
Busi	7/07 ness Use	20-118	OVERHEAD CONSTRUCTION STANDARD	ppl				

TIE CONDUCTORS

TABLE I – LENGTH AND TYPE - FOR BARE LINE CONDUCTOR

Line Conductor Size	Tie Wire	Std	Class 55-6 Insulator – 35kV			
AWG-kcmil	Size AWG	Item	Side Groo	ove	Top Groove	
			Length	Type	Length	Type
			(Inches)		(Inches)	
# 6 Cu	# 6 Cu	W22A	-	-	-	-
# 6A CW &CCW	# 6 Cu	W22A	-		-	-
# 4 Cu	# 6 Cu	W22A	-	•	-	-
# 3 Cu	# 6 Cu	W22A	58	Bridle	46	Bridle
# 2 Cu	# 4 Cu	W22BA	68	Bridle	55	Bridle
# 1/0 Cu	# 4 Cu	W22BA	73	Bridle	63	Bridle
# 4/0 Cu	# 4 Cu	W22BA	79	Bridle	67	Bridle
Larger Cu	# 4 Cu	W22BA	-	-	-	-
# 4 ACSR	#4 AL	W22C	62	Bridle	53	Bridle
# 2 ACSR	#4 AL	W22C	65	Bridle	56	Bridle
# 1/0 ACSR	#4 AL	W22C	69	Bridle	59	Bridle
# 4/0 AL (AAC)	#4 AL	W22C	81	Bridle	69	Bridle
336.4 AL (AAC)	#4 AL	W22C	89	Bridle	77	Bridle
336.4 ACSR3000#	#4 AL	TT1B	Preform	Bridle	Preform	Bridle
477.0 AL (AAC)	#4 AL	W22C	108	Bridle	96	Bridle
795 AAC	#4 AL	W22C	108	Bridle	96	Bridle

TABLE II - LENGTH AND TYPE - FOR COVERED AND TREE LINE CONDUCTOR

Note: If insulation is removed 30", use bare tie wire (see above)

Line Conductor Size	Tie Wire	Std	Class 55-6 Insulator – 35kV			
AWG-kcmil	Size AWG	Item	Side Groove		Top Groove	
			Length	Type	Length	Type
			(Inches)		(Inches)	
# 6 Cu	#4 AL TPR	W22D	-	-	-	-
# 6A CW &CCW	#4 AL TPR	W22D	-	-	-	-
# 4 Cu	#4 AL TPR	W22D	-	-	-	-
# 3 Cu	#4 AL TPR	W22D	58	Bridle	46	Bridle
# 2 Cu	#4 AL TPR	W22D	68	Bridle	55	Bridle
# 1/0 Cu	#4 AL TPR	W22D	73	Bridle	63	Bridle
# 4/0 Cu	#4 AL TPR	W22D	79	Bridle	67	Bridle
Larger Cu	#4 AL TPR	W22D	•	-	-	-
# 4 ACSR	#4 AL TPR	W22D	62	Bridle	53	Bridle
# 2 ACSR	#4 AL TPR	W22D	65	Bridle	56	Bridle
# 1/0 ACSR	#4 AL TPR	W22D	69	Bridle	59	Bridle
# 4/0 AL (AAC)	#4 AL TPR	W22D	81	Bridle	69	Bridle
336.4 AL (AAC)	#4 AL TPR	W22D	89	Bridle	77	Bridle
336.4 ACSR	#4 AL TPR	W22D	89	Bridle	77	Bridle
477.0 AL (AAC)	#4 AL TPR	W22D	108	Bridle	96	Bridle
795 AAC	#4 AL TPR	W22D	108	Bridle	96	Bridle

TIE CONDUCTORS 25-35 kV DISTRIBUTION PRIMARY					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	20-120	7/07		

SINGLE LOOP HOT LINE TIES

1. <u>USE SINGLE LOOP TIES FOR SPANS UNDER 160 FEET</u>. where lines are to be worked hot. Use double ties for spans over 160 feet. and for all angle poles.

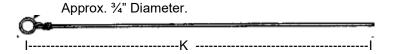


Figure A - Prepare Loop - Two Required

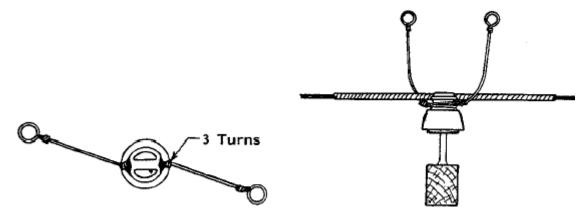
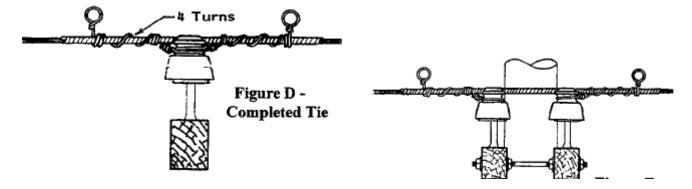
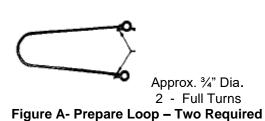


Figure B – Loops In Place On Insulator

Figure C - Conductor In Place




Figure E – On Double Arms

Line Wire	Tie Wire	Length	Line Wire	Tie Wire	Length
Size	Size	"K"	Size	Size	"K"
AWG-kcmil	AWG-kcmil	(Inches)	AWG-kcmil	AWG-kcmil	(Inches)
#3 Copper	#6 Copper	32	#1/0 6201 AI.	#4 Alum.	34
#1/0 Copper	#4 Copper	36	#4/0 6201 AI.	#4 Alum	40
#4/0 Copper	#4 Copper	40	336.4 ECA	#4 Alum	44
#4 ACSR	#4 Alum.	28	477.0 ECA	#4 Alum	46
#1/0 ACSR	#4 Alum.	34			

	SINGLE LOOP HOT LINE TIES 25-35 kV DISTRIBUTION PRIMARY							
	ISSUE	PAGE NUMBER		WHZ.				
Busi	7/07 ness Use	20-122	OVERHEAD CONSTRUCTION STANDARD	ppl				

DOUBLE LOOP HOT LINE TIES

1. <u>USE DOUBLE LOOP TIES FOR SPANS OVER 160 FEET</u>. where lines are to be worked on hot and for all angle poles. Use single ties for spans under 160 feet.

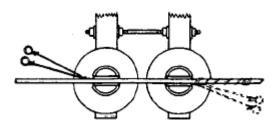


Figure E – Double Insulators Conductor In Place – Top Groove

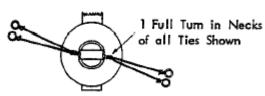


Figure B – Loops In Place On Insulator (Top View)

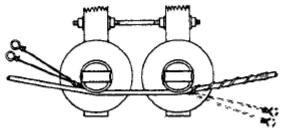


Figure F – Double Insulators
Conductor In Place – Side Groove

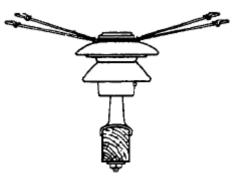


Figure C – Loops In Place On Insulator

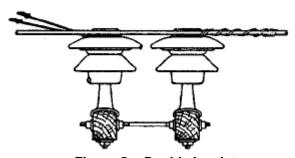


Figure G – Double Insulators Elevation

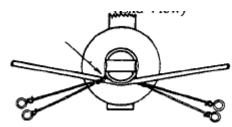


Figure D – Conductor In Place (In Side Groove For Angle In Line)

	DOUBLE LOOP HOT LINE TIES 25-35 kV DISTRIBUTION PRIMARY					
	WIII		PAGE NUMBER	ISSUE		
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	20-124	7/07		

Pole spans are limited primarily by the sag characteristics of the primary conductor relative to the horizontal and vertical separations provided by the standard pole top arrangement. Increases in separations at the pole may permit longer spans. Transverse wind loadings may not allow use of extremely long spans

Maximum spans are determined by the following criteria:

Horizontal Clearance (Distance between Phase Conductors at the same level):

Maximum spans are based on the HORIZONTAL clearance of the primary conductors outlined in the NESC (National Electrical Safety Code) rule 235B.

The clearance at the supports of conductors of the same or different circuits of Grade B or C in no case shall be less than the values given by the following formulas, at a conductor temperature of 15°C (60°F), final unloaded sag, and no wind. The clearance shown in Table 235-1 (NESC) shall be used if they give a greater separation than below formulas.

See the formulas below for the appropriate applicable situation:

For conductors smaller than AWG #2: clearance (c) = 0.3 inches per kilovolt + 4.04 $\sqrt{s-24}$.

For conductors of AWG #2 and larger: clearance (c) = 0.3 inches per kilovolt + $8\sqrt{s/12}$.

- c = Horizontal clearance between the primary conductors in inches.
- s = Apparent Sag of the conductor in inches having the greater sag.

Clearances are between conductors located at the same level (i.e. the two outside phase conductors on standard crossarm/armless pole top construction or two nearest phases in crossarm deadend construction).

Vertical Clearance (Primary vs Secondary): Maximum operating temperature. See section 6

Maximum spans are based on the VERTICAL clearance between primary and 600 V secondary or neutral conductors outlined in the NESC (National Electrical Safety Code) rule 235C. The separation is given for the spacing shown on the pole top drawings in this section while maintaining 16 inch minimum mid-span clearance as shown in the Section 7. Clearances are taken between conductors that are directly above and below each other and are based on the sag of the primary conductor and either 600 V secondary or neutral conductors. Combinations of conductor sag verse span may be calculated using the sag data provided in Section 6-Conductors.

A comparison of sag between two different operating conditions need to be evaluated and the one requiring the greater separation at the structure needs to be used. They are to be compared as follows:

The upper conductor is at final sag at the maximum operating temperature for which the line is designed to operate and the lower conductor is at final sag at the same ambient conditions as the upper conductor without electrical loading—or

The upper conductor is at final sag at 32° F with the radial thickness of ice, and the lower conductor is at final sag at the same ambient conditions as the upper conductor without electrical loading, and without ice loading.

Generally, the sag of primary conductor for both bare and tree wire at maximum operating temperature of 194° F (90° C) would be greater than conductor under "Heavy Loading" operating conditions. A comparison should be made.

If the operating temperature sag is greater, determine the upper primary conductor sag based on the $194^{\circ}F$ ($90^{\circ}C$) for bare or tree primary conductor and the lower secondary or neutral conductor at $32^{\circ}F$ ($0^{\circ}C$) of the same ambient temperature of $32^{\circ}F$ for upper and lower conductor. See Section 6 for "Loading (Unloaded Conditions)" and "Loading (Loaded Conditions)" sag charts.

For span lengths in excess of 150', a supply conductor above 750V but less than 50kV shall not sag lower in the span than a straight line joining the points of support of the highest communication cable or conductor. The conductor sag is based upon the sag data obtained from a conductor temperature of 60°F (15°C), no wind displacement and final unloaded sag conditions.

	MAXIMUM SPANS 25-35kV DISTRIBUTION PRIMARY			
	ISSUE	PAGE NUMBER		WW.
Busi	7/07 ness Use	20-200	OVERHEAD CONSTRUCTION STANDARD	ppl

Vertical Clearance (Secondary Vs Communications):

New Plant - maximum spans are based on the vertical clearance between the 600V Secondary or Neutral conductor and the communication conductor's In-Line-Of-Site from adjoining structures. The conductor in the secondary position should not sag closer than 30" to the Communication Conductor's "In–Line-Of-Site" at mid-span utilizing the 32°F (0°C) Loading (Unloaded Conditions) sag data.

Existing Plant – may sag below Communication Conductor's "In-Line-Of-Site" but must maintain the NESC clearance of 30" mid-span between the communication and Secondary Conductors.

For either condition of New Plant or Existing Plant, longer spans can occur by either increasing the pole height, relocating conductor per the "Minimum Dimension" spacing, or consult the respective communication company for their cable sag requirements agreeing the sag of their cable will follow the sag of the conductor in the secondary position. This will allow the cable to have a 30" mid span clearance which is 75% of the separation at the adjoining structures of 40".

Communication conductor in line of site is defined as a straight line joining points of support of the highest communication cable or conductor. Consult the communications company for sag of their conductor.

MAXIMUM SPANS
25 - 35 kV DISTRIBUTION PRIMARY

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 20-201 7/07

Given:

35 kV class construction

Primary Voltage - 34.5kV effectively grounded

Pole Framed 20-411A

Grade C construction

1 – 40 ft., class 3 wood pole JT NE (84" Allocated)

3 – 477 kcmil AAC bare conductors (W21BA)

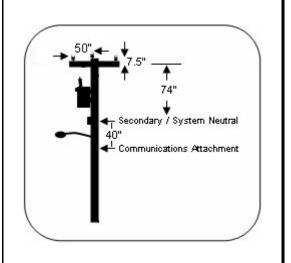
1/0 AAAC triplex secondary cable (W15C)

Ø to Ø Primary Horizontal Separation = 50" (20-206)

Vertical Pole Spacing (74"+10" = 84")

(10" = thru bolt of xarm to conductor on top of insulator)

40" of Neutral Spacing (Bottom Secondary Bracket to top of comm. 300' of 477 kcmil Bare AAC Sag @ final Unloaded Sag@60°F


with no wind. =121.92 (6-114). (Design Ruling Span)

135' Span

*135' - 477kcm B AAC Sag @ 176°F (90°C) Final Unloaded = 53"

*135' - #1/0 AAAC Triplex Sag @ 30° = 12"

* = Calculated Values. (Steps 5-7)

Maximum Span Contingent on Horizontal Primary Conductors Separation: Steps 1-4

Step	Action	Use
1	Determine maximum Primary Conductor sag based on 50" of primary horizontal conductor separation Section 20-206.	NESC 235Bb2: #2 AWG and greater. $s = 12*\left(\frac{(c3k)_{v}}{8}\right)^{2}$
2	Calculate maximum allowable primary sag	s= Apparent Sag in Inches = unknown c=Primary phase to phase separation based on 20-206 = 50" k=Kilovolt of circuit = 35kV $ s = (12)x \left(\frac{50in3x35kV}{8}\right)^2 = (12)x \left(\frac{50-10.5}{8}\right)^2 $ $ s = 292.5" (293") $
3	Determine maximum span based on Primary conductor sag of 292.5" (293") for 477kcmil AAC Bare Primary Conductor.	$S_m = S_r * \sqrt{\frac{D_m}{D_r}}$ $S_m = \text{Maximum Allowable Span}$ $S_r = \text{Design Ruling Span}$ $D_m = \text{Defined Sag Limit}$ $D_r = \text{Design Ruling Span Sag @ final Unloaded Sag@60°F with no wind.}$
4	Calculate Maximum Span (Maximum Span based solely on Horizontal Separation. Not influenced with Vertical Separation)	$S_{m} = 300 * \sqrt{293/121.92}$ $S_{m} = 300 * \sqrt{2.4}$ $S_{m} = 300 * 1.55$ $S_{m} = 464.75'(465')$.

	MAXIMUM SPANS 25-35 kV DISTRIBUTION PRIMARY				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/07 ness Use	20-202	OVERHEAD CONSTRUCTION STANDARD	ppl	

_Determine Sag of Actual Span versus Ruling Span: Steps 5-7

Step	Action	Use
5	Determine Sag of "Other Span". (135' section)	$S_a = \frac{L_a^2}{L_r^2} * S_r$ $S_a = \text{Sag of Actual Span}$ $S_r = \text{Sag of Ruling Span}$ $L_a = \text{Length of Actual Span}$ $L_r = \text{Length of Ruling Span}$
6	Calculate 135' - 477kcm B AAC Sag @ 194°F (90°C) Final Unloaded (See 6-114)	$S_a = \text{Sag of Actual Span} = \text{Unknown}$ $S_r = \text{Sag of Ruling Span} = 45.24" (125' \text{ Ruling span})$ $L_a = \text{Length of Actual Span} = 135'$ $L_r = \text{Length of Ruling Span} = 125'$ $S_a = \frac{L_a^2}{L_r^2} * S_r$ $S_a = \frac{135^2}{125^2} * 45.24_k$ $S_a = 52.77" = 53"$
7	Calculate 135' - #1/0 AAC Triplex Sag @ 30°F .(0°C) (See 10-6)	$S_a = \text{Sag of Actual Span} = \text{Unknown}$ $S_r = \text{Sag of Ruling Span} = 10"$ $L_a = \text{Length of Actual Span} = 135'$ $L_r = \text{Length of Ruling Span} = 125',$ $S_a = \frac{L_a^2}{L_r^2} * S_r$ $S_a = \frac{135^2}{125^2} * 10$ $S_a = 11.64" = 12"$

Determine 34.5kV Effectively Grounded Phase to Secondary/Neutral (Supply) NESC Clearance: Steps 8-9

Step	Action	Use
8	Determine NESC required phase to 0-750V secondary (Supply) clearance per NESC requirements at the structure . (See Table 9 – page 7-19 in the Overhead Construction Standards)	34.5kV/19.9kV effectively grounded distribution circuit Structure Clearance = 16" + .(4" per KV). See Table 9 page 7-19 Structure Clearance = 16" + (.4 X 19.9 – 8.7) Structure Clearance = 16" + 4.48 Structure Clearance = 20.48" (20.5")
9	Determine NESC Mid-Span Clearances. (See Table 9 – page 7-19 in the Overhead Construction Standards)	Mid-Span clearance = 75% X Structure Clearance Mid-Span clearance = 75% X 20.5" Mid-Span clearance = 15.375" (16")

	MAXIMUM SPANS 25-35 kV DISTRIBUTION PRIMARY			
	WW.		PAGE NUMBER	ISSUE
Business U	ppl	OVERHEAD CONSTRUCTION STANDARD	20-203	7/07

Doc. # ST. 20.00.002 © 2022 PPL Corporation. All rights reserved.

Maximum Span Contingent on Vertical Conductor Separation between **Primary - Secondary - Communication Conductors** : Steps 10-12

Step Action Use 10 Calculate Sagged Primary Conductor Vertical Pole Spacing = 82" Above or Below Secondary Line-Of-Site. Primary Conductor Sag = <u>53"</u> Sagged Primary Conductor ABOVE Sec Line-of-Site = 29" 11 Calculate Mid Span Conductor Sagged Primary Conductor Above Sec Line-Of-Site = 29"= <u>12"</u> = 41" Separation between Primary and Secondary Conductor Sag Mid Span Vertical Separation between Pri & Sec Secondary (16" minimum required per Section 7) 12 Calculate Mid Span Conductor Vertical Separation between Sec Conductor and Line-Of-Site for Separation between Secondary and communications conductor (40" vertical +2" from Sec cond to bottom Communication's Conductor Line-Ofof Sec Bracket) = 42" = <u>12"</u> Secondary Conductor Sag

Determine Clearance between Sagged Primary Conductor and Communication's In-Line-of-Site (>150' & >750V NESC Rule 235C.2.b.3): Steps 13-14

Mid Span Vertical Separation between Pri & Sec

(30" minimum required per Section 7)

= 30"

Site

	(>130 & >130 NL30 Rule 2330.2.B.3). Steps 13-14				
Step	Action	Use			
13	Determine maximum vertical separation between primary positions on pole to Communication's Line-Of-Site.	Conductor Position On Insulator = 8.0" Framing Vertical Pole Spacing (Framing) = 74.0" Allocated Space = 2.5" Communication's Neutral spacing (Line-of-Site) = 40.0" Total Space to Communication's Line-of-Site 124.5"			
14	Calculate sagged Primary Conductor position relative to Communication's Line-Of-Site. (NESC 235.C.2b.3 - Supply Cable exceeding 750V and less than 50kV for spans exceeding 150' shall not sag below communication's In-Line-of-Site)	175' - 477 B AAC sag @ 60°F (15°C) no wind displacement and final unloaded. = 45" Total Space to Communication's Line-of-Site =124.5" Primary Conductor Sag = 45.0" Mid Span Vertical Clearance between sagged Primary = 79.5" And Communication's Line-of-Site (Above Line-of-Site -0" Minimum)			

	MAXIMUM SPANS 25-35 kV DISTRIBUTION PRIMARY			
	ISSUE	PAGE NUMBER		WWZ
Busi	7/07 ness Use	20-204	OVERHEAD CONSTRUCTION STANDARD	ppl

Conclusion:

Horizontal – The horizontal clearance of 50" will allow a maximum span of 465' for 477 B AAC before mid span contact becomes an issue between primary conductors. This calculated value, per NESC guidelines, is well beyond the span of 135' in the above example. (Steps 1 - 4)

Vertical – There are several vertical clearances that need to be evaluated regarding maximum spans. They are as follows:

<u>Primary vs Secondary</u> – The vertical mid span clearance between the primary and secondary conductor was calculated to be 29" for a span of 135' in the above example. The NESC minimum clearance shown in Section 7, Page 7-19 indicates 16" is the minimum required at mid span. Therefore, mid span contact between primary and the conductor in the secondary position is not an issue in the above example. (Step 10 & 11)

Secondary Vs Communications

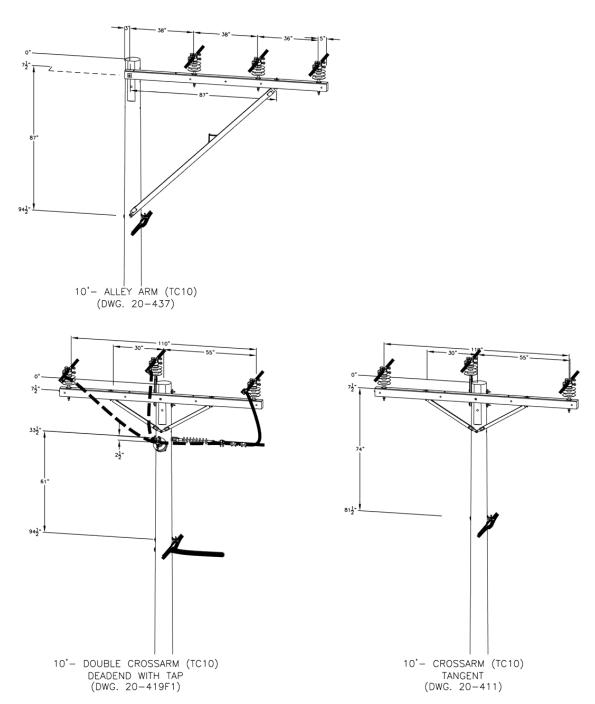
<u>750V Line –of –Site Rule:</u> This calculation to determine the relative position of the sagged primary conductor to the highest Communication's Cable position for a straight line joining the points of support were not necessary because the span was under 150'. NESC Code requires this clearance to be calculated if the span is greater than 150' and the supply cable is greater than 750V but less than 50KV. The calculation was shown to demonstrate how this clearance should be determine if it falls within the NESC guidelines.

<u>Span Requirements:</u> The span of 135' will allow a vertical mid span clearance of 30" between the conductor in the Secondary position (#1/0 Triplex) and the Communication's cable "In-Line-of-Site" on adjoining structures. Spans can be increased by either installing a higher pole, raise the secondary bracket to the Minimum Dimensions as indicated in the construction drawing (9-411A), requests the communication company to lower their cable, or have Communication Company agree to sag their cable following the sag of the conductor in the secondary position maintaining 30" mid span clearance.

<u>Ice Loaded Conditions</u>: Sag information for Conductors in the Secondary Position should be shared with the various Communication Companies to assist them in evaluating their cable sag requirements to meet NESC codes. Both Electric and Communication companies are allocated their attachment space on poles; however, a mid span clearance of 30" must be maintained when ice loading conditions occur (See Section 7).

Maximum spans are also contingent upon pole loading and crossarm/pin/insulator strengths. See Section 2.

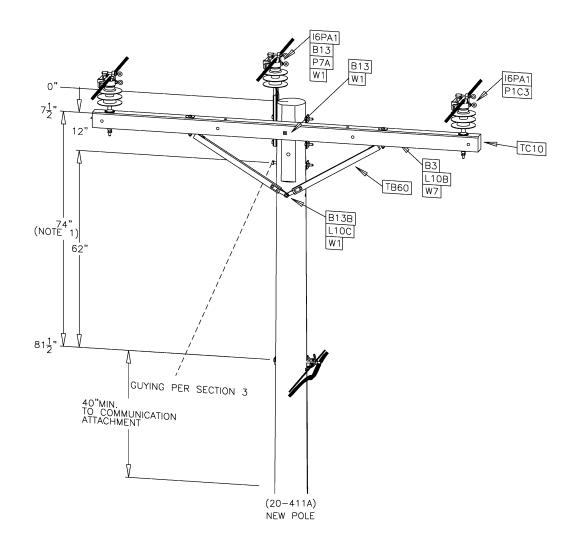
MAXIMUM SPANS
25-35 kV DISTRIBUTION PRIMARY


OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 20-205 7/07

RESERVED FOR FUTURE PUBLICATION

	MAXIMUM SPANS 25-35 kV DISTRIBUTION PRIMARY				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/07 ness Use	20-205A	OVERHEAD CONSTRUCTION STANDARD	ppl	


Doc. # ST. 20.00.002

NOTE:
-THESE DIMENSIONS ARE SHOWN AS GENERAL INFORMATION FOR STANDARD POLE TOPS USING STANDARD MATERIALS. REFER TO SECTION 20 PRIMARY DRAWINGS FOR OTHER ARRANGEMENTS.

Designer Drawing Date
MPR od20206 2/15/19

		SPACING 25-35 kV DISTRIBUTION PRIMARY				
	SMIZZ		PAGE NUMBER	ISSUE		
U	se ppl	OVERHEAD CONSTRUCTION STANDARD	20-206	7/19		

NOTE 1

MINIMUM DIMENSIONS	
(FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY -35KV NEUTRAL ONLY - 35 KV OPERATION	53" 28"

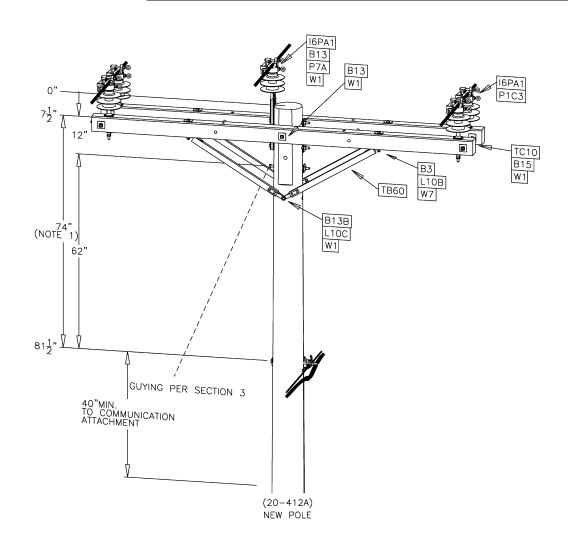
(20-411B)

(20-411B)

- OMIT CENTER CONDUCTOR AND ATTACHMENTS.

- SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.

- DOUBLE CROSSARMS OR EQUVALENT ARE REQUIRED (NESC 261.D.5.C.) AT EACH CROSSING STRUCTURE, LINES OVER RAILWAYS, LIMITED ACCESS HIGHWAYS, OR NAVIGABLE WATERWAYS REQUIRING CROSSING PERMITS (NESC 241C), AND DEADEND OR ANGLES OVER 20 DEGREES ANGLES OVER 20 DÈGREES


- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), ¾" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE ÙSED.

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS				
SPANS WITH 1/0 TRIPLEX SEC				
SEC BRKT	DOLE 0175	MAI	N LINE	
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC	
81.5	40 JT-84"	135	135	
81.5 45 JT-111"		220	220	
	SPANS WITH 1/0 AAAC NEUTRAL			
SEC BRKT BOLE SIZE MAIN LINE				
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC	
81.5	40 JT-84"	225	180	
81.5	45 JT-111"	300		
103	45 JT-111"		225	
THIS TABLE BA	ASED ON EQUAL	OWNERSHIP	PERCENTAGE	

Designer	Drawing	Date
MPR	od20411	3/15/19

	1Φ AND 3Φ CROSSARM POLE TOP – 25-35 kV 0° - 10°				
	ISSUE	PAGE NUMBER	WIN		
Busi	7/19 ness Use	20-411	OVERHEAD CONSTRUCTION STANDARD	ppl	

MU = @20-412A	25-35KV 3Ф - Bare	MU = @20-412ACL	25-35KV 3Ф - Covered
MU = @20-412B	25-35KV 1Ф - Bare	MU = @20-412BCL	25-35KV 1Ф - Covered

NOTE 1

MINIMUM DIMENSIONS	
(FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY -35KV NEUTRAL ONLY - 35 KV OPERATION	53" 28"

(20-412B)

(20-412B)

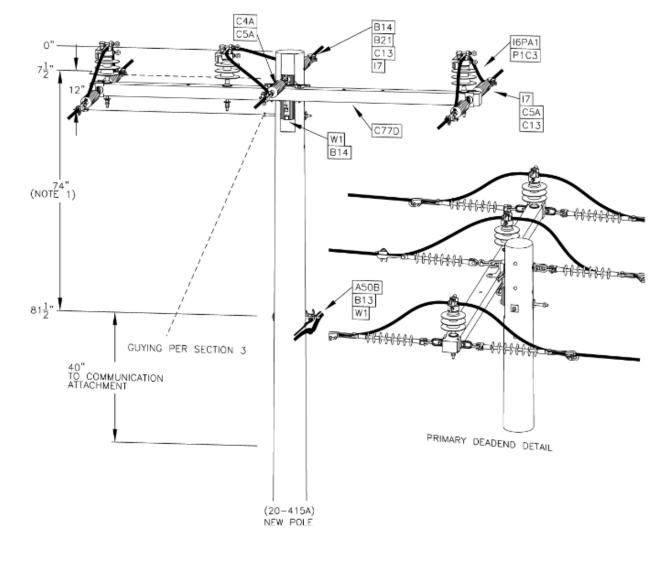
- OMIT CENTER CONDUCTOR AND ATTACHMENTS.

- SEE SECTION INDEX FOR STANDARD POLE TOP
CONSTRUCTION SELECTION.

- DOUBLE CROSSARMS OR EQUVALENT ARE
REQUIRED (NESC 261.D.5.C.) AT EACH CROSSING
STRUCTURE, LINES OVER RAILWAYS, LIMITED ACCESS
HIGHWAYS, OR NAVIGABLE WATERWAYS REQUIRING
CROSSING PERMITS (NESC 241C), AND DEADEND OR
ANGLES OVER 20 DEGREES.

- WHERE SEVERE ENVIROMENTAL CONTAMINATION

- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), 34" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE USED.


SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS				
	SPANS WITH 1/0 TRIPLEX SEC			
SEC BRKT	DOLE 0175	MAI	N LINE	
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC	
81.5	40 JT-84"	135	135	
81.5	45 JT-111"	220	220	
SPANS WITH 1/0 AAAC NEUTRAL				
SEC BRKT DOLE DIE MAIN LINE				
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC	
81.5	40 JT-84"	225	180	
81.5	45 JT-111"	300		
103 45 JT-111"		I	225	
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE				

Designer	Drawing	Date
MPR	od20412	3/15/19

1Φ AND 3Φ DOUBLE CROSSARM POLE TOP - 25-35 kV 11° - 20°

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 20-412 7/19

NOTE 1

MINIMUM DIMENSIONS	
(FOR EXISTING INSTALLATIONS ONLY)	
5KV OPERATION	20"
NEUTRAL ONLY-15KV OPERATION	20"
600V SECONDARY-15KV	48"

(20-415B)

(20-415B)

- OMIT CENTER CONDUCTOR AND ATTACHMENTS.

- SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.

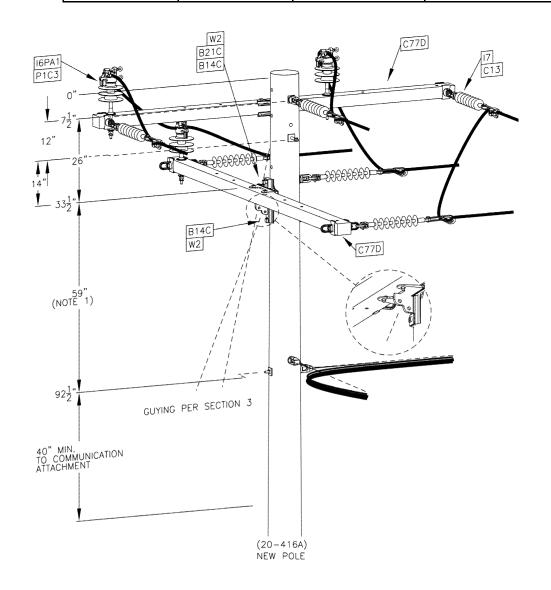
- DOUBLE CROSSARMS OR EQUIVALENT ARE REQUIRED (NESC 261.D.5.C.) AT EACH CROSSING STRUCTURE, LINES OVER RAILWAYS, LIMITED ACCESS HIGHWAYS, OR NAVIGABLE WATERWAYS REQUIRING CROSSING PERMITS (NESC 241C), AND DEADEND OR ANGLES OVER 20 DEGREES.

- WHERE SEVERE ENVIROMENTAL CONTAMINATION

- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), 34" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS				
SPANS WITH 1/0 TRIPLEX SEC				
SEC BRKT	SEC BRKT POLE SIZE MAIN LINE			
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC
81.5	45 JT-111"		135	135
81.5	45 JT-111"	220	220	220
	SPANS WIT	H 1/0 AAAC	NEUTRAL	
SEC BRKT	SEC BRKT POLE CIZE MAIN LINE			
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC
81.5	45 JT-111"	255	185	175
86	45 JT-111"	300		
106	45 JT-111"		240	
107	45 JT-111"			225
THIS TABLE	BASED ON EQ	UAL OWNERS	HIP PERCENTA	\GE

Designer	Drawing	Date
MPR	od20415	11/30/20


1Ф AND 3Ф FIBERGLASS CROSSARM POLE TOP – 25-35 kV	,
21° - 60°	

ISSUE PAGE NUMBER Business Use 20-415

OVERHEAD CONSTRUCTION STANDARD

_					
	MU = @20-416A	25-35KV 3Ф - Bare	MU = @20-416ACL	25-351	KV 3Φ - Covered
	MU = @20-416B	25-35KV 1Ф - Bare	MU = @20-416BCL	25-351	ΚV 1Φ - Covered

NOTE 1

MINIMUM DIMENSIONS (FOR EXISTING INSTALLATIONS ONLY)	
5KV OPERATION	20"
NEUTRAL ONLY-15KV OPERATION	20"
600V SECONDARY-15KV	48"

(20-416B)

 OMIT CENTER CONDUCTOR AND ATTACHMENTS.
 SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.

CONSTRUCTION SELECTION.

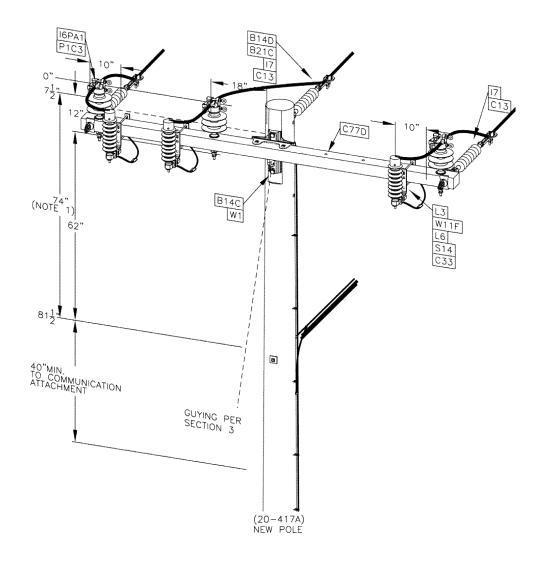
- DOUBLE CROSSARMS OR EQUVALENT ARE REQUIRED (NESC 261.D.5.C.) AT EACH CROSSING STRUCTURE, LINES OVER RAILWAYS, LIMITED ACCESS HIGHWAYS, OR NAVIGABLE WATERWAYS REQUIRING CROSSING PERMITS (NESC 241C), AND DEADEND OR ANGLES OVER 20 DEGREES.

- WHERE SEVERE ENVIRONMENTAL CONTAMINATION

- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (I13D), ¾" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE USED.

SEE 20-200	FOR ADDITIO	NAL INFORMA	TION ON MAXI	MUM SPANS
	SPANS WITH 1/0 TRIPLEX SEC			
SEC BRKT	DOLE 6175		IN LINE	
ATTACHMENT	POLE SIZE	1/0 AAAC	336.4 AAC	477 AAC
92.5	45 JT-111"	185		
92.5	45 JT-111"		185	
97.5	45 JT-111"			180
	SPANS W	ITH 1/0 AAA	C NEUTRAL	
SEC BRKT	POLE SIZE	MAI	N LINE	
ATTACHMENT		1/0 AAAC	336.4 AAC	477 AAC
103.5	45 JT-111"	255		
108.5	45 JT-111"		185	
108.5	45 JT-111"			175
THIS TABLE I	BASED ON EQ	UAL OWNERS	HIP PERCENTA	AGE

Designer	Drawing	Date
MPR	od20416	3/15/19


1Φ AND 3Φ CROSSARM POLE TOP – 25-35 kV ANGLES 61° - 90° AND DEADENDS

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 20-416 7/19

MU = @20-417A	25-35KV 3Ф - Bare	MU = @20-417ACL	25-35KV 3Ф - Covered
MU = @20-417B	25-35KV 1Φ - Bare	MU = @20-417BCL	25-35KV 1Φ - Covered

NOTE 1

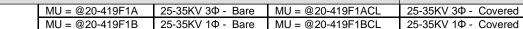
MINIMUM DIMENSIONS	
(FOR EXISTING INSTALLATIONS ONLY)	
5KV OPERATION	20"
NEUTRAL ONLY-15KV OPERATION	20"
600V SECONDARY-15KV	48"

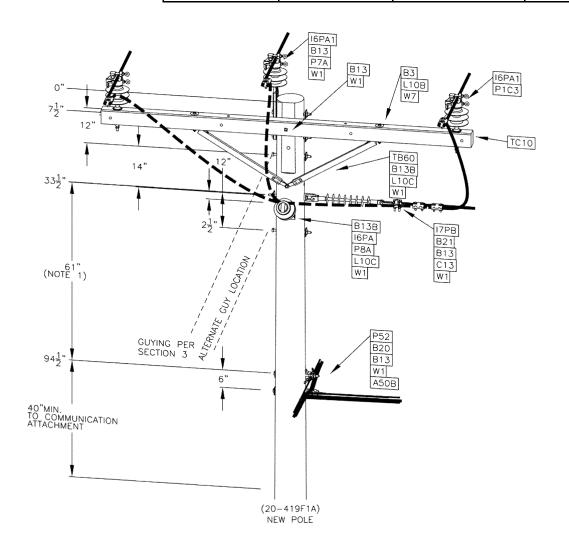
(20-417B)

- OMIT CENTER CONDUCTOR AND ATTACHMENTS.
- SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.

CONSTRUCTION SELECTION.

- DOUBLE CROSSARMS OR EQUVALENT ARE REQUIRED (NESC 261.D.5.C.) AT EACH CROSSING STRUCTURE, LINES OVER RAILWAYS, LIMITED ACCESS HIGHWAYS, OR NAVIGABLE WATERWAYS REQUIRING CROSSING PERMITS (NESC 241C), AND DEADEND OR ANGLES OVER 20 DEGREES.


- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), ¾" STUDS (P1G), AND POLE TOP PINS (P12R) SHOULD BE


(P1G), AND POLE TOP PINS (P12B) SHOULD BE USED.

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS				
	SPANS WITH 1/0 TRIPLEX SEC			
SEC BRKT	POLE SIZE	MAI	MAIN LINE	
ATTACHMENT			336.4 AAC	477 AAC
81.5	40 JT-84"	135	135	135
81.5	45 JT-111"	220	220	220
	SPANS WITH 1/0 AAAC NEUTRAL			
SEC BRKT	POLE SIZE	MAIN LINE		
ATTACHMENT	PULE SIZE	1/0 AAAC	336.4 AAC	477 AAC
81.5	40 JT-84"	225	185	175
86	45 JT-111"	300		
106	45 JT-111"		240	
107	45 JT-111"			225
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE				

Designer	Drawing	Date
MPR	od20417	3/15/19

	1Φ AND 3Φ CROSSARM POLE TOP – 25-35 kV DEADEND			85 kV
	ISSUE	PAGE NUMBER		WIN
Busi	7/19 ness Use	20-417	OVERHEAD CONSTRUCTION STANDARD	ppl

NOTE 1

MINIMUM DIMENSIONS	
600V SECONDARY-35KV	50"
NEUTRAL ONLY OPERATION	28"

(20-419F1B)

- OMIT CENTER CONDUCTOR AND ATTACHMENTS. SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.
- DOUBLE CROSSARMS OR EQUVALENT ARE REQUIRED (NESC 261.D.5.C.) AT EACH CROSSING STRUCTURE, LINES OVER RAILWAYS, LIMITED ACCESS HIGHWAYS, OR NAVIGABLE WATERWAYS REQUIRING CROSSING PERMITS (NESC 241C), AND DEADEND OR
- ANGLES OVER 20 DÈGREES.

 WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), ¾" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE
- USED.

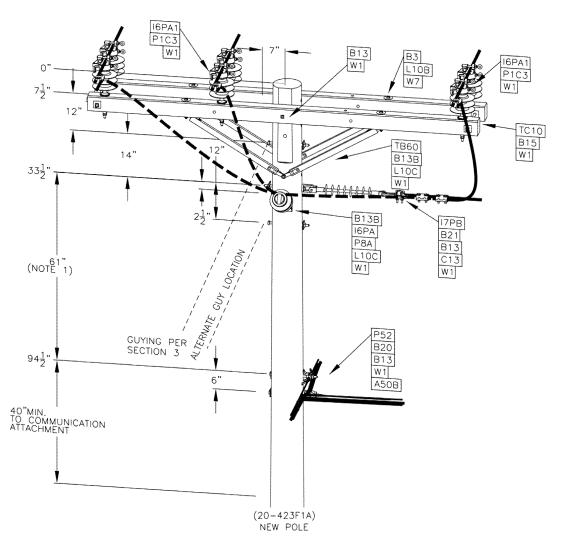
 SECONDARY DEADEND BRACKET MAY BE RELOCATED 4"
 MINIMUM ABOVE OR BELOW EXISTING SECONDARY THRU
 BRACKET ON EXISTING CONSTRUCTION PROVIDING

 BRACKET ON BE MAINTAINED. (2.3) CLEARANCES CAN BE MAINTAINED. (2.3)
- INSTALL SURGE ARRESTER PER SECTION 13.

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS				
SPANS WITH 1/0 TRIPLEX SEC				
SEC BRKT	POLE SIZE		MAIN LINE	TAP
ATTACHMENT	PULE SIZE	1/0 AAAC	477 AAC	1/0 AAAC
94.5	45 JT-111"	177	177	177
	SPANS WITH 1/O AAAC NEUTRAL			
SEC BRKT	POLE SIZE		MAIN LINE	TAP
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC	1/0 AAAC
94.5	45 JT-111"	300		
107	45 JT-111"		230	
94.5	45 JT-111"			184
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE				

[Designer	Drawing	Dote
1	uPR .	od20419F1	3/15/19

1Ф AND 3Ф CROSSARM POLE TOP - 25-35 kV 0° - 10° - TAP TO 1Φ ARMLESS


OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 20-419F1 7/19

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 20.00.002

	25–35 kV Distribution Primary			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/19 ness Use	20-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @20-423F1A	25-35KV 3Ф - В	MU = @20-423F1ACL	25-35KV 3Ф - Covered
MU = @20-423F1B	25-35KV 1Φ - B	MU = @20-423F1BCL	25-35KV 1Ф - Covered

NOTE 1

MINIMUM DIMENSIONS	
(FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY-35KV NEUTRAL ONLY OPERATION	50" 28"

(20-423F1B)

- OMIT CENTER CONDUCTOR AND ATTACHMENTS. SEE SECTION INDEX FOR STANDARD POLE TOP
- CONSTRUCTION SELECTION.

 DOUBLE CROSSARMS OR EQUVALENT ARE REQUIRED (NESC 261.D.5.C.) AT EACH CROSSING STRUCTURE, LINES OVER RAILWAYS, LIMITED ACCESS HIGHWAYS, OR NAVIGABLE WATERWAYS REQUIRING CROSSING PERMITS
- NAVIGABLE WATERWAYS REQUIRING CROSSING PERMITS (NESC 241C), AND DEADEND OR ANGLES OVER 20 DEGREES.

 SECONDARY DEADEND BRACKET MAY BE RELOCATED 4" MINIMUM ABOVE OR BELOW EXISTING SECONDARY THRU BRACKET ON EXISTING CONSTRUCTION PROVIDING CLEARANCES CAN BE MAINTAINED. (2.3)

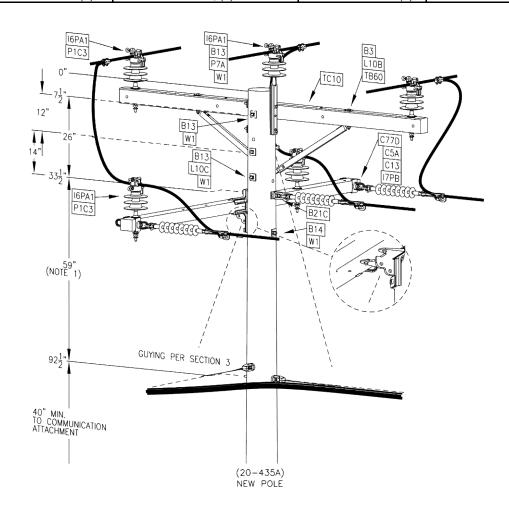
 INSTALL SURGE ARRESTER PER SECTION 13.

 WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), 34" STUDS (P1G), AND POLE TOP PINS (P12R) SHOULD BE LISED.
- POLE TOP PINS (P12B) SHOULD BE USED.

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS				
	SPANS W	1TH 1/0 TF	RIPLEX SEC	
SEC BRKT	חסור כוזר		MAIN LINE	TAP
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC	1/0 AAAC
94.5	45 JT-111"	177	177	177
SPANS WITH 1/O AAAC NEUTRAL				
SEC BRKT	POLE SIZE		MAIN LINE	TAP
ATTACHMENT	PULE SIZE	1/0 AAAC	477 AAC	1/0 AAAC
94.5	45 JT-111"	300		
107	45 JT-111"		230	
94.5	45 JT-111"			184
THIS TABLE	BASED ON E	EQUAL OWN	ERSHIP PER	RCENTAGE

Designer	Drawing	Date
MPR	od20423F1	3/15/19

1Φ AND 3Φ DOUBLE CROSSARM POLE TOP - 0-35 kV TAP TO 1Φ ARMLESS



OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 20-423F1 7/19

© 2022 PPL Corporation. All rights reserved.

			25–35 kV Distribution Primary	
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/19 ness Use	20-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @20-435A	25-35KV 3Ф - Bare	MU = @20-435ACL	25-35KV 3Ф - Covered
MU = @20-435A(X)	25-35KV 3Φ - Bare, (X) = 11 or 21	MU = @20-435ACL(X)	25-35KV 3Φ - Covered, (X) = 11 or 21
MU = @20-435B	25-35KV 1Ф - Bare	MU = @20-435BCL	25-35KV 1Φ - Covered
MU = @20-435B(X)	25-35KV 1Φ - Bare, (X) = 11 or 21	MU = @20-435BCL(X)	25-35KV 1Φ - Covered, (X) = 11 or 21

MINIMUM DIMENSIONS (FOR EXISTING INSTALLATIONS ON	LY)
600V SECONDARY-35KV NEUTRAL ONLY OPERATION	59" 28"

(20-435B)

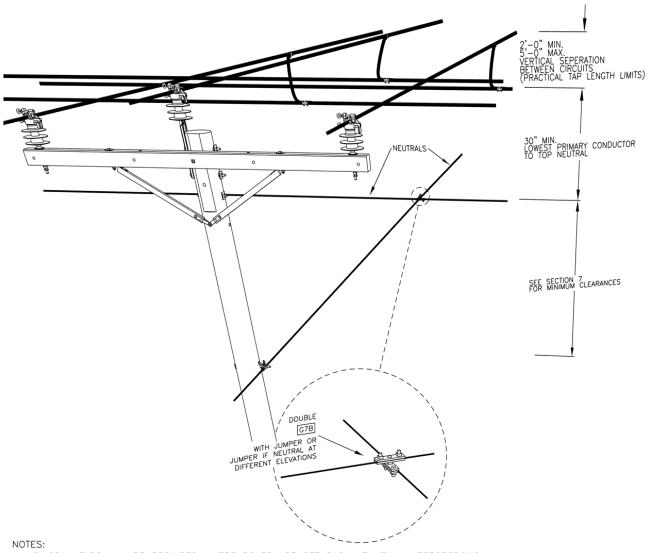
- (20-435B)

 OMIT CENTER CONDUCTOR AND ATTACHMENTS.

 SEE SECTION INDEX FOR STANDARD POLE TOP
 CONSTRUCTION SELECTION.

 INSTALL SURGE ARRESTERS PER SECTION 13.

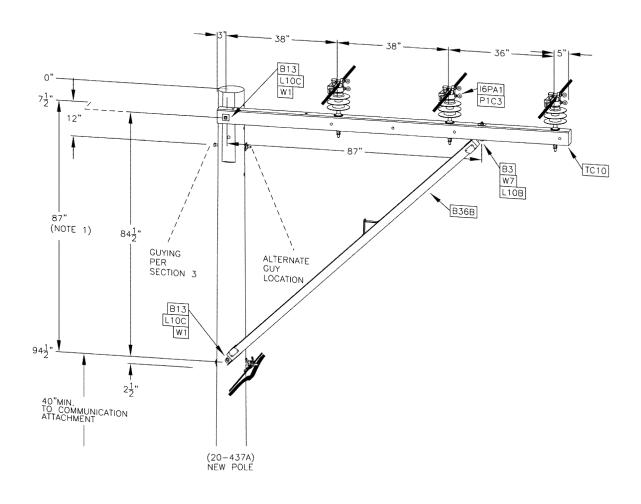
 WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS,
 LINE POST INSULATORS (113D), ¾" STUDS (P1G), AND
- POLE TOP PINS (P12B) SHOULD BE USED.
- SECONDARY DEADEND BRACKET MAY BE RELOCATED 4"
 MINIMUM ABOVE OR BELOW EXISTING SECONDARY THRU
 BRACKET ON EXISTING CONSTRUCTION PROVIDING
 CLEARANCES CAN BE MAINTAINED. (2.3)
 See 20-412 for Tangent Line Angles 11' 20'.
 See 20-415 for Tangent Line Angles 21' 60'.


SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPANS W	ITH 1/0 TRIF	PLEX SEC		
SEC BRKT	0015 0175	MAI	N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC		
92.5	45 JT-111"	185			
98.5	45 JT-111"		175		
	SPANS WITH 1/O AAAC NEUTRAL				
SEC BRKT	MAIN LINE		N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC		
106	45 JT-111"	250			
109	45 JT-111"		160		
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

Designer	Drawing	Date
MPR	od20435	3/15/19

1Φ AND 3Φ CROSSARM POLE TOP - 25-35 kV -0° - 10° - ТАР ТО 1Ф OR 3Ф CROSSARM

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER ISSUE** 20-435 7/19



- 1. MID-SPAN TAPS MAY BE REQUIRED WHERE POLES ARE SET BACK AT HEAVY INTERSECTIONS.
- 2. SEE DRAWING 20-435 FOR STANDARD 3-PHASE TAP AT THE POLE.
- 3. SEE DRAWING 20-105 FOR INFORMATION ON RELATIVE PHASE POSITIONING.
- 4. ALUMINUM OXIDE QUICKLY FORMS ON CLEANED ALUMINUM CONNECTORS AND IS NON-CONDUCTIVE AND NON-VISIBLE. ALWAYS WIRE BRUSH SURFACE OF CONDUCTORS IMMEDIATELY BEFORE MAKING ELECTRICAL CONNECTIONS.
- 5. SEE SECTION 5 FOR INFORMATION ON CONNECTORS.

Designer	Drawing	Date
MPR	od20436	3/15/19

			PRIMARY MIDSPAN TAP	
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/19 ness Use	20-436	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @20-437A	25-35KV 3Ф - Bare	MU = @20-437ACL	25-35KV 3Ф - Covered
MU = @20-437B	25-35KV 1Ф - Bare	MU = @20-437BCL	25-35KV 1Φ - Covered

MINIMUM DIMENSIONS (FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY-35KV	45"
NEUTRAL ONLY-15KV OPERATION	28"

(20-437B)

- NOTE: (20-437B)

 ALLEY ARM CONSTRUCTION SHALL BE USED ONLY AS REQUIRED FOR LATERAL CLEARANCE
 TO AVOID RESTRICTED TREE TRIMMING OR TO ELIMINATE SOME OFFSET LINE CONDITIONS.

 OMIT CENTER CONDUCTOR AND ATTACHMENTS.
 SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.

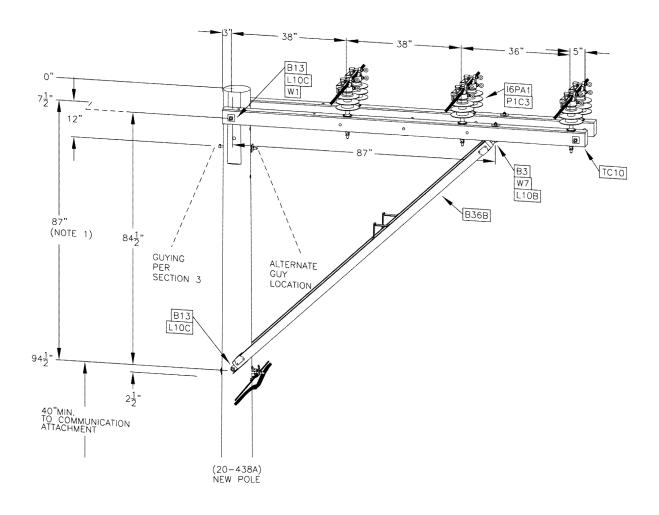
 USE 2000 LB CONSTRUCTION ONLY.

 TWO OR MORE ADJACENT POLES WITH EXTENSION ARMS SHALL BE USED TO REDUCE THE EXCESSIVE LATERAL STRESS.

 GUYING IS NOT NECESSARY FOR IN LINE POLES WITH OFFSET ARMS UNLESS FORCESS ARE BEING EXERTED PER SECTION 3.

 WHERE SEVERE ENVIROMENTAL ONTAMINATION EXISTS, LINE POST NSULATORS (113D), ¾" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE USED.

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS			
	SPANS WITH	1/0 TRIPLE	X SEC
SEC BRKT	0015 0175	MAI	N LINE
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC
94.5	40 JT-84"	135	135
94.5	45 JT-111"	220	220
SPANS WITH 1/O AAAC NEUTRAL			
SEC BRKT	DOLE 0175	MAI	N LINE
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC
94.5	40 JT-84"	225	180
94.5	45 JT-111"	300	
103	45 JT-111"	~~	225
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE			


Designer	Drawing	Date
MPR	od20437	3/15/19

1Φ AND 3Φ SINGLE ALLEY ARM POLE TOP – 25-35 kV –
0° - 10°

OVERHEAD CONSTRUCTION STANDARD **PAGE NUMBER** ISSUE 20-437 7/19

MU = @20-438A	25-35KV 3Φ - Bare	MU = @20-438ACL	25-35KV 3Ф - Covered
MU = @20-438B	25-35KV 1Φ - Bare	MU = @20-438BCL	25-35KV 1Φ - Covered

MINIMUM DIMENSIONS (FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY-35KV NEUTRAL ONLY-15KV OPERATION	45" 28"

(20 - 438B)

- ALLEY ARM CONSTRUCTION SHALL BE USED ONLY AS REQUIRED FOR LATERAL CLEARANCE
 TO AVOID RESTRICTED TREE TRIMMING OR TO ELIMINATE SOME OFFSET LINE CONDITIONS.

- SOME OFFSET LINE CONDITIONS.

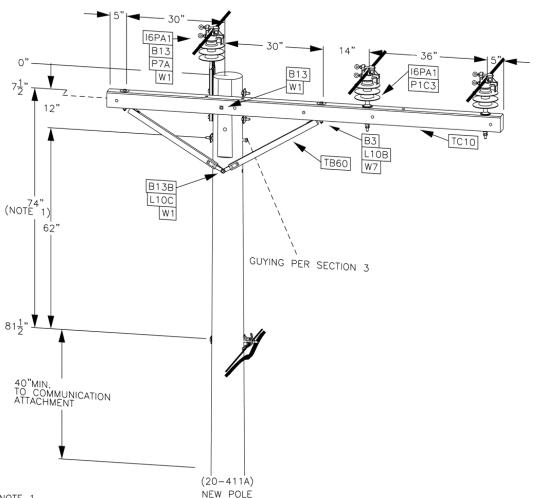
 OMIT CENTER CONDUCTOR AND ATTACHMENTS.

 SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.

 USE 2000 LB CONSTRUCTION ONLY.

 TWO OR MORE ADJACENT POLES WITH EXTENSION ARMS SHALL BE USED TO REDUCE THE EXCESSIVE LATERAL STRESS.

 GUYING IS NOT NECESSARY FOR IN LINE POLES WITH OFFSET ARMS UNLESS FORCESS ARE BEING EXERTED PER SECTION 3.


 WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), ¾" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE USED.

SEE 20-200 MAXIMUM SPAI	FOR ADDITIONAL	INFORMATION	N ON
SPANS WITH 1/0 TRIPLEX SEC			
SEC BRKT	8015 0175	MAI	N LINE
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC
94.5	40 JT-84"	135	135
94.5	45 JT-111"	220	220
SPANS WITH 1/0 AAAC NEUTRAL		NEUTRAL	
SEC BRKT	2015 0175	MAI	N LINE
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC
94.5	40 JT-84"	225	180
94.5	45 JT-111"	300	
103	45 JT-111"	1	225
THIS TABLE BA	ASED ON EQUAL	OWNERSHIP	PERCENTAGE

Designer	Drawing	Date
MPR	od20438	3/15/19

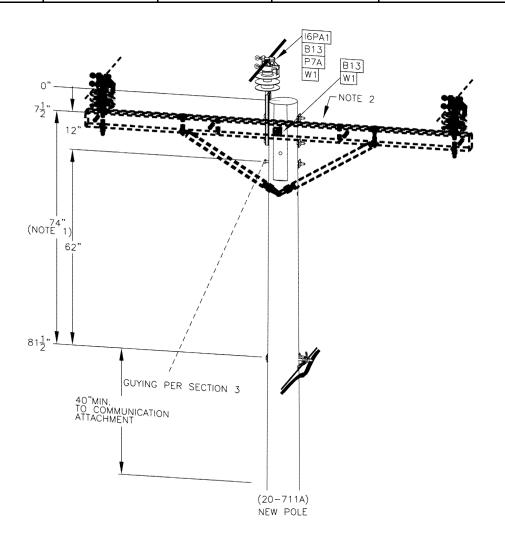
	1Ф AND 3Ф DOUBLE ALLEY ARM POLE TOP – 25-35 kV – 11° - 20°			
	ISSUE	PAGE NUMBER		WHA
Busi	7/19 ness Use	20-438	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @20-441A	25-35KV 3Ф - Bare	MU = @20-441ACL	25-35KV 3Ф - Covered
MU = @20-441B	25-35KV 1Φ - Bare	MU = @20-441BCL	25-35KV 1Φ - Covered

MINIMUM DIMENSIONS	
(FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY -35KV Neutral Only - 35 kV Operation	52" 28"

(20-411B)

- OFFSET CROSSARM CONSTRUCTION SHALL BE USED ONLY AS REQUIRED FOR LATERAL CLEARANCE TO AVOID RESTRICTED TREE TRIMMING OR TO ELIMINATE SOME OFFSET LINE CONDITIONS.
- OMIT CENTER CONDUCTOR AND ATTACHMENTS. SEE SECTION INDEX FOR STANDARD POLE TOP


CONSTRUCTION SELECTION. - USE 2000 LB CONSTRUCTION ONLY.

- TWO OR MORE ADJACENT POLES WITH OFFSET ARMS SHALL BE USED TO REDUCE THE EXCESSIVE LATERAL **STRESS**
- GUYING IS NOT NECESSARY FOR IN LINE POLES WITH OFFSET ARMS UNLESS FORCESS ARE BEING EXERTED PER SECTION 3.
- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), 3#4" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE USED.

SEE 20-2 MAXIMUM	00 FOR ADDITION SPANS	ONAL INFORM	ATION ON
	SPANS WITH 1/0 TRIPLEX SEC		
SEC BRKT	DOLE 0175	MAI	N LINE
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC
81.5	40 JT-84"	135	135
81.5	45 JT-111"	220	220
SPANS WITH 1/0 AAAC NEUTRAL			NEUTRAL
SEC BRKT	DOLE 0175	MAI	N LINE
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC
81.5	40 JT-84"	225	180
81.5	45 JT-111"	300	
103	45 JT-111"		225
THIS TABLE BA	ASED ON EQUAL	OWNERSHIP	PERCENTAGE

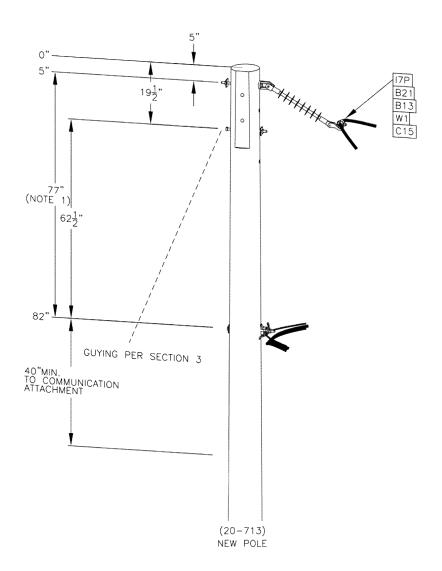
Designer	Drawing	Date
MPR	od20441	3/15/19

1Φ AND 3Φ SINGLE ALLEY OFFSET POLE TOP - 25-35 kV -0° - 10° **PAGE NUMBER** ISSUE ppl **OVERHEAD CONSTRUCTION STANDARD** 20-441 7/19

NOTE 1

MINIMUM DIMENSIONS	
(FOR EXISTING INSTALLATIONS	S ONLY)
600V SECONDARY -35KV Neutral Only - 35 kV Ope	38" ration 28"

- SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.
- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D),
- ** STUDS (P1G), AND POLE TOP PINS (P12B)


SHOULD BE USED.

NOTE 2 - FOR FUTURE 30, SEE 20-411

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS			
SPANS WITH 1/0 TRIPLEX SEC			
SEC BRKT	DOLE 0175	MAI	N LINE
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC
81.5	40 JT-84"	135	135
81.5	45 JT-111"	220	220
SPANS WITH 1/0 AAAC NEUTRAL			
SEC BRKT	0015 0175	MAI	N LINE
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC
81.5	40 JT-84"	225	225
81.5	45 JT-111"	300	artin. artin
103	45 JT-111"		225
THIS TABLE BA	ASED ON EQUAL	OWNERSHIP	PERCENTAGE

Designer	Drawing	Date
MPR	od20711	3/15/19

	1Φ ARML	ESS POLE TOP – 2	25-35 kV	
			0° - 20°	
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/19 ness Use	20-711	OVERHEAD CONSTRUCTION STANDARD	ppl

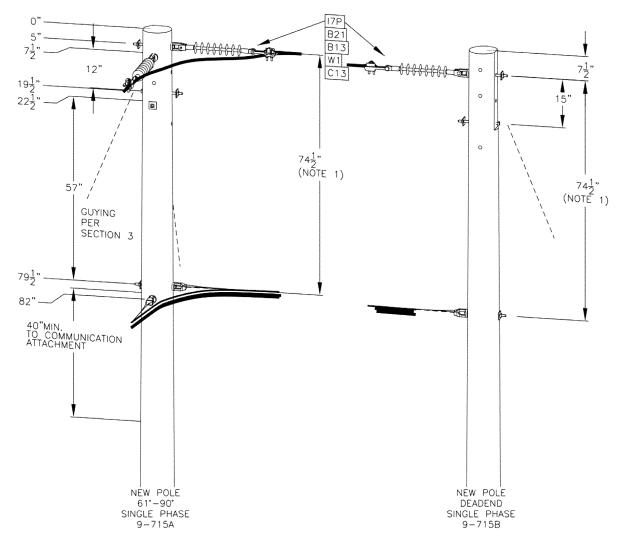
NOTE 1

MINIMUM DIMENSIONS	
(FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY -35KV Neutral Only - 35 kV Operation	48" 28"

- SEE SECTION INDEX FOR STANDARD POLE TOP

CONSTRUCTION SELECTION.

- WHERE SEVERE ENVIRONMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D),

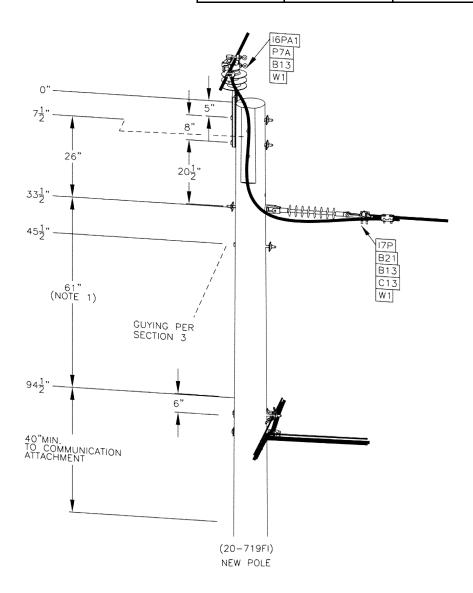

34" STUDS (P1G), AND POLE TOP PINS (P12B)

SHOULD BE USED.

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPANS WITH	1/0 TRIPLE	X SEC		
SEC BRKT	BOLE 0175	MAI	N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC		
82	40 JT-84"	135	135		
82	45 JT-111"	220	220		
SPANS WITH 1/0 AAAC NEUTRAL					
SEC BRKT	MAIN LINE		N LINE		
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC		
82	40 JT-84"	225	163		
87	45 JT-111"	300			
103	45 JT-111"		225		
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

Designer Drawing Date MPR od20713 3/15/19

1Φ ARMLESS POLE TOP – 25-35 kV 21° - 60°					
W/W	21 - 00	PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	20-713	7/19		


MINIMUM DIMENSIONS (FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY-35KV	50.5"
NEUTRAL ONLY-35KV OPERATION	28"

- SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.
- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), ¾" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE USED.
- INSTALL SURGE ARRESTER PER SECTION 13.

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS						
	SPANS WITH	1/0 TRIPLE	EX SEC			
SEC BRKT	5015 6175	MAI	N LINE			
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC			
82	40 JT-84"	135	135			
82	45 JT-111"	220	214			
	SPANS WITH 1/0 AAAC NEUTRAL					
SEC BRKT	DOLE 0175	MAIN LINE				
ATTACHMENT	POLE SIZE	1/0 AAAC	477 AAC			
82	82 40 JT-84"		160			
90 45 JT-111"		300				
106	45 JT-111"	AND AND	210			
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE						

Designer	Drawing	Dote
MPR	od20715	3/15/19

	1Φ ARMLESS POLE TOP – 25-35 kV 61° - 90° AND DEADEND			
	ISSUE	PAGE NUMBER		VM1/2%
Busi	7/19 ness Use	20-715	OVERHEAD CONSTRUCTION STANDARD	ppl

MINIMUM DIMENSIONS (FOR EXISTING INSTALLATIONS ONLY)	
600V SECONDARY-35KV	50"
NEUTRAL ONLY-35KV OPERATION	28"

- SEE SECTION INDEX FOR STANDARD POLE TOP CONSTRUCTION SELECTION.
- WHERE SEVERE ENVIROMENTAL CONTAMINATION EXISTS, LINE POST INSULATORS (113D), ¾" STUDS (P1G), AND POLE TOP PINS (P12B) SHOULD BE ÙSED.
- SECONDARY DEADEND BRACKET MAY BE RELOCATED 4" MINIMUM ABOVE OR BELOW EXISTING ECONDARY THRU BRACKET ON EXISTING CONSTRUCTION PROVIDING CLEARANCES CAN BE AINTAINED. (2.3)

 - INSTALL SURGE ARRESTER PER SECTION 13.

SEE 20-200 FOR ADDITIONAL INFORMATION ON MAXIMUM SPANS					
	SPAN	IS W	/ITH 1/0 TR	RIPLEX SEC	
SEC BRKT	POLE S	170		MAIN LINE	TAP
ATTACHMENT	PULE 3	175	1/0 AAAC	477 AAC	1/0 AAAC
94.5	45 JT-1	11"	177	177	177
	SPANS WITH 1/O AAAC NEUTRAL				
SEC BRKT	POLE S	175		MAIN LINE	TAP
ATTACHMENT	FOLE 3	3126	1/0 AAAC	477 AAC	1/0 AAAC
94.5	45 JT-1	111"	300	207	184
THIS TABLE BASED ON EQUAL OWNERSHIP PERCENTAGE					

Designer	Drawing	Date
MPR	od20719	3/15/19

1 Φ ARMLESS POLE TOP – 25-35kV
0° - 20° – TAP TO 1 Φ ARMI FSS

OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 20-719 7/19

Version	Date	Modification	Author(s)	Approval by (Name/Title)
4	07/21	Revise material item details in drawing 20-415.		
3	07/19	 Revised drawings 20-115, 206, 411, 412, 415, 416, 417, 419F1, 423F1 435, 436, 437, 438, 441, 711, 713, 715, and 719 to be converted to 3D. Added drawing 20-116. 		
2	07/18	 Revised details on pp 20-115 and 20-206. Revised drawings 20-415, 416 and 417 to include fiberglass deadend crossarms. 		
1	07/15	Added new section 20.0.10 Scope – Distribution Lines.		

SUMMARY OF RECENT CHANGES			
ISSUE	ISSUE PAGE NUMBER		SMI
7/21	20-NOTES	OVERHEAD CONSTRUCTION STANDARD	ppl

SECTION	PAGE
21.0 GENERAL	21-1
21.1 GRADE OF CONSTRUCTION	21-1
21.2 LOADING CONDITIONS	21-2 THRU 21-4
21.3 SPLICING AND DEADENDING	21-4
21.4 ANCHORS	21-4
21.5 CONDUCTORS	21-4 THRU 21-8
21.6 CLEARANCES	21-9 THRU 21-35
o 21.6.10 Clearance Requirements for Sub-Transmission Lines	21-9
o 21.6.20 General	21-9 THRU 21-11
o 21.6.30 Relative Levels	21-11
 21.6.40 Clearances Of Supporting Structures From Rail, Curb, Hydrant & Other Objects 	21-11 THRU 21-13
 21.6.50 Vertical Clearances Of Wires, Conductors, and Cables Above Ground, Roadway, Rails, Etc. 	21-13 THRU 21-14
 21.6.60 Vertical Clearance Of Wires, Conductors and Cables Above Water Surfaces 	21-14 THRU 21-16
o 21.6.70 Clearances Over or Near Swimming Areas	21-16 THRU 21-17
 21.6.80 Vertical & Horizontal Clearance Of Wires, Conductors And Cables To Rail Cars 	21-17 THRU 21-18
 21.6.90 Vertical Clearance Of Equipment Cases and Rigid Live Parts Of Equipment Mounted On Structures 	21-18 THRU 21-20
 21.6.100 Clearance Of Wires, Conductors, Cables and Unguarded Live Parts To Buildings, Signs, Billboards, Chimneys, Radio and Television Antennas, Tanks and Other Installations Except Bridges 	21-20 THRU 21-23
o 21.6.110 Clearance To Bridges	21-23 THRU 21-25
 21.6.120 Separation Of Conductors and Supports On The Same Pole 	21-25 THRU 21-29
o 21.6.130 Clearance To Property Line	21-29
 21.6.140 Clearance Between Wires, Conductors and Cables At Point Of Crossing On Different Supporting Structures 	21-29 THRU 21-31
 21.6.150 Clearances Of Vertical and Lateral Supply Conductors From Other Wires & Surfaces Of The Same Structure 	21-31 THRU 21-35
21.7 STRUCTURE TYPE SELECTION	21-35 THRU 21-41
21.8 INUSLATORS	21-40
21.9 RISK MITIGATION AT LINE CROSSINGS	21-41 THRU 21-43
21.10 STRUCTURE LABELING	21-44 THRU 21-49
CONSTRUCTION DRAWINGS	
 4 Foot Triangle, Double Arm Single Insulator, DASI-3, For 795 kcmil And 1113 kcmil 25-35 kV 	21-101
 4 Foot Triangle, Double Arm Single Insulator, DASI-6, For 795 kcmil And 1113 kcmil 25-35 kV 	21-102
 4 Foot Triangle, Double Arm Double Insulator, DADI-15, For 795 kcmil And 1113 kcmil 25-35 kV 	21-103
 Suspension Pulloff, Single AGS Unit, SPO-30, For 795 kcmil And 1113 kcmil 25-35 kV 	21-104

OVERHEAD SUB-TRANSMISSION INDEX

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
21-i 7/20

SECTION		PAGE
0	Suspension Pulloff, Double AGS Unit, SPO-60, For 795 kcmil And 1113 kcmil 25-35 kV	21-105
0	Deadend Pulloff, DEPO-90, For 795 kcmil And 1113 kcmil 25-35 kV	21-106
0	4 Foot Triangle, Single Pole Deadend, Tension Change, SPDE- 22, For 795 kcmil And 1113 kcmil 25-35 kV	21-107
0	Buckarm Deadend, Single Pole, Tension Reduced – BADE, For 795 kcmil And 1113 kcmil 25-35 kV	21-108
0	Loadbreak Switch, For 795 kcmil And 1113 kcmil 25-35 kV	21-109
0	Two Pole Highway Crossing Structure For 795 kcmil And 1113 kcmil 25-35 kV	21-113
0	25kV, 35kV, 46kV Single Arm Tangent	21-211
0	25kV, 35kV, 46kV – Single Pole – Single Circuit Tee Tap	21-213
0	25kV, 35kV, 46kV Double Arm Tangent	21-217
0	25kV, 35kV, 46kV – Single Pole, Double Arm, Tangent, Strain	21-218
0	25kV, 35kV & 46kV Single Pole Terminal Dead-End	21-219
0	25kV, 35kV, 46kV 1° - 10° Degree Line Angle Double Arm	21-220
0	25kV, 35kV, 46kV – 1° - 20° Line Angle Double Arm Strain	21-221
0	25kV, 35kV, 46kV 21° - 60° Degree Line Angle Double Arm Strain	21-222
0	25kV, 35kV, 46kV – 61° - 90° Degree Line Angle Single Pole Buckarm	21-223
0	25kV, 35kV, 46kV Single Pole Vertical Tangent	21-224
0	25kV, 35kV, 46kV 1° - 10° Line Angle Vertical	21-226
0	25kV, 35kV, 46kV 11° - 45° Line Angle Vertical	21-228
0	25kV, 35kV, 46kV 46° - 90° Line Angle Vertical	21-230
0	25kV, 35kV, 46kV Single Pole – Vertical – Single Circuit Tee	21-231
0	25kV, 35kV, 46kV Double Arm Tangent	21-236
0	25kV, 35kV, 46kV Single Pole, Double Circuit, Single Arm, Tangent	21-241
0	25kV, 35kV, 46kV 1° - 5°Line Angle, Single Pole, Double Circuit, Single Arm, Tangent	21-242
0	25kV, 35kV, 46kV 6° - 10° Single Pole, Double Circuit, Double Arm	21-243
0	25kV, 35kV, 46kV 1° - 5° Line Angle, Single Pole, Double Circuit, Double Arm, Strain	21-244
0	25kV, 35kV, 46kV 6° - 10° Line Angle, Single Pole, Double Circuit, Double Arm, Strain	21-245
0	25kV, 35kV, 46kV 11° - 20° Line Angle, Single Pole, Double Circuit, Double Arm, Strain	21-246
0	25kV, 35kV, 46kV Single Pole, Double Circuit, Double Arm, Strain, Tangent	21-247
0	25kV, 35kV, 46kV - Shield Wire, Suspension, Tangent	21-300
0	25kV, 35kV, 46kV –Shield Wire, Suspension, 1 – 10 Degree Line Angle	21-301
0	25kV, 35kV, 46kV - Shield Wire, Strain, Tangent	21-302

	OVERHEAD SUB-TRANSMISSION INDEX				
	ISSUE PAGE NUMBER				
Busi	7/20 ness Use	21 - ii	OVERHEAD CONSTRUCTION STANDARD	ppl	

0	25kV, 35kV, 46kV – Shield Wire, Strain, 11 – 20 Degree Line Angle	21-303
0	25kV, 35kV, 46kV – Shield Wire, Double Arm, 0 – 2 Degree Line Angle	21-304
0	25kV, 35kV, 46kV – Shield Wire, Single Pole – Vertical – Single Circuit Tee Tap	21-305
• CC	NDUCTORS	
0	1113.0 KCMIL, 54/19 STRANDING, BARE ACSR, "FINCH"	21-401 THRU 21-402
0	795.0 KCMIL, 54/7 STRANDING, BARE ACSR, "CONDOR"	21-403 THRU 21-404
0	795.0 KCMIL, 37 STRAND, BARE AAC, "ARBUTUS"	21-405 THRU 21-406
0	795.0 KCMIL, 37 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE – 35 kV	21-407 THRU 21-408
0	477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK"	21-409 THRU 21-410
0	477.0 KCMIL, 19 STRAND, BARE AAC, "COSMOS"	21-411 THRU 21-412
0	477.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE – 35 kV	21-413 THRU 21-414
0	336.4 KCMIL, 18/1 STRANDING, BARE ACSR, "MERLIN"	21-415 THRU 21-416
0	336.4 KCMIL, 19 STRAND, BARE AAC, "TULIP"	21-417 THRU 21-418
0	1/0, 7 STRAND, BARE 6201-T81 AAAC, "AZUZA"	21-419 THRU 21-420
0	1/0, 7 STRAND, CONCENTRIC ROUND 6201-T81 AAAC, 315 MIL COVERED TREE WIRE – 35 kV	21-421 THRU 21-422

OVERHEAD SUB-TRANSMISSION INDEX OVERHEAD CONSTRUCTION STANDARD OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER SISSUE 21-iii 7/20

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 21.00.001

This page intentionally left blank

OVERHEAD SUB-TRANSMISSION			
ISSUE	PAGE NUMBER	SMIZ	
7/19	21-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

21.0 GENERAL

21.0.10 Scope

This standard covers design and construction of new overhead sub-transmission lines on wood poles for 25kV, 35kV, and 46kV voltage classes. Sub-transmission lines are lines generally used to supply distribution substations, rather than supplying customers through transformers that step down directly to customer service voltages. Occasionally, a few large industrial customers are served directly from sub-transmission lines. Distribution lines are lines generally used to supply customers through transformers that step down directly to customer service voltages rather than supplying distribution substations. For standards applicable to overhead distribution lines at 25kV and 35kV, see Section 20. When planned future conversion of an overhead sub-transmission line requires that it be designed for an operating voltage above 46kV, see transmission standards for applicable construction standards.

21.0.20 Application

This standard contains three basic families of structure configurations: (i) a flat configuration using vertical post insulators on 10' crossarms for 25kV, 35 kV, and 46kV using conductors up to 477 ACSR, (ii) a 4' triangular configuration using vertical post insulators for 25kV and 35 kV using 795 and 1113 ACSR conductors and (iii) a vertical arrangement using horizontal post insulators for 46kV using conductors up to 477 ACSR. Sub-transmission lines operated at 15kV must be built for the 25kV class (or higher if future conversion to a higher class is planned).

This standard is applicable for line angles from zero degrees to 90 degrees. Engineering tables and construction drawings are provided to facilitate selection of the proper structure type, and the correct class of pole to accommodate a coordinated line design. Application of structure types, span lengths, or line angles beyond the limits established herein shall be considered a special case requiring special engineering solutions and should be referred to Distribution Standards or Sub-Transmission Engineering for appropriate solutions.

21.1 GRADE OF CONSTRUCTION

New sub-transmission lines shall be built to NESC Grade B.

When modifying existing sub-transmission lines built on wood poles to allow distribution or communications to share the same poles, NESC Grade C may be used where allowed by the NESC. NESC Grade C is <u>not</u> allowed where the sub-transmission line crosses railroad tracks, limited-access highways or navigable waterways requiring waterway crossing permits. Where a communication line is below a sub-transmission line (at a crossing or on the same structures), NESC Grade C construction is allowed only if both of the following conditions are fulfilled: (a) the supply voltage will be promptly removed from the communications plant by denergization or other means, both initially and following subsequent circuit-breaker operations in the event of a contact with the communications plant, and (b) the voltage and current impressed on the communications plant in the event of a contact with the supply conductors are not in excess of the safe operating limit of the communications-protective devices.

When modifying existing sub-transmission lines built on structures other than wood poles, NESC Grade B shall be used.

OVERHEAD SUB-TRANSMISSION				
OMP		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	21-1	7/17	

21.2 LOADING CONDITIONS

21.2.10 NESC Heavy District Loading Conditions (NESC Rule 250B Loads)

All poles, cross arms, guys, and insulators must be designed to withstand the load conditions in Table 1 multiplied by the load factors in Table 2 without exceeding the permitted stress levels of the material when multiplied by the strength factor in Table 3.

Table 1
NESC Heavy District Loading Conditions –
All Structures

Condition	Temp	lce	Wind
	°F / °C	(Inches)	(mph / PSF)
NESC Heavy (NESC Rule 250B)	0 / -20	0.5	40 / 4.0

Table 2 Load Factors for Structures, Crossarms, Support Hardware, Guys, Foundations, and Anchors to be Used with the Strength Factors of Table 3

		Grad	Grade C	
Load Factor	Grade B	At Crossings	Elsewhere	
Vertical Loads	1.50	1.90	1.90	
Transverse Loads				
Wind	2.50	2.20	2.20	
Wire Tension	1.65	1.30	1.30	
Longitudinal Loads				
In General	1.10	No	No	
		requirements	requirements	
At Deadends	1.65	1.30	1.30	

Table 3
Strength Factors for Structures, Crossarms, Braces, Support Hardware, Guys,
Foundations, and Anchors with the Load Factors of Table 2

Strength Factor	Grade B	Grade C
Metal Braces	1.0	1.0
Wood Poles, Crossarms and Braces	0.65	0.85
Fiberglass Crossarms	1.0	1.0
Support Hardware	1.0	1.0
Guy Wire	0.9	0.9
Guy Anchor	1.0	1.0

21.2.20 Extreme Wind Loading Conditions (NESC Rule 250C Loads)

For structures that extend more than 60 feet above ground, the poles, cross arms, guys, and insulators must be designed to withstand the load conditions in Table 4 multiplied by the load factors in Table 5 without exceeding the permitted stress levels of the material when multiplied by the strength factor in Table 6. In general, this will apply only for wood poles 70 feet long or greater.

For exact boundaries for the Extreme Wind (NESC Rule 250C) loads see NESC Figure 250-2(e).

	OVERHEAD SUB-TRANSMISSION				
	ISSUE PAGE NUMBER				
Busi	7/12 ness Use	21-2	OVERHEAD CONSTRUCTION STANDARD	ppl	

Table 4
Extreme Wind Loading Conditions –
Structures Exceeding 60 Feet Above Ground

NESC Extreme Wind (NESC Rule 250C)	Temp °F / °C	lce (Inches)	Wind (mph / PSF)
Northern RI	60 /15	0	110 / 31.0
Southern RI	60 /15	0	120 / 36.9

Table 5
Load Factors for Structures, Crossarms, Support Hardware, Guys,
Foundations, and Anchors to be Used with the Strength Factors of Table 6

	<u> </u>	
Load Factor	Grade B	Grade C
Transverse Wind Loads	1.00	0.87
All Other Loads	1.00	1.00

Table 6
Strength Factors for Structures, Crossarms, Braces, Support Hardware, Guys,
Foundations, and Anchors with the Load Factors of Table 5

Strength Factor	Grade B	Grade C
Metal Braces	1.0	1.0
Wood Poles, Crossarms and Braces	0.75	0.75
Fiberglass Crossarms	1.0	1.0
Support Hardware	1.0	1.0
Guy Wire	0.9	0.9
Guy Anchor	1.0	1.0

21.2.30 Extreme Ice With Concurrent Wind Loading Conditions (NESC Rule 250D Loads)

For structures that extend more than 60 feet above ground, the poles, cross arms, guys, and insulators must be designed to withstand the load conditions in Table 7 multiplied by the load factors in Table 8 without exceeding the permitted stress levels of the material when multiplied by the strength factor in Table 9. In general, this will apply only for wood poles 70 feet long or greater.

For exact boundaries for the Extreme Ice with Concurrent Wind (NESC Rule 250D) loads see NESC Figure 250-3(b).

Table 7
Extreme Ice With Concurrent Wind Loading Conditions –
Structures Exceeding 60 Feet Above Ground

NESC Extreme Ice With Wind (NESC Rule 250D)	Temp	lce	Wind
	°F / °C	(Inches)	(mph / PSF)
Rhode Island	30 / 0	0.75	50 / 6.4

OVERHEAD SUB-TRANSMISSION					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	21-3	7/12		

Table 8
Load Factors for Structures, Crossarms, Support Hardware, Guys,
Foundations, and Anchors to be Used with the Strength Factors of Table 9

Load Factor	Grade B	Grade C
All Loads	1.00	1.00

Table 9
Strength Factors for Structures, Crossarms, Braces, Support Hardware, Guys,
Foundations, and Anchors with the Load Factors of Table 8

Strength Factor	Grade B	Grade C
Metal Braces	1.0	1.0
Wood Poles, Crossarms and Braces	0.75	0.75
Fiberglass Crossarms	1.0	1.0
Support Hardware	1.0	1.0
Guy Wire	0.9	0.9
Guy Anchor	1.0	1.0

21.3 SPLICING AND DEADENDING

All in-line splices shall be made with full tension rated compression connectors. For ACSR conductors below 336.4 Kcmil, one die system of compression fittings are specified. For ACSR conductor at 336.4 Kcmil and greater, two piece splices shall be used. Single tube full tension compression splices are used for AAC, AAAC and all other non-ACSR conductors. Automatic splices are excluded from use.

All deadends shall use bolted connectors. Jumper loop connections shall be fired on wedge or partial tension compression splices. For existing lines that contain compression deadends, connection hardware may be maintained for joining the jumper terminal to the deadend body using stainless steel hardware, Belleville washers, and #2 EJC Electrical Joint Compound (NG9D).

21.4 ANCHORS

The preferred anchor type for this standard is the screw anchor. See Section 3 for additional information.

21.5 CONDUCTORS

A number of conductors are preferred for use in the construction of new sub-transmission lines. These include:

- 1/0, 7 Strand, Bare 6201-T81 AAC, "Azuza"
- 336.4 Kcmil, 19 Strand, Bare AAC, "Tulip"
- 336.4 Kcmil, 18/1 Stranding, Bare ACSR, "Merlin"
- 477.0 Kcmil, 19 Strand, Bare AAC, "Cosmos"
- 477.0 Kcmil. 26/7 Stranding, Bare ACSR, "Hawk"
- 795.0 Kcmil, 37 Strand, Bare AAC, "Arbutus"
- 795.0 Kcmil, 54/7 Stranding, Bare ACSR, "Condor"
- 1113.0 Kcmil, 54/19 Stranding, Bare ACSR, "Finch"

While not preferred, some tree wires may be used in the construction of new sub-transmission lines at 35kV and below where required. These conductors are more suitable for use in 35kV distribution lines. Consult Standards or Sub-transmission Engineering before using these conductors in a new sub-transmission line. These conductors include:

- 1/0, 7 Strand, Concentric Round 6201-T81 AAAC, 315 Mil Covered Tree Wire 35kV
- 477.0 Kcmil, 19 Strand, Compact AAC, 320 Mil Covered Tree Wire 35kV
- 795.0 Kcmil, 37 Strand, Compact AAC, 320 Mil Covered Tree Wire 35kV

Pages 21-401 through 21-418 contain detailed information for these conductors, including sag and tension information for these conductors. Structure selection and loading limit information in Section 21.7 Structure

OVERHEAD SUB-TRANSMISSION					
ISSUE	PAGE NUMBER		SAHZ		
7/17 21-4 CONSTRUCTION STANDARD PPI					

Selection of this standard are based on use of this sag and tension information. Other sags and tensions may be used, but the structure selection and loading limit information in Section 21.7 Structure Selection of this standard may not apply. When sags and tensions other than those contained in this standard are used, appropriate structure selection and loading limits must be developed meeting the requirements of Section 21.2 Loading Conditions above.

21.5.10 Sags and Tensions

All overhead lines must meet minimum clearance requirements of the NESC at the time the line is constructed.

For more information about maximum conductor operating temperatures, see Section 21.6 - Clearances of these standards.

For more details on maximum conductor operating temperatures and conductor ratings see pages 21-400 through 21-418.

21.5.10.1 Limiting Tensions

In the design of overhead sub-transmission lines, three limiting values of tension shall be observed:

- A. Initial Unloaded or Stringing Tension is that which will exist before the application of any external load or immediately after new conductors have been installed. The initial unloaded tension at 0°F/-18°C shall not exceed 35% of the rated breaking strength of the conductor.
- B. Maximum Design Tension is that which will exist on the occurrence of the maximum loading conditions specified in the NESC for the Heavy Loading District. These loading conditions are: (i) conductor temperature of 0°F/-18°C, (ii) radial ice on the conductor of 0.5 inches/12.5 mm, and (iii) wind pressure on the conductor of 4 pound per square foot/190 Pa. The maximum conductor tension under NESC Heavy Loading conditions, either initial or final, shall not exceed 50% of the rated breaking strength of the conductor. To limit structure loading conductor maximum design tensions shown in this book are limited to:
 - 4,000 lbs. for 1113 kcmil ACSR;
 - 3,500 lbs. for 795 kcmil ACSR;
 - 3,000 lbs. for 477 & 336 kcmil ACSR, and
 - 2,000 lbs. for all other sub-transmission conductors.
- C. Final Unloaded Tension is that which occurs on the conductor with no external loading but after the maximum design tension has been sustained for sufficient time to permit stretching to cease. The final unloaded tension at 0°F/-18°C shall not exceed 25% of the rated breaking strength of the conductor.

The sag tables show sags under various temperatures and loading conditions. New conductors strung to "Stringing" (Initial) values will have initial, maximum and final tensions as specified. The sag will increase under design loading, then change as shown in "Final" sags depending on temperature and loading.

The Initial Sag tables are based on the Ruling Span Method of calculation and the Final Sag tables are based on the Deadend Method, described below. If different Initial or Final Sags are required, contact Standards or Sub-transmission Engineering.

OVERHEAD SUB-TRANSMISSION					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	21-5	7/12		

21.5.10.2 Deadend or Uniform Spans

Sag tables based on deadend span methods assume that there is only one span or that all spans are the same length. This method is useful for short spans in urban areas where the spacing is reasonably uniform. If long spans in a section of line are sagged according to a deadend table, short spans in the same section will have a sag value that may or may not correspond with the table. For this reason, it is customary to sag a span of average length near the center of the line and to recognize that there may be slightly more or less sag in the longer and shorter spans than is indicated by the tables.

In order to determine the sag value for a specific span length, multiply the ruling span sag value by the ratio provided in Table 10 for the corresponding actual span length. In the event that the needed actual span length is not provided in this table, a method for determining the resultant ratio value is provided below.

Table 10
Ratio of Deadend Span Sag to Sags at Other Span Lengths with Same Tension

ACTUAL	DEADEND SPAN										
SPAN	50'	75'	100'	125'	150'	175'	200'	225'	250'	275'	300'
100'	4.00	1.78	1.00	0.64	0.44	0.33	0.25	0.20	0.16	0.13	0.11
110'	4.84	2.15	1.21	0.77	0.54	0.40	0.30	0.24	0.19	0.16	0.13
120'	5.76	2.56	1.44	0.92	0.64	0.47	0.36	0.28	0.23	0.19	0.16
130'	6.76	3.00	1.69	1.08	0.75	0.55	0.42	0.33	0.27	0.22	0.19
140'	7.84	3.48	1.96	1.25	0.87	0.64	0.49	0.39	0.31	0.26	0.22
150'	9.00	4.00	2.25	1.44	1.00	0.73	0.56	0.44	0.36	0.30	0.25
160'	10.24	4.55	2.56	1.64	1.14	0.84	0.64	0.51	0.41	0.34	0.28
170'	11.56	5.13	2.89	1.85	1.28	0.94	0.72	0.57	0.46	0.38	0.32
180'	12.96	5.76	3.24	2.07	1.44	1.06	0.81	0.64	0.52	0.43	0.36
190'	14.44	6.42	3.61	2.31	1.60	1.18	0.90	0.71	0.58	0.48	0.40
200'	16.00	7.11	4.00	2.56	1.78	1.31	1.00	0.79	0.64	0.53	0.44
210'	17.64	7.84	4.41	2.82	1.96	1.44	1.10	0.87	0.71	0.58	0.49
220'	19.36	8.60	4.84	3.10	2.15	1.58	1.21	0.96	0.77	0.64	0.54
230'	21.16	9.40	5.29	3.39	2.35	1.73	1.32	1.04	0.85	0.70	0.59
240'	23.04	10.24	5.76	3.69	2.56	1.88	1.44	1.14	0.92	0.76	0.64
250'	25.00	11.11	6.25	4.00	2.78	2.04	1.56	1.23	1.00	0.83	0.69

Method for Determining Ratio:

- Choose Deadend Span.
- 2. Find deadend span sag from sag table for temperature and deadend span desired.
- 3. Multiply deadend span sag by above ratio for actual spans as line is laid out to obtain actual span.
- 4. For deadend span to actual span ratio other than those listed above:

$$RATIO = \frac{\left(ACTUAL\ SPAN\right)^2}{\left(DEADEND\ SPAN\right)^2}$$

21.5.10.3 Ruling Spans

This is a calculated span length for which the conductor tension, under changes in temperature and loading, best represents the average tension in the conductor in a particular series of spans between deadends. Ideally, a line should be installed in such a way that all spans of the line have equal horizontal line tension. If this is done, longitudinal forces on pole tops between spans are

OVERHEAD SUB-TRANSMISSION						
ISSUE	ISSUE PAGE NUMBER					
7/12	OVERHEAD					

theoretically zero. Deadend poles and poles located at bends in the line will typically require guying in order to counteract the line tension.

Sag tables based on the ruling span method recognize variations in span length. This method assumes that the line will be strung to uniform tension. If this is done, all spans will have initial sags that are very near the values in the table. After the conductors are tied into place, however, and after ice and wind loads stretch the wires, the tension may not be uniform and the sags may vary from the calculated values. If the actual spans are much longer or shorter than the ruling span, the tension and sags may be different than the calculations.

The ruling span can most accurately be determined through the following equation:

Ruling Span =
$$\sqrt{\frac{(L_1^3 + L_2^3 + L_3^3 + ... L_N^3)}{(L_1 + L_2 + L_3 + ... L_N)}}$$

Where L1, L2, L3, etc. are the lengths of the first, second, third, etc., spans between deadends.

Spans that are longer than 150% of the average should be avoided or should be sagged independently and guyed to hold the unbalanced tension. All new standard construction for tension should conform to the Company's design which limits tension to 50% of the conductor rated breaking strength by following the above mentioned ruling span calculation.

21.5.10.4 Slack Spans

When guys cannot be installed on the end pole of a line, they may be placed on an adjacent pole. A slack span should then be installed to the end pole. Slack spans may also be necessary for other applications. They are not recommended if there is any way of avoiding them, but when used, calculations should be made as follows:

String Sag in Feet =
$$\frac{W \times L^2}{8 \times T}$$

Where,

W = Total loaded weight lbs./ft.L = Total length of span in ft.

T = Tension in pounds.

(See Section 2-Poles / Hardware for strength required in poles.)

Example:

50 foot span, 3-336.4 kcmil bare AAC to be deadended on an un-guyed Class 5 pole. Use T = 200 lb. per conductor.

W = 1.48 lbs./foot (from Page 6-109)

L = 50 feet (span length)

T = 200 lbs.

$$S = \frac{W \times L^2}{8 \times T} = \frac{1.48 \times 50^2}{8 \times 200} = \frac{3700}{1600} = 2.3125 Feet$$

Sag the conductor at 2.31 feet, at normal temperature. This approximation assumes that the conductors will have 2.31 feet of sag at 0°F/-18°C when subject to ice and wind.

OVERHEAD SUB-TRANSMISSION OVERHEAD CONSTRUCTION STANDARD OVERHEAD 21-7 7/12

21.5.20 Ampacity

Current in overhead line conductors should be limited so that conductors will not be severely annealed or damaged and that clearances are not exceeded. Any line that is desired to be operated at the elevated operating temperature permitted for emergency conditions shall be assessed to verify that available clearances are present to account for the resulting additional sag as outlined in each respective conductor data table. Minimum clearances, outlined in Section 21.6 – Clearances, shallnot be compromised.

To protect conductors from damage caused by excessive heating, the maximum conductor operating temperature (MCOT) for sub-transmission lines shall not exceed the following limits under the design conditions of Table 11:

- 284°F/140°C for bare ACSR conductor,
- 212°F/100°C for bare AAC or AAAC conductor,
- 167°F/75°C for covered conductors,

Table 11
Ampacity Design Parameters

SPECIFICATION	SUMMER	WINTER
Ambient Air Temperature (°C)	100°F/37.7°C	50°F/10°C
Wind Speed (FT. / SEC.)	3 FEET/SEC.	3 FEET/SEC.
Angle between Wind and Conductor	90°	90°
Coefficient of Emissivity	0.75	0.75
Coefficient of Absorption	0.75	0.75
Climatic Data Record (CDR) elevation above sea level (FT.)	914.2125 FEET	914.2125 FEET
Conductor Direction	North – South	North – South
CDR Latitude in Degrees	42°	42°
Solar Heating	12:00 PM (noon)	12:00 PM (noon)
Atmosphere	CLEAR	CLEAR
Conductor Resistance in Ohm/mi. for the Low Temperature @ 77°F/25°C	Conductor Specific – In Accordance with Low Conductor Temperature	Conductor Specific – In Accordance with Low Conductor Temperature
Conductor Resistance in Ohm/mi. for the High Temperature @ 167°F/75°C	Conductor Specific – In Accordance with High Conductor Temperature	Conductor Specific – In Accordance with High Conductor Temperature

	OVERHEAD SUB-TRANSMISSION					
	ISSUE	PAGE NUMBER		SMA		
Busi	7/12 ness Use	21-8	OVERHEAD CONSTRUCTION STANDARD	ppl		

21.6 CLEARANCES

21.6.10 Clearance Requirements for Sub-Transmission Lines

Each vertical and horizontal clearance shall be observed, but within the limits of each other only.

The uniform clearance system contained in the NESC is based on the dimensions of the expected activities in each area and the relative potential problem caused by each type of facility.

In general, vertical clearance requirements must be met during maximum sag conditions to provide for the expected activity beneath the line.

Horizontal clearance requirements must be met with the conductor at rest to provide for the expected activity alongside the line. Conductor "blowout" (wind displacement) is considered under certain conditions (refer to Sections 21.6.70, 21.6.100, 21.6.110 and 21.6.130 and page 21-33).

All clearances listed in this section are based on assumed criteria and should be used for general guidance only. If any actual clearances are found to be less than that given in the tables, they should be brought to the attention of the Distribution Engineering Services Department for further review.

21.6.20 <u>General</u>

21.6.20.1 Clearance Criteria for Sub-Transmission Lines

- A. Overhead sub-transmission lines shall be designed to maintain adequate clearances under ice loaded conditions and the line's maximum conductor operating temperature (MCOT). In no case shall a sub-transmission line be designed for a MCOT below 120°F/48.9°C.
- B. The required MCOT of the sub-transmission line shall be determined by the appropriate planning department.
- C. To protect conductors from damage caused by excessive heating, the required MCOT for the sub-transmission line shall not exceed the following limits:
 - i. 284°F/140°C for bare ACSR conductor,
 - ii. 212°F/100°C for bare AAC or AAAC conductor,
 - iii. 167°F/75°C for covered conductors,
 - iv. 120°F/50°C for spacer cable messengers and 167°F/75°C for spacer cable phase conductors (Phase conductor temperatures higher than 120°F/50°C are taken to have no influence in elevating messenger temperatures.), and
 - v. Shielded aerial cables 69 kV and below shall be designed to operate with the messenger at 120°F/50°C ambient (Phase conductor temperatures higher than 120°F/50°C are taken to have no influence in elevating messenger temperatures).
- D. <u>New Installations and Extensions</u> Clearances for the installation of all new sub-transmission lines and extensions to existing lines shall be in accordance with the latest edition of the NESC and the requirements of any applicable state or local laws, rules or regulations.
- E. <u>Existing Installations</u> Where an existing installation meets, or is altered to meet, the current NESC rules, such installation is considered to be in compliance with the current edition of the NESC and is not required to comply with any previous edition of the NESC.
- F. Existing installations, including maintenance replacements, that currently comply with prior editions of the NESC, need not be modified to comply with these standards except as may be required for safety reasons by the administrative authority.
- G. Where conductors or equipment are added, altered, or replaced on an existing structure, the structure or the facilities on the structure need not be modified or replaced if the resulting installation will be in compliance with either (a) the NESC rules that were in effect at the time of

OVERHEAD SUB-TRANSMISSION					
SMIZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	21-9	7/12		

the original installation, (b) the rules in effect in a subsequent edition of the NESC to which the installation has been previously brought into compliance, or (c) the rules in the latest edition of the NESC.

- H. Clearances listed in the following standards and tables are considered minimum requirements for new construction. In some instances clearances exceeding those given may be required (e.g. when mandated by local ordinances). Other design considerations applying to Company work and operating practices may result in clearances greater than NESC minimum clearances.
- I. Voltage is the root-mean-square (rms) potential difference between any two conductors or between a conductor and ground. Voltages are expressed in nominal values unless otherwise indicated. Nominal voltage is the value assigned to a system or circuit of a given voltage class for the purpose of convenient designation. Actual operating voltage of the system may vary above or below the nominal voltage.
- J. Sub-transmission voltages in the following tables are, unless otherwise noted, given as the nominal phase to phase operating voltage of the sub-transmission line. Voltages for other circuits in the following tables are, unless otherwise noted, given as the highest nominal phase to ground voltage for effectively grounded circuits and for other circuits where all ground faults are cleared by promptly de energizing the faulted section, both initially and following subsequent breaker operations. "Effectively grounded" means intentionally connected to earth through a ground connection or connections of sufficiently low impedance and having sufficient current-carrying capacity to limit the buildup of voltages to levels below that which may result in undue hazard to persons or to connected equipment. The voltage of a circuit that is not effectively grounded is the highest nominal voltage available between any two conductors on the circuit.
- K. Clearance is defined as the clear distance between two objects measured surface to surface.
- L. Spacing is defined as the distance between two objects measured center to center.
- M. Clearances for tree wire, covered conductor, and spacer cable conductor are taken as if they were bare conductors.
- N. Open conductors are defined as electric supply or communication construction in which the conductors are bare, covered or insulated and without grounded shielding, or individually supported at a structure either directly or with insulators.
- O. Electric supply lines are those conductors used to transmit electric energy and their necessary supporting or containing structures.

	OVERHEAD SUB-TRANSMISSION					
ISSUE	PAGE NUMBER		SMIZ			
7/12	21-10	OVERHEAD CONSTRUCTION STANDARD	ppl			

21.6.20.2 NESC Vertical Clearance Requirements Illustration – Rules 232 & 235

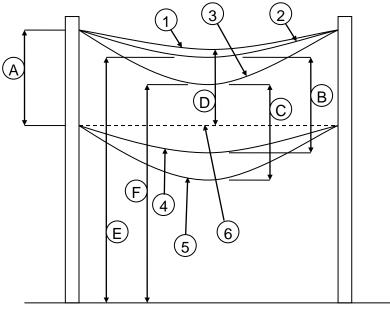


Figure 1

WIRES AND CABLES

- 1 Lowest sub-transmission conductor at 60°F/15.6°C, final unloaded sag.
- 2 Lowest sub-transmission conductor at the greater of its maximum conductor operating temperature (MCOT) or 120°F/48.9°C, final unloaded sag.
- 3 Lowest sub-transmission conductor at 32°F/0°C, final loaded sag, with 1/2" radial ice and no wind.
- 4 Next wire or cable (supply or communication space) below sub-transmission at 50°F/10°C, final unloaded sag.
- 5 Next wire or cable (supply or communication space) below sub-transmission at 32°F/0°C, final unloaded sag.
- 6 Straight line between attachment points of communications space wire or cable below subtransmission.

CLEARANCES

- A Minimum vertical clearance required at pole between lowest sub-transmission conductor and next wire or cable (supply or communication space) below it.
- B Minimum vertical clearance required anywhere in span between lowest sub-transmission conductor at condition 2 above and next wire or cable (supply or communication space) below it at condition 4 above (ambient condition corresponding to winter rating).
- C Minimum vertical clearance required anywhere in span between lowest sub-transmission conductor at condition 3 above and next wire or cable (supply or communication space) below it at condition 5 above (ambient condition corresponding to NESC Heavy Loading condition).
- D For spans greater than 150 feet, minimum vertical clearance required anywhere in span between lowest sub-transmission conductor at condition 1 above and a straight line between attachment points of a communications space wire or cable.
- E Minimum vertical clearance above ground required anywhere in span below lowest subtransmission conductor at condition 2 above.
- F Minimum vertical clearance above ground required anywhere in span below lowest subtransmission conductor at condition 3 above.

OVERHEAD SUB-TRANSMISSION					
SMIZZ		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	21-11	7/12		

21.6.30 Relative Levels

21.6.30.1 At Crossings or Conflicts

Where supply lines of different voltage classifications cross each other or structure conflict exists, the higher-voltage lines should, where practical, be carried at the higher level.

21.6.30.2 For Wires, Conductors, or Cables Carried On The Same Supporting Structure

Where supply lines, all owned by PPL, of different voltage classifications are on the same structures, the conductors of higher voltage should, where practical, be placed above those of lower voltage.

21.6.40 Clearances Of Supporting Structures From Rail, Curb, Hydrant & Other Objects

Poles for overhead sub-transmission lines shall be located with adequate clearance to railroad and automobile traffic. The following table, Table 12, identifies NESC minimum requirements. These requirements should be exceeded if practicable. State and local authorities prefer that poles be set back as far as possible from the pavement edge, and behind guard rails, ditches, sidewalks, curbs, or other features that may help isolate poles from traffic. In any case, the approval of the authorities shall be obtained. To the extent practicable, avoid placing poles at exposed corners or similar locations where they are likely to be struck by motor vehicles or snow removal equipment.

Table 12 Clearance of Supporting Structures from Rail, Curb or Hydrant (Reference: NESC Rule 231)

Supporting structures ¹, support arms, attached equipment, and braces shall have the following clearances measured between the nearest parts of the objects concerned:

Objects	Minimum (Ft.)	Recommended (Ft.)	
A. Fire Hydrants	3 ^{2,3}	4 ²	
B. Streets, Roads, Highways ⁴	Horizontal Clearance for First 15 Feet Above Ground		
With street curbs (measured from street side of the curb) a. Arterial Streets which are primarily for through traffic b. Local Streets which are primarily for access to residences, businesses or other abutting properties	0.5 0.5	2 ^{2,5}	
2. With no curbs		See Footnote 6	
C. All Railroad Tracks	Horizontal Clearan Above the Nea		
	12 ⁷		

- 1. Supporting structures are defined as the main supporting unit, usually a pole or tower.
- 2. This clearance also applies to anchor guys and push braces.
- 3. EXCEPTION: Clearance may be reduced by agreement with the local fire authority.

OVERHEAD SUB-TRANSMISSION					
ISSUE	PAGE NUMBER		WIIV		
7/12	21-12	OVERHEAD CONSTRUCTION STANDARD	ppl		

- 4. Where a governmental authority exercising jurisdiction over structure location has issued a permit for, or otherwise approved, specific locations for supporting structures, that permit or approval shall govern.
- 5. Place the supporting structures as far as practical behind the curb within the road right of way.
- 6. Place the supporting structures a sufficient distance from the roadway to avoid contact by ordinary vehicles using the traveled way.
- 7. This may be reduced to 7 feet where the supporting structure is not the controlling obstruction, provided sufficient space for a driveway is left where the cars are loaded and unloaded.

21.6.50 <u>Vertical Clearances Of Wires, Conductors, and Cables Above Ground, Roadway, Rails, Etc.</u>

21.6.5.1 Generally Applicable Clearances

Clearances, found in Table 13, apply under the following conductor temperature and loading conditions, whichever produces the largest final sag:

- A. 120°F/50°C, no wind displacement,
- B. The maximum conductor temperature for which the line is designed to operate, if greater than 120°F/50°C, with no wind displacement,
- C. 32°F/0°C, no wind displacement, with 0.5 inch radial thickness of ice.

Table 13

Minimum Vertical Clearance of Wires, Conductors, and Cables Above Ground, Roadways, or Rails
(Reference: NESC Table 232-1)

Nat	ture of Surface Underneath Wires, Conductors, or Cables	Grounded Guys ^{14,15}	25 kV (ft.)	35 kV (ft.)	46 kV (ft.)
	Where wires, conductors, or cables cross	over or over	rhang		
1.	Track rails of railroads (not using overhead electric supply conductors) ^{2, 16, 22}	23.5	26.7	27.0	27.4
2.	Roads, streets, and other areas subject to truck traffic ²³	15.5	18.7	19.0	19.4
3.	Driveways, parking lots, and alleys ²³	15.5 ¹³	18. 7	19.0	19.4
4.	Land traversed by vehicles, such as cultivated, grazing, forest, orchards, etc. ²⁶	15.5	18. 7	19.0	19.4
5.	Spaces and ways subject to pedestrians or restricted traffic only ⁹	9.5	14. 7	15.0	15.4
Where wires, conductors or cables run along highway or rights-of-way but do not overhang the roadway					
6.	Roads, streets, or alleys	15.5	18. 7	19.0	19.4
7.	Roads in rural districts where it is unlikely that vehicles will be crossing under the line	13.5 ¹⁰	16. 7	17.0	17.4

FOOTNOTES:

Note: Footnotes 1, 3-8, 11-12, 17-21, and 24-25 from NESC Table 232-1 are not used.

2. For wires, conductors, or cables crossing over mine, logging, or similar railways that handle only cars lower than standard freight cars, the clearance may be reduced by an amount equal to the difference in height between the highest loaded car handled and 20 feet, but the clearance shall not be reduced below that required for street crossings.

OVERHEAD SUB-TRANSMISSION							
	WHZ.		PAGE NUMBER	ISSUE			
se	ppl	OVERHEAD CONSTRUCTION STANDARD	21-13	7/17			

Supersedes 7/12 Issue – Removed references to 69kV from Table 14

- 9. Spaces and ways subject to pedestrians or restricted traffic only are those areas where riders on horseback or other large animals, vehicles, or other mobile units exceeding a total height of 8 feet are prohibited by regulation or permanent terrain configurations or are otherwise not normally encountered nor reasonably anticipated.
- 10. Where a sub-transmission line along a road is located relative to fences, ditches, embankments, etc., so that ground under the line would not be expected to be traveled except by pedestrians, the clearances for guys may be reduced to 9.5 feet.
- 13. Where this construction crosses over or runs along alleys, driveways, or parking lots not subject to truck traffic, this clearance may be reduced to 15 feet.
- 14. Ungrounded guys and ungrounded portions of span guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to slack conductor or guy.
- 15. Insulated anchor guys may have the same clearance as grounded guys. Insulators shall be installed as follows: (a) all guy insulators or span-wire insulators shall be located at a position such that the bottom of the insulator shall be not less than 2.45 m (8 ft) above the ground if the guy or span wire is broken below the insulator, (b) insulators shall be so placed that, in case any guy or span-wire contacts, or is contacted by, an energized conductor or part, the voltage will not be transferred to other facilities on the structure(s), and (c) insulators shall be so placed that in case any guy or span wire sags down upon another, the insulators will not become ineffective.
- 16. Adjacent to tunnels and overhead bridges that restrict the height of loaded rail cars to less than 20 ft, these clearances may be reduced by the difference between the highest loaded rail car handled and 20 ft, if mutually agreed to by the parties at interest.
- 22. See Section 7.7 for the required horizontal and diagonal clearances to rail cars.
- 23. For the purpose of this Rule, trucks are defined as any vehicle exceeding 8 feet in height. Areas not subject to truck traffic are areas where truck traffic is not normally encountered nor reasonably anticipated.
- 26. When designing a line to accommodate oversized vehicles, these clearance values shall be increased by the difference between the known height of the oversized vehicle and 14 feet.

21.6.5.2 Clearances required by local Administrative Authorities

The clearances shall not be less than required by the Administrative Authority (Table 14).

Table 14

Vertical Clearance of Wires, Conductors, and Cables Above Ground, Railroads or Water Surfaces
Compliance With Administrative Authority

Nature of surface underneath wires, conductors or cables	Grounded guy, span or surge protection wire (FT)	Open Supply Conductors 23 kV to 46 kV (FT)
Corp of Engineers – Navigable Waters	Requirements not available	27
Railroad Tracks	27	33

21.6.60 Vertical Clearance Of Wires, Conductors and Cables Above Water Surfaces

Vertical clearances of sub-transmission supply wires and conductors over waterways shall not be less than those shown on Table 15: Vertical Clearance Above Water Surfaces. For canals and

	OVERHEAD SUB-TRANSMISSION					
ISSUE	PAGE NUMBER		SMA			
7/17	21-14	OVERHEAD CONSTRUCTION STANDARD	ppl			

© 2022 PPL Corporation. All rights reserved

Table 15 Vertical Clearance Above Water Surface (Reference: NESC Table 232-1)

Nature of Surface Underneath Wires, Conductors, or Cables	Ref. Height (ft.)	Grounded Guys ^{14,15} (ft.)	25 kV (ft.)	35 kV (ft.)	46 kV (ft.)
Where wires, conductors	s, or cables c	ross over or ov	erhang	L	
Water areas not suitable for sailboating or where sailboating is prohibited ²¹	12.5	14	17.2	17.5	17.9
2. Water areas suitable for sailboating including lakes, ponds, reservoirs, tidal waters, rivers, streams, and canals with an unobstructed surface area of: 17, 18, 19, 20, 21					-
a. Less than 20 acres	16	17.5	20.7	21	21.4
b. Over 20 to 200 acres	24	25.5	28.7	29	29.4
c. Over 200 to 2000 acres	30	31.5	34.7	35	35.4
d. Over 2000 acres	36	37.5	40.7	41	41.4
3. Established boat ramps and associated rigging areas; areas posted with sign(s) for rigging or launching sailboats		Clearance aboveground shall be 5 ft greater than in 2 above, for the type of water areas served by the launching site			

- NOTE: Footnotes 1-13, 16, and 22-25 from NESC Table 232-1 are not used.

 Ungrounded guys and ungrounded portions of span guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy. 14. Ungrounded guys and ungrounded portions of span guys between guy insulators shall have guy.
- guy.

 15. Insulated anchor guys may have the same clearance as grounded guys. Insulators shall be installed as follows: (a) all guy insulators or span-wire insulators shall be located at a position such that the bottom of the insulator shall be not less than 2.45 m (8 ft) above the ground if the guy or span wires broken below the insulator, (b) insulators shall be so placed that, in case any guy or span-wire contacts, or is contacted by, an energized conductor or part, the voltage will not be transferred to other facilities on the structure(s), and (c) insulators shall be so placed that in case any guy or span wire sags down upon another, the insulators will not become ineffective.
- 17. For controlled impoundments, the surface area and corresponding clearances shall be based upon the design high-water level.
- 18. For uncontrolled water flow areas, the surface area shall be that enclosed by its annual high-water mark. Clearances shall be based on the normal flood level; if available, the 10-year flood level may be assumed as the normal flood level.
- 19. The clearance over rivers, streams, and canals shall be based upon the largest surface area of any 1 mile long segment that includes the crossing. The clearance over a canal, river, or stream normally used to provide access for sailboats to a larger body of water shall be the same as that required for the larger body of water.
- 20. Where an over-water obstruction restricts vessel height to less than the applicable reference height given in Table 15, the required clearance may be reduced by the difference between the reference

OVERHEAD SUB-TRANSMISSION					
OMP		PAGE NUMBER	ISSUE		
ppl	OVERHEAD CONSTRUCTION STANDARD	21-15	7/17		

height and the over-water obstruction height, except that the reduced clearance shall not be less than that required for the surface area on the line crossing side of the obstruction.

21. Where the US Army Corps of Engineers, or the state, or surrogate thereof has issued a crossing permit, clearances of that permit shall govern, if greater.

21.6.70 Clearances Over or Near Swimming Areas

Sub-transmission supply wires and conductors should not pass over a swimming pool or the surrounding land within 25 feet around the edge of the pool. If such crossings cannot be reasonable avoided, the clearances shown below in Table 16 shall be obtained.

For all spans, horizontal clearances must be increased to allow for conductor "blowout" as shown on Page 21-33.

21.6.70.1 Swimming Pools

Where sub-transmission lines cross over a swimming pool or the surrounding area, the clearances in any direction shall not be less than those shown in Table 5 below. This rule does not apply to a pool enclosed by a solid or screened permanent structure.

21.6.70.2 Beaches and Waterways Restricted to Swimming

Where sub-transmission lines cross over a supervised swimming beach, where rescue poles are used by lifeguards, the clearances in any direction shall not be less than those shown in Table 16 below. Where rescue poles are not used, the clearances shall be as specified in Section 21.6.50.

21.6.70.3 Waterways Subject to Water Skiing

Where sub-transmission lines cross over a waterway subject to water skiing, the clearances shall be as specified in Section 21.6.60.

Table 16
Clearance to Swimming Pools
(Reference: NESC Table 234-3, Figure 234-3, Rules 232 and 234)

1/2	Grounded	25 kV	35 kV	46 kV
op Qes	Guys 1,2	(ft.)	(ft.)	(ft.)
မွှိ A. Clearance in any direction from the water be level, edge of pool, base of diving platform, or anchored raft	22	25.2	25.5	25.9
B. Clearance in any direction to the diving platform, tower, water slide, or other fixed, pool-related structures	14	17.2	17.5	17.9
V. Vertical clearance to adjacent land	Clearances specified in Section 21.6.50 & 21.6.60			

NOTE: A, B, and V are shown in Figure 2, below.

- 1. Ungrounded guys and ungrounded portions of guys between insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.
- 2. Insulated anchor guys may have the same clearance as grounded guys. Insulators shall be installed as follows: (a) all guy insulators or span-wire insulators shall be located at a position such that the bottom of the insulator shall be not less than 2.45 m (8 ft) above the ground if the guy or span wire is

OVERHEAD SUB-TRANSMISSION					
ISSUE	PAGE NUMBER		SMIZ.		
7/17	21-16	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved.

broken below the insulator, (b) insulators shall be so placed that, in case any guy or span-wire contacts, or is contacted by, an energized conductor or part, the voltage will not be transferred to other facilities on the structure(s), and (c) insulators shall be so placed that in case any guy or span wire sags down upon another, the insulators will not become ineffective.

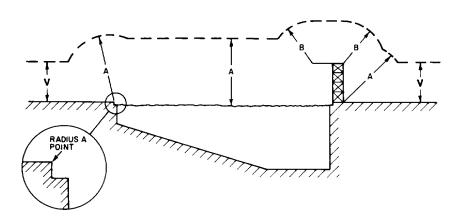
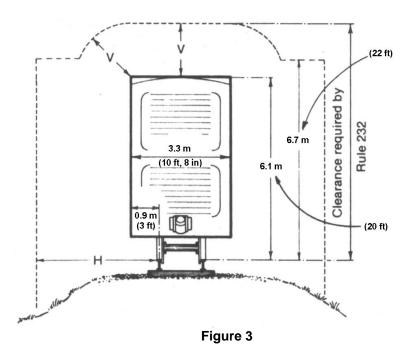


Figure 2

21.6.80 Vertical & Horizontal Clearance Of Wires, Conductors And Cables To Rail Cars

Where sub-transmission lines run along railroad tracks, the clearance in any direction shall not be less than that shown in Figure 3 and Table 17 below.

Table 17
Clearance to Rail Cars ¹
(Reference: NESC Figure 234-5 and Rule 234I)


	Grounded Guys ³	25 kV (ft.)	35 kV (ft.)	46 kV (ft.)
V	3.5	6.7	7.0	7.4
н	8.5	11.7	12.0	12.4

NOTE: V and H are shown in Figure 3, below.

- 1. If the Railroad crossed requires greater clearances than detailed in this Standard, the Railroad clearances shall apply.
- 3. Anchor guys shall not be located less than 12 feet from the nearest track rail. Insulated guys may have the same clearance as grounded guys. Insulators shall be installed as follows: (a) all guy insulators or span-wire insulators shall be located at a position such that the bottom of the insulator shall be not less than 2.45 m (8 ft) above the ground if the guy or span wire is broken below the insulator, (b) insulators shall be so placed that, in case any guy or span-wire contacts, or is contacted by, an energized conductor or part, the voltage will not be transferred to other facilities on the structure(s), and (c) insulators shall be so placed that in case any guy or span wire sags down upon another, the insulators will not become ineffective. Ungrounded guys and ungrounded portions of span guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to slack conductor or guy.

OVERHEAD SUB-TRANSMISSION							
	MID		PAGE NUMBER	ISSUE			
J _{se} p	pl	OVERHEAD CONSTRUCTION STANDARD	21-17	7/12			

4. For 69 kV, the clearance specified in Table 6 shall be increased 0.6 in for each 1000 ft in excess of 3300 ft above mean sea level.

21.6.90 <u>Vertical Clearance Of Equipment Cases and Rigid Live Parts Of Equipment Mounted On</u> Structures

Where sub-transmission lines have equipment cases or rigid live parts, the clearance of such equipment cases or rigid live parts shall not be less than that shown in Table 18 below.

OVERHEAD SUB-TRANSMISSION					
ISSUE	PAGE NUMBER		SMA		
7/17	21-18	OVERHEAD CONSTRUCTION STANDARD	ppl		

Table 18 (Reference: NESC Rule 232B, Table 232-2)

Note These vertical clearances above ground or roadway surfaces are for unguarded rigid live parts such as potheads, transformer bushings, surge arresters, and short lengths of connecting supply conductors which are not subject to variations in sag.

	Clearance Al	ove Groui	nd or Road	lway
Nature of Surface Below	Effectively Grounded Equipment Cases	Rigid Live Parts		
	(ft.)	25 kV (ft.)	35 kV (ft.)	46 kV (ft.)
1. Where rigid parts overhang:				
 a. Roads, streets and other areas subject to truck traffic.⁴ 	15	18.2	18.5	18.9
b. Driveways, parking lots and alleys.	15	18.2	18.5	18.9
Other land traversed by vehicles such as cultivated land, grazing land, forest, orchard, etc.	15.0 ⁷	18.2	18.5	18.9
d. Spaces and ways subject to pedestrians or restricted traffic only. ⁵	11.0 ⁷	14.2	14.5	14.9
Where rigid parts are along and within the limits of highways or other road rights-of-way but do not overhang the roadway.				
a. Roads, streets and alleys.	15.0 ⁷	18.2	18.5	18.9
Roads in rural districts where it is unlikely that vehicles will be crossing under the line.	13.0 ⁷	16.2	16.5	16.9
3. Water areas not suitable for sailboating or where sailboating in prohibited. ⁹	14	15.25	15.5	15.9

FOOTNOTES:

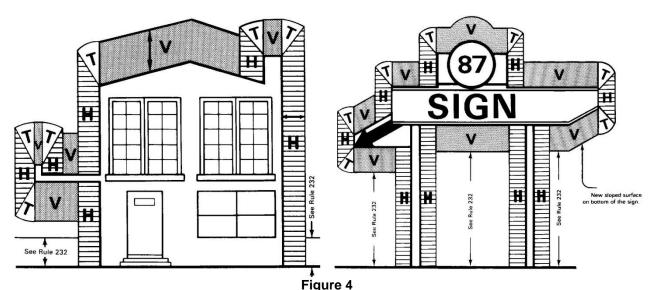
Note: Footnotes 1, 2, 3, 6, and 8 will not be used.

- 4. For the purpose of this rule, trucks are defined as any vehicle exceeding 8 ft in height. Areas not subject to truck traffic are areas where truck traffic is not normally encountered nor reasonably anticipated.
- 5. Spaces and ways subject to pedestrians or restricted traffic only are those areas where riders on horseback or other large animals, vehicles or other mobile units exceeding 8 ft in height, are prohibited by regulation or permanent terrain configurations or are otherwise not normally encountered nor reasonably anticipated.
- 7. Effectively grounded switch handles and supply or communication equipment cases (such as fire alarm boxes, control boxes, communication terminals, meters, or similar equipment cases) may be mounted at a lower level for accessibility provided such cases do not unduly obstruct a walkway. Such switch handles and equipment cases shall be located so as not to serve as a means of approach to unguarded rigid live parts by unqualified persons.

OVERHEAD SUB-TRANSMISSION							
WW.		PAGE NUMBER	ISSUE				
ppl	OVERHEAD CONSTRUCTION STANDARD	21-19	7/17				

9. Where the US Army Corps of Engineers, or the state, or surrogate thereof has issued a crossing permit, clearance of that permit shall govern.

21.6.100 <u>Clearance Of Wires, Conductors, Cables and Unguarded Live Parts To Buildings, Signs, Billboards, Chimneys, Radio and Television Antennas, Tanks and Other Installations</u> Except Bridges


Sub-transmission conductors should not be installed over buildings. There are cases, however, especially for temporary work, where such construction cannot be avoided. The clearance of sub-transmission lines over or near buildings and appurtenances shall be as much as is practicable. In no case shall it be less than shown below.

For open supply conductors, the minimum vertical and horizontal clearances shown in Table 19 shall apply under whichever of the following conditions of conductor temperature and loading produces the closest approach:

- (a) 120°F, no wind displacement, final sag.
- (b) The maximum conductor temperature for which the line is designed to operate, no wind displacement, final sag.
- (c) 32°F, no wind displacement, with ½" radial thickness of ice, final sag.
- (d) The minimum conductor temperature for which the line is designed to operate, no wind displacement, initial sag.

For open supply conductors, the minimum horizontal clearances shown in Table 20 shall apply with the wires, conductors or cables displaced from rest by a 6 lb/ft2 wind at final sag at 60°F. The displacement of the wires, conductors or cables shall include the displacement of suspension insulators. If the highest wire, conductor or cable is installed 60 ft or more above grade, the displacement of the wires, conductors or cables shall include the deflection of a flexible structure.

The transition between vertical and horizontal clearance requirements shall be as shown in Figure 4 below.

Regions Where Conductors Are Prohibited: H = Horizontal; V = Vertical; T = Transitional = Vertical (Arc)

	OVERHEAD SUB-TRANSMISSION					
ISSUE	PAGE NUMBER		SMIZZ			
7/12	21-20	OVERHEAD CONSTRUCTION STANDARD	ppl			

Business Use

Table 19
Clearance of Wires, Conductors, Cables and Unguarded Rigid Live Parts Adjacent But Not
Attached to Buildings And Other Installations Except Bridges
(Reference: NESC Tables 234-1 and Rules 232 and 234)

Clearance of:	Grounded Guys	Unguarded rigid live parts, ungrounded equipment cases, ungrounded guys exposed to live parts		Open supply conductors			
	(ft.)	25 kV (ft.)	35 kV (ft.)	46 kV (ft.)	25 kV (ft.)	35 kV (ft.)	46 kV (ft.)
1. Buildings							
a. Horizontal							
(1) To walls, projections, and guarded windows	4.5 ^{2,7}	7.2 ²	7.5 ²	7.9 ²	7.7 ^{2,10,11}	8.0 ^{2,10,11}	8.4 ^{2,10,11}
(2) To unguarded windows ⁸	4.5	7.2	7.5	7.9	7.7 10,11	8.0 10,11	8.4 10,11
(3) To balconies and areas readily accessible to pedestrians ³	4.5	7.2	7.5	7.9	7.7 10,11	8.0 10,11	8.4 10,11
b. Vertical ¹⁴							
 Over or under roofs or projections not readily accessible to pedestrians ³ 	3	12.2	12.5	12.9	12.7	13	13.4
(2) Over/under balconies and roofs readily accessible to pedestrians ³	10.5	13.2	13.5	13.9	13.7	14	14.4
(3) Over roofs accessible to vehicles but not subject to truck traffic ⁶	10.5	13.2	13.5	13.9	13.7	14	14.4
(4) Over roofs accessible to truck traffic ⁶	15.5	18.2	18.5	18.9	18.7	19	19.4
 Signs, chimneys, billboards, radio and TV antennas, tanks, and other installations not classified as buildings or bridges 							
a. Horizontal ⁴							
(1) To portions that are readily accessible to pedestrians ³	4.5	7.2 ²	7.5 ²	7.9 ²	7.7 10,11	8.0 10,11	8.4 10,11
(2) To portions that are not readily accessible to pedestrians ³	3	7.2 ²	7.5 ²	7.9 ²	7.7 ^{2,10,11}	8.0 ^{2,10,11}	8.4 ^{2,10,11}
b. Vertical							
(1) Over/under catwalks and other surfaces upon which personnel walk	10.5	13.2	13.5	13.9	13.7	14	14.4
(2) Over/under other portions of such installations ⁴	3	7.7	8	8.4	8.2	8.5	8.9
3. Clearance from other supporting structures ¹⁵							
a. Horizontal (no wind)	3	5	5	5	5	5	5
b. Vertical	2	5.5	5.5	5.5	5.5	5.5	5.5

OVERHEAD SUB-TRANSMISSION						
WIM		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	21-21	7/16			

FOOTNOTES:

Note: Footnote 1 is not used.

- 2. Where available space may not permit this value, the clearance may be reduced by 2 feet provided the wires, conductors, or cables, including splices and taps, and unguarded live parts have a covering that provides sufficient dielectric strength to limit the likelihood of a short circuit in case of momentary contact with a structure or building.
- 3. A roof, balcony, or area is considered readily accessible to pedestrians if it can be casually accessed through a doorway, ramp, window, stairway, or permanently mounted ladder by a person on foot who neither exerts extraordinary physical effort nor employs special tools or devices to gain entry. A permanently mounted ladder is not considered a means of access if its bottom rung is 8 feet or more from the ground or other permanently installed accessible surface.
- 4. The required clearances shall be to the closest approach of motorized signs or moving portions of the signs, billboards, chimneys, radio and television antennas, tanks, and other installations except bridges.
- 5. Ungrounded guys and ungrounded portion of guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed to a slack conductor or guy.
- 6. For purpose of this rule, trucks are defined as any vehicle exceeding 8 feet in height.
- 7. This clearance may be reduced to 3 inches for the grounded portions of guys.
- 8. Windows not designed to open may have the clearances permitted for walls and projections.
- 10. The clearance at rest shall be not less than the value shown in this table. Also, when the conductor or cable is displaced by wind, the clearance shall be not less than the minimum clearances shown in Table 9, below.
- 11. Where available space will not permit this value, the clearance may be reduced to 7feet for conductors limited to 8.7 kV to ground.
- 13. The anchor end of insulated anchor guys may have the same clearance as grounded guys. Insulators shall be installed as follows: (a) all guy insulators or span-wire insulators shall be located at a position such that the bottom of the insulator shall be not less than 2.45 m (8 ft) above the ground if the guy or span wire is broken below the insulator, (b) insulators shall be so placed that, in case any guy or span-wire contacts, or is contacted by, an energized conductor or part, the voltage will not be transferred to other facilities on the structure(s), and (c) insulators shall be so placed that in case any guy or span wire sags down upon another, the insulators will not become ineffective.
- 14. For clearances above railings, walls, or parapets around balconies or roofs, use the clearances required for roofs not accessible to pedestrians.
- 15. Other supporting structures include those to which the conductor is not attached, such as lighting support, a traffic signal support, and a supporting structure of another line.

OVERHEAD SUB-TRANSMISSION						
ISSUE	PAGE NUMBER		SMIZZ			
7/16	21-22	OVERHEAD CONSTRUCTION STANDARD	ppl			

Table 20 Horizontal Clearance of Wires, Conductors, Cables Under Wind Displacement Conditions

Conductor or Cable	Horizontal Clearance Required when Displaced by Wind				
Conductor or Cable	25 kV	35 kV	46 kV		
	(ft.)	(ft.)	(ft.)		
Open Supply Conductor	4.7	5	5.4		

Note:

Sample calculations for accounting for wind displacement can be found on Page 21-33.

21.6.110 Clearance To Bridges

Sub-transmission conductors may be located adjacent to or within a bridge structure

The clearance over pedestrian walks or over roadways on bridges shall meet the requirements of Table 13 in Section 21.6.50.

For open supply conductors, the minimum vertical and horizontal clearances shown in Table 21 shall apply under whichever of the following conditions of conductor temperature and loading produces the closest approach:

- (a) 120°F, no wind displacement, final sag.
- (b) The maximum conductor temperature for which the line is designed to operate, no wind displacement, final sag.
- (c) 32°F, no wind displacement, with ½" radial thickness of ice, final sag.
- (d) The minimum conductor temperature for which the line is designed to operate, no wind displacement, initial sag.

For open supply conductors, the minimum horizontal clearances shown in Table 22 shall apply with the wires, conductors or cables displaced from rest by a 6 lb/ft2 wind at final sag at 60°F. The displacement of the wires, conductors or cables shall include the displacement of suspension insulators. If the highest wire, conductor or cable is installed 60 ft or more above grade, the displacement of the wires, conductors or cables shall include the deflection of a flexible structure.

The transition between vertical and horizontal clearance requirements shall be as shown in Figure 4 above.

OVERHEAD SUB-TRANSMISSION						
CMIZZ		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	21-23	7/17			

Table 21 Horizontal and Vertical Clearance of Wires, Conductors, Cables, and Unguarded Rigid Live Parts from Bridges (Reference: NESC Tables 234 – 2 and Rules 234D1a and 234H4)

Clearance of:	unground	ded rigid liv led equipmo ded guys ex live parts ⁴	ent cases, cposed to	Open supply conductors		
	25 kV (ft.)	35 kV (ft.)	46 kV (ft.)	25 kV (ft.)	35 kV (ft.)	46 kV (ft.)
1. Clearance over bridges 1						
a. Attached ³	5.2	5.5	5.9	5.7	6	6.4
b. Not Attached	12.2	12.5	12.9	12.7	13	13.4
Clearance beside, under, or within bridge structure ⁶						
 Readily accessible portions of any bridge including wing, walls, and bridge attachments ¹ 						
(1) Attached ³	5.2	5.5	5.9	5.7 ⁹	6.0 ⁹	6.4 ⁹
(2) Not Attached	7.2	7.5	7.9	7.7 ⁹	8.0 ⁹	8.4 ⁹
 b. Ordinarily inaccessible portions of bridges (other than brick, concrete, or masonry) and from abutments ² 						
(1) Attached 3,5	5.2	5.5	5.9	5.7 ⁹	6.0 ⁹	6.4 ⁹
(2) Not Attached 4,5	6.2	6.5	6.9	6.7 ⁹	7.0 ⁹	7.4 ⁹

FOOTNOTES:

Note: Footnotes 7, 8 and 10 are not used.

- 1. Where over traveled ways on or near bridges, the clearances of Section 21.6.50 shall also apply.
- 2. Bridge seats of steel bridges carried on masonry, brick, or concrete abutments that require frequent access for inspection shall be considered as readily accessible portions.
- 3. Clearance from sub-transmission conductors to supporting arms and brackets owned, operated, or maintained by the Company and attached to bridges shall be the same as specified from Surfaces of Supports in Table 26 in Section 21.6.150.
- Ungrounded guys and ungrounded portions of guys between guy insulators shall have clearances based on the highest voltage to which they may be exposed due to a slack conductor or guy.
- 5. Where conductors passing under bridges are adequately guarded against contact by unauthorized persons and can be de-energized and grounded for maintenance of the bridge, clearances of the conductors from the bridge, at any point, may have the clearances specified from Surfaces of Supports in Table 26 in Section 21.6.150 plus one-half the final unloaded sag of the conductor at that point.
- 6. Where the bridge has moving parts, such as a lift bridge, the required clearances shall be maintained throughout the full range of movement of the bridge or any attachment thereto.
- 9. The clearance at rest shall be not less than the value shown in this Table. Also, when the conductor or cable is displaced by wind, the clearance shall be not less than shown in Table 22, below.

	OVERHEAD SUB-TRANSMISSION						
ISSUE	PAGE NUMBER		WW.				
7/17	21-24	OVERHEAD CONSTRUCTION STANDARD	ppl				

Table 22 Horizontal Clearance of Wires, Conductors, Cables Under Wind Displacement Conditions

	Horizontal Clearance Required when Displaced by Wind					
Conductor or Cable	25 kV	35 kV	46 kV			
	(ft.)	(ft.)	(ft.)			
Open Supply Conductor	4.7	5	5.4			

Note:

Sample calculations for accounting for wind displacement can be found on Page 21-33.

21.6.120 <u>Separation Of Conductors and Supports On The Same Pole</u>

21.6.120.1 General

Minimum vertical clearances between sub-transmission wires, conductors, or cables and other wires, conductors, or cables carried on the same supporting structures are shown in Table 23A for wires, conductors, or cables owned by the same utility and in Table 23B for wires, conductors, or cables owned by different utilities. These minimum vertical clearances shall be met or exceeded on all new poles. Where the recommended separations in other sections of these standards exceed these minimum vertical clearances, those separations should be used for poles in new lines. Where the recommended separations in other sections of these standards exceed these minimum vertical clearances, those separations should generally be used for pole replacements in existing lines except where such separations are not practicable in the existing line. These vertical clearances are suggested minimum clearances; separations should be increased to provide additional safety protection wherever possible.

"At Pole" clearances are the vertical clear space separation requirements, surface-to-surface, at the pole.

"In-Span" clearances are the vertical clear space separation requirements, surface-to-surface, at any location in the span. Vertical clearances at the supporting structures shall be adjusted so that the vertical clearance at any point in the span shall be not less than the required "In-Span" clearance under whichever of the following conditions produces the greater vertical clearance at the structure:

- i. The upper conductor is at final sag at 120°F or the maximum operating temperature for which the line is designed to operate and the lower conductor is at final sag at the same ambient conditions as the upper conductor without electrical loading, or
- ii. The upper conductor is at final sag at 32°F with ½" radial thickness of ice (NESC Heavy Loading District) and the lower conductor is at final sag at the same ambient conditions as the upper conductor without electrical loading, and without ice loading.

OVERHEAD SUB-TRANSMISSION						
SMIZZ		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	21-25	7/12			

Supersedes 1/06 Issue - Added 21.6 Clearances.

Table 23A Vertical Clearance Between Conductors Owned by the Same Utility (Reference: NESC Rules 235A, C and Table 235-5)

Conductors and Cables Usually at Lower Levels		Open Supply Conductors and Cables Usually At Upper Levels						
		25 kV		35 kV		46 kV		kV
		In- Span (in.)	At Pole (in.)	In- Span (in.)	At Pole (in.)	In- Span (in.)	At Pole (in.)	In- Span (in.)
1. Communication Conductors and Cables								
a. Located in the communication space	40	30	40	30	40	30	49	39
b. Located in the supply space	40 ¹⁰	30 ¹⁰	40 ¹⁰	30 ¹⁰	40 ¹⁰	30 ¹⁰	49 ¹⁰	39 ¹⁰
2. Supply conductors and cables								
 a. Open conductors 0-750 V; supply cables meeting Rule 230C1, 2, or 3; neutral conductors meeting Rule 230E1 ¹¹ 	24	18	28	21	32	24	42	34
b. Open conductors over 750 V-8.7 kV	24 ^{4a}	18 ^{4b}	28 ^{4a}	21 ^{4b}	35 ^{4a}	27 ^{4b}	45 ^{4a}	37 ^{4b}
c. Open conductors over 8.7-22 kV								
 If worked on alive with live-line tools and adjacent circuits are neither de-energized nor covered with shields or protectors 	24	18	31	24	40	32	51	43
(2) If not worked on alive except when adjacent circuits (either above or below) are de- energized or covered by shields or protectors, or by use of live-line tools not requiring line workers to go between live wires	24 ³	18 ³	31 ³	24 ³	40 ³	32 ³	51 ³	43 ³
2. Open supply conductors and cables exceeding 22 kV		-	Contact Di	stribution S	Standards [Departmen	t	-

Table 23B

Vertical Clearance Between Conductors Owned by Different Utilities
(Reference: NESC Rules 235A, C and Table 235-5)

		pen Supp	ly Conduc	tors and	Cables Us	ually At Uր	per Level	s
	25 kV		35 kV		46 kV		69 kV	
Conductors and Cables Usually at Lower Levels		In- Span (in.)	At Pole (in.)	In- Span (in.)	At Pole (in.)	In- Span (in.)	At Pole (in.)	In- Span (in.)
1. Communication Conductors and Cables								
a. Located in the communication space	48	36	52	39	56	42	66	52
b. Located in the supply space	48 ¹⁰	36 ¹⁰	52 ¹⁰	39 ¹⁰	56 ¹⁰	42 ¹⁰	66 ¹⁰	52 ¹⁰
2. Supply conductors and cables								
 a. Open conductors 0-750 V; supply cables meeting Rule 230C1, 2, or 3; neutral conductors meeting Rule 230E1 ¹¹ 	48	36	52	39	56	42	66	52
b. Open conductors over 750 V-8.7 kV	48	36	52	39	56	42	66	52
c. Open conductors over 8.7-22 kV								
 If worked on alive with live-line tools and adjacent circuits are neither de-energized nor covered with shields or protectors 	48	36	55	42	64	50	75	61
(2) If not worked on alive except when adjacent circuits (either above or below) are de- energized or covered by shields or protectors, or by use of live-line tools not requiring line workers to go between live wires	24 ³	18 ³	31 ³	24 ³	40 ³	32³	51 ³	43³
2. Open supply conductors and cables exceeding 22 kV			Contact Di	stribution S	Standards [Department	t	

OVERHEAD SUB-TRANSMISSION						
ISSUE	PAGE NUMBER		SMZ			
7/12	21-26	OVERHEAD CONSTRUCTION STANDARD	ppl			

NOTES:

When using column and row headings, voltages are phase to ground for effectively grounded circuits and those other circuits where all ground faults are cleared by promptly de energizing the faulted section, both initially and following subsequent breaker operations.

For span lengths in excess of 45 m (150 ft), vertical clearance at the structure between 25 kV, 35 kV and 46 kV open supply conductors and communication space cables or conductors shall be adjusted so that under conditions of conductor temperature of 15 °C (60 °F), no wind displacement and final unloaded sag, the open supply conductor shall not be lower in the span than a straight line joining the points of support of the highest communication cable or conductor. For span lengths in excess of 45 m (150 ft), vertical clearance at the structure between 69 kV open supply conductors and communication space cables or conductors shall be adjusted so that under conditions of conductor temperature of 15 °C (60 °F), no wind displacement and final unloaded sag, the open supply conductor shall not be lower in the span than 9" above a straight line joining the points of support of the highest communication cable or conductor.

FOOTNOTES:

- 3. These values do not apply to conductors of the same circuit or circuits being carried on adjacent conductor supports.
- 4. May be reduced where conductors are not worked on energized except when adjacent circuits (either above or below) are de-energized or covered by shields or protectors, or by the use of live line tools not requiring line workers to go between live wires:
 - a. to 16 in at pole,
 - b. to 12 in in-span.
- No clearance is specified between fiber-optic supply cables meeting Rule 230F1b and supply cables and conductors.
- 11. Does not include neutral conductors meeting Rule 230E1.

21.6.120.2 <u>Separation on Replaced Poles</u>

In general, the separations on poles that are replaced shall conform to the requirements for new poles. In some special cases, separation may be reduced, but shall not be less than permitted on existing poles.

21.6.120.3 Reduction of Separation on Poles

Reduced separations of conductors and facilities made to accommodate communication, community antenna television (CATV), or other third party interest shall not be less than 15 kV minimum requirements.

21.6.120.4 Basic Impulse Level (BIL) & Air - Wood Spacing

BIL refers to the ability of the pole top design to resist flashovers caused by lightning or line surges.

Sub-transmission pole tops are generally designed to provide 150 kV minimum insulation withstand value. This impulse strength shall be based entirely on the impulse flashover of 20 inches or more of wood. Where lightning arresters are used, the "inches of wood" requirement does not apply for the particular conductor having the arrester. In locations where sufficient wood separation is not obtainable due to guy attachment, the use of a fiberglass guy strain insulator will meet this requirement. Additionally, insulated pole top pins (P6B and P6C), long strain insulators (I2), guy strain insulator (I24, TI95B, TI95C, TI95D), and wood braces (TB60 & B37B) may be used to provide the necessary separation if it cannot be met with standard hardware.

OVERHEAD SUB-TRANSMISSION						
OMP		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	21-27	7/12			

In design and construction of pole tops, avoid shorting out the insulation provided by air and wood with steel crossarm braces, steel hardware, ground wires, guy wires, etc. The total distance measured over insulators, wood, and air should be as great as possible.

21.6.120.5 Climbing Space

Standard pole top designs shall meet or exceed code requirements for vertical or lateral clearance for line conductors at different levels attached to the same pole. When various designs are combined, however, or when work is done on an existing pole, care should be taken to provide good clearance and to maintain climbing and working space. Page 7-127 shows the NESC clearance required when workers must climb through energized conductors. This drawing should be used as a guide even when the conductors concerned are covered by protective equipment or otherwise guarded as an unvarying practice before personnel climb past them.

The climbing space needs to be provided on one side or a corner of the support only.

Vertical runs physically protected by conduit or other protective covering securely attached without spacers to the surface of the pole are not considered to obstruct climbing space.

The climbing space shall extend vertically in the same position 40 inches above and 40 inches below any wire attachment, but may otherwise be shifted to any other adjacent side or corner of the pole.

All voltages in Table 24 are between the two conductors bounding the climbing space, except for communications conductors, which are voltage to ground. Where two conductors are in different circuits, the voltage between conductors shall be the arithmetic sum of the voltages of each conductor to ground for a grounded circuit or phase to phase for an ungrounded circuit.

Table 24
Horizontal Climbing Space Between Conductors
(Reference: NESC Rule 236 and Table 236-1)

		Horizontal Clearance Between Conductors Bounding the Climbing Space 3,4,5				
		On S.O.	On J.O. Structures			
Character of Conductors Adjacent to Climbing Space	Voltage of Conductors	Structures used Solely By Supply Conductors	Supply Conductors Above Communication Conductors	Communication Conductors Above Supply Conductors ¹		
		(Inches)	(Inches)	(Inches)		
	25 kV	36	36	36		
Open Supply Line Conductors and Supply Cables Meeting Rule 230D	35 kV	40	40			
	46 kV	46	46			
	69 kV	54	54			

FOOTNOTES:

Footnotes 2 and 3 are not used.

- 1. This level relation is undesirable, in general, and should be avoided.
- 4. The climbing space specified in Table 13 above shall be provided above the top support arm to the ridge pin conductor but need not be carried past it.
- 5. All supply equipment such as transformers, capacitors, cable terminations, switches, etc. when located below conductors or other attachments, shall be mounted outside the climbing space.

OVERHEAD SUB-TRANSMISSION				
ISSUE	PAGE NUMBER		WW.	
7/12	21-28	OVERHEAD CONSTRUCTION STANDARD	ppl	

21.6.130 Clearance To Property Line

In general, conductors and supports shall not overhang property lines unless a right of way or easement has been obtained. In checking overhang, it should be assumed that conductors on rigid supports will be deflected by wind at the amount calculated on Page 21-33.

Plan for future buildings or structures along the property lines, or, if local ordinances specify, along the established building line. If it is probable that a structure will be erected in the foreseeable future, the right-of-way should be adequate to provide standard clearances to such a structure.

21.6.140 <u>Clearance Between Wires, Conductors and Cables At Point Of Crossing On Different Supporting Structures</u>

It is generally undesirable to build a sub-transmission line directly over or under another line. Where this cannot be avoided, clearance should be provided so that a man working on the top of a pole will be able to maintain adequate working clearances from conductors overhead.

The conductor movement envelope shall be developed from the locus of the most displaced conductor positions defined below and shown in Figure 5:

- (1) 15 °C (60 °F), no wind displacement, at both initial unloaded and final unloaded sag (conductor positions A and C).
- (2) With the wire, conductor, or cable displaced from rest by a 290 Pa (6 lb/ft2) wind at both initial and final sag at 15 °C (60 °F). The displacement of the wire, conductor, or cable shall include deflection of suspension insulators and flexible structures (conductor positions B and D).

EXCEPTION: Where the entire span is so close to a building, terrain feature, or other obstacle as to be sheltered from the wind flowing across the line in either direction, the wind pressure may be reduced to a 190 Pa (4 lb/ft2) wind. Trees are not considered to shelter a line.

- (3) Final sag at one of the following loading conditions, whichever produces the largest sag (conductor position E):
 - (a) 50 °C (120 °F), no wind displacement,
 - (b) The maximum conductor temperature for which the line is designed to operate, if greater than 50 °C (120 °F), with no wind displacement, or
 - (c) 0 °C (32 °F), no wind displacement, with 0.5 inch radial thickness of ice.

OVERHEAD SUB-TRANSMISSION				
WIII		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	21-29	7/12	

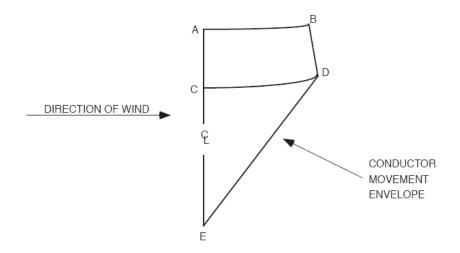


Figure 5
The horizontal clearance between crossing or adjacent wires, conductors, or cables carried on different supporting structures shall be not less than 5 ft.

Table 25
Vertical Clearance Between Wires, Conductors, and Cables Carried on Different Supporting
Structures
(Reference: NESC Rule 233, Table 233-1)

	Upper Level				
	Effectively grounded	Ор	en supply	conduct	ors
	supply guys, span wires, neutral conductors meeting Rule 230E1, and overhead shield / surge-protection wires	25 kV	35 kV	46 kV	69 kV
Lower Level	(ft)	(ft)	(ft)	(ft)	(ft)
 Effectively grounded supply guys ⁷, span wires, neutral conductors meeting Rule 230E2, and overhead shield/surge-protection wires 	2.0 1,2	2.2	2.5	2.9	3.7
 Effectively grounded communication guys ⁷, conductors and cables, and messengers 	2.0 1,2	5.2 ⁸	5.5 ⁸	5.9 ⁸	6.7 8
3. Supply cables meeting Rule 230C1, and supply cables of 0-750 V meeting Rules 230C2 or 230C3	2.0	2.2	2.5	2.9	3.7
 Open supply conductors, 0-750 V ⁶; supply cables over 750 V meeting Rule 230C2 or 230C3 	2.0 ⁹	2.2	2.5	2.9	3.7
5. Open supply conductors, 750 V-22 kV	2.0 ⁹	2.2	2.5	2.9	3.7

NOTES:

1. For lower-level conductors exceeding 22 kV, the clearance given in Table 25 shall be increased at the rate of 0.4 in per kV in excess of 22 kV.

		OVERHEAD SUB-TRANSMISSION				
	ISSUE	PAGE NUMBER		SMIZ		
Busi	7/12 ness Use	21-30	OVERHEAD CONSTRUCTION STANDARD	ppl		

2. For 69 kV, the clearance specified in Table 10 shall be increased 0.6 in for each 1000 ft in excess of 3300 ft above mean sea level.

FOOTNOTES:

Note: Footnotes 3, 4, 5, and 6 are not used.

- 1. No clearance is specified between guys or span wires that are electrically interconnected.
- The clearance of communication conductors and their guy span, and messenger wires from each other in locations where no other classes of conductors are involved may be reduced by mutual consent of the parties concerned, except for fire-alarm conductors and conductors used in the operation of railroads.
- 6. Does not include neutrals that are effectively grounded throughout their length and are associated with circuits of 0 to 22 kV to ground.
- 7. These clearances may be reduced by not more than 25% to a guy insulator, provided that full clearance is maintained to its metallic end fittings and the guy wires. The clearance to an insulated section of a guy between two insulators may be reduced by not more than 25% provided that full clearance is maintained to the un-insulated portion of the guy.
- 8. This clearance may be reduced by 3 feet for supply service drops.
- 9. In general, this type of crossing is not recommended.

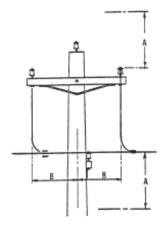
21.6.150 <u>Clearances Of Vertical and Lateral Supply Conductors From Other Wires & Surfaces Of</u> The Same Structure

Minimum clearances between vertical and lateral sub-transmission conductors from other wires and surfaces of the supporting structures are shown, in general, in Table 26. Table 27 shows minimum clearances between vertical and lateral sub-transmission conductors from other wires and surfaces of the supporting structures are shown for portions of a structure that workers ascend while the conductors in question are energized.

Table 26
Clearances of Open Lateral and Vertical Conductors
(Circuit Phase-to Phase Voltages, Reference: NESC Rule 239E, Table 239-1)

Clearence of Onen Vertical 9 Lateral		Phase to Phase Voltage			
Clearances of Open Vertical & Lateral Conductors	25 kV (Inches)	35 kV (Inches)	46 kV (Inches)	69 kV ⁴ (Inches)	
From Surfaces of Supports	7	9	11	16 ^{4a}	
From Span, Guy and Messenger Wires 5	14	18	22	32 ^{4b}	
Anchor Guys	11	14	16	29 ^{4c}	

FOOTNOTES:


- 4. The clearance for 69 kV specified in Table 26 shall be increased by the following amounts:
 - a. For clearances from surfaces of supports: Increase by 0.15 in / 1000 ft in excess of 3300 ft above mean sea level,
 - b. For clearances from span, guy, and messenger wires: Increase by 0.27 in / 1000 ft in excess of 3300 ft above mean sea level, and
 - For clearances from anchor guy wires: Increase by 0.18 in / 1000 ft in excess of 3300 ft above mean sea level.

OVERHEAD SUB-TRANSMISSION				
WID		PAGE NUMBER	ISSUE	
e ppl	OVERHEAD CONSTRUCTION STANDARD	21-31	7/12	

5. These clearances may be reduced by not more than 25% to a guy insulator, provided that full clearance is maintained to its metallic end fittings and the guy wires. The clearance to an insulated section of a guy between two insulators may be reduced by not more than 25% provided that full clearance is maintained to the un-insulated portion of the guy.

Table 27 ⁵
Clearance Between Open Vertical Conductors and Pole Surface (Figures 6 & 7)
(Circuit Phase-to Phase Voltages, Reference: NESC Rule 239E, Table 239-2)

Clearances of Open Vertical 9 Lateral	Phase to Phase Voltage			
Clearances of Open Vertical & Lateral Conductors	25 kV (Inches)	35 kV (Inches)	46 kV (Inches)	69 kV ⁴ (Inches)
From Surfaces of Supports	7	9	11	16 ^{4a}
From Span, Guy and Messenger Wires 5	14	18	22	32 ^{4b}
Anchor Guys	11	14	16	29 ^{4c}

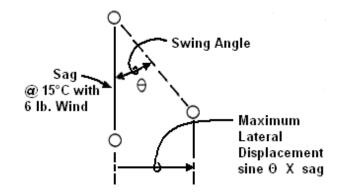


Figure 6

Figure 7

A = zone above and below conductor

B = distance between vertical wire and pole center


	OVERHEAD SUB-TRANSMISSION					
ISSUE	PAGE NUMBER		OMIZZ			
7/1	21-32	OVERHEAD CONSTRUCTION STANDARD	ppl			

Basic HORIZONTAL clearances shown in Section 21.6.110 must be increased as follows to allow for wind caused lateral conductor displacement. For horizontal adders between conductors carried on different poles (Table 22), apply adder for only one of the conductors.

The vertical sag at 60°F/15°C final with 6 lb. wind taken from conductor information on pages 21-401 through 21-418 for the subject conductor and span is multiplied by the sine of the conductor's swing angle to obtain maximum conductor horizontal movement.

The sine of the swing angle may be calculated or taken from the following table (rounding up to the next value shown).

Swing Angle (Θ)	Sine
25°	0.4226
30°	0.5000
35°	0.5736
40°	0.6428
45°	0.7071
50°	0.7660
55°	0.8192
60°	0.8660

Example:

For a 200 feet span of 336.4 kcm AAC 19 Strand Bare (Std. Item W20B)

- 1. Swing Angle = 46.5degrees (from Page 21-417)
- 2. Multiplier = 0.7660 (from table above for 50°)
- 3. Sag at 60° F/15°C, 6 lb. wind for 200 foot span = 48.36 inches (from Page 21-418)
- 4. Maximum Lateral Displacement = (48.36 inches) X (0.7660) = 37.04 inches

Note:

If point of conflict is not at point of maximum sag, the additional horizontal clearance may be reduced as follows:

If the distance between point of crossing or clearance and the nearest support is ____% of the total span, multiply additional clearance by the multiplier outlined below.

Percent of Span	Multiplier
5%	0.19
10%	0.36
15%	0.51
20%	0.64
25%	0.75
30%	0.84
35%	0.91
40%	0.96
45%	0.99
50%	1.00
*Interpolate for intermed	iate vales or use next higher multiplier.

OVERHEAD SUB-TRANSMISSION				
SMIZZ		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	21-33	7/12	

21.7 STRUCTURE TYPE SELECTION

This standard contains three basic families of structure configurations:

- (i) Flat configuration using vertical post insulators on 10' crossarms for 25kV, 35 kV, and 46kV with conductors up to 477 ACSR (see Standards Pages 21-211 through 21-218 and 21-236),
- (ii) 4' Triangular configuration using vertical post insulators for 25kV and 35 kV using 795 and 1113 ACSR conductors (see Standards Pages 21-101 through 21-109) and
- (iii) Vertical configuration using horizontal post insulators for 25kV, 35kV, and 46kV with conductors up to 477 ACSR (see Standards Pages 21-224 through 21-230).

For load breaks and other protection devices, see Section 12 - Protection

In general, the vertical configuration is preferred for new line construction. The flat configuration fits well into many existing line configurations throughout the system for new or replacement structures in existing lines, in short line extensions and where a lower line profile is desirable. The 4' triangular configuration should only be used when 795 or 1113 ACSR is required at 25kV or 35kV.

Within each family of structures, the structure type is selected based on the line angle. Each structure drawing title indicates the range of or maximum line angles for which the structure may be used.

Allowable span lengths are limited by a variety of considerations including: (i) loads from wires and the strengths of the supporting poles, crossarms, insulators and hardware, (ii) required clearances between conductors and (iii) where appropriate, conductor gallop.

Tables 28 through 34 contain span limits for each of the structure types considering (i) loads from wires and the strengths of the supporting crossarms, insulators and hardware, (ii) required clearances between conductors and (iii) where appropriate, conductor gallop. These tables are applicable only for standard conductors strung at standard tensions and sags included in pages 21-401 through 21-418 of these standards. These tables do <u>not</u> apply when other sags and tensions are used and appropriate limits for the tensions and sags actually used must be determined. These tables do <u>not</u> take pole strength into consideration and appropriate pole strength must be considered separately.

These tables contain span limits based on conductor gallop. Conductor gallop is not always a factor, but span lengths should be limited based on gallop clearances when the line is built in open, level terrain. When considering gallop, the gallop limit for span length applies to all structure types in the family of structures. Conductor gallop is a large amplitude movement of conductors that occurs in open terrain. Gallop is generally associated with steady wind over entire spans of conductors with some ice on the conductors. Gallop does not normally occur in areas where the wind is not steady over an entire span because parts of the span are sheltered by trees or buildings or where uneven terrain makes the wind flow across a span turbulent. Gallop clearances do not need to considered when the line is built in an area with trees that are close to the height of the line or when the line is built through an area where terrain or buildings near the line will make winds across the line turbulent rather than steady across the entire span.

	OVERHEAD SUB-TRANSMISSION				
ISSUE	PAGE NUMBER		•		
7/1	21-34	OVERHEAD CONSTRUCTION STANDARD	national grid		

Table 28 Maximum Allowable Spans 4'Triangular Configuration – 25kV

CONDUCTOR	Double Arm / Single Insulator 21-101 (3 deg) (ft.)	Double Arm / Single Insulator 21-102 (6 deg) (ft.)	Double Arm / Double Insulator 21-103 (15 deg) (ft.)	Other Str. Types 21-104 21-109 (ft.)	Gallop Limited (ft.)
1113.0 KCMIL, 54/19 STRANDING, BARE ACSR, "FINCH"	408	289	460	502	200
795.0 KCMIL, 54/7 STRANDING, BARE ACSR, "CONDOR"	464	349	521	521	210

Table 29
Maximum Allowable Spans
4'Triangular Configuration – 35kV

CONDUCTOR	Double Arm / Single Insulator 21-101 (3 deg) (ft.)	Double Arm / Single Insulator 21-102 (6 deg) (ft.)	Double Arm / Double Insulator 21-103 (15 deg) (ft.)	Other Str. Types 21-104 21-109 (ft.)	Gallop Limited (ft.)
1113.0 KCMIL, 54/19 STRANDING, BARE ACSR, "FINCH"	408	289	460	502	200
795.0 KCMIL, 54/7 STRANDING, BARE ACSR, "CONDOR"	464	349	482	521	210

OVERHEAD SUB-TRANSMISSION

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 21-35 7/12

Table 30 Maximum Allowable Spans Flat Configuration – 25kV

CONDUCTOR	Single Arm / Single Insulator 21-211 (2 deg) (ft.)	Double Arm / Single Insulator 21-217 (2 deg) (ft.)	Double Arm / Single Insulator 21-220 (8 deg) (ft.)	Double Arm / Double Insulator 21-236 (8 deg) (ft.)	Other Str. Types (ft.)	Gallop Limited (ft.)
477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK"	324	577	357	629	643	310
477.0 KCMIL, 19 STRAND, BARE AAC, "COSMOS"	387	559	471	559	559	270
477.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE – 35 kV	242	464	358	464	464	***
336.4 KCMIL, 18/1 STRANDING, BARE ACSR, "MERLIN"	350	577	436	660	660	350
336.4 KCMIL, 19 STRAND, BARE AAC, "TULIP"	457	608	507	608	608	290
1/0, 7 STRAND, BARE 6201-T81 AAAC, "AZUZA"	660	660	604	660	660	360
1/0, 7 STRAND, CONCENTRIC ROUND 6201-T81 AAAC, 315 MIL COVERED TREE WIRE – 35 kV	351	539	417	539	539	***

^{***} If tree wire is required, the line should be in an area where it is sheltered by trees and gallop should not be a concern.

	OVERHEAD SUB-TRANSMISSION			
ISSUE	PAGE NUMBER	AllV		
7/17	21-36	OVERHEAD CONSTRUCTION STANDARD PPI		

Table 31 Maximum Allowable Spans Flat Configuration – 35kV

CONDUCTOR	Single Arm / Single Insulator 21-211 (2 deg) (ft.)	Double Arm / Single Insulator 21-217 (2 deg) (ft.)	Double Arm / Single Insulator 21-220 (8 deg) (ft.)	Double Arm / Double Insulator 21-236 (8 deg) (ft.)	Other Str. Types (ft.)	Gallop Limited (ft.)
477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK"	303	577	357	584	603	310
477.0 KCMIL, 19 STRAND, BARE AAC, "COSMOS"	361	523	471	523	523	270
477.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE – 35 kV	228	435	358	435	435	***
336.4 KCMIL, 18/1 STRANDING, BARE ACSR, "MERLIN"	326	577	436	643	660	350
336.4 KCMIL, 19 STRAND, BARE AAC, "TULIP"	425	570	507	570	570	290
1/0, 7 STRAND, BARE 6201-T81 AAAC, "AZUZA"	618	660	604	660	660	360
1/0, 7 STRAND, CONCENTRIC ROUND 6201-T81 AAAC, 315 MIL COVERED TREE WIRE – 35 kV	327	505	417	505	505	***

^{***} If tree wire is required, the line should be in an area where it is sheltered by trees and gallop should not be a concern.

Supersedes 7/12 Issue – Moved to pp 21-37 from 21-35.

OVERHEAD SUB-TRANSMISSION

OVERHEAD OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

21-37

7/17

Supersedes 7/12 Issue – Moved to pp 21-38 from 21-40 and removed table 33.

Table 32 Maximum Allowable Spans Flat Configuration – 46kV

CONDUCTOR	Single Arm / Single Insulator 21-211 (2 deg) (ft.)	Double Arm / Single Insulator 21-217 (2 deg) (ft.)	Double Arm / Single Insulator 21-220 (8 deg) (ft.)	Double Arm / Double Insulator 21-236 (8 deg) (ft.)	Other Str. Types (ft.)	Gallop Limited (ft.)
477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK"	290	558	357	556	558	310
477.0 KCMIL, 19 STRAND, BARE AAC, "COSMOS"	345	485	471	485	485	270
336.4 KCMIL, 18/1 STRANDING, BARE ACSR, "MERLIN"	313	577	436	616	659	350
336.4 KCMIL, 19 STRAND, BARE AAC, "TULIP"	504	527	507	527	527	290
1/0, 7 STRAND, BARE 6201-T81 AAAC, "AZUZA"	586	660	604	660	660	360

	OVERHEAD SUB-TRANSMISSION			
ISSUE	PAGE NUMBER	SMI		
7/17	21-38	OVERHEAD CONSTRUCTION STANDARD PPI		

Table 34 **Maximum Allowable Spans** Vertical Configuration - 46kV

Vertical Configuration – 40kV			
CONDUCTOR	Single Arm / Single Insulator 21-211 (2 deg) (ft.)	Gallop Limited (ft.)	
477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK"	660	300	
477.0 KCMIL, 19 STRAND, BARE AAC, "COSMOS"	660	260	
477.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE – 35 kV	543	***	
336.4 KCMIL, 18/1 STRANDING, BARE ACSR, "MERLIN"	660	340	
336.4 KCMIL, 19 STRAND, BARE AAC, "TULIP"	660	280	
1/0, 7 STRAND, BARE 6201-T81 AAAC, "AZUZA"	660	350	
1/0, 7 STRAND, CONCENTRIC ROUND 6201-T81 AAAC, 315 MIL COVERED TREE WIRE – 35 kV	660	***	

If tree wire is required, the line should be in an area where it is sheltered by trees and gallop should not be a concern.

OVERHEAD SUB-TRANSMISSION PAGE NUMBER ISSUE **OVERHEAD** 21-39 7/17

21.8 INSULATORS

The types of insulators used in Sub-transmission construction are as follows.

21.8.10 Post Top

Porcelain post insulators with trunnion style conductor clamps shall be used for all bare wire installations where line guards are available. Tie top polymer line post insulators shall be used in all other applications.

21.8.20 Disc

Porcelain ball and socket disc insulators are used for all deadend applications and some limited suspension applications.

21.8.30 Impulse / Non-Impulse Design

The drawings in sections 21-100 and 21-200 are designed to "Impulse Design" meaning that the basic insulation level (BIL) of the wood crossarms is considered in addition to the BIL attained with the line insulator. "Non-impulse Design" is a design where the insulator is supported by a conductive surface such as steel poles, steel crossarms, lattice towers or bonded wood crossarms effectively reducing BIL versus Impulse Design. To account for the loss in BIL for Non-impulse Design, additional insulation is required as shown in Table 35.

Table 35
Sub-Transmission Insulator Selection Table

	Impulse Design – Wood				
				Suspension Disc Insulator	
Operating		Horizontal	Line	Number in	Number in
Voltage	Tie Top	Line Post	Post	Dead-end	Suspension
23	I13AP	I13J	I13B	3	3
34.5	I13CP	I13J	I13D	3	3
46	I13EP	I13J	I13L	4	4
Nor	n-Impulse [Design – Bonde	ed Wood, S	teel Poles or T	owers
				Suspension [Disc Insulator
Operating		Horizontal	Line	Number in	Number in
Voltage	Tie Top	Line Post	Post	Dead-end	Suspension
23	I13AP	I13J	I13D	3	3
34.5	I13CP	I13J	I13L	3	3
46	I13EP	I13K	I13M	4	4

Note: 1. In areas with known contamination:

- a. Use the next higher rating of post insulators.
- b. Use one additional suspension insulator or use fog type insulators.
- 2. Ensure that additional insulation does not violate electrical clearances.

	OVERHEAD SUB-TRANSMISSION			
ISSUE	PAGE NUMBER	SMI		
7/19	21-40	OVERHEAD CONSTRUCTION STANDARD PPI		

21.9 Risk Mitigation at Line Crossings and Critical Crossings

21.9.10 In order to supply additional safety insurance at line crossings and critical crossings, the following are to be incorporated into designs.

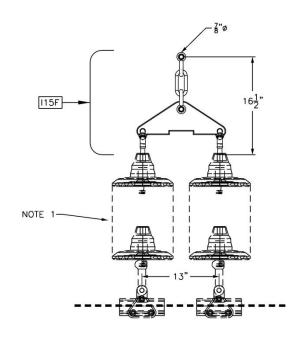
Higher voltage circuits should cross over lower voltage circuits.

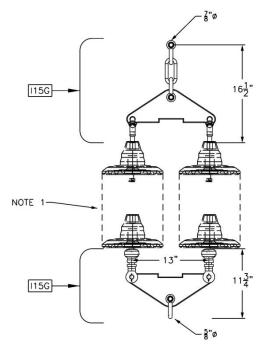
Limit upper circuits to crossing only one lower circuit in a single span.

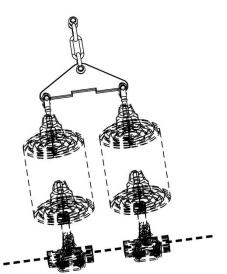
Use shorter spans and lower tensions in upper circuits.

Look for ways to avoid line crossings in initial design.

21.9.20 For all line crossings and critical crossings, double insulator strings assemblies as shown on page 21-42 and 21-43 shall be used on both structures either side of the crossing. Double insulator strings shall be used at the following locations:


Limited access highways


Licensed navigable waterways


Rail-Roads

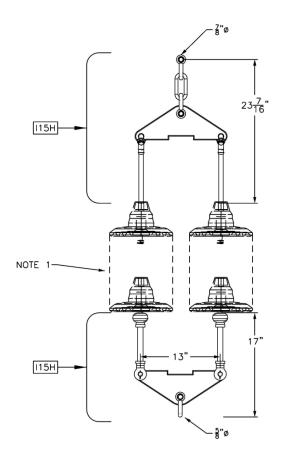
Sub-transmission circuits

OVERHEAD SUB-TRANSMISSION ISSUE **PAGE NUMBER OVERHEAD** 21-41 7/17

115	5F
1	ANCHOR SHACKLE-7"
1	CHAIN LINK
1	ANCHOR SHACKLE $-\frac{3}{4}$ "
1	YOKE
2	BALL CLEVIS

VOLTAGE	SUSPENSION INSULATOR ID
25KV	18C(3)
35KV	18C(3)
46KV	I8C(4)

115	115G		
2	ANCHOR SHACKLE-7"		
1	CHAIN LINK		
1	ANCHOR SHACKLE $-\frac{3}{4}$ "		
2	YOKE		
2	BALL CLEVIS		
2	SOCKET CLEVIS		


NOTES:

1. INSULATORS (18C) SHOWN IN DRAWING ARE NOT INCLUDED IN ASSEMBLY. INCUDE QUANTITY AS NEEDED PER VOLTAGE CHART.

21-42

MPR 6/21/17

	DOUBLE INSULATOR ASSEMBLY - SUSPENSION			
	ISSUE PAGE NUMBER		SMI	
Busi	7/17 ness Use	21-42	OVERHEAD CONSTRUCTION STANDARD	ppl

VOLTAGE	SUSPENSION INSULATOR ID
25KV	18C(3)
35KV	18C(3)
46KV	18C(4)

I	15	iн	
2	2	ANCHOR SHACKLE-7"	
1		CHAIN LINK	
1		ANCHOR SHACKLE-3"	
2	2	YOKE	
2	- 2	HOT LINE "Y" CLEVIS BALL	
2	2	HOT LINE SOCKET CLEVIS	

NOTES:

1. INSULATORS (I8C) SHOWN IN DRAWING ARE NOT INCLUDED IN ASSEMBLY. INCUDE QUANTITY AS NEEDED PER VOLTAGE CHART.

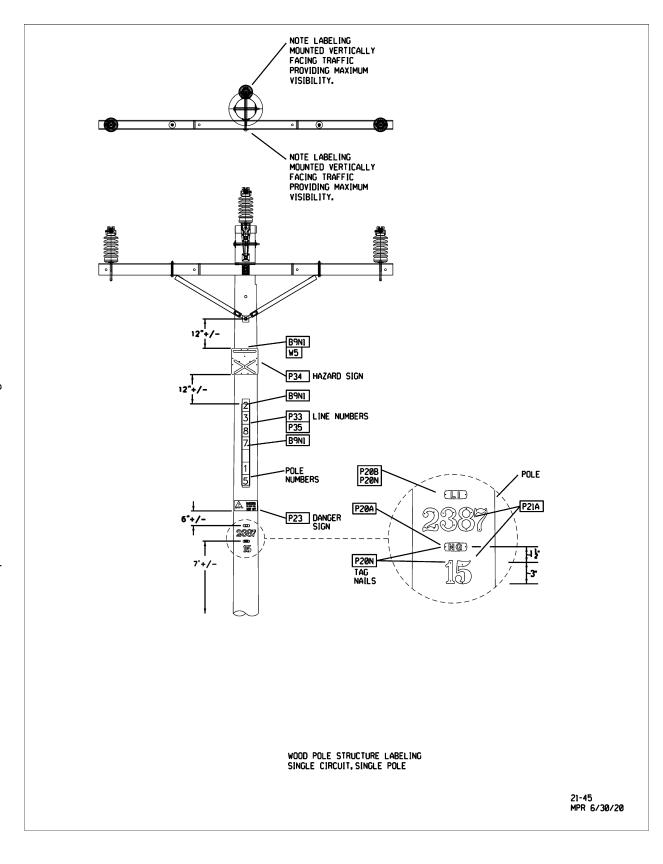
21-43

21-43 MPR 6/21/17

	DOL	DOUBLE INSULATOR ASSEMBLY - DEADEND		
	WWZ		PAGE NUMBER	ISSUE
Business U	se ppl	OVERHEAD CONSTRUCTION STANDARD	21-43	7/17

21.10 Wood pole structure marking and labeling.

The type, quantity and nature of wood pole structure numbering, marking and labeling shall vary depending upon the location of the sub-transmission line.

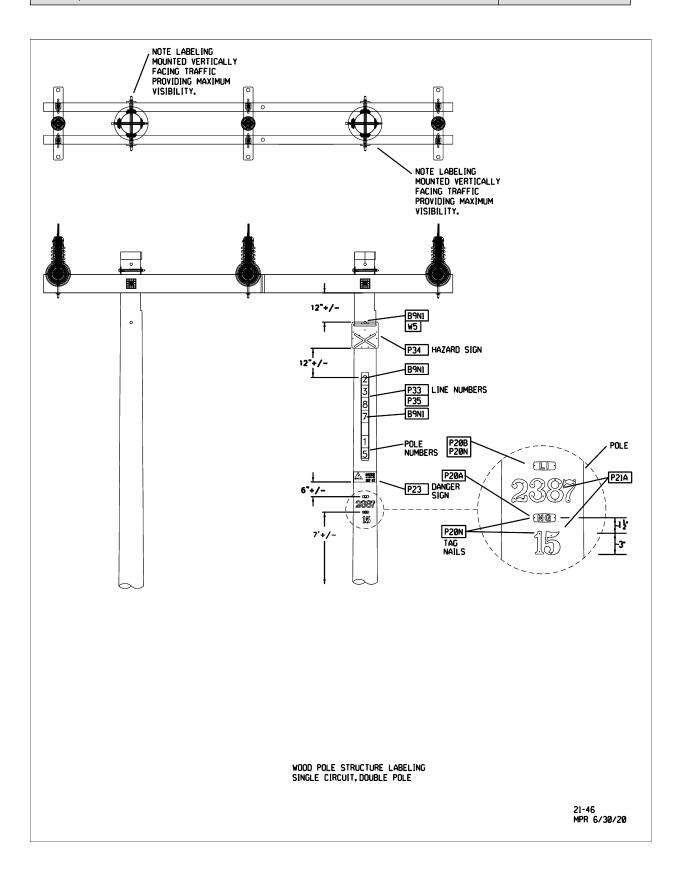

21.10.10 Right-of –way locations:

- 1. Aerial warning hazard signs are to be installed for conditions shown on pp 21-48 and 21-29.
- 2. Aerial structure numbers are to be installed on ever structure ending in '0' (i.e. 10, 20, 30, etc), the 1st and last structures of the line or tap, and at road crossings.
- 3. Aerial line numbers are to be installed on both sides of the first and last structures of the line or tap.
- 4. Aerial line number channels shall be crimped top and bottom to secure number tiles.
- 5. Aerial line number channels hold 3 number tiles. They may be installed in tandem to allow for line numbers or structure numbers that contain more than 3 characters.
- 6. Danger signs shall be installed on both sides of the structure.
- 7. Ground line structure and line numbers shall be installed on both side of the structure at 7 feet +/- above grade.

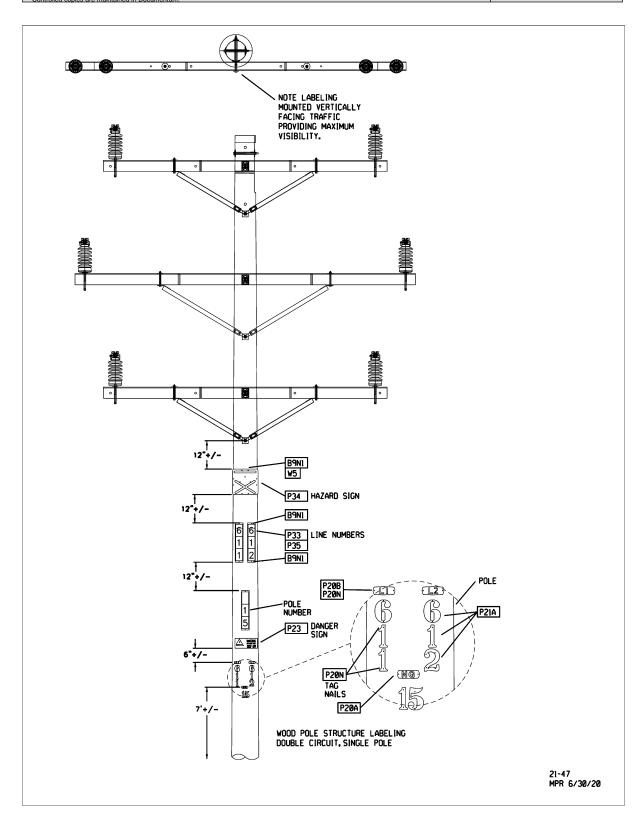
21.10.20 Road Side Locations:

- 1. Only one set of ground line structure and line numbers facing the roadside are required.
- 2. Aerial warning signs, line or structure numbers may be installed on a case by case basis if deemed necessary.

	SUB-TRANSMISSION			
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/20 ness Use	21-44	OVERHEAD CONSTRUCTION STANDARD	ppl



WOOD POLE STRUCTURE LABELING, SINGLE POLE SINGLE CIRCUIT

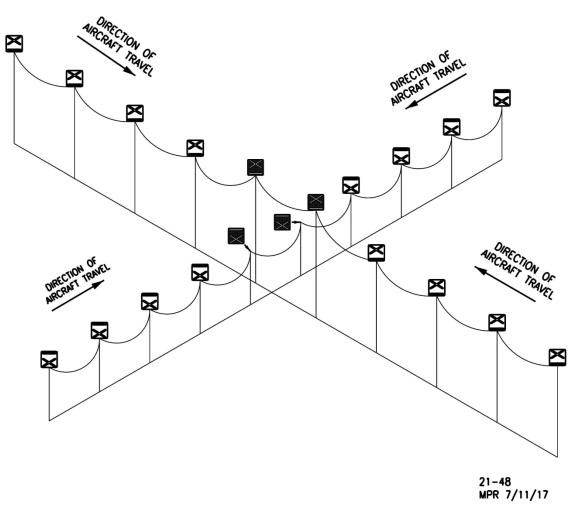


OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 21-45 7/20

	SUB-TRANSMISSION			
ISSUE PAGE NUMBER		SMIZZ		
Busi	7/20 ness Use	21-44	OVERHEAD CONSTRUCTION STANDARD	ppl

WOOD POLE STRUCTURE LABELING, SINGLE POLE, DOUBLE CIRCUIT


OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 21-47 7/20

Copyright 2020 PPL. For information regarding property rights, confidentiality and use see Section 1.
Printed copies of this document are not document controlled. Refer to the PPL SKY, Distribution Engineering Services website, for the latest version.
Controlled copies are maintained in Documentum.

Doc. # ST. 21.00.002

	OVERHEAD SUB-TRANSMISSION			
ISSUE PAGE		PAGE NUMBER		
Busi	7/17 ness Use	21-48	OVERHEAD CONSTRUCTION STANDARD	national grid

P34A

P34B

YELLOW PRIMARY WARNING SIGN RED LAST WARNING SIGN BEFORE HAZARD

 $\overline{\times}$

USED TO INDICATE THAT THE UPCOMMING CROSSING LINE GOES OVER THE PATROLLED LINE.

USED TO INDICATE THAT THE UPCOMMING CROSSING LINE GOES UNDER THE PATROLLED LINE.

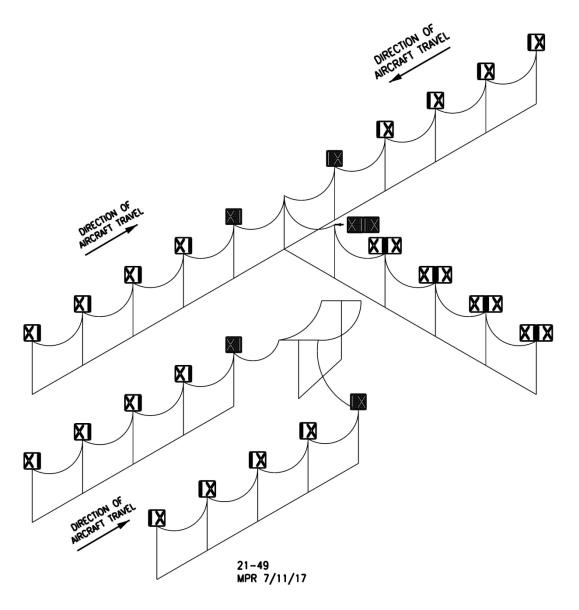
INDICATES THAT A TAP IS UPCOMING OR A SECOND CIRCUIT IS CONVERGING TO THE LEFT OF THE PATROLLED LINE.

INDICATES THAT A TAP IS UPCOMING OR A SECOND CIRCUIT IS CONVERGING TO THE RIGHT OF THE PATROLLED LINE.

NOTE:

APPLY 5 SIGNS WITHIN A $\frac{1}{2}$ MILE RADIUS OF CROSSING HAZARDS WHEN LINES HAVE MORE THAN 5 STRUCTURES WITHIN A $\frac{1}{2}$ MILE RADIUS OF CROSSING. SIGNS SHALL BE PLACED AS EVENLY AS POSSIBLE. 4 YELLOW SIGNS AND 1 RED SIGN SHALL BE PLACED ON THE LAST STRUCTURE BEFORE THE HAZARD.

4 FOOT TRIANGLE, DOUBLE ARM, SINGLE INSULATOR, DASI-3 FOR 795 KCMIL
AND 1113 KCMIL 25-35 KV


nationalgrid

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 21-101 7/17

Doc. # ST. 21.00.002

	AERIAL HAZARD WARNING SIGNS – LINE CROSSING			OSSING
	ISSUE	PAGE NUMBER		SMA
Busi	ness Use	21-48	OVERHEAD CONSTRUCTION STANDARD	ppl

P34A

YELLOW PRIMARY WARNING SIGN P34B RED LAST WARNING SIGN BEFORE

HAZARD

USED TO INDICATE THAT THE UPCOMMING CROSSING LINE GOES OVER THE PATROLLED LINE.

USED TO INDICATE THAT THE UPCOMMING CROSSING LINE GOES UNDER THE PATROLLED LINE.

INDICATES THAT A TAP IS UPCOMING OR A SECOND CIRCUIT IS CONVERGING TO THE LEFT OF THE PATROLLED LINE.

INDICATES THAT A TAP IS UPCOMING OR A SECOND CIRCUIT IS CONVERGING TO THE RIGHT OF THE PATROLLED LINE.

NOTE:

APPLY 5 SIGNS WITHIN A $\frac{1}{2}$ MILE RADIUS OF CROSSING HAZARDS WHEN LINES HAVE MORE THAN 5 STRUCTURES WITHIN A $\frac{1}{2}$ MILE RADIUS OF CROSSING. SIGNS SHALL BE PLACED AS EVENLY AS POSSIBLE. 4 YELLOW SIGNS AND 1 RED SIGN SHALL BE PLACED ON THE LAST STRUCTURE BEFORE THE HAZARD.

AERIAL HAZARD WARNING SIGNS - LINE TAPS AND JUNCTIONS

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 21-49 7/17

Business Use

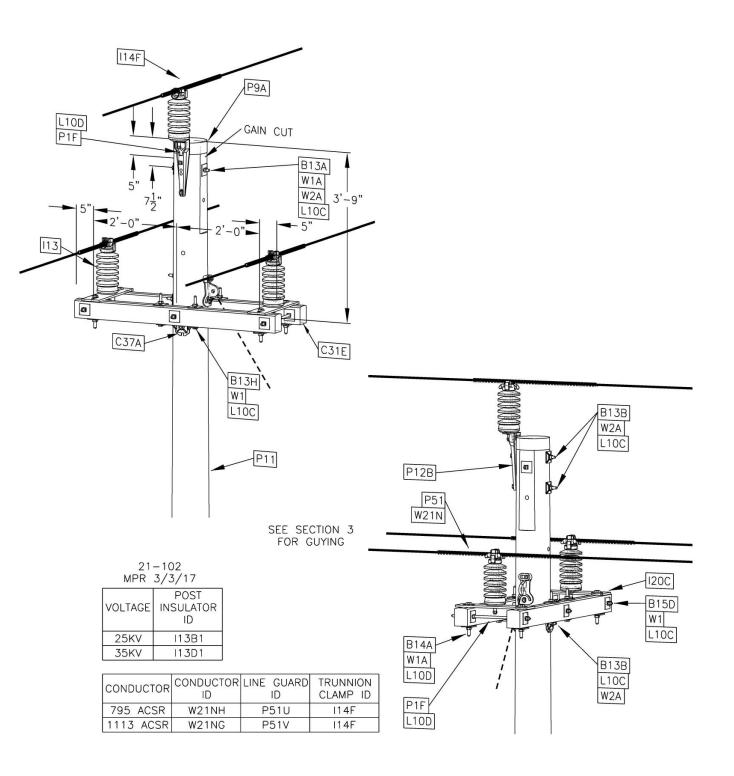
Doc. # ST. 21.00.002

This page intentionally left blank.

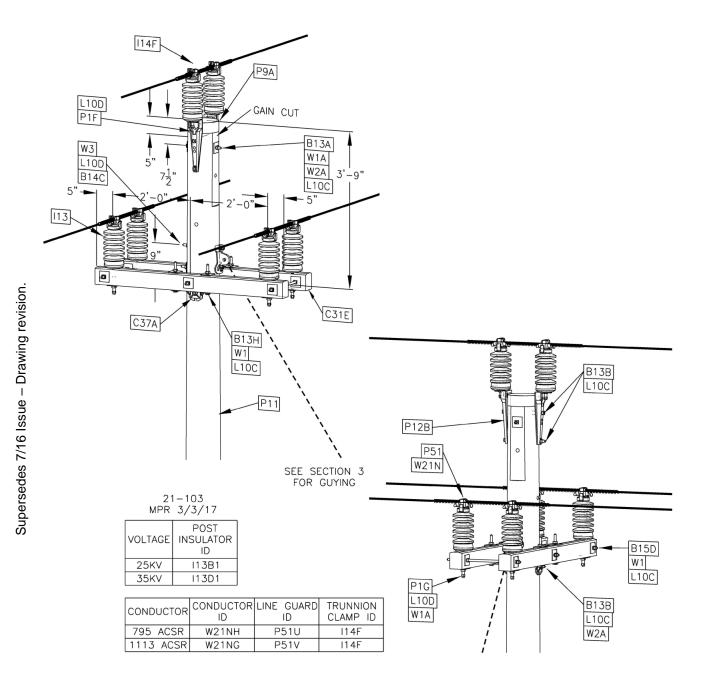
	AERIAL HAZARD WARNING SIGNS – LINE CROSSING			
	ISSUE PAGE NUMBER			WW.
Busi	ness Use	21-48	OVERHEAD CONSTRUCTION STANDARD	ppl

MU = @21-101(X)KVC(W)

(X) = 25 OR 35


MU = @21-101(X)KVC(W)DACCT

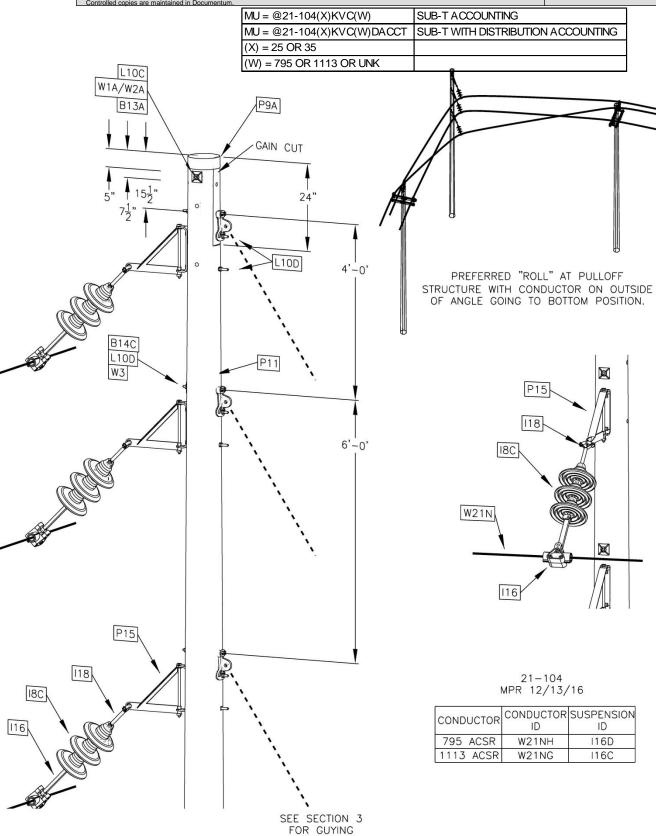
OVERHEAD CONSTRUCTION STANDARD


PAGE NUMBER ISSUE 21-49 7/17

MU = @21-102(X)KVC(W)	SUB-T ACCOUNTING
MU = @21-102(X)KVC(W)DACCT	SUB-T WITH DISTRIBUTION ACCOUNTING
(X) = 25 OR 35	
(W) = 795 OR 1113 OR UNK	

	STRUCTURE SELECTION TABLE FOR 1113 KCMIL 54/19 FINCH			
	ISSUE	PAGE NUMBER		
Busi	01/06 ness Use	21-44	OVERHEAD CONSTRUCTION STANDARD	national grid

MU = @21-103(X)KVC(W)	SUB-T ACCOUNTING
MU = @21-103(X)KVC(W)DACCT	SUB-T WITH DISTRIBUTION ACCOUNTING
(X) = 25 OR 35	
(W) = 795 OR 1113 OR UNK	

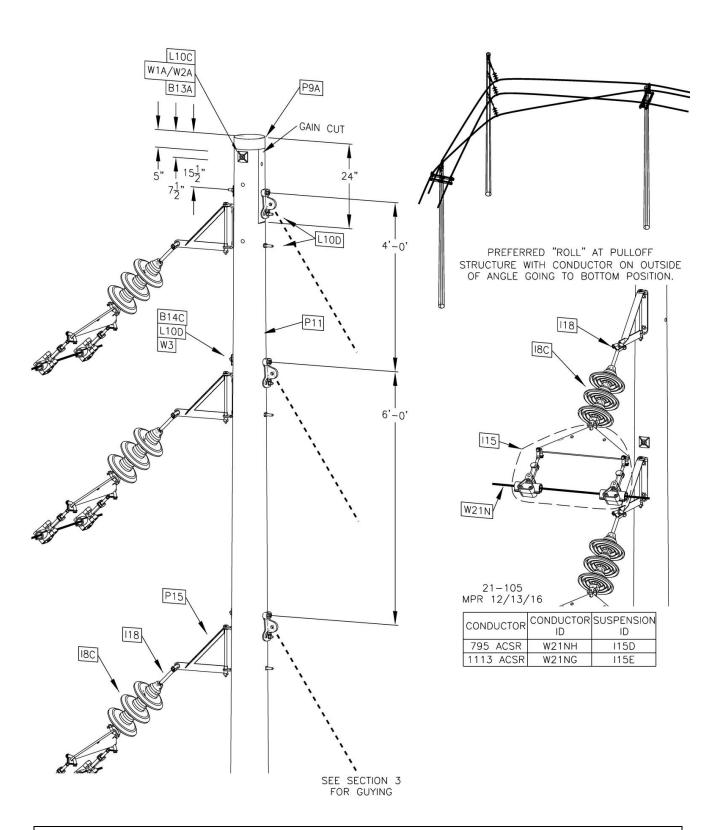


4 FOOT TRIANGLE, DOUBLE ARM, SINGLE INSULATOR, DADI-15
FOR 795 KCMIL AND 1113 KCMIL 25-35 KV

OVERHEAD CONSTRUCTION STANDARD

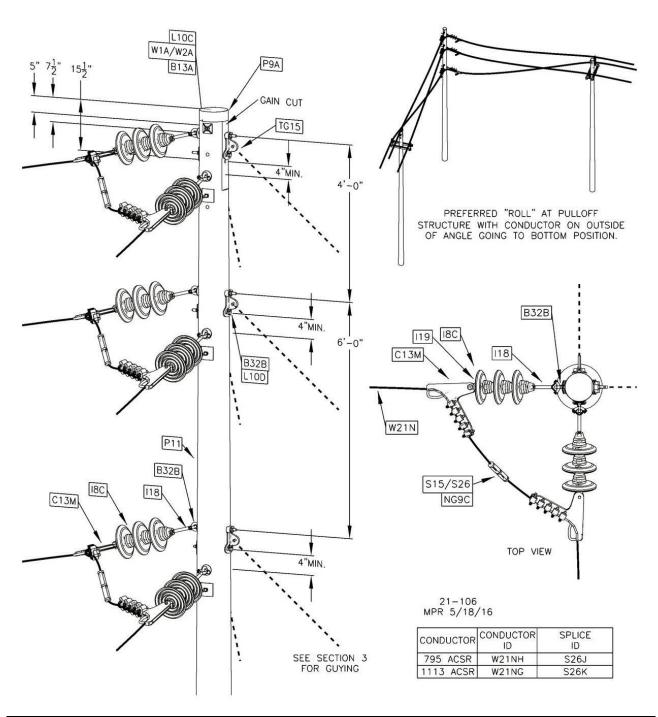
PAGE NUMBER ISSUE 21-103 7/17

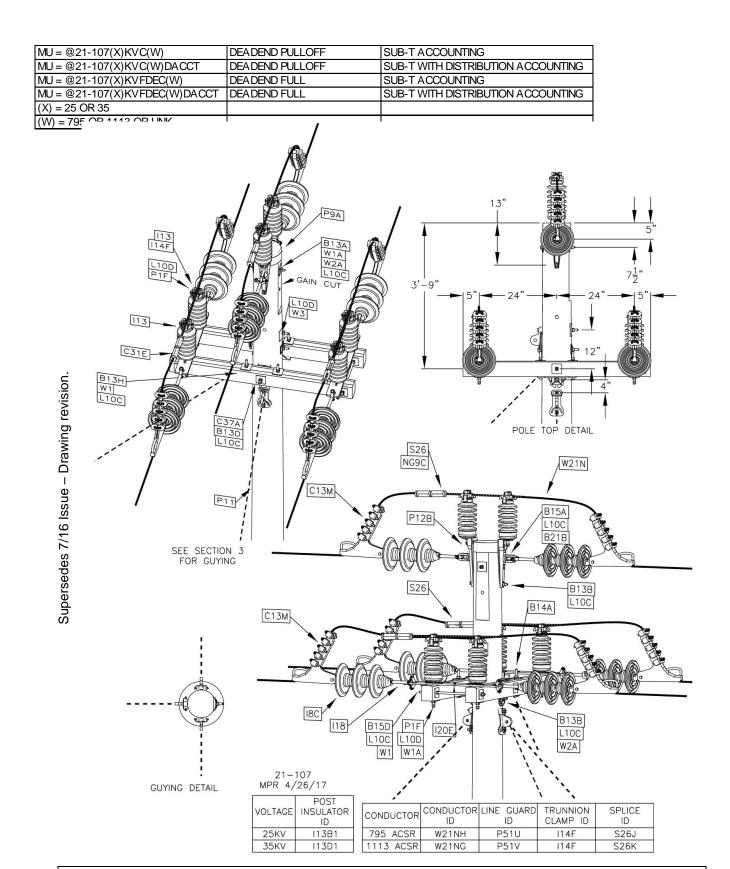
	SUSPENSION PULLOFF, SINGLE AGS UNIT, SPO-30 FOR 795 KCMIL AND 1113 KCMIL 25-35 KV				
	ISSUE	PAGE NUMBER		WHZ	
Busi	7/16 ness Use	21-104	OVERHEAD CONSTRUCTION STANDARD	ppl	


Copyright 2017 PPL. For information regarding property rights, confidentiality and use see Section 31.
Printed copies of this document are not document controlled. Refer to the PPL SKY, Distribution Engineering Services website, for the latest version.
Controlled copies are maintained in Documentum.

Doc. # ST. 21.00.002

MU = @21-105(X)KVC(W)	SUB-T ACCOUNTING
MU = @21-105(X)KVC(W)DACCT	SUB-T WITH DISTRIBUTION ACCOUNTING
(X) = 25 OR 35	
(W) = 795 OR 1113 OR UNK	


SUSPENSION PULLOFF, SINGLE AGS UNIT, SPO-60 FOR 795 KCMIL AND 1113 KCMIL 25-35 KV



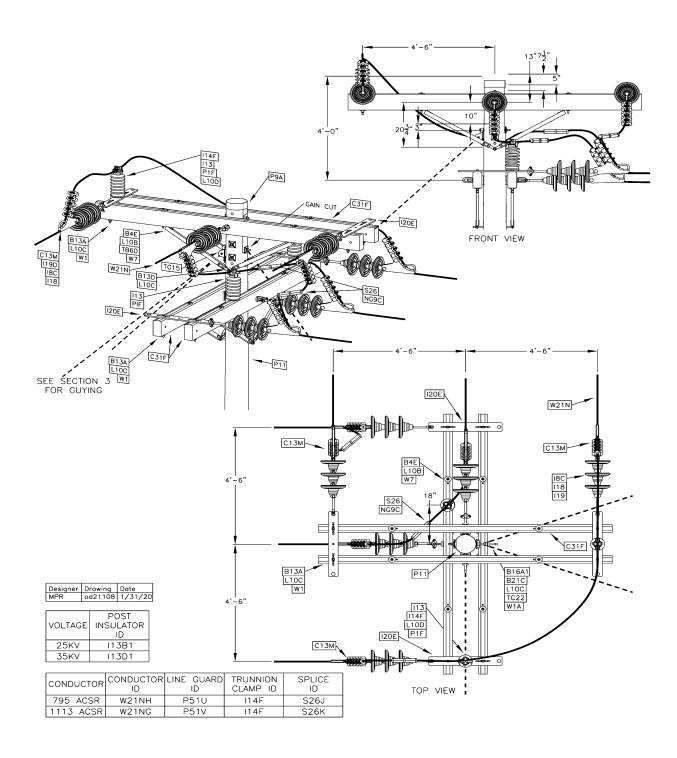
	SUSPENSION PULLOFF, DOUBLE CGS UNIT, SPO-60 FOR 795 KCMIL AND 1113 KCMIL 25-35 KV				
Busi	national grid	OVERHEAD CONSTRUCTION STANDARD	PAGE NUMBER 21-105	7/17	

MU = @21-106(X)KVC(W)	DEADEND PULLOFF DEPO-90	SUB-T ACCOUNTING
MU = @21-106(X)KVC(W)DACCT	DEADEND PULLOFF DEPO-90	SUB-T WITH DISTRIBUTION ACCOUNTING
MU = @21-106(X)KVFDEC(W)	DEADEND FULL DEPO-90	SUB-T ACCOUNTING
MU = @21-106(X)KVFDEC(W)DACCT	DEADEND FULL DEPO-90	SUB-T WITH DISTRIBUTION ACCOUNTING
MU = @21-106(X)KVTC(W)	DEADEND TAP	SUB-T ACCOUNTING
MU = @21-106(X)KVTC(W)DACCT	DEADEND TAP	SUB-T WITH DISTRIBUTION ACCOUNTING
(X) = 25 OR 35		
(W) = 795 OR 1113 OR UNK		

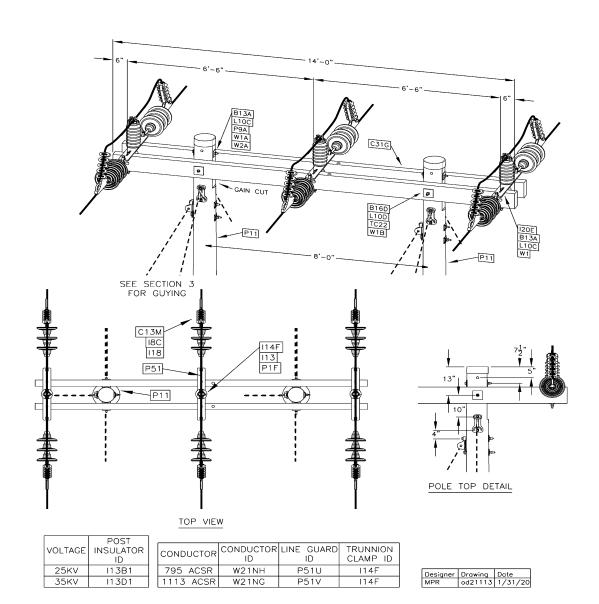
DEADEND PULLOFF, DEPO-90 FOR 795 KCMIL AND 1113 KCMIL 25-35 KV				
	ISSUE	PAGE NUMBER		
Use C	7/16	21-106	OVERHEAD CONSTRUCTION STANDARD	national grid

	DEADEND PULLOFF, DEPO-90 FOR 795 KCMIL AND 1113 KCMIL 25-35 KV					
	ISSUE	PAGE NUMBER		SMIZZ		
Busi	7/16 ness Use	21-106	OVERHEAD CONSTRUCTION STANDARD	ppl		

•	Sapasiadno
	_
	ISSUE -
	Ė
	Drawing revision.
(\mathbf{c}
	œ<
	VISION
	≌
	-


MU = @21-108(X)KVC(W)	Buckarm DE Single Pole Ten Re	SUB-T ACCOUNTING
MU = @21-108(X)KVC(W)DACCT	Buckarm DE Single Pole Ten Re	SUB-T WITH DISTRIBUTION ACCOUNTING
MU = @21-108(X)KVFDEC(W)	Buckarm Deadend Full	SUB-T ACCOUNTING
MU = @21-108(X)KVFDEC(W)DACCT	Buckarm Deadend Full	SUB-T WITH DISTRIBUTION ACCOUNTING
(X) = 25 OR 35		
(W) = 795 OR 1113 OR UNK		

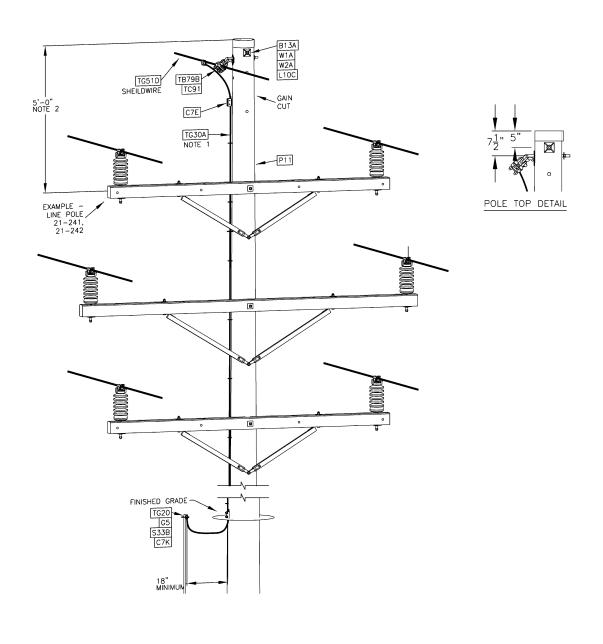
4 FOOT TRIANGLE, SINGLE POLE DEADEND, TENSION CHANGE, SPDE-22 FOR 795 KCMIL AND 1113 KCMIL 25-35 KV


OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 21-107 7/17

	BUCKARM DEADEND, SINGLE POLE, TENSION REDUCED - BADE FOR 795 KCMIL AND 1113 KCMIL 25-35 KV					
	ISSUE	PAGE NUMBER		SMIZZ		
Busi	7/20 ness Use	21-108	OVERHEAD CONSTRUCTION STANDARD	ppl		

MU = @21-113(X)KVC(W)	Buckarm DE Single Pole Ten Reduced Bade	SUB-T ACCOUNTING
MU = @21-113(X)KVC(W)DACCT	Buckarm DE Single Pole Ten Reduced Bade	SUB-T WITH DISTRIBUTION ACCOUNTING
(X) = 25 OR 35		
(W) = 795 OR 1113 OR UNK		



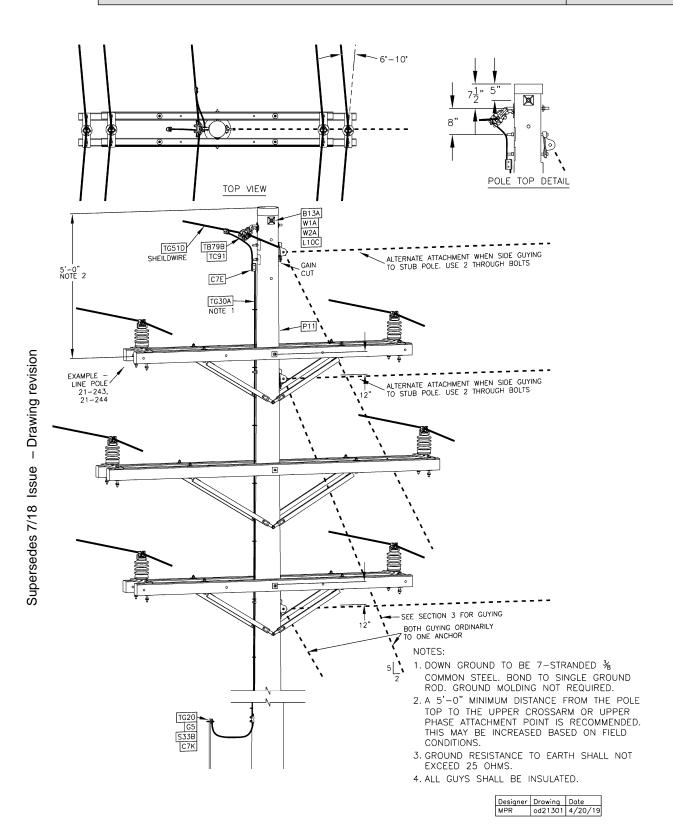
			SUB-TRANSMISSION	
	ISSUE	PAGE NUMBER		120 K :▲: 3
U	se 07/15	BLANK	OVERHEAD CONSTRUCTION STANDARD	national grid

Doc. # ST. 21.00.002

This page intentionally left blank

			SUB-TRANSMISSION	
	ISSUE	PAGE NUMBER		SMI
Busi	07/15 ness Use	21-BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

NOTES:

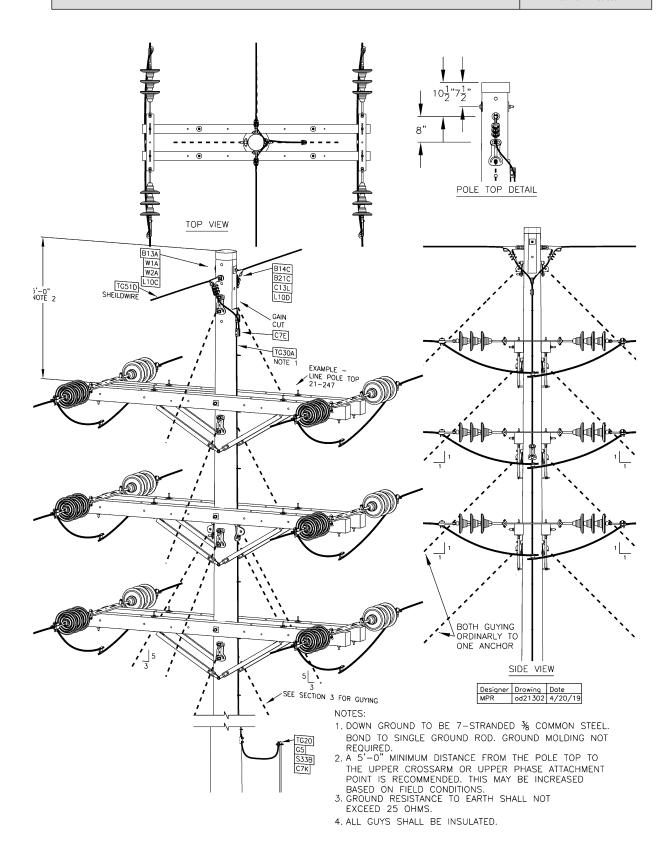

- 1. DOWN GROUND TO BE 7-STRANDED % COMMON STEEL. BOND TO SINGLE GROUND ROD. GROUND MOLDING
- NOT REQUIRED.

 2. A 5'-0" MINIMUM DISTANCE FROM THE POLE TOP TO THE UPPER CROSSARM OR UPPER PHASE ATTACHMENT POINT IS RECOMMENDED. THIS MAY BE INCREASED BASED ON FIELD CONDITIONS.

 3. ALL GUYS SHALL BE INSULATED.

Designer	Drawing	Date	
MPR	od21300	4/20/19	

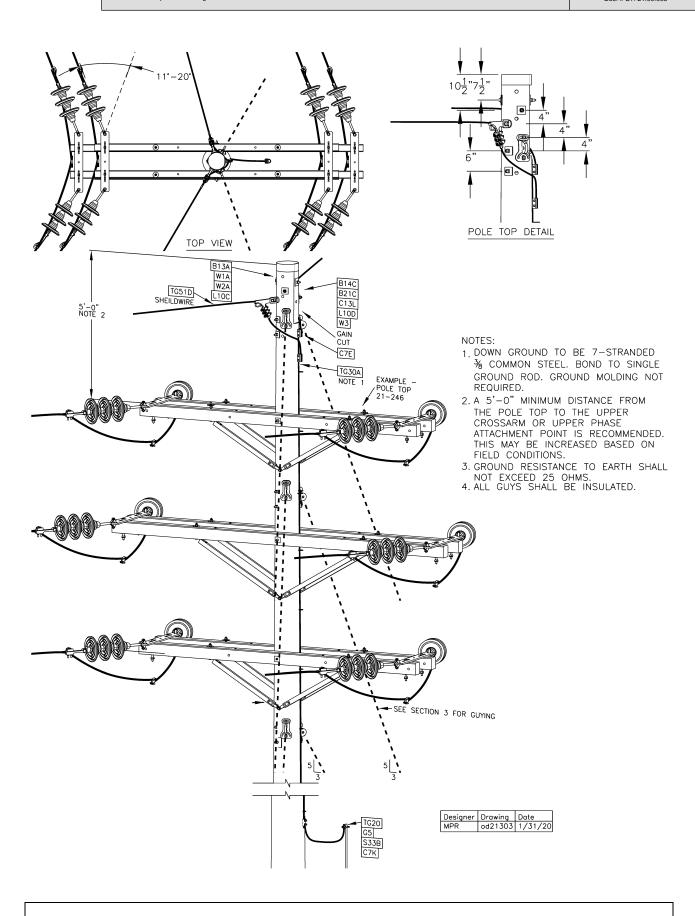
25kV, 35kV, 46kV – SHIELD WIRE, SUSPENSION, TANGENT						
SMIZZ		PAGE NUMBER	ISSUE			
ppl	OVERHEAD CONSTRUCTION STANDARD	21-300	7/19			



Business Use PAGE NUMBER

7/19
21-301

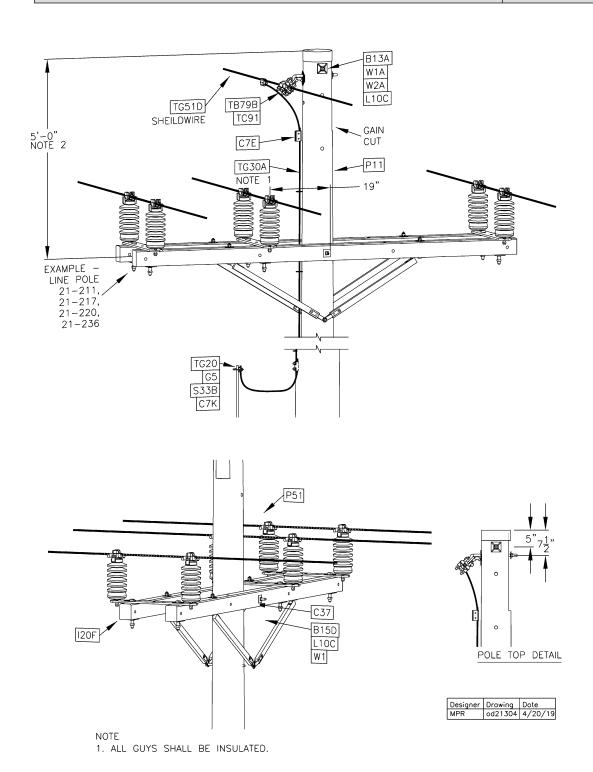
OVERHEAD CONSTRUCTION STANDARD



25kV, 35kV, 46kV – SHIELD WIRE, STRAIN, TANGENT

OVERHEAD CONSTRUCTION STANDARD

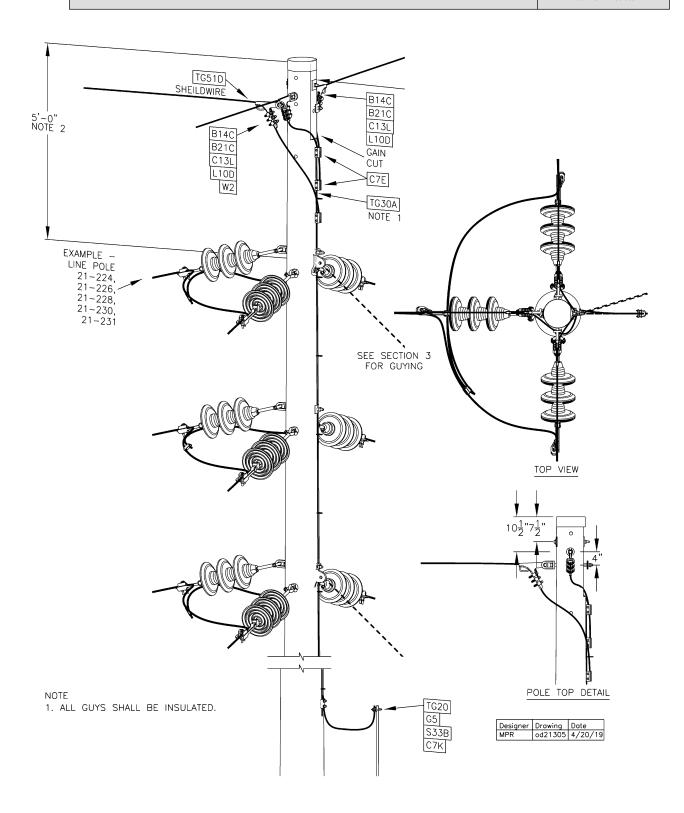
PAGE NUMBER ISSUE 21-302 7/19


25k	κV, 35kV, 46kV – SH	IELD WIRE, STRAIN, 11 – 20 DEG	REE LINE ANGLE
Ī	DACE MUMDED		

Business Use PAGE NUMBER

7/20
21-303

OVERHEAD CONSTRUCTION STANDARD



25kV, 35kV, 46kV Shield Wire, Double Arm, 0 – 2 Degree Line Angle

OVERHEAD CONSTRUCTION STANDARD

	25kV, 35kV, 46kV – SHIELD WIRE, SINGLE POLE, VERTICLE, SINGLE CIRCUIT TEE								
			TAP						
	ISSUE	PAGE NUMBER		Will.					
Busi	7/19 ness Use	21-305	OVERHEAD CONSTRUCTION STANDARD	ppl					

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 09.00.004

Standard Overhead Sub-Transmission Conductors

STANDARD OVERHEAD SUB-TRANSMISSION CONDUCTORS

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 21-400 7/12

Std. Item:	W21NG
Item ID:	5941814 ^E
CU:	C1113ASSTBRNE

PHYSICAL	PROPERTIES	LOADING PI	ROPERTIES	CURRENT CARRYING CAPACITIES			
R.B.S.	39,100 lbs.	TRANSVERSE	0.7634 Lb/Ft	SUMMER	CONDUCTOR	WINTER	
C.S.A.	0.9854 sq. in.	VERTICAL	2.546 Lb/Ft	(37.7°C)	TEMPERATURE	(10°C)	
R. (@ 25°C)	0.0161 Ω / 1000'	TOTAL	2.958 Lb/Ft	276	122°F/50°C	1202	
R. (@ 75°C)	0.0191 Ω / 1000'	IOIAL		1111	176°F/80°C	1573	
CONDUCTOR	1.293"	SWING	24.33°	1393	212°F/100°C	1763	
DIAMETER	1.293	SWING	24.33	1803	284°F/140°C	2073	
WEIGHT	1430 lbs / 1000'						

	INITIAL SAG TABLE															
		RULING SPAN (FEET)														
		12	25			15	50			17	7 5			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2672	1772	1394	1162	2461	1810	1499	1287	2318	1837	1578	1389	2208	1857	1639	1471
ACTUAL SPAN (FEET)																
50	2	3	4	5	2	3	4	4	2	3	3	4	2	3	3	4
60	3	4	6	7	3	4	5	6	3	4	5	6	3	4	5	5
70	4	6	8	9	4	6	7	8	5	6	7	8	5	6	6	7
80	5	8	10	12	6	8	9	11	6	7	9	10	6	7	8	9
90	7	10	12	15	7	10	12	14	8	9	11	13	8	9	11	12
100	8	12	15	18	9	12	14	17	9	12	14	15	10	12	13	15
110	10 12	15 17	19 22	22 27	11 13	14 17	17	20 24	11 13	14 17	16	19 22	12 14	14 17	16	18
120							21				20				19	21
130	14 16	20 24	26 30	31 36	15 17	20 23	24 28	28 33	16 18	20 23	23 27	26 30	16 19	20 23	22 26	25 29
140 150	18	24 27	35	30 42	20	23 27	26 32	აა 38	21	23 26	31	35	22	23 26	26 29	33
160	21	31	39	47	22	30	37	43	24	30	35	40	25	30	34	37
170	23	35	39 45	53	25	34	41	43 48	27	34	39	40 45	28	33	38	42
180	26	39	5 0	60	28	38	46	54	30	38	44	5 0	32	37	42	47
190	29	44	56	67	31	43	52	60	33	42	49	56	35	42	47	53
200	32	48	62	74	35	47	57	67	37	47	54	62	39	46	52	58
210	35	53	68	82	38	52	63	74	41	52	60	68	43	51	58	64
220	39	59	75	90	42	57	69	81	45	57	66	75	47	56	63	71
230	43	64	82	98	46	63	76	88	49	62	72	82	51	61	69	77
240	46	70	89	107	50	68	83	96	53	67	78	89	56	67	75	84
250	50	76	96	116	55	74	90	104	58	73	85	97	61	72	82	91
260	54	82	104	125	59	80	97	113	63	79	92	105	66	78	89	99
270	59	88	112	135	64	87	105	122	68	85	99	113	71	84	96	107
280	63	95	121	145	68	93	112	131	73	92	107	121	76	91	103	115
290	68	102	130	156	73	100	121	141	78	98	115	130	82	97	110	123
300	72	109	139	167	79	107	129	150	83	105	123	139	88	104	118	132

^{***} Simulated with a maximum tension of 4000 lbs. ***

	1113.0 KCMIL, 54/19 STRANDING, BARE ACSR, "FINCH"									
	ISSUE	PAGE NUMBER		SMIZZ						
Busi	7/12 ness Use	21-401	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	ppl						

CU:	C1113ASSTBRNE

		FINAL SAG TABLE										
		LOADING (UNLOADED CONDITIONS)										
TEMP. °F	0	0 32 60 90 120 158 176 212 257 284										
TEMP. °C	-20	0	15	32	50	70	80	100	125	140		
DEAD END SPAN (FEET)												
50	1	4	7	9	10	11	12	13	14	15		
75	4	8	12	14	16	18	19	21	22	24		
100	8	13	18	21	23	26	27	29	31	33		
125	13	20	25	29	32	34	36	38	41	47		
150	21	28	33	38	41	44	46	48	51	53		
175	30	37	43	48	52	55	57	60	63	65		
200	40	47	54	60	63	67	69	72	76	78		
225	51	59	66	72	76	80	82	85	90	92		
250	65	73	79	85	90	95	96	100	105	107		
275	79	87	94	100	106	110	112	116	121	123		
300	95	103	110	117	122	127	129	133	138	141		

	TENSION (LBS.)			
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	3	5	7	*4000
75	6	10	12	*4000
100	11	15	18	*4000
125	17	22	25	*4000
150	25	30	33	*4000
175	34	39	43	*4000
200	44	50	54	*4000
225	56	62	66	*4000
250	70	76	79	*4000
275	84	90	94	*4000
300	100	106	110	*4000

^{***} Simulated with a maximum tension of 4000 lbs. ***

1113.0 KCMIL, 54/19 STRANDING, BARE ACSR, "FINCH"

OVERHEAD SUB-TRANSMISSION
CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

21-402

7/12

Std. Item:	W21NF
Item ID:	5941794 ^E
CU:	C795ASSTBRNE

PHYSICAL	PROPERTIES	LOADING PI	ROPERTIES	CURRENT CARRYING CAPACITIES			
R.B.S.	28,200 lbs.	TRANSVERSE	0.6966 Lb/Ft	SUMMER	CONDUCTOR	WINTER	
C.S.A.	0.7049 sq. in.	VERTICAL	2.015 Lb/Ft	(37.7°C)	TEMPERATURE	(10°C)	
R. (@ 25°C)	0.0222 Ω / 1000'	TOTAL	2.432 Lb/Ft	258	122°F/50°C	973	
R. (@ 75°C)	0.0265 Ω / 1000'	IOIAL		902	176°F/80°C	1268	
CONDUCTOR	4.000"	CWING	00.44°	1124	212°F/100°C	1418	
DIAMETER	1.093"	SWING	28.14°	1447	284°F/140°C	1662	
WEIGHT	1022 lbs / 1000'						

						INIT	IAL SA	G TAI	BLE							
								NG SF		EET)						
	125 150								175					20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2446	1557	1165	938	2192	1537	1228	1028	2004	1523	1274	1100	1874	1513	1310	1157
ACTUAL SPAN (FEET)																
50	2	2	3	4	2	2	3	4	2	3	3	3	2	3	3	3
60	2	4	5	6	3	4	5	5	3	4	4	5	3	4	4	5
70	3	5	6	8	3	5	6	7	4	5	6	7	4	5	6	7
80	4	6	8	10	4	6	8	10	5	6	8	9	5	6	8	8
90	5	8	11	13	6	8	10	12	6	8	10	11	7	8	10	11
100	6	10	13	16	7	10	13	15	8	10	12	14	8	10	12	13
110	8	12	16	20	8	12	15	18	9	12	15	17	10	12	14	16
120	9	14	19	24	10	14	18	22	11	15	17	20	12	15	17	19
130	11	17	22	28	12	17	21	25	13	17	20	24	14	17	20	22
140	12	19	26	32	14	20	25	29	15	20	24	27	16	20	23	26
150	14	22	30	37	16	22	28	34	17	23	27	31	18	23	26	30
160	16	25	34	42	18	26	32	38	20	26	31	36	21	26	30	34
170	18	29	38	47	20	29	36	43	22	29	35	40	24	29	34	38
180	20	32	43	53	23	32	41	48	25	33	39	45	27	33	38	43
190	23	36	48	59	25	36	45	54	28	36	44	50	30	37	42	48
200	25	39	53	66	28	40	50	60	31	40	48	56	33	41	47	53
210	28	44	58	72	31	44	55	66	34	45	53	62	36	45	52	59
220	30	48	64	79	34	48	61	72	37	49	58	68	40	49	57	64
230	33	52	70	87	37	53	66	79	41	53	64	74	43	54	62	70
240	36	57	76	94	40	58	72	86	44	58	69	81	47	59	68	77
250	39	62	82	103	44	62	78	94	48	63	75	87	51	63	73	83
260	42	67	89	111	47	68	85	101	52	68	82	95	55	69	79	90
270	46	71	96	120	51	73	91	109	56	74	88	102	60	74	59	97
280	49	77	103	129	55	78	98	117	60	79	95	110	64	80	92	104
290	53	83	111	138	59	84	105	126	64	85	101	118	69	85	99	112
300	57	89	119	148	63	90	113	135	69	91	109	126	74	91	106	120

^{***} Simulated with a maximum tension of 3500 lbs. ***

	795.0 KCMIL, 54/7 STRANDING, BARE ACSR, "CONDOR"									
ISSUE	PAGE NUMBER		SMIZZ							
7/12	21-403	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	ppl							

Item ID:	5941794 ^E
CU:	C795ASSTBRNE

					FINAL SA	G TABLE	<u> </u>			
		_	_	LOADING	(UNLOA	DED CON	DITIONS)		
TEMP. °F	0	32	60	90	120	158	176	212	257	284
TEMP. °C	-20	0	15	32	50	70	80	100	125	140
DEAD END SPAN (FEET)										
50	1	3	6	8	9	10	11	12	14	15
75	3	6	10	13	15	17	18	20	21	23
100	6	11	16	20	22	24	25	27	30	31
125	11	17	22	27	30	32	34	36	39	41
150	17	24	30	36	38	42	43	46	49	51
175	25	33	39	45	48	52	53	57	60	63
200	35	43	49	55	59	63	65	68	72	75
225	45	54	60	67	71	75	77	81	85	88
250	58	66	73	80	85	89	91	95	99	102
275	71	80	87	94	100	104	106	110	115	117
300	87	95	102	110	115	120	122	126	131	134

		FINAL SAG TA	BLE		
	LOADING	(LOADED COND	ITIONS)	TENSION (LBS.)	
TEMP. °F	0	0 32 60			
TEMP. °C	-18	0	15	-18	
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE	
DEAD END SPAN (FEET)					
50	3	4	6	*3500	
75	6	8	11	*3500	
100	10	14	16	*3500	
125	16	20	23	*3500	
150	23	28	30	*3500	
175	32	37	39	*3500	
200	42	47	50	*3500	
225	53	58	61	*3500	
250	65	71	74	*3500	
275	79	84	87	*3500	
300	94	100	102	*3500	

^{***} Simulated with a maximum tension of 3500 lbs. ***

795.0 KCMIL, 54/7 STRANDING, BARE ACSR, "CONDOR"

OVERHEAD SUB-TRANSMISSION
CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

21-404

7/12

td. Item:	
Item ID:	5941551
CU:	477BACSR

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES			
R.B.S.	19,500 lbs.	TRANSVERSE	0.6174 Lb/Ft	SUMMER	MAXIMUM	WINTER (10°C)	
C.S.A.	0.4353 sq. in.	VERTICAL	1.501 Lb/Ft	(37.7°C)	AMPACITY		
R. (@ 25°C)	0.0366 Ω / 1000'	TOTAL	1.923 Lb/Ft	658	NORMAL	938	
R. (@ 75°C)	0.0438 Ω / 1000'	IOIAL	1.923 LD/Ft	742	EMERGENCY	991	
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	33.18°				
CONDUCTOR DIAMETER	0.858" (Nominal)			•			
WEIGHT	656 lbs / 1000'						

						INITI	ΔΙ ς/	AG TA	RI F							
	INITIAL SAG TABLE RULING SPAN (FEET)															
	125 150								175					20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2200	1333	913	691	1936	1255	937	750	1707	1200	954	796	1533	1161	967	832
ACTUAL SPAN (FEET)																
50 60	1 2	2 3	3 4	4 5	1 2	2	3 4	3 5	1 2	2 3	3 4	3 4	2 2	2 3	3 4	3 4
70 80	2 3	4 5	5 7	7 9	2 3	4 5	5 7	6 8	3 4	4 5	5 7	6 8	3 4	4 5	5 7	6 8
90	4	6 7	9 11	12	4	6 8	9 11	11 13	5 6	7 8	8	10	5 6	7 8	8 10	10
100 110	4 5	9	13	14 17	5 6	9	13	16	7	8 10	10 12	12 15	8	8 10	10	12 14
120	6	11	16	21	7	11	15	19	8	12	15	18	9	12	15	17
130	8	12	18	24	9	13	18	22	10	14	17	21	11	14	17	20
140	9	14	21	28	10	15	21	26	11	16	20	24	13	17	20	23
150	10	17	24	32	11	18	24	30	13	18	23	28	14	19	23	27
160	11	19	28	36	13	20	27	34	15	21	26	32	16	22	26	30
170	13	21	31	41	15	23	30	38	17	24	30	36	19	25	29	34
180	14	24	35	46	16	25	34	43	19	27	33	40	21	27	33	38
190	16	27	39	51	18	28	38	47	21	30	37	45	23	31	37	43
200	18	30	43	57	20	31	42	53	23	33	41	50	26	34	41	47
210	20	33	48	63	22	35	46	58	25	36	45	55	28	37	45	52
220	22	36	52	69	25	38	51	64	28	40	50	60	31	41	49	57
230	24	39	57	75	27	41	56	69	31	43	55	65	34	45	54	63
240	26	43	62	82	29	45	61	76	33	47	59	71	37	49	59	68
250	28	46	67	89	32	49	66	82	36	51	64	77	40	53	64	74
260	30	50	73	96	34	53	71	89	39	55	70	84	43	57	69	80
270	33	54	79	104	37	57	77	96	42	60	75	90	47	62	74	86
280	35	58	85	112	40	61	82	103	45	64	81	97	50	66	80	93
290	38	62	91	120	43	66	88	111	48	69	87	104	54	71 70	86	100
300	40	66	97	128	46	71	95	118	52	74	93	111	58	76	92	107

*** Simulated with a maximum tension of 3000 lbs. ***

	477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK"									
ISSUE	PAGE NUMBER		SMIZZ							
7/12	21-405	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	ppl							

CU:	477BACSR

	FINAL SAG TABLE											
			LOADIN	G (UNLOA	DED COND	DITIONS)						
TEMP. °F	0	32	60	90	120	158	176	194				
TEMP. °C	-18	0	15	32	50	70	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	1	2	4	6	8	9	10	11				
75	2	4	8	11	13	15	16	17				
100	4	8	13	17	19	22	23	24				
125	7	13	19	2	26	29	31	32				
150	12	20	26	31	34	38	39	41				
175	19	27	34	40	43	47	49	51				
200	27	36	43	50	53	57	59	61				
225	37	47	54	61	64	69	71	73				
250	49	58	65	72	77	81	83	85				
275	61	71	78	85	90	95	97	99				
300	75	84	92	99	104	109	112	114				

		FINAL SAG TA	BLE	
	LOADING	G (LOADED COND	OITIONS)	TENSION (LBS.)
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	2	3	5	3000*
75	5	7	9	3000*
100	10	12	14	3000*
125	15	18	20	3000*
150	22	25	27	3000*
175	30	33	35	3000*
200	39	42	44	3000*
225	49	53	55	3000*
250	60	64	66	3000*
275	73	77	79	3000*
300	87	91	93	3000*
	* Not	te: Design Specificat	ion Constraint	

^{***} Simulated with a maximum tension of 3000 lbs. ***

477.0 KCMIL, 26/7 STRANDING, BARE ACSR, "HAWK"

	PAGE NUMBER	ISSUE
OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	21-406	7/12

Std. Item:	W21BA
Item ID:	0811125
CU:	C477ALSTBR

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	8,360 lbs.	TRANSVERSE	0.5992 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.3744 sq. in.	VERTICAL	1.252 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	1.688 Lb/Ft	640	NORMAL	908		
R. (@ 75°C)	0.0445 Ω / 1000'	IOIAL	1.000 LD/Ft	721	EMERGENCY	960		
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	41.59°					
CONDUCTOR DIAMETER	0.793"			•				
WEIGHT	446.8 lbs / 1000'							

						INITI	AL SA	AG TA	BLE							
							RULII	NG SF	PAN (I	FEET)						
		12	25			15	50		175					200		
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1086	616	451	363	885	590	470	394	765	574	482	419	695	564	492	438
ACTUAL SPAN (FEET)																
50 60	2	3 4	4 5	5 7	2	3 4	4 5	4 6	2	3 4	3 5	4 6	2	3 4	3 5	4 6
70	3	5	7	9	4	6	7	8	4	6	7	8	5	6	7	8
80	4	7	10	12	5	7	9	11	6	7	9	10	6	8	9	10
90	5	9	12	15	6	9	12	14	7	9	11	13	8	10	11	12
100	6	11	15	19	8	11	14	17	9	12	14	16	10	12	14	15
110	7	13	18	22	9	14	17	21	11	14	17	19	12	14	17	19
120	9	16	21	27	11	16	21	25	13	17	20	23	14	17	20	22
130	10	18	25	31	13	19	24	29	15	20	24	27	16	20	23	26
140	12	21	29	36	15	22	28	33	17	23	27	31	19	23	27	30
150	14	25	34	42	17	26	32	38	20	26	31	36	22	27	31	35
160	16	28	38	47	19	29	37	44	22	30	36	41	25	31	35	39
170	18	32	43	54	22	33	41	49	25	34	40	46	28	34	40	44
180	20	35	48	60	25	37	46	55	28	38	45	52	31	39	44	50
190	22	39	54	67	27	41	52	62	32	42	50	58	35	43	49	55
200	25	44	60	74	30	46	57	68	35	47	56	64	39	48	55	61
210	27	48	66	82	33	50	63	75	39	52	61	71	43	53	60	68
220	30	53 58	72	90 98	37	55 60	69 76	83 90	43 46	57 62	67	78 85	47 51	58	66 72	74
230 240	33 36	58 63	79 86	98 107	40 44	60 66	76 83	90 98	46 51	62 67	74 80	85 93	51 56	63 69	72 79	81 89
250	39	68	93	116	44	71	90	107	55	73	87	100	60	75	86	96
250 260	39 42	68 74	93 101	126	47 51	71 77	90 97	107	55 59	73 79	87 94	100	65	75 81	93	96 104
270 270	45	80	101	135	55	83	104	124	64	85	102	117	70	87	100	112
280	49	86	117	146	60	89	112	134	69	92	102	126	76	94	107	121
290	52	92	125	156	64	96	121	144	74	98	117	135	81	100	115	129
300	56	98	134	167	68	103	129	154	79	105	126	145	87	107	123	139

	477.0 KCMIL, 19 STRAND, BARE AAC, "COSMOS"										
ISSUE	PAGE NUMBER		SMIZZ								
7/12	21-407	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	ppl								

Std. Item:	W21BA
CU:	C477ALSTBR

	FINAL SAG TABLE												
		LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0	32	60	90	120	158	176	194					
TEMP. °C	-18	0	15	32	50	70	80	90					
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded					
DEAD END SPAN (FEET)													
50	1	3	7	10	12	14	15	16					
75	3	7	12	15	19	22	24	25					
100	6	12	18	23	27	31	33	35					
125	11	19	25	31	36	41	43	45					
150	19	28	34	40	45	51	54	57					
175	30	38	45	51	57	63	66	69					
200	42	50	57	64	67	77	80	83					
225	55	64	71	78	84	92	95	98					
250	71	79	86	94	100	108	111	115					
275	87	96	103	111	117	125	129	133					
300	106	115	122	129	136	144	148	152					

		FINAL SAG TA	BLE			
	LOADING	G (LOADED COND	OITIONS)	TENSION (LBS.)		
TEMP. °F	0	32	60	0		
TEMP. °C	-18	0	15	-18		
	4 LB. WIND, ½" ICE ½" ICE		6 LB. WIND	4 LB. WIND, ½" ICE		
DEAD END SPAN (FEET)						
50	3	5	7	*2000		
75	7	10	12	*2000		
100	13	16	18	*2000		
125	20	23	26	*2000		
150	29	33	35	*2000		
175	39	43	46	*1995		
200	51	55	58	*1989		
225	65	69	72	*1986		
250	80	85	87	*1986		
275	97	102	104	*1986		
300	115	120	123	*1987		
	* Not	te: Design Specificat	ion Constraint			

477.0 KCMIL, 19 STRAND, BARE AAC, "COSMOS"

	PAGE NUMBER	ISSUE
OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	21-408	7/12

Std. Item:	W21NB
Item ID:	5942639 ^E
CU:	C477ALTWHMP35KNE
CU:	C477ALSCHMP35KNE

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	8,360 lbs.	TRANSVERSE	0.7866 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.3746 sq. in.	VERTICAL	2.061 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.0373 Ω / 1000'	TOTAL	2.506 Lb/Ft	435	NORMAL	710		
R. (@ 75°C)	0.0447 Ω / 1000'	IOIAL	2.506 LD/Ft	543	EMERGENCY	770		
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	37.02°					
CONDUCTOR DIAMETER	0.722"			•				
COMPLETE DIAMETER	1.362" (Nominal)							
WEIGHT	903 lbs / 1000'							

						INITI	AL SA	G TA	BLE							
							RULII	NG SF	PAN (I	FEET)						
		12	25			15	50			17	75		200			
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	822	675	593	531	789	687	624	572	770	695	645	602	758	701	660	624
ACTUAL SPAN (FEET)																
50	4	5	6	6	4	5	5	6	4	5	5	6	4	5	5	5
60	6	7	8	9	6	7	8	9	6	7	8	8	6	7	7	8
70	8	10	11	12	8	10	11	12	9	10	10	11	9	9	10	11
80	11	13	15	16	11	13	14	15	11	12	13	14	11	12	13	14
90	13	16	19	21	14	16	18	19	14	16	17	18	14	16	17	18
100	16	20	23	26	17	20	22	24	18 21	19	21	23 27	18 22	19	21 25	22 26
110 120	20 24	24 29	28 33	31 37	21 25	24 28	26 31	29 34	25	24 28	25 30	32	26	23 28	25 30	26 31
130	28	34	39	43	29	33	37	40	30	33	36	38	30	33	35	37
140	32	39	39 45	43 50	34	39	43	46	35	38	41	36 44	35	38	40	43
150	37	45	51	57	39	44	49	53	40	44	47	51	40	44	46	49
160	42	51	59	65	44	51	56	61	45	50	54	58	46	50	53	56
170	48	58	66	74	50	57	63	69	51	56	61	65	52	56	59	63
180	53	65	74	83	56	64	70	77	57	63	68	73	58	63	67	70
190	60	73	83	92	62	71	78	86	64	70	76	81	65	70	74	79
200	66	80	92	102	69	79	87	95	70	78	84	90	72	77	82	87
210	73	89	101	113	76	87	96	105	78	86	93	99	79	85	91	96
220	80	97	111	124	83	96	105	115	85	94	102	109	87	94	99	105
230	87	106	121	135	91	104	115	126	93	103	111	119	95	102	109	115
240	95	116	132	147	99	114	125	137	102	112	121	130	103	112	118	125
250	103	126	143	160	108	123	136	149	110	122	132	141	112	121	128	136
260	112	136	155	173	116	134	147	161	119	132	142	153	121	131	139	147
270	120	147	167	187	125	144	159	173	129	142	153	165	131	141	150	159
280	129	158	180	201	135	155	171	186	138	153	165	177	141	152	161	171
290	139	169	193	215	145	166	183	200	148	164	177	190	151	163	173	183
300	149	181	206	231	155	178	196	214	159	176	190	203	161	174	185	196

477.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE - 35 kV

ISSUE	PAGE NUMBER
7/12	21-409

Std. Item:	W21NB
Item ID:	5942639 ^E
CU:	C477ALSCHMP35KNE

			FINAL	SAG TABI	.E							
	LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0	32	60	90	120	158	176	194				
TEMP. °C	-18	0	15	32	50	70	80	90				
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded				
DEAD END SPAN (FEET)												
50	3	7	9	12	14	16	17	18				
75	8	13	16	20	22	25	27	28				
100	16	21	25	29	32	36	38	39				
125	26	32	36	40	44	49	51	52				
150	39	45	50	54	58	63	65	67				
175	55	60	65	70	74	79	82	84				
200	72	78	83	88	92	98	100	103				
225	92	98	103	108	113	118	121	124				
250	115	121	125	130	135	141	144	147				
275	140	145	150	155	160	166	169	172				
300	167	173	177	183	188	194	197	200				

		FINAL SAG TA	BLE						
	LOADING	LOADING (LOADED CONDITIONS)							
TEMP. °F	0	32	60	0					
TEMP. °C	-18	0	15	-18					
	4 LB. WIND, 1/2" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE					
DEAD END SPAN (FEET)									
50	5	8	9	*2000					
75	11	14	17	*2000					
100	19	23	26	*2000					
125	29	34	37	*2000					
150	42	47	50	*2000					
175	58	62	65	*2000					
200	75	80	83	*2000					
225	95	100	103	*2000					
250	118	123	13	*2000					
275	143	147	151	*2000					
300	170	175	178	*2000					
_	* Note	e: Design Specificat	ion Constraint						

477.0 KCMIL, 19 STRAND, COMPACT AAC, 320 MIL COVERED TREE WIRE - 35 kV

	PAGE NUMBER	ISSUE
OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	21-410	7/12

Std. Item:	TC52
Item ID:	4035236 ^Y
CU:	C33ASSTBR

PHYSICAL	PROPERTIES	LOADING PI	ROPERTIES	CURRENT CARRYING CAPACITIES			
R.B.S.	8,700 lbs.	TRANSVERSE	0.5617 Lb/Ft	SUMMER	CONDUCTOR	WINTER	
C.S.A.	0.2789 sq. in.	VERTICAL	1.101 Lb/Ft	(37.7°C)	TEMPERATURE	(10°C)	
R. (@ 25°C)	0.0523 Ω / 1000'	TOTAL	1.536 Lb/Ft	187	122°F/50°C	555	
R. (@ 75°C)	0.0625 Ω / 1000'	TOTAL		519	176°F/80°C	719	
CONDUCTOR	0.004"	CWING	40.44°	640	212°F/100°C	801	
DIAMETER	0.684"	SWING	43.14°	757	257°F/125°C	888	
WEIGHT	365 lbs / 1000'		•				

						INITI	ΔΙ ς/	AG TA	RIF							
								NG SF		FEET)						
l		12	25			15					75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	2400	1624	972	552	2449	1690	1063	643	2398	1655	1072	693	2217	1503	1001	696
ACTUAL SPAN (FEET)																
50 60	1 1	1 1	1 2	2 4	1 1	1 1	1 2	2 3	1 1	1 1	1 2	2 3	1 1	1 1	1 2	2 3
70 80	1	2	3 4	5 6	1	2 2	3	4 5	1	2 2	3	4 5	1 2	2 2	3	4 5
90	2	3	5	8	2	3	4	7	2	3	4	6	2	3	4	6
100 110	2	3 4	6 7	10 12	2	3 4	5 6	9 10	2	3 4	5 6	8 10	2	4 4	5 7	8 10
120	ა 3	4 5	, 8	14	3	4 5	7	10	3	4 5	7	11	4	4 5	8	11
130	4	6	10	17	4	5	9	14	4	6	9	13	4	6	9	13
140	4	7	11	19	4	6	10	17	4	6	10	15	5	7	11	15
150	5	8	13	22	5	7	12	19	5	7	11	18	6	8	12	18
160	6	9	14	25	6	8	13	22	6	8	13	20	6	9	14	20
170	7	10	16	29	6	9	15	25	7	10	15	23	7	11	16	23
180	7	11	18	32	7	10	17	28	7	11	17	26	8	12	18	25
190	8	12	20	36	8	12	19	31	8	12	18	29	9	13	20	28
200	9	13	23	40	9	13	21	34	9	13	20	32	10	15	22	31
210	10	15	25	44	10	14	23	38	10	15	23	35	11	16	24	35
220	11	16	27	48	11	16	25	41	11	16	25	38	12	18	26	38
230	12	18	30	53 57	12	17	27	45 40	12	17	27	42	13	19	29	42
240	13	19	32	57	13	19	30	49	13	19	29	46	14	21	32	45
250 260	14 15	21 23	35 38	62 67	14 15	20 22	32 35	53 58	14 15	21 22	32 35	49 53	15 17	23 25	34 37	49 53
260 270	15	23 25	38 41	67 72	16	22 24	35 38	58 62	17	22 24	35 37	53 58	18	25 27	37 40	53 57
280	18	25 26	41	78	18	25	40	67	18	26	40	62	19	29	43	62
290	19	26 28	44 47	76 84	19	25 27	40	72	19	26 28	40	62 67	21	29 31	43 46	66
300	21	30	51	89	20	29	43 46	77	21	30	43 46	71	22	33	49	71

^{***} Simulated with a maximum tension of 3000 lbs. ***

	336.4 KCMIL,	18/1 STRANDING, BARE ACSR, "	MERLIN"
ISSUE	PAGE NUMBER		SMIZZ
7/12	21-411	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	ppl

Std. Item:	TC52
CU:	C33ASSTBR

					FINAL SA	G TABLE	:					
	LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0	32	60	90	120	158	176	212	257	284		
TEMP. °C	-20	0	15	32	50	70	80	100	125	140		
DEAD END SPAN (FEET)												
50	1	1	3	7	8	10	10	12	13	14		
75	1	3	6	11	14	16	17	18	20	21		
100	3	5	9	15	20	22	23	25	28	29		
125	4	7	13	20	26	29	31	33	36	38		
150	6	10	16	24	31	37	38	41	44	46		
175	8	14	21	30	38	45	47	50	54	56		
200	12	19	28	38	46	55	57	60	64	66		
225	17	26	36	46	55	65	68	71	75	78		
250	23	35	45	56	65	75	79	83	87	90		
275	31	44	55	66	75	86	91	95	100	103		
300	41	55	66	77	87	98	103	109	114	117		

		FINAL SAG TA	BLE							
	LOADING	LOADING (LOADED CONDITIONS)								
TEMP. °F	0	32	60	0						
TEMP. °C	-18	0	15	-18						
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE						
DEAD END SPAN (FEET)										
50	3	3	4	2291						
75	5	6	7	2414						
100	9	10	10	2553						
125	13	15	14	2700						
150	18	19	18	2849						
175	24	25	24	*2936						
200	31	33	31	*2948						
225	39	41	39	*2958						
250	49	50	48	*2965						
275	59	61	58	*2971						
300	70	72	69	*2976						

^{***} Simulated with a maximum tension of 3000 lbs. ***

336.4 KCMIL, 18/1 STRANDING, BARE ACSR, "MERLIN"

	PAGE NUMBER	ISSUE
OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	21-412	7/12

Std. Item:	W20B
Item ID:	4035204
CU:	C33ALSTBR

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES					
R.B.S.	6,150 lbs.	TRANSVERSE	0.5556 Lb/Ft	SUMMER	MAXIMUM	WINTER			
C.S.A.	0.2644 sq. in.	VERTICAL	1.041 Lb/Ft	(37.7°C)	AMPACITY	(10°C)			
R. (@ 25°C)	0.0527 Ω / 1000'	TOTAL	1.480 Lb/Ft	514	NORMAL	725			
R. (@ 75°C)	0.0629 Ω / 1000'	IOIAL	1.460 LD/Ft	578	EMERGENCY	766			
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	46.55°						
CONDUCTOR DIAMETER	0.666"			•					
WEIGHT	315.5 lbs / 1000'								

						INITI	AL SA	AG TA	BLE							
								NG SF		FEET)						
		12	25			150			175				200			
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1445	819	484	334	1221	701	469	353	1001	619	459	368	824	567	452	379
ACTUAL SPAN (FEET)																
50 60	1 1	1 2	2 4	4 5	1 1	2 2	3 4	3 5	1 2	2 3	3 4	3 5	1 2	2	3 4	3 5
70	2	3	5	7	2	3	5	7	2	4	5	6	3	4	5	6
80	2	4	6	9	2	4	6	9	3	5	7	8	4	5	7	8
90	3	5	8	11	3	5	8	11	4	6	8	10	5	7	9	10
100	3	6	10	14	4	7	10	13	5	8	10	13	6	8	10	13
110	4	7	12	17	5	8	12	16	6	9	13	16	7	10	13	15
120	5	8	14	20	6	10	15	19	7	11	15	19	8	12	15	18
130	6	10	17	24	7	11	17	23	8	13	17	22	10	14	18	21
140	6	11	19	28	8	13	20	26	9	15	20	25	11	16	21	25
150	7	13	22	32	9	15	23	30	11	17	23	29	13	19	24	28
160	8	15	25	36	10	17	26	34	12	20	26	33	15	21	27	32
170	9	17	28	41	11	20	29	39	14	22	30	37	17	24	30	36
180	11 12	19	32 35	46	13	22	33 37	43	15	25	34	42	19	27 30	34	41
190 200	13	21 23	35 39	51 57	14 16	24 27	37 40	48 54	17 19	28 31	37 41	47 52	21 23	33	38 42	45 50
210	14	26	43	63	17	30	45	5 9	21	34	46	52 57	25	33 37	46	55
220	16	28	47	69	19	33	49	65	23	37	50	62	28	40	51	61
230	17	31	52	75	21	36	54	71	25	41	55	68	30	44	56	66
240	19	33	56	82	22	39	58	77	27	44	60	74	33	48	60	72
250	21	36	61	89	24	42	63	84	30	48	65	81	36	52	66	78
260	22	39	66	96	26	46	68	91	32	52	70	87	39	57	71	85
270	24	42	71	104	28	49	74	98	35	56	75	94	42	61	77	91
280	26	45	77	111	30	53	79	105	37	60	81	101	45	66	82	98
290	28	49	82	120	33	57	85	113	40	64	87	109	48	70	88	105
300	30	52	88	128	35	61	91	121	43	69	93	116	52	75	95	113

	336.4 KC	CMIL, 19 STRAND, BARE AAC, "TU	JLIP"
ISSUE	PAGE NUMBER		SMIZE
7/12	21-413	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	ppl

Std. Item:	W20B
CU:	C33ALSTBR

			FINAL	SAG TABL	.E								
		LOADING (UNLOADED CONDITIONS)											
TEMP. °F	0	32	60	90	120	158	176	194					
TEMP. °C	-18	0	15	32	50	70	80	90					
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded					
DEAD END SPAN (FEET)													
50	1	2	5	9	11	14	15	16					
75	2	4	9	13	17	21	22	24					
100	3	7	13	19	23	28	30	32					
125	6	12	19	26	31	37	40	42					
150	11	19	27	34	40	47	49	52					
175	18	28	36	44	50	57	60	63					
200	28	39	47	55	61	69	73	76					
225	40	50	59	67	74	82	86	89					
250	53	64	72	80	88	96	100	104					
275	68	78	87	95	103	112	116	120					
300	84	94	103	111	119	128	133	137					

		FINAL SAG TA	BLE	
	LOADING	TENSION (LBS.)		
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, ½" ICE
DEAD END SPAN (FEET)				
50	3	4	6	1710
75	7	8	9	1862
100	11	13	14	*2000
125	17	19	21	*2000
150	25	27	28	*2000
175	34	37	38	*1996
200	45	47	48	*1993
225	56	60	60	*1992
250	70	73	74	*1992
275	84	88	88	*1992
300	100	104	105	*1992
	* Note	e: Design Specificati	ion Constraint	

336.4 KCMIL, 19 STRAND, BARE AAC, "TULIP"

	PAGE NUMBER	ISSUE
OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	21-414	7/12

Std. Item:	W14B
Item ID:	0811017
CU:	C10AAACBR

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	4,415 lbs.	TRANSVERSE	0.4656 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.0968 sq. in.	VERTICAL	0.675 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.166 Ω / 1000'	TOTAL	1.120 Lb/Ft	256	NORMAL	354		
R. (@ 75°C)	0.195 Ω / 1000'	IOTAL	1.120 LD/Ft	286	EMERGENCY	374		
TEMP. LIMIT	176°F (80°C) / 194°F (90°C)	SWING	59.98°					
CONDUCTOR DIAMETER	0.398"			•				
WEIGHT	115 lbs / 1000'							

						INITI	AL SA	AG TA	BLE							
							RULII	NG SF	PAN (I	FEET)						
		12	25			15	50			17	75		200			
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	1229	940	698	459	1236	949	708	474	1243	957	718	489	1251	966	729	504
ACTUAL SPAN (FEET)																
50	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1	1
60	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
70	1	1	1	1	1	1	1	2	1	1	1	2	1	1	1	2
80 90	1	1	1	2 2	1	1 1	2 2	2 3	1	1	2 2	2 3	1	1 1	2 2	2
100	1	2	2	2	1	2	2	4	1	2	2	4	1	2	2	3
110	2	2	2	3	2	2	3	4	2	2	3	4	2	2	3	4
120	2	3	3	4	2	3	4	5	2	3	3	5	2	3	3	5
130	2	3	3	4	2	3	4	6	2	3	4	6	2	3	4	6
140	3	4	4	5	3	4	5	7	3	4	5	7	3	4	5	7
150	3	4	4	6	3	4	6	8	3	4	5	8	3	4	5	8
160	4	5	5	6	4	5	6	9	4	5	6	9	4	5	6	9
170	4	5	5	7	4	5	7	11	4	5	7	10	4	5	7	10
180	5	6	6	8	5	6	8	12	5	6	8	12	5	6	8	11
190	5	7	7	9	5	7	9	13	5	7	9	13	5	7	9	12
200	6	7	7	10	6	7	10	15	6	7	10	14	6	7	10	14
210	6	8	8	11	6	8	11	16	6	8	11	16	6	8	11	15
220	7	9	9	12	7	9	12	18	7	9	12	17	7	9	12	17
230	7	10	10	13	7	10	13	19	7	10	13	19	7	10	13	18
240	8	11	10	14	8	11	14	21	8	10	14	21	8	10	14	20
250	9	12	11	16	9	11	15	23	9	11	15	22	9	11	15	22
260 270	10 10	13 13	12 13	17 18	10 10	12 13	17 18	25 27	9 10	12 13	16 18	24 26	9 10	12 13	16 17	23 25
280	10	15	14	20	11	14	19		11	14	19	28	11	14	17	25 27
280 290	12	16	15	20 21	12	15	21	29 31	12	15	20	28 30	12	15	20	27 29
290 300	13	17	16	22	13	15 17	22	33	13	16	20	30 32	13	16	20 21	29 31
300	10	17	10		10	17	44	JJ	10	10		JZ	ΙJ	10	41	JI

	1/0, 7 ST	RAND, BARE 6201-T81 AAAC, "AZ	UZA"
ISSUE	PAGE NUMBER		
7/12	21-415	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	р

Item ID:	0811017
CU:	C10AAACBR

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	1	1	1	3	7	10	12	13		
75	1	1	2	5	11	16	18	20		
100	2	2	4	8	15	21	24	27		
125	2	4	6	12	19	27	30	33		
150	3	5	8	15	24	33	37	40		
175	5	7	11	19	29	39	44	48		
200	6	9	14	23	34	45	50	55		
225	8	11	17	27	39	52	57	62		
250	10	14	21	32	44	58	64	69		
275	12	17	24	37	50	65	71	77		
300	15	23	33	46	60	75	82	88		

		FINAL SAG TA	BLE	
	TENSION (LBS.)			
TEMP. °F	0	32	60	0
TEMP. °C	-18	0	15	-18
	4 LB. WIND, ½" ICE	½" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE
DEAD END SPAN (FEET)				
50	4	3	2	1195
75	7	6	4	1273
100	12	11	7	1360
125	18	16	10	1451
150	24	21	14	1542
175	32	27	18	1632
200	39	34	22	1721
225	47	41	27	1808
250	55	48	32	1893
275	64	55	37	1976
300	76	66	46	*2000
	* Note	e: Design Specificati	ion Constraint	•

1/0, 7 STRAND, BARE 6201-T81 AAAC, "AZUZA"

	PAGE NUMBER	ISSUE
OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	21-416	7/12

Std. Item:	W21NA
Item ID:	5942107 ^E
CU:	C1/0ALHMPESTNE
CU:	C10ALSCHMPNE

PHYSICAL	PROPERTIES	LOADING PR	OPERTIES	ELECTRICAL PROPERTIES				
R.B.S.	4,270 lbs.	TRANSVERSE	0.6776 Lb/Ft	SUMMER	MAXIMUM	WINTER		
C.S.A.	0.0968 sq. in.	VERTICAL	1.374 Lb/Ft	(37.7°C)	AMPACITY	(10°C)		
R. (@ 25°C)	0.166 Ω / 1000'	TOTAL	1.832 Lb/Ft	196	NORMAL	316		
R. (@ 75°C)	0.195 Ω / 1000'	IOIAL	1.032 LD/Ft	243	EMERGENCY	343		
TEMP. LIMIT	167°F (75°C) / 194°F (90°C)	SWING	50.48°					
CONDUCTOR DIAMETER	0.398"			•				
COMPLETE DIAMETER	1.028" (Nominal)							
WEIGHT	424 lbs / 1000'							

						INITI	AL SA	G TA	BLE							
	RULING SPAN (FEET)															
		12	25			15	50			17	75			20	00	
TEMP. °F	0	32	60	90	0	32	60	90	0	32	60	90	0	32	60	90
TEMP. °C	-18	0	15	32	-18	0	15	32	-18	0	15	32	-18	0	15	32
TENSION (LBS.)	939	556	416	338	755	527	428	364	654	510	436	383	597	499	441	397
ACTUAL SPAN (FEET)																
50 60	2	3 4	4 6	5 7	2	3 4	4 5	4 6	2 4	3 4	4 5	4 6	3 4	3 5	4 5	4 6
70	3	6	7	9	4	6	7	9	5	6	7	8	5	6	7	8
80	4	7	10	12	5	8	10	11	6	8	9	11	7	8	9	10
90	5	9	12	15	7	10	12	14	8	10	12	13	9	10	12	13
100	7	11	15	19	8	12	15	18	10	12	15	17	11	13	14	16
110	8	14	18	23	10	15	18	21	12	15	18	20	13	15	17	19
120	10	16	22	27	12	17	21	25	14	18	21	24	15	18	21	23
130	11	19	26	32	14	20	25	30	16	21	25	28	18	22	24	27
140	13	22	30	37	17	24	29	34	19	24	29	33	21	25	28	31
150	15	26	34	42	19	27	33	39	22	28	33	37	24	29	32	36
160	17	29	39	48	22	31	38	45	25	32	37	43	27	33	37	41
170	20	33	44	54	24	35	43	51	28	36	42	48	31	37	42	46
180	22	37	50	61	27	39	48	57	32	40	47	54	35	41	47	52
190	24	41	55	68	30	44	54	63	35	45	53	60	38	46	52	58
200	27	46	61	75	34	48	60	70	39	50	58	67	43	51	58	64
210	30	51	67	83	37	53	66	77	43	55	64	73	47	56	64	71
220	33	55	74	91	41	58	72	85	47	60	71	81	52	62	70	78
230	36	61	81	100	45	64	79	93	51	66	77	88	56	68	76	85
240	39	66	88	109	49	70	86	101	56	72	84	96	61	74	83	92
250	42	72	96	118	53	75	93	110	61	78	91	104	67	80	90	100
260	46	77	103	127	57	82	101	119	66	84	99	113	72	86	98	108
270	49	84	112	137	61	88	109	128	71	91	107	121	78	93	105	117
280	53	90	120	148	66	95	117	137	76	98	115	131	84	100	113	126
290	57	96	129	159	71	102	125	147	82	105	123	140	90	107	121	135
300	61	103	138	170	76	109	134	158	88	112	132	150	96	115	130	145

	,	D, CONCENTRIC ROUND 6201-TE MIL COVERED TREE WIRE – 35 kV	•
ISSUE	PAGE NUMBER		
7/12	21-417	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	ppl

Item ID:	5942107 ^E
CU:	C1/0ALHMPESTNE
CU:	C10ALSCHMPNE

	FINAL SAG TABLE									
		LOADING (UNLOADED CONDITIONS)								
TEMP. °F	0	32	60	90	120	158	176	194		
TEMP. °C	-18	0	15	32	50	70	80	90		
	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded	Unloaded		
DEAD END SPAN (FEET)										
50	1	5	9	11	13	15	16	17		
75	3	9	13	17	20	24	25	26		
100	6	14	19	24	28	32	34	36		
125	13	21	27	32	37	42	44	46		
150	23	31	37	43	48	53	56	58		
175	34	42	48	54	60	66	69	72		
200	47	55	61	68	73	80	83	86		
225	61	70	76	83	89	96	99	102		
250	78	86	93	99	105	113	116	120		
275	96	104	111	117	124	132	135	138		
300	116	124	131	137	144	152	156	159		

	LOADING	FINAL SAG TABLE LOADING (LOADED CONDITIONS)							
TEMP. °F	0	32	60	0					
TEMP. °C	-18	0	15	-18					
	4 LB. WIND, ½" ICE	1⁄₂" ICE	6 LB. WIND	4 LB. WIND, 1/2" ICE					
DEAD END SPAN (FEET)									
50	4	7	9	1549					
75	9	11	14	1817					
100	14	17	20	*2000					
125	21	25	28	*2000					
150	31	35	38	*2000					
175	42	47	49	*2000					
200	55	60	62	*2000					
225	70	74	77	*2000					
250	86	91	94	*2000					
275	104	109	112	*2000					
300	124	129	132	*2000					

1/0, 7 STRAND, CONCENTRIC ROUND 6201-T81 AAAC, 315 MIL COVERED TREE WIRE – 35 kV

OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 7/12

Version	Date	Modification	Author(s)	Approval by (Name/Title)
8	7/21	• Revised drawings 21-218, 21-222, and 21-230.		
7	7/20	• Revised drawings 21-45 thru 21-47, 21- 108, 21-113, 21-218, 21-221 thru 21- 223, 21-246, and 21-303		
6	7/19	 Revised drawings 21-300 thru 21-303 Added shield wire drawings 21-304, 21-305 Updated 21.8.10 and removed 21.8.30 		
5	7/18	 Added shieldwire drawings 21-300 thru 21-303 Revised insulator plate for drawing 21-236. 		
4	7/17	 Added section 21.7 Structure Type Selection. Added section 21.8 Insulators. Added section 21.9 Risk Mitigation at Line Crossings. Added section 21.10 Structure Labeling. Removed references to 69kV where applicable (various sections and tables). Revised drawings 21-101 thru 103, 105, 107, 108, 113, 211, 213, 217 thru 224, 226, 228, 230, 231, 236, 241 thru 247. 		
3	7/16	Revised all drawings to 3DAdded drawing 21-219Added Drawing 21-300		
2	7/15	 Removed Drawing 21-109 and 21-229. Added drawings 21-213, 21-221, 21-231, 21-241, 21-242, 21-243, 21-244, 21-245, 21-246 and 21-247. All drawings redrawn for clarity and table information added. 69kV removed from this standard. To be designed according to Transmission Engineering standards. 		
1	07/12	 Added Flat & Vertical Configuration Structure Drawings (pages 21-200 through 21-236). Added Clearance Information (Section 21.6). Added Conductor Information (Section 21.5 & pages 21-400 through 21-418). 		

I	ISSUE	PAGE NUMBER		
9	7/21	21-NOTES -1	OVERHEAD SUB-TRANSMISSION CONSTRUCTION STANDARD	national grid

ATE	RIAL	STD ITEM	ILLUSTRATIO
•	Adapter		
	 Male, Schedule 40 PVC Conduit 	UK7M0 – UK7M3	
	o PVC, Female	UK6F0 – UK6F6	
•	Anchors		
	 Bust Expansion 	A9	
	o Expanding Rock	A13A5 – A13A8	
	o Plank	A17A – A17C	100 mg
	o Power Installed Screw (PISA)	A16A – A16C	
	o Rock, Pole Leg (One)	P14A	
	Rod Coupling (PISA)	A20C	1
	Rod Eye – Auxiliary	A24	(A)
	o Rod (PISA)	A18H – A18K	0.7
	o Rod	A18N1 - A18N3	
	Steelwing Screw	A9	
	Thimble Eyenuts	A22J	(5)
•	Animal Guards	71220	
	Bushings	T22A – T22F1	
	0 1 1	T43	
	FI (((T21	±=
		T45	
	Polymer CutoutsStinger Wire	T23A – T23C	
	<u> </u>		
	Line Post Sensor	T22M	
	Wildlife Protector	T40 – T43	
•	Arrester		<u> </u>
	 Isolating Gap 	L2	<u> </u>
	o Line Type, 5-25kV	L3A - L3J	
	o Line Type, 35kV	L3K - L3M	1
	o Riser Type	L3DR - L3JR	
	 SubT Intermediate Class (NY only) 	TL3K-TL3N	
•	Bag, Vinyl (to hold Standards book)	A80B	6
•	Bend/Sweep	UK7B0 – UK7B7	
•	Bolt		
	 Captive Bolt Assembly 	C35B	
	 Carriage 	B8A1 – B8A3	1
	 Double Arming – galvanized 5/8" 	B15A – B15H	
	Double Arming – galvanized ¾	B16A – B16E	
	Machine – galvanized 5%" square head Machine – galvanized 3/" square head	B13A – B13K	2 0
	Machine – galvanized ¾" square head Machine – galvanized 7/-" aguare head	B14A – B14H	2
	Machine – galvanized ⁷ / ₈ " square head	B18A – B18G	2
	o Machine – galvanized 3/8" & 1/2" square head	B1 – B4E5 B5C10 – B5W7B	
	 Machine – galvanized ½" & 5%" hexagon head Machine – Stainless Steel 	B8B15 - B8C30	
	 Machine – Stainless Steel Spare U Bolt, for Spacer Cable E-Bracket 	A50G	
•	Box	7.000	- Qir
	Cabinet – Junction Box	NS6	LECT.
	Primary Pull & Splice, Rectangular	UR6	i i

MATERIAL DESCRIPTION INDEX				
All/2		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD		7/21	

ERIAL	STD ITEM	ILLUSTRATION	
Receptacle Box, PVC	UK8B	الْ عَنْ الْ	
Brace			
 Alley Arm 	B36-B36B		
 Flat Wood Crossarm – One Pair 	B37B		
Wood Crossarm – Pair	TB60		
Wood Crossarm – Distribution Supply Installs Brooket	TB60C		
Bracket			
Aerial Cable Extension Arm	A51B		
 Angle Swinging, Distribution Supply 	P15	1	
 Anti-Sway Brackets 14" & 24", Spacer Cable 	A54B – A54B3	5967 A.	
o Arrester	C32 – C32G	5	
o Arrester Intermediate Class Cross arm mount	TL11		
○ C – 15kV Spacer Cable	P17B		
o C – 35kV Spacer Cable	P17C	E	
o Cutout / Arrester	C33 – C33A		
o Cutout / Arrester	C35 – C35A		
o Disconnect – 600A	C38B	T	
 Disconnect Mounting 	C38A		
○ E – 15kV Spacer Cable	P17A	Ê	
o Equipment Mount - 3Ø	E12M		
o Equipment Mount - 1Ø	E13M - E13N		
 Equipment - For DA repeater radio & Omni antenna mounting 	E15B		
 Insulated Service 	B53A – B53B		
o Insulated Service	B54 – B54T	0	
Meter Socket	C39E		
Recloser Ladder Bracket	R55		
Tangent – Spacer Cable	A50E1 – A50E2	-	
Fiber Optic ADSS	A50F		
Braid, Shielding – Copper	T1T5		
Cable			
o 15 kV, Aluminum, URD Primary	UC11BC	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
o 15 kV, Aluminum	UC11BJ	© 1	
o 15 kV, Copper	UC11BK – UC11BL	•	
o 15 kV, Copper	UC11E	O	
o 15 kV, Copper	UC12F	Q	
o 15 kV, Aluminum	UC12GG	0=	
o 15 kV, Aluminum	UC12HG		
o 15 kV, Aluminum	UC12TA – UC12TB	Washit hank. Hank hash hash Hank hash Hank hash Hank hash Hank hash	

	MATERIAL DESCRIPTION INDEX			
	ISSUE	PAGE NUMBER	OVERHEAD	WE
Busine	ss 7/2e1	22 – ii	CONSTRUCTION STANDARD	ppl 🚝

MATERIAL	STD ITEM	ILLUSTRATION
o 15 kV, Copper	UC12TC - UC12TD	
o 15 kV, Copper	UC17	
o 25 kV, Copper	UC23CJ	. <u>**</u>
o 25 kV, Copper	UC23EC	
o 25 kV, Aluminum	UC23FA	- Augustus
o 25 kV, Copper	UC23FJ	
o 25 kV, Aluminum	UC23GA	Garage Control of Cont
o 25 kV, Copper	UC23GJ	•
o 25 kV, Aluminum	UC23TA	And Andread An
o 25 kV, Copper	UC23TC	With a final framework of the control of the contro
o 35 kV, Aluminum	UC35C1 – UC35C3	The State A
o 35 kV, Copper	UC35DJ	\$ 17 man
o 35 kV, Copper	UC35GJ	General Control of Con
o 35 kV, Copper	UC35HJ	
o 35 kV, Copper	UC35TC – UC35TD	
o 35 kV, Aluminum	UC35TJ	
o 46 kV, Copper	UC46	The Statement Control of the Control
Cable Positioner	UR47CP	
Cable Ties	UP21T	12"-
Capacitor	_	
 Advance Control 	C39A1	
o Bracket, Meter Socket	C39E	
 Control Cable 	C39C - C39D2	
 Voltage / Current Sensor Post Type 	C39CS	The second secon
o Hanger	C36A – C36D	
o Units	C40AA – C40NB	Thurston, and the second
 Line Post Current Sensor 	C39CS1 - C39CS3	15 H.
 Pre-assembled Three Phase Fixed Banks 	C40PFA-C40PFW	Visit and a
 Pre-assembled Three Phase Switched Banks 	C40PSA-C40PSZA	
 Pre-assembled Three Phase Advanced Switched Banks 	C40SGC-C40TGZ	
 Meter Socket 	C39F - C39G	
o Three Phase	C40P	
 Time Control 	C39A	
Cement		ato.
o PVC	UK6S	ğ
• Clamp	A 50D	M. Tab
Aerial Cable Messenger Support	A50D	
Automatic Copper Deadends	D9A – D9A9	J.
 Crosby Type of Rope Clip 	C25B - C25D	

MATERIAL DESCRIPTION INDEX			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	22-iii	7/20

MATERIAL	STD ITEM	ILLUSTRATION
 Guy − Bolted 	G7A – G7B	
o Guy – U Bolt	G5B	in the state of th
o Lashing	NC8E	0.0
Messenger / Shieldwire	A50BA	1
 Messenger Permanent Stringing Angle 	A50BB	
 Post Insulating Clamps 	I14A – I14H, TC80A – TC80B	3
 Secondary / Neutral Mid-span 	C13S	
 Secondary / Neutral Support 	A50B	
o Single Tongue	NC13A - NC13C	*
Spring Clamp	US1A – US1B	8
o Strain	C13A1 – C13Q	© \$\frac{1}{2}
 Suspension 	C14A – C14C	***
Suspension, Double Unit	I15A – I15E	
Suspension, Single Unit	I16A – I16B	B II s
Suspension – Angle	C15A – C15C	₩ 11.
Cleaner, Cable	UC80F	*H+
A	00001	Passage (
Clevis H/L – Clevis Ball	I18	<u>^</u>
Insulator Bracket– 600V	I12	
Insulated, Spool Type	I11A	
Thimble	C5D	G o
Thimble (for use with preformed deadends)	C20	
o Y-Ball	I17	4000
• Clip		
For Connector Taps	C70	\$
Galvanized Conduit	UK3B – UK3F	
Compound, Sealing – Plastic Putty	S3	
 Conductors 		BBC.5 - 588
 5kV, 1/C, Non-Shielded Medium Voltage, Copper 	W33A - W33C	
 Miscellaneous Wire 	W9E – W13L	
o Pole Top Tap Conductor	W17B – W19G	
 Pre-Assembled Lashed Aerial Cable 	A60E - A62G	
 Primary Bare Conductor – 35kV Distribution Supply 	W21NG - W21NI	₩
Quadriplex Secondary & Service Cable	W16C – W16E	*
Three Phase Transformer Connections Trials Connections Content C	UC5G	₩_
Triplex Secondary & Service Cable	W15B – W15J	
 Primary Tree Conductor – 15kV 	W20CA – W21BG	
 Primary Tree Conductor – 35kV 	W21NA – W21ND	
 Spacer Cable Messenger 	W21NE – W21NF	\$\$
o Tie Wire	W22A – W22D	

	MATERIAL DESCRIPTION INDEX			
	ISSUE	PAGE NUMBER	OVERHEAD	W/L
Busine	ss V/20	22 – iv	CONSTRUCTION STANDARD	ppl 🚝

MATERIA	L	STD ITEM	ILLUSTRATION
0	Wire Brush	NTE1	4
• Co	onduit and Fittings		-
0	1" Non-Metallic Flex	C29B - C29C	
0	1" PVC	C29E10 - C29H	
0	3/4" PVC	UK7A0 – UK7T0	
0	Conduit Standoff Bracket (for Risers)	UK60 – UK60A	
0	Conduit Standoff Bracket Strap Kit	UK61A - UK61E	interior.
0	Galvanized Sidewalk Strut	G36	
0	Galvanized Steel	UK30A – UK30H	at 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0	PVC, Schedule 40	UK7A0 – UK7A6	P
0	PVC, Type DB	UK6A2 – UK6A6	W 2 14 W
0	Strap – Iron	UK45A1 – UK45A3	
0	Weatherhead – ¾" PVC Service Entrance	UK8W	
• Co	onnectors		
0	Fired-On-Wedge Covers	S15W - S15Z	
0	Fired-On-Wedge Tap Cartridges	S15CB - S15CY	1.
0	Fired-On Wedge Taps - Aluminum	S15G – S15X	
0	Fired-On Wedge Taps – Copper	S17R – S17T	
0	Automatic Service Deadend	P55A1 – P55B	
0	Bronze Terminal Lug	C8N1 – C8N3	
0	Compression C-Type Tap	S14A – S14L	
0	Crosby Type or Rope Clip	C25B – C25D	S.
0	Ground	C23A - C23B	
0	Hot Line, Vice Type	C16C – C16G	*** *********************************
0	Hot Line, Aluminum Clamp Type	C24A – C24CC	P.
0	Hot Line, Bronze Clamp Type	C24D	
0	Parallel Groove	C7A – C7J	
0	Parallel Groove – Copper	C7K – C7L	***
0	Pressure Eyebolt (Cable to Flat)	C17B – C17F	₩
0	Secondary Terminal Adapter	C8A – C8F	CHOIC
0	Service	C26	100
0	Splice – Automatic, Al & ACSR	S19J – S19T	
0	Splice – Automatic, Steel & Alumoweld	S19P – S19R	
0	Splice – Automatic, Messenger	S19U – S19V	
0	Primary Bare Conductor – 15kV-35kV	TC52, W20A – W21BF	
0	Splice – Automatic, Copper	S19A – S19I	

MATERIAL DESCRIPTION INDEX			
NM/Z		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	22-v	7/20

MATERIAL	STD ITEM	ILLUSTRATION
 Splice - Cold Shrink 	UR49A2 – UR49D3	1 -200
 Splice – Compression – ACSR, AAAC 	S20B – S20G	a
 Splice – Compression – ACSR – 2 Pc. 	S20R1 - S20R4	
 Splice – Compression – Al 	S21C1 - S21M	/
 Weatherproof Secondary (Piercing) 	S5 – S6	63
 Splice – Compression – Part. Ten. – Al & ACSR 	S22H – S22E	
o Splice – Compression – Cu & CCW	S23A – S23N, UC60E	
 Splice – Compression – Loop – Cu 	S24E – S24G	
 Splice – Compression – Loop – Al 	S26C - S26D	
 Splice – Copper Automatic Reducing 	S28A – S28J	
 Splice – Aluminum Automatic Reducing 	S28K - S28K1	
 Splice – Aluminum Compression Reducing 	S28L – S28N	
 Splice – Jumper Loop, Non-Tension 	S26E - S26M	
Split bolt or two bolt type	C27A – C27H	
 Standard Compression Tap 	S13B - S13N6	
o Terminal	C9FE – C9FF	Î
o Terminal "Flag" Connector / Stirrup	S30B	
Terminal Lug – Grounding	C10	
o Terminal Lug	C9A – C9P	A
o Terminal Plug	S27A – S27L	
 Termination Cold Shrink 	UR43 - UR45C3	1-Model values substant termination 2-Sings sealing seature
 Tinned Aluminum Terminal Lug 	C9F – C9FD	
o U Bolt	C7M – C7R	
o Vise	C6N1 – C6N8	
Coupling	1	Name of the second
Galvanized Conduit	UK32B – UK32H	Ţ _w
o PVC	UK6C0 - UK6C6	Î
Covers	1	
Cover Cold Shrink	UR49D1 - UR49D3	
o Cover – Fired-On Wedge	S15W - S15Z	119
Cover – Gel Filled Enclosure	C61A – C61B	-
 Cover – Gelwrap For Tree Wire & Spacer Cable 	e C62-C68	
o Cover – Messenger	A55	
Cover – Snap On For Compression & Bolted	C60B - C60S	
Cover – Spacer Cable	S16	
Cover – Secondary Service Neutral	S16N	
 Two Piece, For Primary Pull & Splice, Rectangular 	UR6C	The state and

	MATERIAL DESCRIPTION INDEX			
	ISSUE	PAGE NUMBER	OVERHEAD	WE
Busine	ss 7/2=0	22 – vi	CONSTRUCTION STANDARD	ppl 🚝

MATERIAL	-	STD ITEM	ILLUSTRATION
• Cro	ossarm		
0	Assembly - for Equipment Platforms	TC20	
0	Fiberglass - Deadend Arm, 8'	C76D	
0	Fiberglass - Tangent Arm, 8'	C76T	
0	Fiberglass - Deadend Arm, 10'	C77D	
0	Fiberglass - Tangent Arm, 10'	C77T	
0	Gain	C37 – C37A	2
0	Grid Plate	TC22	
0	6 Pin Standard Duty – 8'	C31B	
0	8 Pin Heavy Duty – 10'	C31C	
0	6 Pin Heavy Duty – 10'	C31D	
0	2 Pin High Tension – 4' 10"	C31E	
0	2 Pin High Tension – 10'	C31F	
0	High tension – 14', Undrilled	C31G	
0	Transformer / Regular Bank – 18', Undrilled	C31H	
0	4 Pin High Tension – 10'	TC10	
• Cu	tout		
0	Enclosed Porcelain 5kV Fused & Disconnecting	C41B1 – C41D2	9.
0	Open Type – 15kV Standard	C43S10 - C43S31	T.
0	Open Type – 27kV Standard	C43S41 - C43S51	
0	Power Fuse – (Mounting) SMD – 20	C47A – C48	
• Ele	ectrical Joint Compound	NG9C – NG9D	
• En	d Cap, Cable, Cold Shrink	UC90C - UC90J	
• Eye	elets		
0	Eyenut	B22B - B22C	Q
0	Screw Thimble	B33A	65
0	Shoulder – Oval	B32A – B32B	1
0	Thimble Eyelet (use with preformed deadends)	B20A – B20B	Ô
0	Thimble Eyelet (use with clevis & pin DE hardware)	B21B – B21C	Q
• Ey	e Socket	I19A – I19C	63
• Fa	ult Circuit Indicator – LED – 5-46kV	F3BI – F4T24D	8
0	Manual Reset Magnetic Tool	F2T	The state of the s
• Fa	ult Circuit Indicator – Collector Box	F4CB	

MATERIAL DESCRIPTION INDEX			
SMI/Z		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	22-vii	7/21

MATE	RIAL	STD ITEM	ILLUSTRATION
•	Foam		
	o Expanding	UF10 – UF10A	K H
	o Fireproof	UF20	Alleren
•	Fuse		
	 Partial Range Current Limiting Fuse 	F7A25 – F7C40	<u> </u>
	 Current Limiting Fuse Terminal Adapter 	F7B	
	 Current Limiting Fuse 	F10A15	
	 Fuse Holder 	F50BA	
	o Links – 15kV Type "K"	F1K03 – F1K200	
	Links – 35kV Type "K"	F1K03A – F1K100A	
	Links – 15kV Type "T"	F1T03 – F1T200	
	o Power – SM5	F5E100 - F5E400	da Z
	 Power – SMU20 – 14.4kV 	F6E020 - F6K200	
	o Power – SMU20 – 25kV	F8E100 - F8K140	
	 Power – SMU20 – 34.5kV 	F9K3 - F9K65	
	 Power – (Holder) SMD5 	C50B	
	o Sub Transmission Fusing SM5 & SMD1A	TF2A-TF4E	
•	Grease, Inhibiting	G9B	
•	Grounding		
	o Accessories Kit for Fiberglass Poles	S34	
	o Clip – Bonding	NC22 - NC23	
	Flexible Line Arrester	L6 - L6L	
	Flexible XFMR Arrester Lead	L6B	U
	o Ground Grid	TG21	
	o Ground Rod Clamp	G4	
	o Ground Rod Clamp − 5/8"	G2A2 – G2A4	Õ
	o Ground Connector – Vise Type	C23A – C23B	Wir .
	o Ground Connector – Cable to Flat	TC27	
	o Ground Rod, Copper Bonded/Copper-Clad	TG20	
	o Ground Wire, Armored Ground Wire Kit	S35	

	MATERIAL DESCRIPTION INDEX			
	ISSUE	PAGE NUMBER	OVERHEAD	We
Busine	ss 7/2:0	22 – viii	CONSTRUCTION STANDARD	bbl

ATERIAL	STD ITEM	ILLUSTRATION
 Molding – Polyethylene 	S1	
 Termination Grounding Kit 	UR47T4	
 Transformer Neutral/Arrester Ground Strap 	S40 - S40B	0 0
• Guy		
o Eye Plate	TG1L0 – TG17	
o Grip Automatic	G5C2 – G5C6L	
o Hooks	G33A – G33D	A
o Roller	G50	
 Sidewalk Strut Fittings 	G35A – G35C, UK30D	A
o Thimble	G19	
o Wire	G15A – G17B	
 Wire Marker – Yellow (Guy Guard) 	G21E	
Hangar, Metering	M36C - M36C1	\$9
• Insulator		
o Guy	I21 – I23	118
o Guy Strain	I24, TI95B – TI95D	
o Line Post	113A – 113L	
o Pin – ANSI standard C29.5	I6A – I6C	*
o Pin – HDPE	16P – 16PA	
○ Spool – Secondary Rack, 600V	125	3
o Strain	12	
Strain – Polymer	17PA – 17PB	e=) == (-\$
• Isolator		IBOLATOR STORMO
o Cable – Isolator Ground Marker	P22W	ISCLATOR STOUND
Neutral Isolator – Special	L4A – L4B	Em .
Labels (see also Signs or Tags)		Senting of the Total Communication of the Communica
 PCB – Blue With White Lettering 	Z11A – Z11B	LESS THAN 50 PPM PCB
 PCB Information 	Z8 – Z10	OIL SAMPLE TAKEN FOR PCB TEST
o PCB Warning	Z5 – Z7	P.C.B.s
$_{\odot}$ 2 $^{7}/_{8}$ " Reflective Vinyl Number or Letter	P21L – P21N	W. 7.
 Mounting Panels 	P21M – P21R15	
 Transformer Vent 	P22T	VERT TARK BEFORE 1
 Warning, Recloser with DITT 	P25PR	Learning to make or water than the control of the c
Limiter, Current Limiting, Cable-To-Mole	UL3B – UL3E	or man continues highwaring
• Link		
o Figure 8	C4A	
 Transmission Chain 	C4B	
Link Extension Bar	NL2	<i>*</i>

MATERIAL DESCRIPTION INDEX OVERHEAD CONSTRUCTION STANDARD PAGE NUMBER ISSUE 22 - ix 7/20

MATERIAL ST	TD ITEM	ILLUSTRATION
• Lug		
o Terminal, Aluminum UL	L16A – UL16R4	
o Terminal, Copper UL	L15A – Ul15R4	WW 2 3
Marker, Aerial Line L2	20B - L20F	
• Nut		
o Locknut L10	10A – L10E	
o Square B1	17A - B17B	(3)
o Stainless Steel B8	8B40 – B8C40	9
• Paint, Black	32	ZAINI
Perforated Strap C3	30	
• Pin		
o Angle P8	8 - P8A	<u> </u>
o Pole Top Bracket P1	12B - P12C	11. 18.18
o Insulator P1	1A – P1C2, P3	
○ Pin – 24" Epoxy Standoff P1	10B	
o Pole Top – Epoxy P6	6B	
o Pole Top – Steel P7	7A	Á
o Stud – Double Ended P1	1D – P1G	
Plate		
o Bar Extension NL	L3	•
o Crossarm Reinforcing & Pin Hole Adapter P2	2S	
 Double Insulator 	20B	
○ Guy Eye TG	G13 – TG17	46
o Insulator Mounting 120	20C	542314 000
o Mounting Arm	20A	
Plug		
o Conduit UK	K34J – UK34M	2
o Galvanized UK	K34D – UK34H	
• Poles		
o Foam Backfill P8	85A - P85B	
o Pole Hub Guard P2	26G	
o Pole Mount – Anchor Leg P1	14A – P14CT	
'	12A – P12A1	
o Pole Top Protector (Cap) P9		
o Poles - Fiberglass P7	77A4 - P77H6	Δ.
o Push Brace Attachment P1	16	
o Pole Step - Removable P7	78	
Wood PolesP1	11A1 – P11J3	
 Steel Guy Stub Pole P1 	13	

	MATERIAL DESCRIPTION INDEX				
	ISSUE	PAGE NUMBER	OVERHEAD	Wille	
Busine	ss 7/20	22 – x	CONSTRUCTION STANDARD	ppl 🚝	

MATERIAL	STD ITEM	ILLUSTRATION
 Woodpecker Hole Repair 	P80 – P80D	
Preformed		
o Deadends	P52A1 – P52P	
Guy Grips of Messenger Deadends	P54A – P54J	
Line Guards	P51C – P51V	~~~~
o Tie Wire	TT1B	Z-
Primary Metering		
 Secondary Conduit Kit 	M37	
 Secondary Mis. Fittings 	UK9 – UK10A	
Recloser		
o Control	R51A – R51B3	
 Three Phase Recloser With Control & Cabinet 	R50A – R50HA	Faire 4
o Three Phase (800 A)	R50S15B – R50S38B	
o Three Phase (800A)	R50SE15B – R50SE38A	
 Single Phase Recloser With Control & Cabinet 	R50SP	4
o Cutout mounted Single Phase Recloser	R53A – R53H	
 Cellular Radio Modem and antenna kit 	R51C-R51C5	
 Accessories 	R52A – R52K1	
 Reflector – 3" X 10" Aluminum 	Z12A – Z12D	
Regulator		
 Voltage Regulator 	R40A1 - R40C1	
 Control + Cabinet 	R41A-R41C	
 Universal Control, Adapter Panels 	R42A – R42T	<u> </u>
Communication Cabinet	R43C	
Replacement Control Cable	R43GM-R43GS	
○ Riser		
Leader – Nylon	UK49A – UK49B	Gran Company
o Reducer	UK14GF	
 U-Guards - 5' HDPE 	UK11D – UK11H	
o Screw		
 Lag Screw – Gimlet Point 	B11A – B12	
 Lag Screw – Fetter Or Twist Drive 	B9 – B9N2	
 U-Duct Lag Screw – Hex Head 	B10B	
o Sensors, Line		
Power Sensor	SP1	
 Power Sensor Collector Box 	SP1A	
○ Shackle	C5A – C5C	
Sign (see also Label or Tag)		

MATERIAL DESCRIPTION INDEX			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	22 - xi	7/21

	MATERIAL	STD ITEM	ILLUSTRATION				
Caution - Fl	oating Wye/Delta Installation	P23F	MACHINETON MACHINETON				
 Warning – I 	Hand Dig Only	P23HD	AWARNING HAND DIG ONLY INDERROUND UTUTIES IN THE WHEEKEN FARE.				
o Caution	- Loop Scheme	P23LS	LOOP SCHEME				
o Clamp	On	P21S					
o Electric	System Neutrals Separated	P22V	NOTICE				
o Electric	al Safety Designation - MA only.	P23B1 – P23B3	ADANGEROUS KEEP AWAY! resourceign? resourceign?				
o Electric	al Safety Designation	P23C1 – P23C2	ADDONGER KEEP OFF! ADDONGER KEEP OFF! ADDONGER KEEP OFF! ADDONGER KEEP OFF!				
o Notice -	· See Bulletin	P23CC					
o Notice -	- Equipment Participates	P23CS					
o Ground	Grid Present	P23G	NOTICE GROUND GRID PRESENT				
○ Danger	- Overhead Power Lines	P23OPL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	- Supplemental PPE Required	P23S					
	Communicates w/ Transmission Device	P23T					
o Low Vo	Itage Supply to Transmission Switch	P23T2					
 Not In F 	Phase	P22P	NOT IN PHASE				
o Notice -	- Do Not Disconnect of Bypass	P22U	NOTICE BASIC TO TOTALS GEOGRAPHIC TO TOTALS WITHOUT CONTINUES OF TEMPORAL MARKETS OF TEM				
Spacer							
 Secondary 	Open-Wire Spacer	A57A					
o Spacer	– Spacer Cable	A54C – A54CT	N. S.				
o Second	ary Multiplex Spacer	A58B	A				
 Conduct 	etor Phase Spacer	A59B	2 1 2				
o Spiral \	W rap	T15	(cores				
Splice	•						
 Cold Shrink 	, 5-35kV, "All in One"	UR51A – UR51E					
o Premol	ded – 15kV, #2 Aluminum	UR50	= 7				
 Staples 	s – Galvanized Steel	S33A - S33C	N				
Surge Arre	ster - see Arrester		, ,				
	Ivanized Conduit, 90°	UK31A – UK31H2					
Switch	,		131				
	olymer Disconnect – 5kV	D1C	17				
o In-Line	– 15kV & 35kV	D3A – D4A	June -				
o Loadbre	eak Accessories	D7DS – D7M1					
	visconnect Switch	D5D – D5F	(a				
 ○ 3Ф Gar	ng-operated Loadbreak Switch	D7D – D7K	1.00				
	use – (Mounting) SMD – 5	C50A	, 100- 50 103-		tor Bypass Switch	D8	

MATERIAL DESCRIPTION INDEX			
ISSUE	E PAGE NUMBER OVERHEAD		
7/21	22 – xii	CONSTRUCTION STANDARD	ppl 🗧

MATERIAL	STD ITEM	ILLUSTRATION
 Subtransmission Switches and Loadbreaks 	D7F, TS6H - TS2P2	n jit
o Vacuum Switch	C39B - C39BC	A
Tape		
o Electrical – Black	T1B	$\bullet \Theta$
o Electrical – Filler	T5E	•
 Electrical, Vinyl Plastic – Black 	T2W1 – T2W2	0
 General Purpose Friction – Black 	T1A	0
 Insulating 	T5B – T5B6	•
 Plastic Sealer 	T5D4	
 Semiconducting 	T1S	•
 Silicone Rubber 	T5S1	(2)
Tag (see also Sign and Label)		-
o Nail	P20N – P20N2	
o Name	P20A – P20B	
o 1 ½" Number or Letter	P22A1 – P22A3	No. or of the control
o 3" Number or Letter	P21A1 – P21A3	
 Pole Tag Holder 	P23E	
Rock Anchor Installed	P25	NOVACKA NOVACA
Defective Pole Marker	P24	$[\cdot \downarrow \cdot]$
 Clearance and Control Tagging Kit 	P30	
o Letter	UP21L	<u>L</u>
 Number 	UP21N	<mark>2</mark>
Tag Holder	UP21W – UP21W2	
Tee, PVC	UK7T0	
Terminal Block	NS4	Albidde
Terminations - Cold Shrink	UR43-UR45C3	
Transformer		
 Adapter Plates – One Pair 	T10	
o Cluster Mount – 3 Phase	T9C - T9E	
o Cold Shrink, 15kV, #2 Only	UR42 – UR42A	47.6
 Two piece steel bracket 	T9AS	palan Palan
o Platform Mount	Т6	
 Single Phase, Pole Type 	T91AA – T91HQS	
 Single Phase, Pole Type, Auto 	T91HR1 - T91HR2	

MATERIAL DESCRIPTION INDEX			
SMIZZ		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	22 - xiii	7/20

MATERIAL	STD ITEM	ILLUSTRATION
 Single Phase, Ratio 	T91J – T91	
Tubing		662-111-30
 Heat Shrink 	NT1 – NT3	
Washer		
 Belleville (Stainless Steel) 	B8W10	0
○ Curved – 2 ¼" Square	W4A	
 Flat (Stainless Steel) 	B8W2 – B8W3	0
o Flat	W8C – W8D	
o Framing	NW4B – NW4C	
o Ground Cup	NW4A	
o Round	W5 – W8B	0
 Split (Stainless Steel) 	B8W6 – B8W7	0
 Square Curved – Heavy 	W2 –W3	·
 Square Flat – Standard 	W1 – W1B	

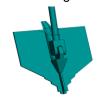
MATERIAL DESCRIPTION INDEX			
ISSUE	PAGE NUMBER	OVERHEAD	
7/20 22 – xiv CONSTRUCTION STANDARD PPI			

ANCHOR, STEELWING SCREW

Galvanized steel construction with single thimble eye rod, 400 ft-lb. working torque rating, intended for hand installation.

HELIX DIAMETER	ROD	STD ITEM	SAP ITEM ID	PS ITEM ID
4"	³⁄₄" X 54"	A9	9313612 ^Y	3503405 ^Y

ANCHOR, BUST EXPANSION


Bust style expansion anchor, direct buried, 200 square inch surface area. To be used with ¾" or 1" diameter anchor rod (ordered separately). For use on distribution lines where equipment access is restricted.

EXCAVATION HOLE SIZE	ROD	STD ITEM	SAP ITEM ID	PS ITEM ID
10"	³¼" X 54"	A9A	9388961	N/A
10"	1" X 54"	A9B	9325706	N/A

ANCHOR, MANTA RAY

Anchor, galvanized ductile iron, manta ray shape, per ASTM A-123 and A-153 with triple thimble eye rod. 1" rod holding strength is 3,6000 lbs. Shall be used in type soft and very soft soils only.

ROD	STD ITEM	SAP ITEM ID	PS ITEM ID
1" X 30"	A10A	9307981	N/A
1" X 53"	A10B	9388731	N/A
1" X 72"	A10C	9388730	N/A

ANCHOR, EXPANDING- ROCK

Coated malleable iron construction with triple thimble eye rod. 1" rod holding strength is 36,000lbs. Shall be used in type 0 soil (solid rock) only.

ROD	STD ITEM	SAP ITEM ID	PS ITEM ID
1" X 30"	A13A5	9313390	3503427
1" X 53"	A13A6	9313389	3503428
1" X 72"	A13A8	9313843	5980067

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 - A9-A13A8	7/18

ANCHOR, POWER INSTALLED SCREW (PISA)

Coated steel soil anchors with hub tapped for 1" threaded anchor rods (STD ITEM A18).

HELIX DIA.	WORKING TORQUE RATING FT-LBS.	STD ITEM	SAP ITEM ID	PS ITEM ID
10"	10,000	A16A	9313466	3503608
14"	10,000	A16B	9314918	3503609

ANCHOR, POWER INSTALLED SCREW (PISA) (CONTINUED)

HELIX DIA	NOTES	WORKING TORQUE RATING FT-LBS.	STD ITEM	SAP ITEM ID	PS ITEM ID
4"	~ 36" Long rocky soils only	6,000	A16C	9307416	3503610

ANCHOR, PLANK

Treated 2" thick wood plank anchors. Pentachlorophenol treatment & retention shall be 0.3lb/ft3.

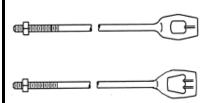
LENGTH	МІРТН	ЭПОН	STD ITEM	SAP ITEM ID	PS ITEM ID
12"	8"	7/8"	A17A	9306951 ^E	5980102 ^E
15"	10"	11⁄8"	A17B	9306950 ^E	5980103 ^E
24"	12"	13/8"	A17C	9306949	5980104

ANCHOR, ROD (PISA)

Galvanized steel rod, threaded (1") on both ends, with upset hex collars.

DIA.	LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
1"	3½' (42") (with coupling)	A18H	9313701	3503215
1"	7' (84")	A18K	9313700	3503217

MATERIAL DESCRIPTION


ISSUE	PAGE NUMBER
7/16	22 – A16A – A18K

ANCHOR, ROD

Galvanized steel rod, threaded (1") on one end, with upset hex collars.

DIA.	LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
1"	8'	A18N1	9319496 ^E	5994810 ^E
1"	10'	A18N2	9319495	5994845
11⁄4"	10'	A18N3	9319512	5994850

ANCHOR THIMBLE EYENUTS (PISA)

Galvanized ferrous tapped for standard 1" thread. For use with Item A18 Anchor Rods.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Triple Eye	A22J	9311875	3503227

ANCHOR – AUXILIARY EYE

Galvanized ferrous add-on thimble eye for existing $\frac{5}{8}$ " – $\frac{3}{4}$ " anchor rods. Auxiliary eye adds additional guy attachment to existing anchor rods.

STD ITEM	SAP ITEM ID	PS ITEM ID
A24	9314850	0802835

CLAMP, SECONDARY / NEUTRAL SUPPORT

Galvanized malleable iron suspension clamp. Threaded body for $\frac{5}{8}$ " through bolt. 0.25" – 0.5" diameter cable range, provides $\frac{11}{2}$ " pole offset.

0° - 30° Line Angles

STD ITEM	SAP ITEM ID	PS ITEM ID	
A50B	9311777	3502812	

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – A18N1-A50B	7/17

CLAMP, MESSENGER / SHIELDWIRE

Galvanized medium duty aerial messenger clamp for spacer cable transposition installations. $\frac{5}{8}$ mounting bolt, for $\frac{5}{16}$ – $\frac{1}{2}$ conductors.

STD ITEM	SAP ITEM ID	PS ITEM ID
A50BA	9320253	5986470

CLAMP, MESSENGER PERMANENT STRINGING ANGLE CLAMP

A combination stringing block and messenger clamp. Allows the messenger wire to be pulled in, tensioned and clamped using one piece of hardware. . For use when installing messenger wire on E brackets at max 60 angle. Cast steel, 20,000 max load rating.

STD ITEM	SAP ITEM ID	PS ITEM ID
A50BB	9388901	

CLAMP, AERIAL CABLE MESSENGER SUPPORT

Galvanized malleable iron suspension clamp for heavy angles on (4/0) aerial cable. Cable range of $\frac{3}{8} - \frac{3}{4}$ " (0.375" - 0.75").

Use 5/8" mounting bolts.

STD ITEM	SAP ITEM ID	PS ITEM ID	
A50D	9311776	3502814	

BRACKET, FIBER OPTIC CABLE

Galvanized bracket for ADSS fiber optic cable. Accepts diameter range of 0.876" - 0.925"

STD ITEM	SAP ITEM ID	PS ITEM ID
A50F	9393938	N/A

MATERIAL DESCRIPTION

	IOOUE	PAGE NUMBER
Busines	s 703 16	22 – A50BA – A50F

DACE NUMBER

TANGENT BRACKET - SPACER CABLE SUPPORT

Tangent offset bracket for spacer cable applications. Bracket is supplied with a MC-2 messenger clamp.

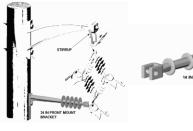
STYLE	STD ITEM	SAP ITEM ID	PS ITEM ID
14" straight arm ductile iron	A50E1	9311775	3502815
24" upsweep arm aluminum	A50E2	9311782	3502766

U BOLT, GALVANIZED, SPARE, FOR SPACER CABLE E-BRACKET

Spare U-bolt, 9/16" diameter, galvanized steel, for use with spacer cable systems. U-Bolt is used to connect a messenger clamp (5986470) to E-Bracket (5974596).

STD ITEM SAP ITEM ID		PS ITEM ID
A50G	9307952	9202821

BRACKET, AERIAL CABLE EXTENSION ARM

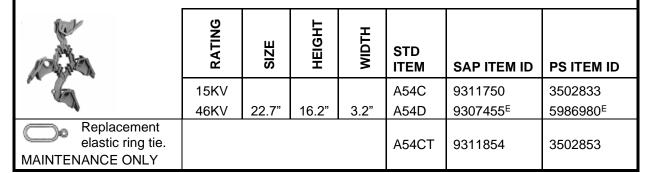

Galvanized steel aerial cable extension bracket. Heavy angle iron 44" offset from pole center.

STD ITEM	SAP ITEM ID	PS ITEM ID	
A51B	9311781	3502767	

14 IN & 24 IN ANTI-SWAY BRACKETS FOR SPACER CABLE

The 14 IN anti-sway bracket is side mounted to pole and used to stabilize spacers on tangent poles. The 24 IN anti-sway bracket is front mounted on face of pole and must be used with a stirrup on spacer on tangent poles. The brackets are injection molded proprietary, gray high density polyethylene and are supplied with a molded clevis pin for the attachment to a A54C & A54D spacer.

STYLE	STD ITEM	SAP ITEM ID	PS ITEM ID
14 IN	A54B	9306665	9201637
24 IN	A54B2	9307972	9202673
Stirrup for A54B2	A54B3	9386514	9203007


MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – A50E1-A54B3	7/13

SPACER

Spacers with integral conductor / messenger clamps for spacer cable.

MESSENGER COVER

High density black polyethylene clip-on cover for spacer cable messenger installations.

SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
8'	A55	9307833	9202303

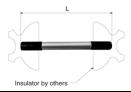
SPACER, SECONDARY OPEN-WIRE

Fiberglass spreader / spacer bracket for existing open-wire secondaries and services.

STD ITEM	SAP ITEM ID	PS ITEM ID
A57A	9311894	3502856

	MAT	ERIAL	. DESCR	IPTION
--	-----	-------	---------	--------

SECONDARY MULTIPLEX SPACER


U.V. resistant black or grey PE spreader / spacer for making mid-span service taps from multiplex secondaries.

STD ITEM	SAP ITEM ID	PS ITEM ID
A58B	9311938	2021965

CONDUCTOR PHASE SPACER

Conductor phase spacers for long spans in windy areas. Gray silicone rubber coated epoxirod with plastic coated aluminum threaded end fittings (1" threaded). Use with STD ITEM I6 insulators.

LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
48"	A59B	9314610	0810887

MA	TERIA	L DE	SCRI	PTION

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

22 – A58B-A59B 7/16

CABLE, AERIAL, 15kV - 35kV

3 phase preassembled, lashed aerial cable. Fully insulated and shielded for installation within the secondary area, for express or second-primary circuits. Jacketed Concentric Neutral cable with covered lashing tape. 5000 lb. design tension. 7/16" EHS copperweld messenger for 15kV - 23kV cables, ½" EHS copperweld messenger for 35kV cables.

Preferred Termination 15kV-23kV – UR44C Preferred Splice 15kV-23kV – UR49A2 Preferred Termination 35kV – UR45C3 Preferred Splice 35kV – UR49C1 with UR49D

Treferred opinion toky zoky Ott+9/12			1 10	cicirca opiic	00 00KV 01K+301	WILLION
	INSULA	INSULATION				·
CONDUCTOR AWG / KCMIL	THICKNESS	O.D.	STD REEL	STD ITEM	SAP ITEM ID	PS ITEM ID
15kV - 4/0 cu	0.220"	1.03"	1000'	A60E	9315602	4020420
15kV – 500 al	0.175"	1.08"	1000'	A61GA	9386946	none
23kV – 350 al	0.260"	1.26"	1000'	A61FA	9315099	0808660
23kV – 500 cu	0.260"	1.39"	1000'	A61G	9315949	4033355
35kV – 2/0 cu	0.345"	1.115"	1000'	A62D	9315096 ^Y	0808825 ^Y
35kV – 350 cu	0.345"	1.42"	1000'	A62F	9314085 ^Y	0810635 ^Y
35kV – 500 cu	0.345"	1.56"	1000'	A62G	9306450	9201806

BAG, VINYL

Blue vinyl bag with handles to protect the OH Distribution Standards book.

STD ITEM	SAP ITEM ID	PS ITEM ID
A80B	9306753	9202164

ISSUE	PAGE NUMBER
7/16	22 – A60E-A80B

BOLT, MACHINE - 3/8" & 1/2"

Square head steel bolt (with nut) per ANSI Standards B18.2 and C135.1. Zinc coated in accordance with ASTM A135 or B695.

DIA	L	Т	STD ITEM	SAP ITEM ID	PS ITEM ID
3/8"	4½"	3"	B1	9319838	7001537
1/2"	6"	3"	B3	9319829	7001590
1/2"	8"	4"	B4A	9316016	7001570
1/2"	2"	1¾"	B4B	9320575	5983120
1/2"	2½"	1¼"	B4C	9320574	5983124
1/2"	3½"	1¼"	B4D	9320635 ^E	5981360 ^E
1/2"	9"	4"	B4E	9320573	5983190

BOLT, MACHINE - GALVANIZED STEEL

Galvanized steel hex head bolt, nut and lock washer. Bolt and nut to be in accordance with ASTM A-394. Threads to be in accordance with ANSI B1.1, series UNC; Class 2A (bolts) and 2B (nuts). Lock washers shall be regular helical spring galvanized carbon steel.

DIA	LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
1/2"	1"	B5C10	9321525	7009501
1/2"	1½"	B5C15	9321425	7009503
1/2"	2"	B5C20	9321424	7009505
1/2"	3½"	B5C35	9321420	7009511
5/8"	2" (XMFR mounting)	B5C40	9320633	5981384
1/2"	Split washer	B5W7A	9321667	7006104
5/8"	Split washer	B5W7B	9306406 ^E	5997270 ^E

BOLT, CARRIAGE

Galvanized steel construction with corresponding nut.

DIA.	LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
1/2"	6"	B8A1	9307345 ^E	5981154 ^E
3/8"	4½"	B8A2	9306391	5981044
3/8"	6"	B8A2A	9305940	5106128
3/8"	7"	B8A3	9306974	5981070

MATER	IAL D)ESCR	IPTION
-------	-------	-------	--------

OVERHEAD CONSTRUCTION STANDARD

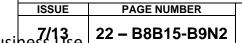
PAGE NUMBER ISSUE

22 - B1-B8A3 7/16

BOLT, MACHINE - STAINLESS STEEL

Non-magnetic stainless steel construction manufactured of series 18-8 material (18% chromium, 8% nickel). UNC fully threaded up to 2". Bolts longer than 2" have minimum thread length of 2". The belleville washer is 301 stainless steel.

	NOTES	STAINLESS STEEL GRADE	DIA.	LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
	Hex Bolt		3/8"	1½"	B8B15	9303903	5622735
畫	Hex Bolt		3/8"	2"	B8B20	9303773	5622737
HILLIAN	Hex Bolt		3/8"	2 1/4"	B8B21	9391757	N/A
	Hex Bolt		3/8"	2 ½"	B8B25	9304693	5622740
	Hex Bolt	224	3/8"	2 3/4"	B8B27	9319746	7009300
	Hex Bolt	304	1/2"	1"	B8C10	9304788	5624913
	Hex Bolt		1/2"	1 1/4"	B8C12	9321512	7009310
	Hex Bolt		1/2"	1½"	B8C15	9304787	5624915
	Hex Bolt		1/2"	2"	B8C20	9304786	5624920
	Hex Bolt		1/2"	2½" 3"	B8C25	9304785	5624925
	Hex Bolt		1/2"	3	B8C30	9304784	5624927
	Hex Nut	316	3/8"	N/A	B8B40	9304774	5625193
	Hex Nut	310	1/2"	N/A	B8C40	9319754	7001719
	Flat Washer	204	3/8"	N/A	B8W2	9304688	5629591
0	Flat Washer	304	1/2"	N/A	B8W3	9319831	7006021
0	Split Washer Split Washer	304	3/8" 1/2"	N/A N/A	B8W6 B8W7	9304691 9304690	5629210 5629229
0	Belleville Washer	301	1/2"	N/A	B8W10	9319830	7006022


LAG SCREW

Steel lag screw with square head, shoulder shank, fetter or twist drive, and pilot/drive point. However, %" doesn't have a pilot/drive point. In accordance with NEMA PH3. Zinc coated in accordance with ASTM A153 or B695.

DIA.	LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
1/2"	4"	B9	9309115	7011833
3/8"	3"	B9N1	9307185	5995685
5/8"	4"	B9N2	9307177	5995825

MATERIAL DESCRIPTION

U-DUCT LAG SCREW

Galvanized steel lag screw with hex head, shoulder shank, and gimlet point with steel/neoprene washer. In accordance with ANSI B18.2.1. Zinc coated in accordance with ASTM A153 or B695. Standard U-duct fastener.

DIA.	LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
1/4"	2"	B10B	9322030	7011830

LAG SCREW - GIMLET POINT - 3/8"

%" steel lag screw with square or hex head, shoulder shank and gimlet point. In accordance with ANSI B18.2.1. Zinc coated in accordance with ASTM A153 or B695.

LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
3"	B11A	9322026 ^Y	7011901 ^Y
4"	B11B	9322027	7011879

LAG SCREW - GIMLET POINT - 1/2" X 4"

½" steel lag screw with square head, shoulder shank and gimlet point. In accordance with ANSI B18.2.1. Zinc coated in accordance with ASTM A153 or B695.

STD ITEM	SAP ITEM ID	PS ITEM ID
B12	9322029	7011835

BOLT, MACHINE 5/8"

Square head steel bolt (with nut) per ANSI Standard C135.1. Zinc coated in accordance with ASTM A153 or B695. (Min. tensile strength 12,400 lbs.)

L	т	STD ITEM	SAP ITEM ID	PS ITEM ID
10"	4"	B13A	9315997	7001500
12"	6"	B13B	9320033	7001501
14"	6"	B13C	9309119	7001503
16"	6"	B13D	9320015	7001505
18"	6"	B13E	9320032	7001506
20"	6"	B13F	9320031	7001507
24"	6"	B13G	9319840	7001533
8"	4"	B13H	9319836	7001546
6"	3"	B13J	9320549	5983260
2"	1½"	B13K	9320550	5983220

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 - B10B-B13K	7/16

BOLT, MACHINE 3/4"

Square head steel bolt (with nut) per ANSI Standard C135.1. Zinc coated in accordance with ASTM A153 or B695. (Minimum tensile strength 18,350 lbs.)

			STD		
	L	T	ITEM	SAP ITEM ID	PS ITEM ID
ĺ	8"	4"	B14A	9319834	7001555
	10"	4"	B14B	9319841	7001530
	12"	6"	B14C	9314896	7001556
	14"	6"	B14D	9319846	7001520
	16"	6"	B14E	9319786	7001521
	18"	6"	B14F	9319844	7001522
	20"	6"	B14G	9319837	7001540
	2"	1¾" (XMFR mounting)	B14H	9307158	9200904

BOLT, DOUBLE ARMING 5/8"

Galvanized steel construction, %" diameter, full threaded rod with (4) square nuts. Minimum tensile strength of 12,400 lbs. Manufactured per ANSI Standard C135.1. Zinc coated per ASTM 153 or B695.

L	STD ITEM	SAP ITEM ID	PS ITEM ID
16"	B15A	9320701	7002926
18"	B15B	9320034	7002925
20"	B15C	9321366	7002929
22"	B15D	9320702	7002930
24"	B15E	9321592	7002931
26"	B15G	9307343 ^E	5981526 ^E
28"	B15F	9321589	7002946
30"	B15H	9321588	7002949

BOLT, DOUBLE ARMING 3/4"

Galvanized steel construction, ¾" diameter, full threaded rod with (4) square nuts. Manufactured per ANSI Standard C135.1. Zinc coated per ASTM 153 or B695.

L	STD ITEM	SAP ITEM ID	PS ITEM ID
20"	B16A	9321591	7002943
22"	B16A1	9307348	5981622
24"	B16A2	9321590	7002944
26"	B16B	9307340	5981626
28"	B16C	9307338	5981628
30"	B16D	9307337	5981630
32"	B16E	9320625	5981632

MA	ΓERI <i>!</i>	AL D	ESCF	RIPT	ION

NUT, SQUARE

Galvanized steel ½ inch height square nut.

DIAMETER	STD ITEM	SAP ITEM ID	PS ITEM ID
5/8"	B17A	9319911	5993400
3/4"	B17B	9307167	5993410

BOLT, MACHINE 7/8"

Square head steel bolt (with nut) per ANSI Standard C135.1. Zinc coated in accordance with ASTM A153 or B695. (Minimum tensile strength 25,400 lbs.)

LENGTH	THREAD	ITEM	SAP ITEM ID	PS ITEM ID
8"	6"	B18A	9319753	7001927
10"	6"	B18B	9319752	7001928
12"	6"	B18C	9319998	7001453
14"	6"	B18D	9319997	7001454
16"	6"	B18E	9319996	7001455
18"	6"	B18F	9309341	7001456
20"	6"	B14G	9315707	7001488

BOLT EYE, THIMBLE EYELET

Galvanized ferrous eyelet, for use with preformed dead-ends (STD ITEM P52 & P54). NEMA standard PH5.

BOLT SIZE	BOLT HOLE DIMENSION	STD ITEM	SAP ITEM ID	PS ITEM ID
5/8"	¹ / ₁₆ " X 1"	B20A	9313442	3503335
3/4"	¹³ ⁄ ₁₆ " X 1½"	B20B	9313441	3503336

BOLT EYE, THIMBLE EYELET

Galvanized ferrous eyelet, for use with clevis and pin dead-end hardware. NEMA Standard PH5.

BOLT SIZE	BOLT HOLE DIMENSION	STD ITEM	SAP ITEM ID	PS ITEM ID
5/8"	¹¹½16" X 1"	B21B	9313558	3503116
3/4"	¹³ ⁄ ₁₆ " X 1½"	B21C	9313557	3503117

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 - B17A-B21C	7/17

EYENUT, STANDARD

Hot-dipped galvanized (ASTM 153-73) steel. Threads onto standard bolt thread for retro-extensions of dead ended poles. Use with clevis and pin hardware. NEMA Standard PH5 Type I.

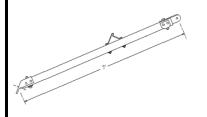
BOLT SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
5/8"	B22B	9313440	3503338
3/4"	B22C	9313418	3503339

BOLT EYE SHOULDER, OVAL

3/4" Diameter, 10 UNC threads, galvanized steel construction with a square nut.

LENGTH	THREAD LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
12"	31/4"	B32A	9320620	5982312
14"	6½"	B32B	9320619	5982314

BOLT EYE, SCREW THIMBLEYE


5/8" Diameter, 63/4" length, galvanized steel construction with a 3" thread length.

STD ITEM	SAP ITEM ID	PS ITEM ID
B33A	9307332 ^E	5984035 ^E

BRACE, ALLEY ARM

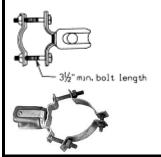
Brace, wood alley arm, $2\frac{3}{4}$ " X $3\frac{1}{2}$ " straight grained Douglas Fir with hot dip galvanized steel end fittings and step bracket. $\frac{11}{16}$ " mounting holes. For use with standard 8' & 10' crossarms.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
7' Brace Hole Spacing (for 8' crossarms)	B36	9315257	0807179
10' Brace Hole Spacing (for 10' crossarms)	B36B	9306514	9201695

MATERIAL	. DESCRIPT	ION
----------	------------	-----

	ISSUE	PAGE NUMBER
usi	ne\$ \$/04	22 – B22B-B36B

BRACE, FLAT WOOD CROSSARM - ONE PAIR


1" X 1¾" treated wood section with aluminum or galvanized steel end fittings. 26" center-to-center between one $\frac{7}{16}$ " d. and one $\frac{9}{16}$ " d. end bolt holes (each brace). Approximately 4 lbs. each pair.

STD ITEM	SAP ITEM ID	PS ITEM ID
B37B	9314904	0810389

BRACKET, INSULATED SERVICE

Reinforced light grey, grey or black nylon wire holder. For multiplex service attachment to metal mast. 1200 lb. minimum tensile strength, 500 lb. minimum cantilever.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
For 1¼" – 2½" Pipe	B53A	9311502 ^Y	3502100 ^Y
For 3" – 4"Pipe	B53B	9311479 ^Y	3502104 ^Y

BRACKET, INSULATED SERVICE

Reinforced grey nylon wire holder with 4" X #22 (approx. 5/16") hot dip galvanized wood screw, for attachment of light overhead service drop cables to a building.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Wire Holder	B54	9311501	3502101
Installation Tool	B54T	9387915	none

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – B37B-B54T	1/06

MATERIAL DESCRIPTION				
	ISSUE	PAGE NUMBER		SMIZZ
	09/05	Blank	OVERHEAD CONSTRUCTION STANDARD	ppl

LINK - FIGURE 8

Forged steel, hot-dip galvanized 30,000 lbs. ultimate. Approximately 3/4 lb. each.

STD ITEM	SAP ITEM ID	PS ITEM ID
C4A	9312414	3506171

LINK, TRANSMISSION CHAIN

Galvanized steel pitch, line end hardware, 3 ½" X 2 ½", 1" opening, 60 M ultimate strength.

STD ITEM	SAP ITEM ID	PS ITEM ID
C4B	9314320	0810536

SHACKLE

Steel construction with a bolt, nut, or a 5/8" clevis pin and cotter pin.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
18,000 lb. ultimate	C5A	9312424	3504444
30,000 lb. ultimate	C5B	9307405	5987580
60,000 lb. ultimate	C5C	9307404	5987592

CLEVIS, THIMBLE

7/8" Galvanized steel construction, 20,000 lbs. max load rating, 5/8" pin.

STD ITEM	SAP ITEM ID	PS ITEM ID
C5D	9307409 ^E	5987620 ^E

MATERIAL DESCRIPTION

7/16 Business Use PAGE NUMBER
22 – C4A-C5D

CONNECTOR VISE

For copper-to-copper connections. Each connector will accept two of the conductors listed below and any combination in between.

MAX. WIRE SIZE		STD		
SOLID	STRAND	ITEM	SAP ITEM ID	PS ITEM ID
6	8	C6N1	9320125	5963920
4	4	C6N2	9320124	5963930
2	3	C6N3	9320123	5963935
1	2	C6N4	9320122	5963940
2/0	1/0	C6N5	9320412	5963945
3/0	2/0	C6N6	9308891 ^E	5103923 ^E
4/0	4/0	C6N7	9320121	5963955
500	500	C6N8	9389771	

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 – C6N1-C6N7 7/16

© 2022 PPL Corporation. All rights reserved.

CONNECTOR, PARALLEL GROOVE

Aluminum body non-tension bolt type connector for aluminum-to-aluminum or aluminum-to-copper cable. Connectors are pre-filled with inhibiting grease and individually packaged; shall meet ANSI C119.4 Class A Class 3 latest revision.

	GROOVE A				ROOVE	3			
BOLT	ALUM. OR CU.	ACSR, AWAC, 5005, 6201	WIRE DIA. RANGE	ALUM. OR CU.	ACSR, AWAC, 5005, 6201	WIRE DIA. RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
5⁄16"	8 - 2	6 - 2	0.128" – 0.325"	8 - 2	6 - 2	0.128" – 0.325"	C7A	9320570 ^E	5962820 ^E
3/8"	6 – 2/0	6 – 2/0	0.162" – 0.447"	6 – 2/0	6 – 2/0	0.162" – 0.447"	С7В	9312212	3506863
1/2"	4/0 – 400.0	3/0 – 336.4	0.464" – 0.743"	6 – 2/0	6 – 2/0	0.162" – 0.447"	C7D	9312219	3506864
5/8"	450.0 – 1000.0 Al. & 450.0 – 500.0 Cu.	477.0 – 795.0	0.743" – 1.152"	6 – 3/0	6 – 2/0	0.162" – 0.464"	C7DA	9320569	5962841

3/8"	2 – 3/0	2 – 3/0	0.292" – 0.502"	2 – 3/0	2 – 3/0	0.292" – 0.502"	C7E	9320568	5962850
1/2"	4/0 – 400.0	3/0 – 336.4	0.464" – 0.743"	2 – 3/0	2 – 3/0	0.292" – 0.502"	C7G	9320567	5962860
5/8"	450.0 - 1000.0 Al. & 450.0 - 500.0 Cu.	477.0 – 795.0	0.743" – 1.152"	4/0 – 400.0	3/0 – 336.4	0.464" – 0.743"	С7Н	9320566	5962875

	MATERIAL DESCRIPTION									
	ISSUE	PAGE NUMBER		SMIZ						
Busi	7/16 ness Use	22 – C7A-C7H	OVERHEAD CONSTRUCTION STANDARD	ppl						

CONNECTOR, PARALLEL GROOVE (CONTINUED)

Aluminum body non-tension bolt type connector for aluminum-to-aluminum or aluminum-to-copper cable. Connectors are pre-filled with inhibiting grease and individually packaged; shall meet ANSI C199.4 Class A Class 3 latest revision.

	G	ROOVE A		(ROOVE I	В			
BOLT	ALUM. OR CU.	ACSR, AWAC, 5005, 6201	WIRE DIA. RANGE	ALUM. OR CU.	ACSR, AWAC, 5005, 6201	WIRE DIA. RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
1/2"	4/0 – 400.0	3/0 – 336.4	0.464" – 0.743"	4/0 – 400.0	3/0 – 336.4	0.464" – 0.743"	C7I	9302658	5962870
5/8"	450.0 – 1000.0 Al. & 450.0 – 500.0 Cu.	477.0 – 795.0	0.743" – 1.152"	450.0 – 1000.0 Al. & 450.0 – 500.0 Cu.	477.0 – 795.0	0.743" – 1.152"	C7J	9320411	5962880

CONNECTOR - PARALLEL GROOVE, COPPER

For copper-to-copper connections. Interlocking finger design provides firm grip with maximum contact length.

CONDUCTORS (EITHER GROOVE)	STD ITEM	SAP ITEM ID	PS ITEM ID	
4 Sol. – 4/0 Str.	C7K	9320554	5962562	
4/0 Str 500.0	C7L	9320555 ^E	5962570 ^E	

MATE	RIAL	DESCRI	PTION
------	------	--------	-------

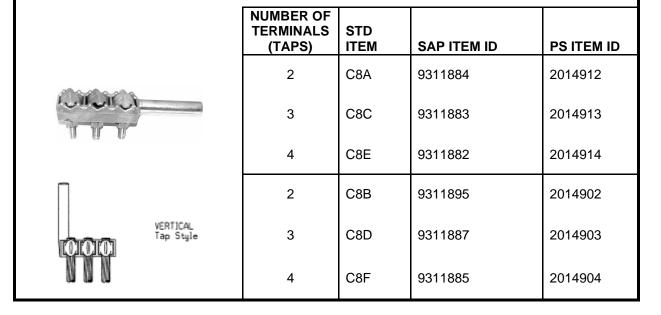
OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 – C7I-C7L 7/13

CONNECTORS - "U" BOLT

Alternate type connectors for large wire sizes.

	G	ROOVE A	ı	G	ROOVE I	3			
BOLT SIZE	ALUM. OR CU.	ACSR, AWAC, 5005, 6201	WIRE DIA. RANGE	ALUM. OR CU.	ACSR, AWAC, 5005, 6201	WIRE DIA. RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
1/2"	4/0 - 400.0	3/0 - 336.4	0.464" - 0.743"	4/0 - 400.0	3/0 - 336.4	0.464" - 0.743"	C7M	9320565 ^E	5962920 ^E
5/8"	450.0 - 1000.0 Al & 450.0 - 500.0 Cu	477.0 - 795.0	0.743" - 1.152"	4/0 - 400.0	3/0 - 336.4	0.464" - 0.743"	C7N	9320564	5962925
5/8"	450.0 - 1000.0 Al & 450.0 - 500.0 Cu	477.0 - 795.0	0.743" - 1.152"	1/0 - 3/0	2 - 3/0	0.292" - 0.502"	C7P	9303004 ^E	5962924 ^E



5/8"	450.0 - 1000.0 Al & 450.0 - 500.0 Cu	477.0 - 795.0	0.743" -1.152"	450.0 - 1000.0 Al & 450.0 - 500.0 Cu	477.0 - 795.0	0.743 - 1.152	C7Q	9320563	5962930
³ / ₄ "		1113 ACSR	1.140" – 1.340"		1113 ACSR	1.140" – 1.340"	C7R	9303014	5962940

	MATERIAL DESCRIPTION										
	ISSUE	PAGE NUMBER		AMZ							
Busi	7/16 ness Use	22 - C7M-C7R	OVERHEAD CONSTRUCTION STANDARD	ppl							

CONNECTOR, SECONDARY TERMINAL ADAPTER

Secondary terminal adapter for overhead distribution transformers; provides multiple eyebolt terminals at transformer secondary. Bronze construction, for use with #1/0 (0.321") through 500 MCM (0.813") copper conductors.

CONNECTOR - BRONZE TERMINAL LUG

Bronze terminal, (2) hole, 1½" X 3" flat pad, no insulation. Use on airbreak / loadbreak switches, transformers, disconnect switches or on any connection from copper to flat copper pad or bus bar.

RANG	NUMBER	HOLES	STD			
CONDUCTOR	INCHES	OF BOLTS	IN PAD	ITEM	SAP ITEM ID	PS ITEM ID
#4 – 250	.204575	2	2	C8N1	9320350	5965885
1/0 – 500	.325813	2	2	C8N2	9320349	5965889
1/0 – 500	.325813	2	4	C8N3	9311474	3506467

	MATERIAL DESCRIPTION		
SMIZE		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	22 – C8A-C8N3	7/16

Doc. # ST. 22.00.004

CONNECTOR – TERMINAL LUG

Standard NEMA 2-hole tinned aluminum or copper terminal lug. 46 kV and below, ANSI C119.4, Class A Class 2 minimum. Aluminum connectors shall be compound filled and capped.

				CRIMPIN	NG TOOL	. / DIE / # 0	OF CRIMPS				
С	ABLE	L	MI	D6	Y34A	Y34PR	Y35 OF	R Y39	STD		
SIZE		(IN.)	DIE	#/CR.	NEST	INDENT	DIE	#/CR.	ITEM	SAP ITEM ID	PS ITEM ID
	#2	4.8	W162	4	A2CD	1	U2CRT	2	C9A	9311388	3506429
	#1/0	4.9			A25D	1	U25RT	2	C9B	9311381	3506426
С	#2/0	5			A26D	1	U26RT	2	C9B1	9309141	3506463
0	#4/0	5.4					U168	2	C9C	9311409**	3506453**
Р	350	5.8			A31D	2	U31RT	4	C9D	9311399	3506431
P	500	6			A34D	2	U34RT	4	C9E	9311400	3506432
R	750	7					U39RT S39RT P39RT	*4	C9E1	9311480	3506485
	#2	5.0	W243	3	A243	3	U243	2	C9H	9311663	3506401
	#1/0	5.3 –	BG	8			LIDO	4	00.1	0044447Y	2500422Y
	Al. or ACSR	6.3	WBG	4			UBG	4	C9J	9311417 ^Y	3506433 ^Y
	#2/0	5.5 – 6.5	W245	5			U245	2	C9K	9311664 ^Y	3506400 ^Y
A L U	#3/0	5.5 – 6.8	W247	5			U247	3	C9P	9311389 ^Y	3506404 ^Y
M	#4/0	6.0 – 6.9					U249	3	С9М	9311662 ^Y	3506402 ^Y
- N U M	336.4 - 350 Al or ACSR	6.5 – 7.6					U655	3	C9L	9311416 ^Y	3506434 ^Y
	500	6.8 – 8.1					U34ART	4	C9G	9311415	3506436
	750	7.4 – 8.3					U39ART	*4	C9N	9311387	3506405

^{*} Do not use Y35 tool. Need 15 ton tool

NOTES:

- 1.) In Y45 tool use Y35 die with "S" adapter (Burndy Cat. No. PT-6515).
- 2.) In **Y46** tool use Y35 die with "P" adapter (Burndy Cat. No. P-UADP).
 For 1000 MCM connector (non-standard) use Y45 / S44ART or Y46 / P44ART (4 Crimps).

	MATERIAL DESCRIPTION					
	ISSUE	PAGE NUMBER		SMIZ		
Busi	7/13 ness Use	22 - C9A-C9P	OVERHEAD CONSTRUCTION STANDARD	ppl		

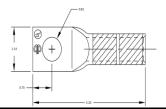
^{**} Use this terminal lug for switches and disconnects. Otherwise, use Std Item UL15E (Item ID 9201251). See UG Material Catalog, Section 50, for more information on UL15E.

CONNECTOR - TINNED ALUMINUM TERMINAL LUG

Standard NEMA 2-hole tinned aluminum terminal lug. For large size 600-900 MCM stranded aluminum or copper conductors. Terminal lug to be in accordance with ANSI C119.4 Class A, Class 2 minimum. For use on airbreak / loadbreak switches, transformers, disconnect switches, or on any connection from aluminum cable to flat aluminum or copper pad or bus bar.

RANGE		NUMBER	HOLES	STD		
CONDUCTOR	INCHES	OF BOLTS	IN PAD	ITEM	SAP ITEM ID	PS ITEM ID
600 – 900	0.870 - 1.108	4	2	C9F	9314937	3506435
1/0 — 4/0	0.368 - 0.563	2	2	C9FA	9320295 ^E	5966418 ^E
300 – 500	0.630 - 0.813	2	2	C9FB	9313203 ^E	5966422 ^E
250 – 400	0.575 - 0.728	2	4	C9FC	9313205 ^E	5966419 ^E
450 – 1000	0.743 – 1.152	3	4	C9FD	9313204 ^E	5966420 ^E

CONNECTOR – TERMINAL


4 hole flat pad to cable electrical terminal connector with a 15° pad. Aluminum termination end, inhibitor loaded.

CONDUCTOR		STD		PS ITEM ID	
SIZE PAD WIDTH		ITEM	SAP ITEM ID		
795 ACSR 54/7 CONDOR	3"	C9FE	9310811	5105654	
1113 ACSR 54/19 FINCH	3"	C9FF	9310818	5105655	

CONNECTOR – TERMINAL LUG - GROUNDING

For connected #4 solid copper to 3/4" insulator stud.

STD ITEM	SAP ITEM ID	PS ITEM ID	
C10	9392017	N/A	

MATERIAL DESCRIPTION

PAGE NUMBER	IOOUE
22 - C9F-C10	7/19

Doc. # ST. 22.00.004

CLAMP, STRAIN

Deadend clamps for distribution construction with copper, CCW, aluminum, or ACSR conductors.

	MATERIAL	CAPACITY (lbs)	DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
	Galv. Mal. Iron	5,000	#6 to #2 Cu. #6A to #2A CCW	C13A1	9315731	3506760
	Galv. Mal. Iron	9,000	* #2 to 4/0 Cu. #6A to 2A CCW	C13A2	9312434	3504158
	Galv. Mal. Iron	10,000	#4/0 to 400kcmil Cu.	C13B	9315732 ^Y	3506758 ^Y
gi.	Aluminum	6,000	* #4 to 2/0 Al. or #6 to 2/0 ACSR	C13H	9315730	3506763
	Aluminum	8,000	* 3/0 to 556.5 Al. or 2/0 to 556.5 ACSR	C13J	9307352	5985783
	Aluminum	15,000	3/0 to 477 Al. or 336.4 to 1000 ACSR	C13K	9307354	5985564
	Galvanized Steel	15,000	.255" galv. steel or #4 to 4/0 Cu.	C13L	9307353	5985605
	Aluminum	35,000	397.5 to 1431 Al. or 336.4 to 1272 ACSR	C13M	9320354	5985660
	Aluminum	15,000	336.4 – 1000 Al.	C13N	9307359	5985784
	Aluminum	15,000	336.4-1200 Al. or 336.1-1113 ACSR	C13O	9393955	N/A
	Galv. Mal. Iron	8,000	2/0 solid to 4/0 Cu. & copperweld	C13P	9307369 ^E	5985905 ^E
	Aluminum	-	1/0 secondary neutral to service messenger mid- span clamp	C13S	9308334	9201457
2	Aluminum	1,250	1/0 to 2-4 AWG AI service and neutral	C13Q	9307433	

^{*} Side opening / Hot stick type clamp

	MATERIAL DESCRIPTION				
	ISSUE	PAGE NUMBER		WW	
	7/21	22 - C13A1 -	OVERHEAD CONSTRUCTION STANDARD	nnl	
Busi	ness Use	C13Q	CONCINCOTION STANDARD	PPI (

SUSPENSION CLAMP

For use on sub-transmission construction.

MATERIAL CAPACITY		MAX. TAKE-OFF ANGLE	CLAMPING RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
Aluminum	18,000 lbs.	60°	0.40"-0.85"	C14A	9312402	3504550
Aluminum	25,000 lbs.	45°	0.90"-1.39"	C14B	9312470	3504562
Aluminum	25,000 lbs.	45°	1.00"-1.82"	C14C	9307357	5985330

MAI	IERIAL	. DESCRIF	MOIL
-----	--------	-----------	------

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

Doc. # ST. 22.00.004

© 2022 PPL Corporation. All rights reserved.

This page left intentionally blank.

MATERIAL DESCRIPTION					
ISSUE	PAGE NUMBER		SMI		
7/13	22 –BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl		

SUSENSION CLAMP, ANGLE

For use on messenger and distribution primary angle construction.

MATERIAL	CAPACITY	MAX. TAKE-OFF ANGLE	CLAMPING RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
Aluminum	5,000 lbs.	> 20°	#4 ACSR – 336.4 Alum.	C15A	9313879	3504015
Galvanized Steel	7,000 lbs.	60°	0.16" – 0.60"	C15B	9307362	5985120
Galvanized Ductile Iron	11,000 lbs.	80°	0.16" – 0.75"	C15C	9307361	5985125

CONNECTOR, HOT LINE

Vice type hot line connectors. Furnished inhibitor loaded and individually packaged in a plastic bag. Connector shall be in accordance with ANSI C119.4 Class A minimum.

MATERIAL	CABLE RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
AI (600A)	336.4 AI or ACSR Run to 336.4 AI or ACSR Tap	C16C	9312649	3504027
Al	477 AI Run to #3 Cu – 2/0 AI or Cu Tap	C16D	9313037 ^E	5960228 ^E
Al	336.4 AI - 477 AI, 795 AI Run to #3 Cu – 4/0 AI or Cu Tap	C16E	9313038	5960226
Al	477 AI Run to 477 AI Tap	C16F	9313036 ^E	5960235 ^E
Al	795 AI Run to 336.4 AI – 795 AI Tap	C16G	9313034	5960270

CONNECTOR, PRESSURE EYEBOLT (CABLE TO FLAT)

Outdoor heavy duty, pressure eyebolt connector, copper alloy body with a high strength bronze eyebolt, with $\frac{1}{2}$ " – 13 UNC threaded stud, lock washer and nut. For use with copper conductors and for mounting directly to a $\frac{1}{4}$ " maximum thickness, flat surface.

CABLE RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
#8 solid – 2/0 stranded	C17B	9316651 ^Y	2014802 ^Y
#6 solid – 250 kcmil	C17D	9316645 ^Y	2014846 ^Y
1/0 solid – 500 kcmil	C17F	9316652	2014800

MATERIAL DESCRIPTION

PAGE NUMBER	IOOUE
22 - C15A-C17F	7/18

CLEVIS, THIMBLE

Galvanized steel or malleable iron, 18,000 lbs. ultimate, for use with preformed dead-ends (P52).

STD ITEM	SAP ITEM ID	PS ITEM ID
C20	9312544	3504055

CONNECTOR, GROUND, VISE

Bronze vise-type grounding connector for copper conductors. For street lighting poles, bases and transformer tanks.

* Item C23B supplied with locknut on stud.

	STD		
CABLE RANGE	ITEM	SAP ITEM ID	PS ITEM ID
#6 Solid – #1/0 Stranded	C23A	9312543	3504058
#3 Solid – #4/0 Stranded.	C23B	9312542 ^Y	3504059 ^Y

CONNECTOR, GROUND, SPLIT BOLT

Copper, split bolt type, grounding connector for copper conductors. To be used to connect padmounted transformer grounds and bonding wires.

CABLE RANGE AWG	STD ITEM	SAP ITEM ID	PS ITEM ID
#2 sol. – #2/0 Str.	C24	9313780	5961547

CONNECTOR, HOT LINE - ALUMINUM

Clamp type plated aluminum hot line tap connector for copper and aluminum.

RUN	TAP	CURRENT RATING	STD ITEM	SAP ITEM ID	PS ITEM ID
1/0 Al or ACSR	#3 Cu - 1/0 Al or Cu	200A	C24A	9313040 ^E	5960210 ^E
4/0 AI, 336.4 AI, or ACSR	#3 Cu - 1/0 Al or Cu	200A	C24A1	9313039 ^E	5960215 ^E
#6 – 400	#6 – 4/0	230A	C24B	9313393	3504025
#4 – 336.4	#4 – 336.4	600A	C24C	9313392 ^Y	3504026 ^Y
4/0 - 800	#4- 350	524	C24CC	9386558	9203022

	MATERIAL DESCRIPTION			
	ISSUE	PAGE NUMBER		WW.
Busi	7/18 ness Use	22 - C20-C24CC	OVERHEAD CONSTRUCTION STANDARD	ppl

CONNECTOR, HOT LINE - BRONZE

Clamp type bronze hot line tap connector for copper to copper connections. Primarily used for 25kV and 35kV unless specified by specific standard.

RUN	TAP	STD ITEM	SAP ITEM ID	PS ITEM ID
400-6 solid	4/0-6 solid	C24D	9313035	5960240

CLAMP, CROSBY TYPE OR ROPE CLIP

Galvanized steel for guy strand.

WIRE SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
1/2"	C25B	9319634 ^Y	8020676 ^Y
5/8"	C25C	9319633 ^Y	8020677 ^Y
3/4"	C25D	9319632 ^Y	8020678 ^Y

CONNECTOR, SERVICE

Non-tension bolted connector, aluminum bodied with inhibiting compound for aluminum-to-aluminum or aluminum-to-copper.

CABLE RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
#2 to 500 MCM	C26	9315845 ^Y	3506843 ^Y

CONNECTOR, SPLIT BOLT OR TWO BOLT TYPE

For copper or copperweld connections. Connectors can accommodate two of the following conductors of the same size or one of the following maximum size conductors and the minimum tap allowed.

CONDUCTOR RANGE	MIN TAP	STD ITEM	SAP ITEM ID	PS ITEM ID
#8 Sol. Cu. & #10 Str. Cu.		C27A	9316628	2014474
#6 Sol. Cu. & #8 Str. Cu.		C27A1	9316630	2014471
#6 Str. Cu.		C27A2	9316660 ^Y	2014673 ^Y
#4 Sol. Cu., #8 Str. Cu. & 6A CCW	#14 Str.	C27B	9316629	2014472
#2 Sol. Cu. & #4 Str. Cu.	Cu	C27B1	9316625 ^Y	2014479 ^Y
#2 Str. Cu., #6 Str. Cu. & 4A CCW		C27C	9316704	2014499
#1/0 Str. Cu., #4 Str. Cu. & 2A CCW		C27D	9316627	2014475
#2/0 Str. Cu. & #2 Str. Cu.		C27E	9316624	2014496
#4/0 Str. Cu #1/0 Str. Cu.	#10 Str. Cu.	C27F	9316641	2014497
#350 MCM Str. Cu.		C27G	9316661	2014662
#500 MCM Str. Cu.	Ou.	C27H	9316659 ^Y	2014675 ^Y

PAGE NUMBER	ISSUE
22-C24D-C27H	7/15

CONDUIT AND FITTINGS – 1" PVC

Rigid grey PVC conduit for indoor or outdoor applications. See STD ITEM UK6S for PVC cement

SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
1" X 10' Straight Section	C29E10	9316094	2010253
1" PVC COUPLING	C29H	9317925	
1" PVC FEMALE TERMINAL ADAPTER	C29G	9388418	
1" PVC MALE TERMINAL ADAPTER	C29F	9320801	

1" NON- METALLIC FLEX CONDUIT AND FITTINGS

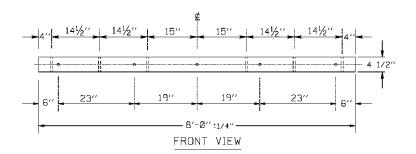
PVC- UV resistant for indoor or outdoor applications

SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
1" X 100' coil	C29B	9388351	
1" Non-Metallic Connector for use with non-metallic liquid-tight conduit, type B only	C29C	9388352	
4" X 250' coil	C29L	9388737	

STRAP, PREFORATED

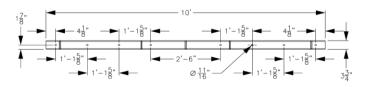
 $^3\!4$ " wide X 20 gauge (0.35" thick) galvanized steel with $^1\!4$ " to $^9\!3$ 2" d. Holes centered along the strap on $^1\!2$ " to $^5\!8$ " centers.

SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
50 Ft. Roll	C30	9321416 ^Y	7503017 ^Y


MATERIAL DESCRIPTION

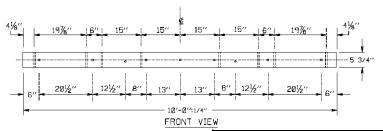
ISSUE	PAGE NUMBER
7/08	22 - C29E10-
1100	C31B

CROSSARM, 6 PIN STANDARD DUTY


3½" x 4½" x 8' Douglas Fir, pentachlorophenol treated per latest MS 2121.

STD ITEM	SAP ITEM ID	PS ITEM ID
C31B	9315007	3502022

CROSSARM, 8 PIN HEAVY DUTY


 $3\frac{3}{4}$ " x $4\frac{3}{4}$ " x 10' Douglas Fir, pentachlorophenol treated per latest Spec. MS 2121. Used with STD ITEM TB60 (wood) braces for 3000 lb. construction dead-ends.

STD ITEM	SAP ITEM ID	PS ITEM ID
C31C	9306952	5980390

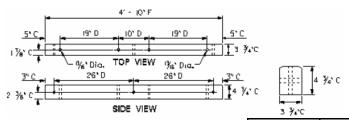
CROSSARM, 6 PIN HEAVY DUTY

 $4\frac{3}{4}$ " x $5\frac{3}{4}$ " x 10' Douglas Fir, pentachlorophenol treated per latest Spec. MS 2121. Used with STD ITEM TB60 (wood) braces for 3000 lb. construction dead-ends.

 STD ITEM
 SAP ITEM ID
 PS ITEM ID

 C31D
 9311780
 3502782

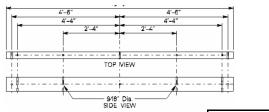
MATERIAL DESCRIPTION



OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 22–C31B-C31D 7/20

CROSSARM, 2 PIN HIGH TENSION ARM


3¾" x 4¾" x 4'-10" Douglas Fir, pentachlorophenol treated per latest Spec. MS 2121 for distribution supply installations.

STD ITEM	SAP ITEM ID	PS ITEM ID
C31E	9306946 ^E	5980350 ^E

CROSSARM, 2 PIN HIGH TENSION ARM

3%" x $7\frac{1}{2}$ " x 10' Douglas Fir, pentachlorophenol treated per latest Spec. MS 2121 for distribution supply installations.

	7	∳ 1⁄2″C ∳
3 5/8"	,c	

STD ITEM	SAP ITEM ID	PS ITEM ID
C31F	9306945 ^E	5980370 ^E

CROSSARM, UNDRILLED HIGH TENSION ARM

8" x 4" x 14' Douglas Fir, pentachlorophenol treated per latest Spec. MS 2121 for distribution customer substations & two pole highway crossings.

STE		SAP ITEM ID	PS ITEM ID
C31	G	9309735	5475852

CROSSARM, UNDRILLED, TRANSFORMER / REGULATOR BANK

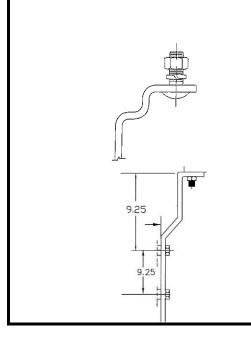
3-5/8" x 7-1/2" x 18 foot long Douglas Fir, pentachlorophenol treated per latest Spec. MS 2121. For support of insulators and disconnects associated with transformer and regulator bank platform installations.

STD SAP ITEM ID		PS ITEM ID
C31H	9388772	9388772

MATERIAL DESCRIPTION

ISSUE	PAGE NUMBER
7/16	22 - C31E-C31H

BRACKET, ARRESTER


Galvanized steel offset bracket for mounting surge arresters on transformer or regulator tanks. Includes two ½" X 1" stainless steel hex head bolts with retaining-clip washers and one galvanized ½" X 2" captive carriage bolt, shake proof washer, lock washer and hex nut.

STD ITEM	SAP ITEM ID	PS ITEM ID
C32	9314509	0811170
C32B	9307170	9200115

BRACKET, ARRESTER

For pole type transformer with arrester rated at greater than 24kV, per ANSI Standard C57.12.20.

HEIGHT	STD ITEM	SAP ITEM ID	PS ITEM ID
16.75 inches	C32F	9307171 ^E	9200114 ^E
20.0 inches	C32G	9306590 ^E	9201732 ^E

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – C32-C32G	7/13

BRACKET, CUTOUT / ARRESTER

Galvanized steel construction, for mounting an arrester or cutout onto crossarms, ANSI C37.42. C33 (left picture) is for mounting a single arrester or cutout on a wooden crossarm. C33A (right picture) is for an arrester and a cutout mounted on a fiberglass deadend crossarm (C76D).

STD ITEM	SAP ITEM ID	PS ITEM ID
C33	9311948	3502149
C33A	9387997	N/A

BRACKET, CUTOUT / ARRESTER

12" galvanized bracket for mounting cutouts, arresters, or terminators on a pole.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Single Position	C35	9320108	5984503
Three Position (For mounting a cutout & arrester)	C35A	9311015	5102584

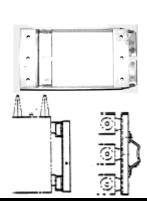
ASSEMBLY, CAPTIVE BOLT

2" X ½" captive bolt assembly package for equipment mounting. Use with STD ITEM C35.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
 (1) 2" X ½" Captive Bolt (1) Lock washer (1) Star washer (1) Flat washer (1) Retaining clip (1) Nut 	C35B	9309818	5105184

MATERIAL DESCRIPTION

ISSUE	PAGE NUMBER	
7/14	22 – C33-C35B	



HANGER, CAPACITOR

Galvanized steel or aluminum construction with lightning arrester provisions.

FOR SINGLE PHASE UNITS: FOR CROSSARM OR POLE MOUNTING				
DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID	
For mounting a 1Φ Unit ONLY	C36A	9311947	3502160	
For mounting up to three 1Φ Units	C36B	9311946 ^Y	3502161 ^Y	
FOR THREE PHASE UNITS: FOR CANTILEVER POLE MOUNTING			LE MOUNTING	
One or two 3Φ Units	C36C	9311945 ^Y	3502162 ^Y	

GAIN, CROSSARM

For use between pole and cross arms. Galvanized iron per ANSI C135.33.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
3" X 4" For use between pole and cross arm at 30° to 60° dead-ends.	C37	9311443	3502243
For use with distribution supply wood crossarms or four inch channel arms, channel flanges can be turned up or down. 6" – 12" pole range, 34" max. mounting bolt.	C37A	9307195	5988935

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – C36A-C37A	7/13

BRACKET, DISCONNECT MOUNTING

Galvanized steel construction, 30° disconnect mounting.

STD ITEM	SAP ITEM ID	PS ITEM ID
C38A	9309202	5100178

BRACKET, 600A DISCONNECT

Galvanized disconnect switch mounting bracket per MS2760. For 15kV-35kV, 600A open type single stick operated disconnect switches.

STD ITEM	SAP ITEM ID	PS ITEM ID	
C38B	9307448	5984552	

SWITCH, CAPACITOR TIME CONTROL

Capacitor time control with temperature and voltage override. Control includes a 4 stab meter base with mounting ring, extra large hole in the locking hasp and a screw hinge. Per MS2853.

STD ITEM	SAP ITEM ID	PS ITEM ID
C39A	9302641	5676370

SWITCH, ADVANCED CONTROL

Capacitor control for voltage, power factor, current and VAR sensing STD. Item C39A1. Communication capable with independent phase switching capability and neutral current detection capability per MS 2855.

Feeder monitor control Std. Item C39A2. Measures voltage, power factor, current or KVAR. Uses 120 volt input.

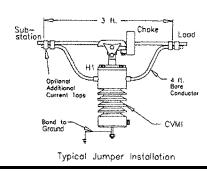
STD ITEM	SAP ITEM ID	PS ITEM ID
C39A1	9307910	9202850
C39A2	9391768	na

MATERIAL DESCRIPTION

ISSUE	PAGE NUMBER				
7/15	22 - C38A-				
	C39A1				

SWITCH, VACUUM

VERSAVAC vacuum switch assembly for switched capacitor banks. 200 Ampere continuous current rating, 100ms recommended control pulse time, 5 pin environmental connector, 120 VAC control voltage with manual trip lever.


VOLTAGE	APPLICATION	BIL	STD ITEM	SAP ITEM ID	PS ITEM ID
15kV	Effectively Grounded	95kV	C39B	9308832	5104316
23kV	Effectively Grounded	125kV	C39BA	9306763	9201943
23kV	Not Effectively Grounded	150kV	C39BB	9306764	9201942
35kV	Effectively Grounded	150kV	C39BC	9306762	9201944

NOTE: Item C39BB does not have a manual trip lever.

CAPACITOR - LINE POST CURRENT/VOLTAGE SENSORS

Capacitor line post current/voltage multicore sensors to be used with the advanced capacitor control (Std Item C39A1).

Insulator, Line post, current & voltage clamp top sensor, 35kV, Current signal output ratio: 600A:10V, Voltage signal output ratio: 2,000V:1V, BIL 200kV, Height: 20.8 IN, Weight: 59 pounds, Complete w/ 40 Ft. 4-position connectorized sensing cable.

kV	WGT (lbs)	STD ITEM	SAP ITEM ID	PS ITEM ID
15	39	C39CS1	9307912	9202848
35	59	C39CS3	9307911	9202849

MATERIAL DESCRIPTION

OVERHEAD 22 - C39B-C39CS3 7/13

CABLE,

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Control 31' cable, 8-pin, for switched bank	C39C	9391215	NA
Control 8' cable, five pin connector on the switch			
end to interconnect a VSV to the junction box.	C39D	9311278	5104317
Control 35', 5-pin female circular connectors from			
switch end to interconnect a VSV to the junction box.	C39D1	9386556	9203023
For use w/ STD Item C39A.			
Power 25' cable, (2) live legs, (1) neutral, & (1) return	C39D2	9386557	9203024
leg 4-position female circular connector on 1 end & 4	00002	3300337	3203024
tinned wires on other end			
Power cable (time clock style) 16',2- #12, terminated	C39D3	9391247	
on a 5 pin female conn.	00000	3031271	

BRACKET, METER SOCKET

1½" X 7" (W X L), galvanized steel pole mounting, galvanized steel digital time clock capacitor control mounting, two required per installation.

STD ITEM	SAP ITEM ID	PS ITEM ID
C39E	9302932	5800702

SOCKET, CAPACITOR CONTROL

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
4 Position outdoor, 125 A rating.	C39F	9317380	5807703
6 position, includes polemounting bracket. 100A rating.	C39G	9306034 ^E	5107061 ^E

		MATERIAL DESCRIPTION	
ISSUE	PAGE NUMBER		WHA
7/18	22 – C39C-C39G	OVERHEAD CONSTRUCTION STANDARD	ppl

CAPACITOR - UNITS

Non-PCB, all-film dielectric, shunt-type, single or two bushing primary distribution capacitor units per MS2851. Does not include pole mounting hanger (STD ITEM C36A or C36B).

SIZE KVAR	NO. OF BUSHINGS	RATED BIL KV	RATED TERMINAL TO TERMINAL VOLTAGE	STD ITEM	SAP ITEM ID	PS ITEM ID		
50	2	75	2400	C40AA	9300331	5350100		
150	2	75	2400	C40AC	9300294 ^E	5455015 ^E		
50	2	75	*4800	C40BA	9300329	5350300		
100	2 2 2	75	*4800	C40BB	9300323	5376300		
150	2	75	*4800	C40BC	9300401	5455215		
200	2	75	*4800	C40BD	9301049	5455220		
200	2	95	6640	C40CA	9300090	5455320		
200	1	125	6640	C40CAA	9302088	5457320		
200	2	95	7200	C40DA	9300493 ^E	5455420 ^E		
300	2	95	7200	C40DB	9301060 ^E	5455430 ^E		
50	2	95	7620	C40EA	9300328 ^Y	5350500 ^Y		
100	2	95	7620	C40EB	9300322	5376500		
200	2	95	7620	C40EC	9300091	5455520		
300	2	95	7620	C40ED	9301061	5455530		
200	2 2 2	95	7960	C40FA	9301063 ^E	5455620 ^E		
300		95	7960	C40FB	9301087 ^E	5455630 ^E		
200	2	95	13200	C40GA	9300313	5380700		
300	2	95	13200	C40GB	9301086 ^E	5455730 ^E		
200	2	95	13800	C40HA	9301229 ^E	5455820 ^E		
200	1	125	13800	C40HAA	9302075	5457820		
300	2	95	13800	C40HB	9301228 ^E	5455830 ^E		
200	2	125	13200	C40KA	9300093	5457821		
200	2 2	125	13800	C40LA	9300094	5457823		
300		125	13800	C40LB	9300095	5457824		
300	2	125	14400	C40MB	9300089	5457826		
200	1	125	19920	C40NA	9301249	5458020		
300	1	125	19920	C40NB	9301248	5458030		

^{*} WHEN USED ON 4160V CIRCUITS, REDUCE KVAR VALUES BY 25%

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22-C40AA-	7/16
C40NB	1/10

CAPACITOR – PRE-ASSEMBLED THREE PHASE FIXED BANKS

Non-PCB, all-film dielectric, completely assembled and ready for installation fixed capacitor banks per MS2852.

BANK	SYSTEM	INDIVIDUAL CAPACITOR UNITS					
SIZE KVAR	VOLTAGE	SIZE	QUANTITY	N. OF BUSHINGS	STD ITEM	SAP ITEM ID	PS ITEM ID
150	2400 dalta	50	3	2	C40PFA	9301247	5458500
300	2400 delta	100	3	2	C40PFB	9300492	5459002
150	2400/4460	50	3	2	C40PFC	9301113	5458520
300	2400/4160 Grd Y	100	3	2	C40PFD	9301116	5459004
450	Giù i	150	3	2	C40PFE	9301181	5459012
150		50	3	2	C40PFEA	9386525	9203019
300	*4800 delta	100	3	2	C40PFF	9301171	5459007
450	4600 della	150	3	2	C40PFG	9301182	5459015
150	4800/8320	50	3	2	C40PFH	9301226	5458515
450	4600/6320 Grd Y	150	3	2	C40PFJ	9300911 ^E	5459019 ^E
600	Glu i	200	3	2	C40PFK	9300910 ^E	5459020 ^E
600	7200/12470	200	3	2	C40PFL	9300921	5459040
900	Grd Y	300	3	2	C40PFM	9301053	5459140
600	7620/13200	200	3	2	C40PFQ	9300852	5459046
900	Grd Y	300	3	2	C40PFR	9300849	5459062
600	7960/13800	200	3	2	C40PFV	9300918 ^E	5459042 ^E
900	Grd Y	300	3	2	C40PFW	9300971 ^E	5459068 ^E

^{*} WHEN USED ON 4160V CIRCUITS, REDUCE KVAR VALUES BY 25%

7/16 PAGE NUMBER
22 - C40PFAC40PFW

<u>CAPACITOR – PRE-ASSEMBLED THREE PHASE SWITCHED BANKS</u>

Non-PCB, all-film dielectric, completely assembled and ready for installation switched capacitor banks per MS2852.

BANK SIZE	SYSTEM	INDIVIDUAL CAPACITOR UNITS					
KVAR	VOLTAGE	SIZE	QUANTITY	N. OF BUSHINGS	STD ITEM	SAP ITEM ID	PS ITEM ID
150	2400 delta	50	3	2	C40PSA	9301252	5458505
300	2400 della	100	3	2	C40PSB	9301128	5459005
150	2400/4160	50	3	2	C40PSC	9301236	5458517
300	2400/4160 Grd Y	100	3	2	C40PSD	9301169	5459006
450	Glu i	150	3	2	C40PSE	9301180	5459011
150		50	3	2	C40PSFEA	9308026	9202534
300	*4000 dalta	100	3 3	2	C40PSF	9301114	5459003
450	*4800 delta	150	3	2	C40PSG	9300913	5459017
300	4800/8320	100	3	2	C40PSH	9301179 ^E	5459009 ^E
450	4600/6320 Grd Y	150	3	2	C40PSJ	9300912 ^E	5459018 ^E
600	Giù i	200	3	2	C40PSK	9300922 ^E	5459030 ^E
600	7200/12470	200	3	2	C40PSL	9300850	5459060
900	7200/12470 Grd Y	300	3	2	C40PSM	9301037	5459067
1200	Glu i	200	6	2	C40PSP	9301073	5459070
300		100	3	2	C40PSPA	9386501	9203005
600	7620/13200	200	3	2	C40PSQ	9300851	5459048
900	Grd Y	300	3	2	C40PSR	9300848	5459064
1200	Giu i	200	6	2	C40PSS	9301059	5459072
1200	13280/23000 Grd Y	200	6	2	C40PST	9301056	5459076
600	7000/40000	200	3	2	C40PSV	9300888 ^E	5459044 ^E
900	7960/13800	300	3	2	C40PSW	9300847	5459066
1200	Grd Y	200	6	2	C40PSX	9301057 ^E	5459074 ^E
1200	19920/34500	200	6	1	C40PSY	9301055	5459100
1800	Grd Y	200	9	1	C40PSZ	9301054	5459110
1200	13,800 delta	200	6	2	C40PSXA	9388453	NA
1800	22 000 dolto	300	6	2	C40PSZB	9390343 ^E	NA
2700	23,000 delta	300	9	2	C40PSZA	9300491 ^E	5459500 ^E

^{*} WHEN USED ON 4160V CIRCUITS, REDUCE KVAR VALUES BY 25%

MATERIAL DESCRIPTION

OVERHEAD 22-C40PSA-C40PSZA 7/18

CAPACITOR-PRE-ASSEMBLED THREE PHASE SWITCHED BANKS WITHOUT CONTROL WIRING

Non-PCB, all-film dielectric, completely assembled and ready for installation switched capacitor banks except without control wiring beyond the capacitor switches per MS2852. Use with Advanced Cap control C39A1.

BANK SYSTEM INDIVIDUAL C.		/IDUAL CAPAC	CITOR UNITS				
KVAR	VOLTAGE	SIZE	QUANTITY	N. OF BUSHINGS	STD ITEM	MU NAME	SAP ITEM ID
150	2400/4160 Grd	50	3	2	C40SGC	@150KB416YSWADVANCED	9391305
300	2400/4100 GIU V	100	3	2	C40SGD	@300K3C2441YSWADVANCED	9301616
450	<u>į</u>	150	3	2	C40SGE	@450KB416YSWADVANCED	9391284
600	6640/11500	200	3	2	C40SGG	@600KB115YSWADVANCED	9391317
900	Grd Y	300	3	2	C40SGH	@900KB115YSWADVANCED	9391327
1200	Glu i	200	6	2	C40SGI	@1200KB115YSWADVANCED	9391326
300		100	3	2	C40SGJ	@300K3C1247KVSWADVANCED	9393147
600	7200/12470	200	3	2	C40SGK	@600KB1247YSWADVANCED	9391283
900	Grd Y	300	3	2	C40SGL	@900KB1247YSWADVANCED	9391315
1200		200	6	2	C40SGM	@1200KB1247YSWADVANCED	9391316
300		100	3	2	C40SGP	@300K3C7613KVSWADVANCED	9390777
600	7620/13200	200	3	2	C40SGQ	@600KB7613YSWADVANCED	9301624
900	Grd Y	300	3	2	C40SGR	@900KB7613YSWADVANCED	9301611
1200		200	6	2	C40SGW	@1200KB132YSWADVANCED	9391277
300		100	3	2	C40SGS	@300KB138YSWADVANCED	9386564
600	7960/13800	200	3	2	C40SGT	@600KB138YSWADVANCED	9386566
900	Grd Y	300	3	2	C40SGU	@900KB138YSWADVANCED	9386563
1200		200	6	2	C40SGV	@1200KB138YSWADVANCED	9386565
1200	19920/34500	200	6	1	C40SGY	@1200KB35YSWADV-DIST	9391976
1800	Grd Y	200	9	1	C40SGZ	@1800KB1934YSWADV-DIST	9392089
1200 **	19920/34500	200	6	1	C40TGY	@1200K3C1934YSWADVANCED	9390859
1800 **	Grd Y	200	9	1	C40TGZ	@1800KB1934YSWADVANCED	9390906
**	** Note: Capacitors classified as transmission asset – NY.						

CAPACITOR - THREE PHASE

Non-PCB, all-film, shunt-type, three bushing primary distribution capacitor per MS2851. Does not include pole mounting hanger (STD ITEM C36C or C36D).

KVAR SIZE	VOLTAGE	STD ITEM	SAP ITEM ID	PS ITEM ID
300	13,200V Grd Y / 7620V	C40P	9300311 ^Y	5483570 ^Y

CUTOUT, ENCLOSED PORCELAIN 5 kV FUSED AND DISCONNECTING

Grey porcelain housing, hook stick operable door with fuse tube or solid blade. Self-contained dropout operation. Fuse tubes accept standard K-link fuses (STD ITEM F1K) and includes NEMA standard crossarm mounting bracket. For MAINTENANCE ONLY

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
DESCRIFTION	I I LIVI	SAFIILIVIID	FSTILMID
100A Small Box, Heavy Duty Dropout Fused	C41B1	9311902	2023930
100A Large Box, Extra Heavy Duty Indicating Fused	C41D1	9311766	2023562
200A Extra Large Box, Indicating Blade Disconnect	C41D2	9311901 ^Y	2023939 ^Y

MATERIAL DESCRIPTION					
ISSUE	PAGE NUMBER		MIZ		
7/21	22 - C40SGC- C41D2	OVERHEAD CONSTRUCTION STANDARD	ppl		

CUTOUT, OPEN TYPE, 15KV STANDARD

Open type single stick operated fused cutout or disconnect for outdoor application on all overhead primary distribution circuits through 15 kV. Grey non-porcelain insulator, plated copper – eyelet connectors for #6 through 4/0 conductors, and galvanized load buster hooks PER MS2731.

1	Ī	ī
STD	SAD ITEM ID	PS ITEM ID
I I LIVI	SAFITEWID	FULLWID
C43S10	9309170	2023700
C43S20	9314394	0811133
C43S30	9314395	0811134
C43S11	9311747	2023701
C43S21	9311746	2023702
0.40004	0044745	0000700
C43S31	9311745	2023703
	C43S10 C43S20 C43S30 C43S11	ITEM SAP ITEM ID C43S10 9309170 C43S20 9314394 C43S30 9314395 C43S11 9311747 C43S21 9311746

CUTOUT, OPEN TYPE, 27KV STANDARD

Open type single stick operated fused cutout or disconnect for outdoor application on all overhead primary distribution circuits through 35KV. Grey non-porcelain insulator, plated copper – eyelet connectors for #3 through 4/0 conductors, and galvanized load buster hooks per MS2740.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Complete assembly fused 100A w/o mounting bracket	C43S41	9317053	5901276
Fuse door only 100A	C43S51	9318884	5909441

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE	
22 - C43S10-	7/16	
C43S51	7/16	

POWER FUSE - (MOUNTING) SMD-20

SMD-20, 200 A maximum rating, outdoor dropout type, single polymer insulator style power fuse mounting, for use with SMU-20 fuses, (STD ITEM F6K for C47A and STD ITEM F8K for C48B). Mounting to include hanger for crossarm mounting, fuse end fittings, parallel-groove connectors and provisions for load busters. 20,000 A asymmetrical.

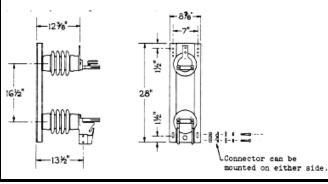
MAX. VOLTAGE	STD ITEM	SAP ITEM ID	PS ITEM ID
15 kV	C47A	9311769	2023522
27 kV	C47B	9317267	5909780

^{*} For use where the available short circuit current exposure may be greater than 7,500 Amps symmetrical and where special coordination is required.

POWER FUSE - (MOUNTING) SMD-20, 34.5 kV

SMD-20, 200 A maximum rating, outdoor dropout type, single porcelain insulator style power fuse mounting, for use with SMU-20 fuses, (STD ITEM F9K). Mounting to include hanger for crossarm mounting, fuse end fittings, parallel-groove connectors and provisions for load busters. 20,000 A asymmetrical.

STD ITEM	SAP ITEM ID	PS ITEM ID
C48	9310261	9201149


ISSUE	PAGE NUMBER	
7/21	22 - C47A-C48	

POWER FUSE - (MOUNTING) SMD-5

S&C type SM-5, 14.4 kV, 400 A maximum rating, outdoor 180° opening, vertical style power fuse mounting with polymer station post insulators for use with S&C type SM-5 power fuse holder (C50B), and S&C type SM-5 fuses, (STD ITEM F5E). Each unit will be furnished with one parallel groove aluminum alloy bodied, tin-plated connector with galvanized steel bolts for a cable range of No. 2 solid through 500 KCMIL stranded copper or aluminum. No provision for load buster; non-load break type mounting. Heavy duty 40,000 asymmetrical at 14.4 kV.

STD ITEM	SAP ITEM ID	PS ITEM ID
C50A	9311793	2023520

POWER FUSE - (HOLDER) SMD-5

S&C type SM-5, 14.4 kV, 400 A maximum rating, outdoor power fuse holder for use with S&C type SM-5 power fuse mounting (STD ITEM C50A), and S&C type SM-5 fuses (STD ITEM F5E).

STD ITEM	SAP ITEM ID	PS ITEM ID
C50B	9311770	2023521

MAT	ERIAL	DESCRIP	MOIT
-----	-------	---------	------

PAGE NUMBER	ISSUE
22 - C50A-C50B	7/13

COVER, SNAP-ON TYPE, 600 VOLT MAXIMUM

One-piece black polyethylene snap-on insulating cover for compression-type (S13) or parallel groove bolted (C7B, C7D, C7E) service and secondary tap connectors.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
For compression connector, 5% or BG crimping die	C60B	9316075 ^Y	2005601 ^Y
For compression connector, O crimping die	C60E	9316074	2005602
For compression connector, D crimping die	C60G	9316073	2005603
 For compression connector, N crimping die	C60J	9316072	2005604
For parallel groove one bolt connector (C7B). For temporary connections or in congested secondary/service cable installations.	C60R	9311084	9201346
For parallel groove one bolt connector (C7D) or two bolt connector (C7E). For temporary connections or in congested secondary/service cable installations.	C60S	9311091	9201347

GEL FILLED ENCLOSURE COVER

Gel H-tap compression connector closure cover. Used for insulating and environmentally sealing up to 600 volt cable taps and splices made with H-tap compression connectors. Utilizes a sealing gel to protect connector from moisture ingress, corrosion, and pollution.

Use for coastal construction applications.

DESCRIPTION	RUN CABLE	TAP CABLE	STD ITEM	SAP ITEM ID
Small gel cover	1/0 – 4/0	#6 – 3/0	C61A	9387508
Large gel cover	350	4/0	C61B	9387509

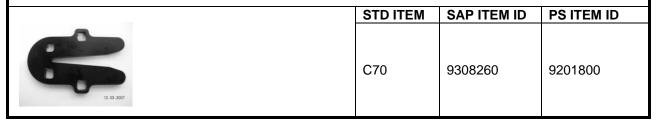
	MATERIAL DESCRIPTION					
ISSUE	PAGE NUMBER	OVERHEAD	NW.			
07/14	22 – C60B- C61B	OVERHEAD CONSTRUCTION STANDARD	ppl			

COVER - GELWRAP FOR TREE WIRE AND SPACER CABLE SPLICES

Gelwrap spacer cable/tree wire splice/skinning cover for 15 kV tree wire and spacer cable splices and skinnings.

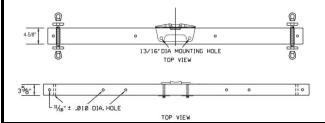
DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
1/0 Al splices, 1/0 Al thru 556.4 kcmil Al skinnings	C62	9310416	9200661
336.4 kcmil Al thru 795 kcmil Al splices, 795 kcmil Al skinnings	C63	9306472	9200984

COVER - GELWRAP FOR TREE WIRE AND SPACER CABLE CONNECTOR TAPS


Gelwrap spacer cable/tree wire splice/skinning cover for 15 kV tree wire and spacer cable connector taps.

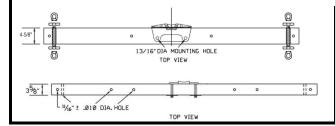
DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
1/0 Small Tap	C67	9306453	9201801
336.4 kcmil thru 477 kcmil splices, for large connectors	C68	9306452	9201802

CLIP - FOR CONNECTOR TAPS


Clip, Gelwrap Cover for Spacer Cable/Tree Wire Connector Taps

MATERIAL DESCRIPTION				
SMZ.		PAGE NUMBER	ISSUE	
ppl	OVERHEAD CONSTRUCTION STANDARD	22 – C62 - C70	7/08	

CROSSARM, FIBERGLASS


Heavy duty, 8-foot length, medium brown/bronze or light gray in color.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Deadend Arm	C76D	9306206	9201847
Tangent Arm	C76T	9306208	9201845

CROSSARM, FIBERGLASS

Heavy duty, 10-foot length, light gray in color.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Deadend Arm	C77D	9391756	N/A
Tangent Arm	C77T	9391755	N/A

	MATERIAL DESCRIPTION				
ISSUE	PAGE NUMBER	OVERHEAD			
07/18	22 - C76-C77	CONSTRUCTION STANDARD	ppl 🗧		

© 2022 PPL Corporation. All rights reserved.

SWITCH, DISCONNECT, 5 kV ENCLOSED

600A, polymer enclosed, single stick operated solid blade primary distribution switch; includes crossarm mounting bracket.

STD ITEM	SAP ITEM ID	PS ITEM ID
D1C	9311737	2027117

SWITCH, IN-LINE FIRED-ON WEDGE DISCONNECT

900A, fired-on wedge open-type, single stick operated primary distribution switch.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
15kV in-line disconnect and associated "C" members and wedges for use on 336 MCM AAC/ACSR conductors.	D3A	9307172	920011 3
(1) replacement "C" member and wedge for use on 336MCM AAC / ACSR conductors.	D3AC	9307196 ^Y	920009 6 ^Y
(1) replacement "C" member and wedge for use on 4/0 AAC / ACSR conductors.	D3AD	9307206	920009 7
(1) replacement "C" member and wedge for use on 477 AAC conductors.	D3AE	9308310 ^E	920148 1 ^E
(1) replacement "C" member and wedge for use on 1/0 AAC / ACSR conductors.	D3DA	9390123 ^Y	
15kV in-line disconnect and associated "C" members and wedges for use on 477 MCM AAC conductors.	D3B	9308445	920148 3
35kV in-line disconnect and associated "C" members and wedges for use on 1/0 AAC conductors.	D3D	9390165 ^Y	-
35kV in-line disconnect and associated "C" members and wedges for use on 336.4, 350, 397.5 AAC conductors, 266.8, 336.4 ACSR conductors.	D3E	9390120 ^Y	-
35kV in-line disconnect and associated "C" members and wedges for use on 477 MCM AAC conductors.	D3C	9308309 ^Y	920148 2

SWITCH, IN-LINE BOLTED DISCONNECT

35kV, 600A, 200 kV BIL bolted open-type, single stick operated in-line primary distribution switch with loadbuster hooks.

STD ITEM	SAP ITEM ID	PS ITEM ID	
D4A	9306316	9201604	

	MATERIAL DESCRIPTION				
		OVERHEAD	PAGE NUMBER	ISSUE	
Business Use	bbl 🕍	CONSTRUCTION STANDARD	22 – D1 – D4	07/21	

<u>SWITCH, IN-LINE BOLTED WEDGE DISCONNECT</u>
Switch, Inline Bolted Wedge, Single Phase, Single Stick Operated, 600amp rated, Loadbuster Provision, Includes Connectors, Per NEMA STDS/ ANSI C37.30

Note: some switches are rated for 900A, confirm manufacturer specification if higher amperage switch is needed.

voltage	WIRE RANGE	STD ITEM	SAP ITEM ID
15kV	MAX RANGE: .642723 ACSR: 266.8 (26/7), 336.4 (18/1), (26/7) AAC: 336, 350, 397.5, 477 COMPACT 15 kV, 110 BIL	D4B	9391175
35kV	MAX RANGE: .642723 ACSR: 266.8 (26/7), 336.4 (18/1), (26/7) AAC: 336, 350, 397.5, 477 COMPACT 35 kV, 200 BIL	D4C	9391169
15kV	MAX RANGE: .846883 ACSR: 477 (24/7), (26/7), (30/7), 556.5 (18/1) AAC: 556 (19 STR, 37 STR) 15 kV, 110 BIL	D4D	9391168
35kV	MAX RANGE: .846883 ACSR: 477 (24/7), (26/7), (30/7), 556.5 (18/1) AAC: 556 (19 STR, 37 STR) 35 kV, 200 BIL	D4E	9391170
15kV	MAX RANGE: .953 - 1.040 ACSR: 556 (24/7), (26/7), (30/7) 795 (36/1) AAC: 795 (37 STR, 61 STR) 15 kV, 110 BIL	D4F	9391241
35kV	MAX RANGE: .953 - 1.040 ACSR: 556 (24/7), (26/7), (30/7) 795 (36/1) AAC: 795 (37 STR, 61 STR) 15 kV, 200 BIL	D4G	9391240
ALL	Replacement Connector only for STD ITEM D4B, D4C	D4SCN	9391167
ALL	Replacement Connector only for STD ITEM D4D, D4E	D4LCN	9391216
ALL	Replacement Connector only for STD ITEM D4F, D4G	D4XCN	9391239

SWITCH, DISCONNECT, OPEN

Open-type, single stick operated, loadbuster disconnect switches per MS2761.

VOLTAGE	CURRENT (RATED)	STD ITEM	SAP ITEM ID	PS ITEM ID
15KV	600A	D5D	9311735	2027120
35KV	600A	D5F	9302650	5671712

	MATERIAL DESCRIPTION				
	ISSUE	PAGE NUMBER		SMIZZ	
Busi	7/21 ness Use	22 – D4 – D7	OVERHEAD CONSTRUCTION STANDARD	ppl	

SWITCH, LOADBREAK

Gang-operated side-break load break switch with grey polymer post insulators, fiberglass interface shaft, vertical operating rod (includes 7' FRP insulated section), lockable operator handle and NEMA two hole terminal pads. Switch shall comply with latest ANSI Std. C37.30 and MS2776 & MS2778. Note: See 22-TSXX section for Loadbreak switches for Sub Transmission.

			STD		
VOLTAGE	CURRENT	STYLE	ITEM	SAP ITEM ID	PS ITEM ID
15KV	600A	Horizontal	D7D	9314777	0801619
15KV	600A	Vertical	D7E	9314407	0811143
15KV	900A	Horizontal (Hook-Stick)	D7L	9307838	9202746
15KV	900A	Vertical (Hook-Stick)	D7M	9390880	N/A
35KV	600A	Horizontal	D7F	9314410	0811140
35KV	1200A	Horizontal	D7G	9302569 ^E	5670085 ^E
35KV	600A	Vertical	D7H	9314409	0811141
35KV	600A	Phase-over-phase	D7J	9314408 ^Y	0811142 ^Y
		·			

SWITCH, LOADBREAK ACCESSORIES

Accessories for STD Item D7 loadbreak switches.

DESCRIPTION	APPLICATION	STD ITEM	SAP ITEM ID	PS ITEM ID
Shaft, tubular, fiberglass insulating section, 2-3/8" diameter	Used as a replacement part for the vertical section of the operating shaft for a D7D loadbreak.	D7DS	9386512	9203008
Conductor DE Links	For with deadending conductor on hook stick operable loadbreak switch 9202746	D7L1	9307954	9202819
Loadbreak Handle Extension Kit	Handle extension kit for use with 15kV loadbreak 0801619	D7M1	9307924	9202332
J Bolt, Extra Long, 20 1⁄4"	Extended length 20 1/4" J-Bolts - to be used with pole band on S&C Loadbreak switches when installing on larger diameter poles. All Loadbreak switches come with standard length J- bolts and pole bands. Use of the pole band with J-bolts is only necessary when dead- ending conductors on the sw.	D7JB	9391035	N/A

MATERIA	AL DESCRIP	HON
---------	------------	-----

SWITCH, REGULATOR BYPASS

Pole mounted regulator bypass switch for energizing or bypassing single-phase pole mounted regulators per MS2780. Regulator shall be in manual, neutral, and off before switching.

STD ITEM	SAP ITEM ID	PS ITEM ID
D8	9320807	5670351

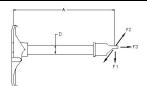
	MATERIAL DESCRIPTION				
	ISSUE	PAGE NUMBER		WIN	
Busi	7/21 ness Use	22 – D8-D9A9	OVERHEAD CONSTRUCTION STANDARD	ppl	

MOUNT, EQUIPMENT - 3Ø

48" three phase fiberglass equipment mount with aluminum or ferrous end fittings for mounting three cutouts and arresters to a wood pole. Approximately 26 lbs. and shall include (installed) (6) ½" X 2" captive carriage bolts, lock washers and hex nuts (galvanized or equivalent).

STD ITEM	SAP ITEM ID	PS ITEM ID
E12M	9311768	2023525

MOUNT, EQUIPMENT – 1Ø, 3-POSITION


18" single phase fiberglass equipment mount with aluminum or ferrous end fitting for mounting a cutout and arrester or a terminator and arrester to a wood pole. Approximately 5.3 lbs. and shall include (installed) (2) ½" X 2" captive carriage bolts, lock washers and hex nuts (galvanized or equivalent).

STD ITEM	SAP ITEM ID	PS ITEM ID
E13M	9308444	9201484

MOUNT, EQUIPMENT - 1Ø, 1-POSITION

18" single phase fiberglass equipment mount with a polymer protective coating. Includes 1 $\frac{1}{2}$ " carriage bolt, $\frac{1}{2}$ " hex nut, and $\frac{1}{2}$ " lock washer.

STD ITEM	SAP ITEM ID	PS ITEM ID
E13N	9308421	9202021

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – E12M-E13N	7/13

© 2022 PPL Corporation. All rights reserved.

BRACKET, EQUIPMENT, SINGLE ARM

Aluminum, 34" long, for DA repeater radio and Omni antenna mounting. Includes 3/8" ground connector, two (2) $\frac{1}{2}$ " u-bolts, hat section, and pole mounting pattern to accommodate 8" spacing for 5/8" thru bolts.

STD ITEM	SAP ITEM ID	PS ITEM ID
E15B	9306267 ^Y	9201877 ^Y

	MATERIAL DESCRIPTION			
	ISSUE	PAGE NUMBER		WHI.
3usi	7/13 ness Use	22 - E15B	OVERHEAD CONSTRUCTION STANDARD	ppl

FUSE, LINKS - 15KV TYPE "K"

Universal type 'K' expulsion fuse links per ANSI C37.42 shall have a normal length of 23" with a fuse tube length of 5" and have a removable button head. TCC No. 165-6.

FUSE TUBE RATING	FUSE RATINGS	STD ITEM	SAP ITEM ID	PS ITEM ID
	3A	F1K03	9314512	0811167
	6A	F1K06	9314511	0811168
	10A	F1K10	9316322	2009710
	15A	F1K15	9316320	2009715
	*20A	F1K20	9316319	2009720
100A	25A	F1K25	9316318	2009725
	*30A	F1K30	9316317	2009730
	40A	F1K40	9316316	2009740
	*50A	F1K50	9316315	2009750
	65A	F1K65	9316314	2009765
	*80A	F1K80	9316313	2009780
	100A	F1K100	9316312	2009781
2004	140A	F1K140	9316207	2009784
200A	200A	F1K200	9316206	2009792

- * Identified as "non-preferred" sizes.
 - Fuse 100A fuse holders with 3A thru 100A links only
 - Fuse 200A fuse holders with 140A and 200A links only.
 - 140A and 200A links shall have double pigtail.

MAT	ERIAL	DESCRIP	MOIT
-----	-------	---------	------

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 - F1K03F1K200
7/13

FUSE, LINKS - 35KV TYPE "K"

Type 'K' expulsion fuse links per ANSI C37.42, shall have a normal length of 30" with a fuse tube length of 9" and have a non-removable buttonhead. TCC No. 165-6.

FUSE TUBE RATING	FUSE RATINGS	STD ITEM	SAP ITEM ID	PS ITEM ID
	3A	F1K03A	9316788 ^E	5904004 ^E
	6A	F1K06A	9316765	5904007
	10A	F1K10A	9310460 ^E	5904011 ^E
	15A	F1K15A	9316764 ^E	5904016 ^E
100A	25A	F1K25A	9316763 ^E	5904026 ^E
	40A	F1K40A	9316762 ^E	5904041 ^E
	*50A	F1K50A	9316761 ^E	5904051 ^E
	65A	F1K65A	9316760 ^E	5904066 ^E
	100A	F1K100A	9316759 ^E	5904101 ^E

^{*} Identified as "non-preferred" sizes.

F USE, LINKS - 15KV TYPE "T"

Type 'T' expulsion fuse links per ANSI C37.42, shall have a normal length of 23" with a fuse tube length of 5" and have a removable buttonhead. For use on the Brockton distribution system only. TCC No. 170-6.

	FUSE TUBE RATING	FUSE RATINGS	STD ITEM	SAP ITEM ID	PS ITEM ID
		3A	F1T03	9302418 ^E	5106493 ^E
		*6A	F1T06	9302417 ^E	5106494 ^E
		10A	F1T10	9302387	5106495
	100A	15A	F1T15	9302429	5106496
	IUUA	25A	F1T25	9302386 ^E	5106497 ^E
		40A	F1T40	9302370 ^E	5106498 ^E
		65A	F1T65	9302353 ^E	5106499 ^E
		100A	F1T100	9302352 ^E	5106500 ^E
	200A	140A	F1T140	9302351 ^E	5106501 ^E
Į	200A	200A	F1T200	9302480 ^E	5106502 ^E

^{*} Identified as "non-preferred" sizes.

- Fuse 100 Amp fuse holders with 3 A thru 100 A links only
- Fuse 200 Amp fuse holders with 140 A and 200 A links only.
- 140A and 200A links shall have double pigtail.

MATERIAL	DESCRIP	HON
----------	---------	-----

⁻ Fuse 100A fuse holders with 3A thru 100A links only

TOOL, MANUAL RESET MAGNETIC

Manual reset magnetic tool for resetting fault indicators.

STD ITEM	SAP ITEM ID	PS ITEM ID
F2T	9314849	0802836

INDICATOR, FAULT CIRCUIT- LED - 5 TO 46 kV

Non-directional "Adaptive" style transient over current indicator for locating overhead primary circuit faults on radial circuits. 100A minimum trip accommodates all standard conductors and line loadings to 600A. Highly visible status lights include low-battery light. Hot stick application. Lithium battery for 900 hrs. of operation or 15 year shelf-life. Manual or automatic time-reset, flashing red LEDs reset upon restoration of (3A minimum) line current, yellow flashing LED's remain on until automatic or manual reset.

Directional Fault indicators are to be used on "Network" non-radial circuits with multiple Fault Indicator site installations. The Source A and Source B must be determined.

AUTOMATIC TIME DELAY	CATALOG #	STD ITEM	SAP ITEM ID	PS ITEM ID
4 Hour Re-Set	41-2001-301	F3T4	9310705	0810608
8 Hour Re-Set	41-2001-302	F3T8	9314132	0810609
24 Hour Re-Set	41-2001-306	F3T24	9306812	9201665
4 Hour Re-Set	DIRECTIONAL	F3BI	9389245	

NOTE:

See STD ITEM F2T (ITEM ID 9314849) for Reset Tool

MATERIAL DESCRIPTION	

PAGE NUMBER ISSUE **OVERHEAD** 22 - F2T-F3BI 7/20

SMART INDICATOR, FAULT CIRCUIT- LED - 5 TO 69 kV

Non-directional (radial circuits) and Directional ("Network" non-radial circuits) "Smart" Fault Circuit Indicators (FCIs) detect fault events and will indicate locally via flashing LEDs and remotely via local RF connection to a collector box. Load Leveling and Load Memory features enable the FCI to automatically set fault trip levels in relation to peak and load current.

Note: The Source A and Source B must be determined for Directional FCIs and all units must be installed in a consistent manner with A pointing towards Source A and B towards Source B.

Smart FCIs communicate fault data, load current and status data.

EVENT BASED REPORTS	CONTINUOUS REPORTS
Fault Detection	Routine Call and Health Check
Momentary Versus Permanent	Battery Status
Fault Current Magnitude (RMS)	Average Load Current
Fault Duration (msec)	Peak Load Current
Last Known Load Current	Conductor Temperature
Time Stamp	Device Temperature
Fault Direction (if applicable)	

AUTOMATIC TIME DELAY	CATALOG#	STD ITEM	SAP ITEM ID	PS ITEM ID
24 Hr reset – Non-Directional	43-1118-206	F4T24	9393094	N/A
24 Hr reset – Directional	43-1518-206	F4T24D	9393255	N/A
Collector Box	DNP3-ST-NGRID	F4CB	9393370	N/A

NOTE:

See STD ITEM F2T (ITEM ID9314849) for Reset Tool

	MATERIAL DESCRIPTION			
	ISSUE	PAGE NUMBER		SMIZZ
usi	7/20 ness Use	22 – F4T24-F4CB	OVERHEAD CONSTRUCTION STANDARD	ppl

FUSE, POWER - SM - 5

S&C type SM-5, 14.4 kV power fuses for use with S&C type SM-5 power fuse holder, (STD ITEM C50B) and S&C type SM-5 power fuse mounting, (STD ITEM C50A). TCC No. 153-4.

FUSE RATING	STD		
(AMPERES)	ITEM	SAP ITEM ID	PS ITEM ID
100E	F5E100	9313908	2018573
125E	F5E125	9312445	2018581
150E	F5E150	9313478	2018451
200E	F5E200	9313497	2018470
250E	F5E250	9312507	2018485
300E	F5E300	9312505	2018490
400E	F5E400	9319366	5908373

FUSE, 14.4kV POWER - SMU - 20

Power fuses for use with S&C type SMD-20 outdoor power fuse mounting (STD ITEM C47A). STD ITEM F6K to be ANSI "K" fast-speed T.C.C. No. 165-2. STD ITEM F6E to be ANSI "E" standard-speed TCC No. 153-1.

FUSE RATING	STD		
(AMPERES)	ITEM	SAP ITEM ID	PS ITEM ID
20E	F6E020	9318875 ^E	5908844 ^E
30E	F6E030	9308177 ^E	9201523 ^E
50E	F6E050	9318874 ^E	5908847 ^E
65E	F6E065	9318873 ^E	5908848 ^E
80E	F6E080	9318872 ^E	5908851 ^E
100E	F6E100	9318888	5908866
125E	F6E125	9316329	2009125
150E	F6E150	9316328	2009150
175E	F6E175	9316327	2009175
200E	F6E200	9314995	2009201
10K	F6K10	9316297	2009010
15K	F6K15	9316296	2009015
25K	F6K25	9316295	2009025
30K	F6K30	9316294 ^Y	2009030 ^Y
40K	F6K40	9316293 ^Y	2009040 ^Y
50K	F6K50	9316292 ^Y	2009050 ^Y
65K	F6K65	9316291	2009065
80K	F6K80	9316308	2009080
100K	F6K100	9316310	2009100
140K	F6K140	9316311	2009140
200K	F6K200	9316326 ^Y	2009200 ^Y

MATERIAL DESCRIPTION

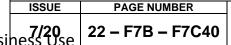
OVERHEAD PAGE NUMBER
CONSTRUCTION STANDARD

PAGE NUMBER
22 -F5E100 -

ADAPTER, CURRENT - LIMITING FUSE TERMINAL

Tin plated copper alloy bar stock. Used for connecting a CLF directly to a hot line clamp for CSP transformer installations where sufficient operating space is questionable.

STD ITEM	SAP ITEM ID	PS ITEM ID
F7B	9311739 ^Y	2023718 ^Y


FUSE, PARTIAL RANGE CURRENT LIMITING (CLF)

Add-on partial range current limiting fuses for high fault current protection of overhead transformers and other distribution equipment. With eyebolt and universal adapter stud.

OPERATING	CLF	DESCRIPTION	STD	040 17514 10	DO 17514 ID
VOLTAGE CLASS	RATING	DESCRIPTION	ITEM	SAP ITEM ID	PS ITEM ID
15kV	8.3kV	25 A Coordinates with K link fuses up to and including 25 K.	F7A25	9312518	2018433
15kV	8.3kV	40 A Coordinates with K link fuses up to and including 40 K.	F7A40	9312514	2018445
15kV	8.3kV	65 A Coordinates with K link fuses up to and including 65 K.	F7A65	9307516	9202868
23kV	15.5kV	25 A Coordinates with K link fuses up to and including 25 K.	F7B25	9318221 ^E	5907477 ^E
23kV	15.5kV	40 A Coordinates with K link fuses up to and including 40 K.	F7B40	9319099 ^E	5907481 ^E
34.5kV	23kV	25 A Coordinates with K link fuses up to and including 25 K.	F7C25	9307566	9202957
34.5kV	23kV	40 A Coordinates with K link fuses up to and including 40 K.	F7C40	9307567	9202956

MATERIAL DESCRIPTION

© 2022 PPL Corporation. All rights reserved.

FUSE. 25kV POWER - SMU - 20

Power fuses for use with S&C type SMD-20 outdoor power fuse mounting (STD ITEM C47B). STD ITEM F8K to be ANSI "K" fast-speed T.C.C. No. 165-2. STD ITEM F8E to be ANSI "E" standard-speed T.C.C. No. 153-1.

1	FUSE RATING (AMPERES)	STD ITEM	SAP ITEM ID	PS ITEM ID
- An	100E	F8E100	9318871 ^E	5908864 ^E
N N	125E	F8E125	9318878 ^E	5908865 ^E
10	3K	F8K3	9309581 ^E	5908860 ^E
10	10K	F8K10	9318907 ^E	5908872 ^E
-	15K	F8K15	9318955 ^E	5908876 ^E
-	25K	F8K25	9318954 ^E	5908877 ^E
100	40K	F8K40	9321503 ^E	5908878 ^E
111	65K	F8K65	9318971 ^E	5908879 ^E
F)	80K	F8K80	9309580 ^E	5908863 ^E
1.5	100K	F8K100	9318958 ^E	5908873 ^E
981010	140K	F8K140	9318988 ^E	5908892 ^E

MATERIAL DESCRIPTION

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 22 – F8E100-F8K140 7/21

Doc. # ST. 22.00.007

FUSE. 34.5Kv POWER - SMU-20

Power fuses for use with S&C type SMD-20 outdoor power fuse mounting (STD ITEM C48), ANSI "K" fast-speed T.C.C. No. 165-2.

	FUSE RATING (AMPERES)	STD ITEM	SAP ITEM ID	PS ITEM ID
	3K	F9K3	9310318 ^Y	9201150 ^Y
	20K	F9K20	9311581	2018794
100	30K	F9K30	9307549	9202877 ^Y
	40K	F9K40	9312447	2018828
80.00	50K	F9K50	9311657 ^Y	2018836 ^Y
	65K	F9K65	9311546	2018847

FUSE, CURRENT - LIMITING 15A, 600V

Dual element fast acting 600V, 15A RK5 Class. With an interrupting rating of 200,000A rms

Dual element last acting 600 v, 15A KKS Class. With a	an interrupting	rating of 200,000P	11115
	STD ITEM	SAP ITEM ID	PS ITEM ID
	F10A15	9321458	8026195

HOLDER, FUSE 600V, 30A

30A 600V In line molded plastic, watertight, disconectable fuse holder, with crimp type terminals. Fits copper cable size #14 thru #8awg.

STD ITEM	SAP ITEM ID	PS ITEM ID	
F50BA	9321403	8026185	

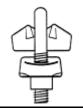
	MATERIAL DESCRIPTION						
	ISSUE	PAGE NUMBER		AM722			
3usi	7/21 ness Use	22 – F9K3-F50BA	OVERHEAD CONSTRUCTION STANDARD	ppl			

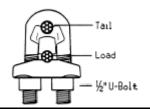
CLAMP, GROUND ROD

High strength corrosion resistant copper alloy ground rod clamp with a square or hex head bolt. Clamp shall accommodate #8 solid - 1/0 stranded. Copper conductor on a 5/8" diameter ground rod. Connector shall be permanently stamped / marked "Direct Burial" and "UL".

GROUND ROD DIAMETER	STD ITEM	SAP ITEM ID	PS ITEM ID
5/8"	G2A2	9313446	3503328
3/4"	G2A3	9388145	

CLAMP, GROUND ROD


High strength corrosion resistant copper alloy ground rod clamp with silicone bronze hardware. Clamp shall accommodate a range of solid to stranded copper conductor parallel, or at right angles to a %" diameter ground rod.



OTD	AWG					
STD ITEM	М	IN	MAX		SAP ITEM ID	PS ITEM ID
IIEIVI	SIZE	DIA, IN	SIZE	DIA, IN	SAF ITEM ID	PSTIEWID
G4	2/0 Solid	0.365	250 KCMIL	0.575	9313417	3503390
G5	4 Solid	0.204	2/0 STR	0.419	9305898	5106194

CLAMP, GUY, U-BOLT TYPE

With separating block; hot dip galvanized.


STD ITEM	SAP ITEM ID	PS ITEM ID
G5B	9313415 ^Y	3503396 ^Y

	MATERIAL DESCRIPTION					
	ISSUE	PAGE NUMBER		SMIZZ		
Busi	7/16 ness Use	22 – G2A2-G5B	OVERHEAD CONSTRUCTION STANDARD	ppl		

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 22,00.008

GRIP, GUY, AUTOMATIC

Strandvise with stainless steel anchor eye bail. Use long bail grips for clearance next to standard length bails.

GUY SIZE	Α	В	STD ITEM	SAP ITEM ID	PS ITEM ID
6M (½")	10"± 13 ⁵⁷ ⁄ ₆₄ "	4 ³ / ₄ "± 8 ⁵⁷ / ₆₄ "	G5C2 G5C1	9313524 9313499	3503515 3503526
10M,12.5M	.5M 8"± 5"±		G5C4	9313523	3503516
(3/8")	18"	11½"	G5C4L	9313498	3503527
16M (½ ₁₆ ")	14½"	4½ - 7½"	G5C6	9313501	3503517
16M (7 ₁₆ °)	19¼"	." 121/8"	G5C6L	9313476 ^Y	3503528 ^Y

CLAMP, GUY, BOLTED

Parallel groove dead-end clamp for guy strands, hot dipped galvanized steel construction. NEMA Standard PH-24, 1964.

LENGTH	BOLT S	STRAND RANGE	STD ITEM	SAP ITEM ID	PS ITEM ID
3¾"	2 x ½"	1/4" - 3/8"	G7A	9314919 ^Y	3503392 ^Y
6"	3 x ⅓"	⁵ / ₁₆ " – ¹ / ₂ "	G7B	9313416	3503393

GREASE, INHIBITING

Oxide inhibiting and sealing compound grease for all aluminum-to-aluminum or aluminum-to-copper electrical connections. Synthetic, non-petroleum base with conductive grit. Not for use on fastener threads. Furnished in 8 oz. plastic squeeze bottle.

STD ITEM	SAP ITEM ID	PS ITEM ID
G9B	9321951	8010034

	MATI	ERIAL	DESCRI	PTION
--	------	-------	--------	-------

PAGE NUMBER	ISSUE
22 - G5C2-G9B	7/13

WIRE, GUY

Bare 7 strand guy strain wire. Steel wire shall be B coat galvanized, electroplated or hot dip galvanized per ASTM A475 or A363 or aluminized per ASTM A474. Copperweld (CW) shall be in accordance with ASM A460. 250' coil, for reel quantities see TG51 shield wire.

TYPE	DIA.	RATED BREAKING STRENGTH	WEIGHT LBS./FT.	STD ITEM	SAP ITEM ID	PS ITEM ID
12.5M Alumo- weld 7/#9 AWG	³ ⁄ ₈ " (7 X 0.114")	12630 lbs.	0.208	G15A	9314658	0811118
16M Utilities Grade AZ or GB- Galv. Steel	⁷ ⁄ ₁₆ " (7 X 0.145")	18000 lbs.	0.399	G17A	9315838 ^Y	4040027 ^Y
16M EHS Grade	⁷ ⁄ ₁₆ " (7 X #7AWG)	16890 lbs.	0.4084	G17B	9315841	4040009
Copper-weld Steel	NOTE				guying applications and me	

THIMBLE, GUY

Guy Wire Thimbles for strand size 1/2" . Open end slips over ovaleye anchor rods and bolts. Grooved to fit various strand sizes, they are made from crescent-shaped stock to prevent abrupt, strand-weakening kinks. Hot dip galvanized steel.

STD ITEM	SAP ITEM ID	PS ITEM ID
G19	9313880 ^Y	3503702 ^Y

GUARD, GUY WIRE MARKER – YELLOW

Full round $1\frac{1}{4}$ " – $1\frac{1}{2}$ " diameter X 8' long UV resistant HDPE snap-on with nylon attachment pigtail or bolted clamp. Standard package contains 9 pieces.

STD ITEM	SAP ITEM ID	PS ITEM ID
G21E	9313584	3503077

		MATERIAL DESCRIPTION	
ISSUE	PAGE NUMBER		MIZ
7/13	22 – G15A-G21E	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 22.00,008

HOOK, GUY

Galvanized cast iron for all down guys. Attach guy wire (STD ITEM G11 through G18) to wood pole. NEMA Standard PH11-1979.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Single Bolt Type For use with one 5/8" (B13) or 3/4" (B14) bolt.	G33A	9313583	3503097
Two Bolt Type For use with two ¾" (B14) bolts.	G33B	9309164	3503098
Galvanized malleable iron with fiber rod attachment. 3/4" hole, for use with 5/8" or 3/4" bolt.	G33C	9313320	5988602

FITTING, BASE, SIDEWALK GUY

Hot dip galvanized malleable iron fittings for special light duty strut guying applications. To be used with sidewalk strut G36 galvanized steel pipe.

	_		
DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Pole base collar with square head set screw. Flange attaches to pole with two ½" lags and one %" thru bolt. For 2" pipe.	G35A	9314246	0809971
Single wire end fitting clamp with square head set screw for 2" pipes.	G35B	9314245	0809972
Double wire end fitting clamp with square head set screw for 2" pipes. To be used with bolted guy clamp (G7B) when two guy strands are used.	G35C	9311085	9201345

CONDUIT, GALVANIZED - SIDEWALK STRUT

Hot dip galvanized steel pipe for special light duty strut guying applications. To be used with sidewalk strut guy fittings G35.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
2" X 7' Galvanized steel pipe.	G36	9307182	5993876

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – G33A-G36	7/16

21,000 lb. maximum rating. STD | SAP ITEM ID | PS ITEM ID | STD | SAP ITEM ID | PS ITEM ID | STD | SAP ITEM ID | PS ITEM ID | STD | SAP ITEM ID | PS ITEM ID | PS ITEM ID | STD | SAP ITEM ID | PS ITEM ID | PS ITEM ID | STD | SAP ITEM ID | PS ITEM ID | PS ITEM ID | PS ITEM ID | STD | SAP ITEM ID | PS ITEM ID |

MATERIAL DESCRIPTION						
ISSUE	PAGE NUMBER		WIN			
7/16	22 – G50	OVERHEAD CONSTRUCTION STANDARD	ppl			

MATE	ERIAL	DESCRIP	TION
------	-------	---------	------

ppl

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

22 – BLANK 7/13

Business Use

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 22.00.010

ARRESTER, ISOLATING GAP, 11kV

For use as an isolating gap for capacitor banks on 4.8kV Delta systems. This arrester is connected between the equipment/arrester ground conductors and the secondary/neutral conductor.

	STD ITEM	SAP ITEM ID	PS ITEM ID
	L2	9313838	5980645
₹			

ARRESTER, SURGE - LINE TYPE

Distribution class line type, polymer housed MOV surge arresters used to protect overhead equipment and circuits. Shall comply with latest revision of ANSI C62.11 and MS 2608. Includes insulating top cap and black bottom isolator.

RATING	MCOV	CREEP	STD ITEM	SAP ITEM ID	PS ITEM ID
3 kV	2.55 kV	Standard	L3A	9316340	2006040
10 kV	8.40 kV	Standard	L3D	9314979	2006042
12 kV	10.2 kV	Standard	L3E	9316339	2006043
15 kV	12.7 kV	Standard	L3F	9316338	2006044
21 kV	17.0 kV	Standard	L3G	9308924 ^E	5100678 ^E
27 kV	22.0 kV	Standard	L3J	9316336	2006053

ARRESTER, SURGE - RISER TYPE

Distribution class riser type, polymer housed MOV surge arresters used to protect underground equipment and circuits at riser poles. Shall comply with latest revision of ANSI C62.11 and MS 2608. Includes insulating top cap and yellow bottom isolator.

RATING	MCOV	CREEP	STD ITEM	SAP ITEM ID	PS ITEM ID
10 kV	8.40 kV	Standard	L3DR	9308923	5100681
12 kV	10.2 kV	Standard	L3ER	9308922	5100682
12 KV (added creep)	10.2 kV	21" min.	L3ERN	9306415	9200974
15 kV	12.7 kV	Standard	L3FR	9308921	5100683
21 kV	17.0 kV	Standard	L3GR	9308920 ^E	5100684 ^E
27 kV	22.0 kV	Standard	L3JR	9308919	5100685

MAT	ERIAL	DESCRIP	MOIT
-----	-------	---------	------

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

22 – L2-L3JR 7/16

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 22.00.010

ISOLATOR, SPECIAL NEUTRAL

Stray voltage blocker for special use only, to isolate customer neutral from the common neutral. Includes pole mounting bracket. Refer to EOP G003, G004, G040 for procedures.

MAX. VOLTAGE THRESHOLD	STD ITEM	SAP ITEM ID	PS ITEM ID
22 Volts	L4A	9315127	0810202
45 Volts	L4B	9315126	0810203

	MATERIAL DESCRIPTION					
	ISSUE	PAGE NUMBER		SMI		
Busi	7/21 ness Use	22 – L4A-L4B	OVERHEAD CONSTRUCTION STANDARD	ppl		

LEAD, FLEXIBLE LINE ARRESTER GROUNDING

Bare rope lay, stranded, tinned, copper conductor. 7 X 85 strands of #32 wire, with a $\frac{3}{6}$ " hole tinned copper ring terminal at one end and $\frac{1}{2}$ " min. to 1" maximum length, solder dipped or ferrule crimped ($\frac{3}{6}$ " min. 0.D.) on the other.

LENGTH	STD ITEM	SAP ITEM ID	PS ITEM ID
12 inches	L6	9316058	2006158
24 inches	L6L	9306499	9201962

LEAD, FLEXIBLE XFMR ARRESTER GROUNDING

12" Long bare rope lay, stranded, tinned, copper conductor. 7 X 85 strands of #32 wire, with a $\frac{3}{6}$ " hole tinned copper ring terminal at one end and a $\frac{1}{2}$ " hole tin copper ring terminal at the other end. For grounding transformer mounted arresters.

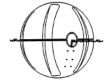
STD ITEM	SAP ITEM ID	PS ITEM ID
L6B	9306922	9200395

LOCKNUTS

Galvanized steel palnut or MF type. ___

	STD		
DESCRIPTION	ITEM	SAP ITEM ID	PS ITEM ID
3/8"	L10A	9322019	7024164
1/2"	L10B	9322020	7024159
5/8"	L10C	9322021	7024158
3/4"	L10D	9322023	7024155
7/8"	L10E	9322022	7024156

MATERIAL	. DESCRIP	TION
----------	-----------	------

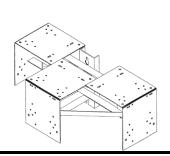

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

22 – L6-L10E 7/13

MARKER, AERIAL LINE

Plastic, International Orange, 20-inch diameter, includes preformed attachment wires and mounting hardware, FAA approved. Contact Distribution Engineering Services if installation guidelines are needed.


WIRE SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
#2 Bare ACSR	L20B	9319521	8002249
1/0 ACSR	L20C	9319519	8002251
336.4 Bare Al	L20E	9319518	8002252
7/16" Shield Wire	L20F	9319946	8002286

HANGER, METERING

All aluminum construction for mounting current and voltage transformers for primary metering installations. Channel is pre-punched for 5/8" thru-bolts (bolts not provided) or stainless steel banding may be used.

	STD ITEM	SAP ITEM ID	PS ITEM ID
3 position	M36C	9302952	5806744
2 position	M36C1	9302953	5806742

METER BRACKET

Bracket, Pole Mounting, 12 IN X 1.25 IN, Welded Steel with 2.75 IN slots, 8.75 IN on-center OR 11.5IN X 1.5IN X 3/16IN thick Aluminum with 7/16IN pole mounting slots. Used to mount single Class 20 meter socket to pole. (2 REQD PER INSTALLATION).

STD ITEM	SAP ITEM ID	PS ITEM ID
M36D	9306078	

PRIMARY METERING - SECONDARY CONDUIT KIT

All necessary items to build an OH Primary metering secondary conduit system including 1" Flex conduit (precut 25'), all fittings, clips, animal guards and misc. hardware. Does not include 1" PVC Conduit.

STD ITEM	SAP ITEM ID	PS ITEM ID
M37	9388574	

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 - M36C-M37	7/16

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 22.00.011

	MATERIAL DESCRIPTION			
	ISSUE	PAGE NUMBER		WIN
Busi	7/14 ness Use	22 – BLANK	OVERHEAD CONSTRUCTION STANDARD	ppl

CLAMP, LASHING

0.500" - 0.245", Tin plated bronze to be used to connect aluminum lashing wire to a $1/0 - \frac{3}{4}$ AWAC messenger.

STD ITEM	SAP ITEM ID	PS ITEM ID
NC8E	9307355 ^E	5985410 ^E

CLAMP, SINGLE TONGUE

Adjustable clevis, bolted jumper, 795 KCM ACSR, 54/7, aluminum DE comp condor.

SIZE	MATERIAL	STD ITEM	SAP ITEM ID	PS ITEM ID
795 KCM ACSR, 54/7,	Alum. DE comp condor	NC13A	9310703	5986321
900 KCM, AA 37/0	Alum. DE comp cockscomb	NC13B	9320185 ^E	5986322 ^E
1113 KCM 54/19 strand ACSR	Alum. DE comp finch	NC13C	9307457	5986332

CLIP, BONDING

Steel construction.

SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
1" WD X 1½" LG For use with a 5/8" bolt	NC22	9320450	5987955
For use with a ¾" bolt	NC23	9313173	5987950

TAG, NONCONFORMING

Used for tagging nonconforming electric material and reporting issues to Electric Material Standards.

STD ITEM	SAP ITEM ID	PS ITEM ID
NCM1	9390572	N/A

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 - NC8E -	7/47
NCM1	7/17

COMPOUND, ELECTRICAL JOINT

8 oz. tube for use on aluminum-to-aluminum and aluminum-to-copper connections using weather exposed parallel groove clamp and compression connections on bare or covered line wire.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
For weather exposed parallel groove clamp and compression connections on bare or covered line wire.	NG9C		5591770 ^E
For flat-to-flat surface such as busto-bus, terminal pad-to-dead-end, and terminal pad-to-bus.	NG9D	9303776	5591772

LINK, EXTENSION BAR

14" long, 15,000 lbs. rating deadend bar used in two pole customer substation primary switch installations.

STD ITEM	SAP ITEM ID	PS ITEM ID
NL2	9306975	5980862

PLATE, EXTENSION

2½" wide X 24" long X ¾" thick, galvanized steel construction.

STD ITEM	SAP ITEM ID	PS ITEM ID
NL3	9320541 ^E	5980870 ^E

WITCH THE DECORM TION	MATERIAL DESCRIPTION
-----------------------	----------------------

PAGE NUMBER

S7/1/3e 22 - NG9C-NL3

BLOCK, TERMINAL

600 V, 60 A, screw wire terminal, 3" WD X $5\frac{3}{4}$ " LG X $1\frac{1}{2}$ " HT, 8 pole N-T sliding link type circuit

STD ITEM	SAP ITEM ID	PS ITEM ID
NS4	9303001 ^E	5690805 ^E

Doc. # ST. 22.00.012

CABINET, JUNCTION BOX

9" SQ. X 6" HT aluminum construction.

STD ITEM	SAP ITEM ID	PS ITEM ID
NS6	9317468 ^E	5801060 ^E

TUBING, HEAT SHRINK

Heat shrink tubing with inside diameter of minimum ID.

MIN. INSIDE DIAMETER	STD ITEM	SAP ITEM ID	PS ITEM ID
0.59"	NT1	9310900 ^E	5100584 ^E
1.18"	NT2	9310898 ^E	5100585 ^E
1.97"	NT3	9310897 ^E	5100586 ^E

	MATE	RIAL L	DESCRI	PTION
--	------	--------	--------	-------

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

22 – NS4-NT3 7/19

BRUSH, WIRE

10" large wire type brush, $3\frac{1}{2}$ " conductor trim length, and plastic handle.

STD ITEM	SAP ITEM ID	PS ITEM ID
NTE1	9318423	5463900

WASHER, FRAMING

Galvanized malleable iron, round, black, unthreaded.

NOM. SIZE	ID	OD	THK.	STD ITEM	SAP ITEM ID	PS ITEM ID
1"	1½16"	5"	1"	NW4B	9306403	5997550
1 1/4"	1 5⁄16"	6"	1"	NW4C	9319597	5997570

			MATERIAL DESCRIPTION	
	ISSUE	PAGE NUMBER		WWZ
Busi	7/19 ness Use	22 – NTE1-NW4C	OVERHEAD CONSTRUCTION STANDARD	ppl

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 22.00.013

PIN, INSULATOR

For installation of 15kV standard top groove pin insulator (STD ITEM I6) on standard 4½" wood cross arm (C31). Galvanized steel with standard 1" nylon top thread. Includes 2" square washer, square nut and locknut. ANSI C135.17 Item No. 3.

LENGTH	DIAMETER	STD ITEM	SAP ITEM ID	PS ITEM ID
10¾"	5/8"	P1A	9312032	3502434

PIN, INSULATOR

For installation of 35kV standard top groove pin insulators (STD ITEM I6) or when using the heavy duty crossarm (TC10). Galvanized steel with standard 1" nylon top thread. Includes square washer, square nut and locknut.

LENGTH	DIAMETER	STD ITEM	SAP ITEM ID	PS ITEM ID
13½ "	3/,"	P1A2	9307183	5993765

PIN, INSULATOR

For installation of standard top groove pin insulator (STD ITEM I6P) on standard Hendrix 15kV C and E brackets. Galvanized steel short shank with standard 1" nylon thread. Includes split washer and square nut.

LENGTH	DIAMETER	STD ITEM	SAP ITEM ID	PS ITEM ID
8"	3/4"	P1C1	9319930	5993670

PIN, INSULATOR

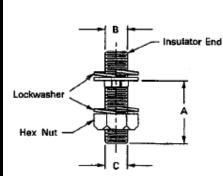
For installation of standard top groove pin insulator (STD ITEM I6P) on standard Hendrix 35kV C braced bracket. Galvanized steel short shank with standard 1" nylon thread. Includes split washer and square nut.

LENGTH	DIAMETER	STD ITEM	SAP ITEM ID	PS ITEM ID
9½"	3/4"	P1C2	9307168	5993671

PIN, INSULATOR

For installation of 35kV HPDE top groove pin insulator (STD ITEM I6PA) on wood crossarms. Above arm length 7-7/8". Galvanized steel standard 1" nylon thread. Includes split washer and square nut.

LENGTH	DIAMETER	STD ITEM	SAP ITEM ID	PS ITEM ID
15-3/8"	5/8"	P1C3	9391217	N/A


MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 - P1A-P1C3	7/19

STUD, DOUBLE ENDED

Studs are 3/4" diameter where they thread into the base casting of a post insulator. Two lock washers and hex nut are included.

DIME	NSIO	NS	STD		
Α	В	С	ITEM	SAP ITEM ID	PS ITEM ID
13/4"	3/4"	5/8"	P1D	9319590	5996700
7½"	3/4"	5/8"	P1E	9310700 ^E	5996705 ^E
13/4"	3/4"	3/4"	P1F	9311934	2021361
2-3/4"	3/4"		P1F1	9307548	9202878
7.0"	3/4"	3/4"	P1G	9311933	2021362

<u>Note:</u> To go through sleeve provided for horizontal mounting of post-type insulator on steel pole.

PLATE, CROSSARM REINFORCING & PIN HOLE ADAPTER

For use when retrofitting older distribution crossarms from wood insulator pins to $\frac{5}{8}$ " steel pins for 15 kV operation. 7 ga. (0.144") - $\frac{1}{8}$ " (0.125") thick, galvanized steel with $\frac{3}{4}$ " to $\frac{13}{16}$ " pin-hole.

STD ITEM	SAP ITEM ID	PS ITEM ID
P2S	9312037	3502284

PIN, INSULATOR

For use with top groove insulator (STD ITEM. I6). Galvanized steel with No. 22 X $2\frac{1}{4}$ " wood screw and 1" lead or nylon thread per ANSI C135.17.

STD ITEM	SAP ITEM ID	PS ITEM ID
P3	9311949	3502148

PIN, POLE TOP - EPOXY

EPDM or silicon rubber coated epoxirod or equivalent with plastic coated 1" standard threaded aluminum ferrule and ferrous or aluminum base with $^{11}/_{16}$ " mounting holes. For primary distribution – armless construction.

STRENGTH	LENGTH	DIAMETE R	STD ITEM	SAP ITEM ID	PS ITEM ID
1400 lb.	24"	1.5"	P6B	9313617	3502922

PIN, POLE TOP - STEEL

Galvanized steel with ANSI C135.17 1" standard lead or nylon pin thread. One $^{11}/_{16}$ " mounting hole and one $^{11}/_{16}$ " X $1^{12}/_{16}$ " slot. Per latest ANSI Std. C135.22. 10,000 specified mechanical load (SML).

STD ITEM	SAP ITEM ID	PS ITEM ID	
P7A	9311728	3502834	

PIN, ANGLE

Malleable iron or steel, galvanized with 1" lead thread or nylon alloy. For side pole or crossarm mounting. Used with 5%" bolt.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
15KV	P8	9311837	3502838
35KV	P8A	9308311	9201480

CAP, WOOD POLE TOP PROTECTION

Polyethylene 9-1/2" cap for overhead distribution.

STD ITEM	SAP ITEM ID	PS ITEM ID
P9	9303047	5466570

CAP, WOOD POLE TOP PROTECTION, 16"

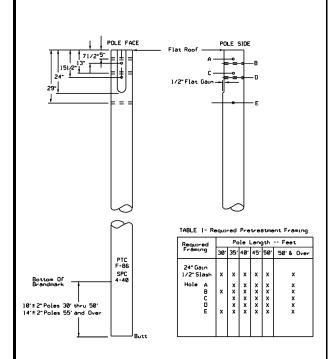
Butyl mastic rubber pole topper for overhead distribution.

STD ITEM	SAP ITEM ID	PS ITEM ID
P9A	9307970	9202222

PIN, 24" EPOXY STANDOFF

EPDM or silicon rubber coated epoxirod or equivalent with plastic coated 1" standard threaded ferrule and ferrous or aluminum base with $^{11}/_{16}$ " mounting holes. For side pole mounting – Armless construction. 0° - 20° line angles.

STD ITEM	SAP ITEM ID	PS ITEM ID
P10B	9314066	0810367


MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – P7A-P10B	7/17

POLES, WOOD

Full length penta-treated Southern Yellow Pine per MS2005 and latest ANSI Std. 05.1.

LENGTH /CLASS	STD ITEM	SAP ITEM ID	PS ITEM ID
35'-1	P11A1	9302893	5970351
35'-2	P11A2	9311618	3501352
35'-3	P11A3	9311617	3501353
35'-4	P11A4	9302892	5970354
35'-5	P11A5	9311616	3501355
40'-H1	P11BH1	9388196	9388196
40'-1	P11B1	9302891	5970401
40'-2	P11B2	9311615	3501402
40'-3	P11B3	9311614	3501403
40'-4	P11B4	9311613	3501404
45'-H1	P11CH1	9388197	9388197
45'-1	P11C1	9311612	3501451
45'-2	P11C2	9311611	3501452
45'-3	P11C3	9311610	3501453
50'-H1	P11DH1	9388195	9388195
50'-1	P11D1	9311609	3501501
50'-2	P11D2	9311587	3501502
50'-3	P11D3	9311586	3501503
55'-1	P11E1	9311584	3501551
55'-2	P11E2	9311691	3501552
55'-3	P11E3	9309166	3501553
60'-1	P11F1	9311708	3501601
60'-2	P11F2	9311707	3501602
60'-3	P11F3	9311706	3501603
65'-1	P11G1	9311703	3501651
65'-2	P11G2	9312398	3501652
65'-3	P11G3	9312530	3501653
70'-1	P11J1	9311699	3501701
70'-2	P11J2	9311698	3501702
70'-3	P11J3	9311697	3501703

BRAND LOCATION

POLE LENGTH (feet)	GROUNDLINE DISTANCE FROM BUTT (feet)	BRAND LOCATION FROM BUTT (feet)	POLE LENGTH (feet)	GROUNDLINE DISTANCE FROM BUTT (feet)	BRAND LOCATION FROM BUTT (feet)
30	5	11	55	7.5	13.5
35	5.5	11.5	60	8	14
40	6	12	65	8.5	14.5
45	6.5	12.5	70	9	15
50	7	13			

MATERIAL DESCRIPTION

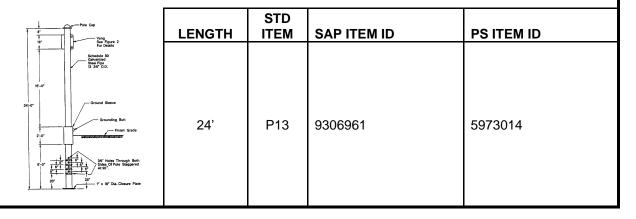
© 2022 PPL Corporation. All rights reserved. Doc. # ST. 22.00.013

EXTENSION, POLE TOP - 5'

Wood OR fiberglass pole top extender with galvanized steel connector bracket for 6" to 12" diameter pole tops.

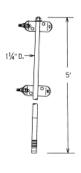
TYPE	STD ITEM	SAP ITEM ID	PS ITEM ID
Fiberglass	P12A1	9308035	9202185
Wood	P12A	9311701	3502054

BRACKET, POLE TOP


Galvanized steel construction pole top brackets. P12B-is used to mount line post insulators and provide increased distance in separation of the middle phase. P12C-is a pole top extension used with spacer cable configurations.

STD ITEM	SAP ITEM ID	PS ITEM ID
P12B	9307367	5984620
P12C	9320106	5984556
1 120	3020100	0004000
F		P12B 9307367

POLE, STEEL STUB


Steel guy stub pole for use in difficult guying situations. Tubular steel shaft includes pole cap, guy wire attachment vang, grounding nut and ground sleeve per MS2355.

MATERIAL DESCRIPTION			
WHZ.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	22 – P12A1-P13	7/13

ANCHOR, ROCK, POLE LEG (ONE)

Galvanized steel rock anchor leg assembly. For mounting wood poles on solid rock. Complete with all hardware and pole identification tag. Requires 2" X 24" drilled hole for each leg installation.

FOR POLE BUTT DIAMETERS	QUANTITY REQ'D. PER INSTALLATION	STD ITEM	SAP ITEM ID	PS ITEM ID
8" – 12"	3			
11" – 16"	4	P14A	9313581	3503112
14" – 20"	5			

REUSABLE HOLE-DRILLING TEMPLATES

3 – Hole Template	P14AT	9313559	3503114
4 – Hole Template	P14BT	9313706	3503118
5 – Hole Template	P14CT	9313705	3503119

BRACKET, ANGLE SWINGING

15" projection, 9" bolt spacing, 20 M rating @ 45° including $\frac{3}{4}$ " X 14" mounting bolts for distribution supply installations.

STD ITEM	SAP ITEM ID	PS ITEM ID
P15	9310816	5105647

ATTACHMENT, PUSH BRACE

Galvanized malleable iron connector for attachment of push brace to wood poles at 0° - 90° . Requires (4) $\frac{3}{4}$ " bolts.

STD ITEM	SAP ITEM ID	PS ITEM ID
P16	9311702	3502040

Business Use PAGE NUMBER

7/13
22 - P14A-P16

BRACKET, E - 15kV SPACER CABLE

Galvanized E bracket including %" diameter U bolt. For light and heavy angle poles not exceeding 60°. Insulator pins (STD Item P1C1) come separately.

HEIGHT	WIDTH	CHANNEL	STD ITEM	SAP ITEM ID	PS ITEM ID
35"	11 ^{1/2} "	3"	P17A	9320105	5984596

BRACKET, C - 15kV SPACER CABLE

Galvanized C bracket with 8" mounting hole spacing. For heavy angle poles not exceeding 90°. Insulator pins (STD Item P1C1) & double insulator plates (STD Item I20B) come separately.

HEIGHT	WIDTH	CHANNEL	STD ITEM	SAP ITEM ID	PS ITEM ID
16 ^{1/2} "	11 ^{1/2} "	3"	P17B	9320104	5984600

BRACKET, C - 35kV SPACER CABLE

Galvanized C bracket with 8" mounting hole spacing. Includes welded gussets for maximum strength. For light and heavy angle poles not exceeding 90°. Insulator pins (STD Item P1C2) come separately.

HEIGHT	WIDTH	CHANNEL	STD ITEM	SAP ITEM ID	PS ITEM ID
16 ^{1/2} "	13 ^{1/2} "	3"	P17C	9320103 ^E	5984603 ^E

TAG, NAME

For wood pole identification purposes. Aluminum embossed with $\frac{7}{8}$ " bold modern Roman letters. Two $\frac{1}{10}$ " - $\frac{3}{32}$ " mounting holes.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
PPL Pole Tag	P20A	9311951	3502140
Pole Line Number Tag	P20B	9319993 ^Y	8002361 ^Y

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – P17A-P20B	7/20

NAIL, TAG

Common flat head nails.

USAGE	SIZE	STD ITEM	SAP ITEM ID	PS ITEM ID
Aluminum – For wood pole #'s.	1-¼" x.083"x.2187	P20N	9309485	5477145
Aluminum – For wood pole caps & reflectors.	1-½"x.145"	P20N1	9319740	5477148
Galvanized Steel – For wood pole #'s.	1 ¼" x .083	P20N2	9391578	N/A

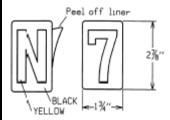
	MATERIAL DESCRIPTION						
	ISSUE	PAGE NUMBER		AM722			
Busi	7/19 ness Use	22 – P20N-P20N2	OVERHEAD CONSTRUCTION STANDARD	ppl			

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 22.00.013

TAG, 3" NUMBER OR LETTER

3" high, stamped and embossed aluminum letters and numbers for pole identification, etc.

	OTD	I	
LETTERS	STD ITEM	SAP ITEM ID	PS ITEM ID
A	P21A1	9319609	8002150
B	P21A1	9319608	8002150
C	P21A1	9319607	8002151
	P21A1		8002153
l E	P21A1	9319606	
F	P21A1	9319605 9319604	8002154 8002155
G	P21A1	9319603	8002156
H	P21A1	9319602	8002156
;	P21A1		
J	P21A1 P21A1	9319601 9319600	8002158 8002159
K	1 . —		
L K	P21A1 P21A1	9319599 9319577	8002160
M			8002161
N N	P21A1 P21A1	9319576 9319575	8002162 8002163
0			
P	P21A1 P21A1	9319574	8002164
		9319552	8002165
Q R	P21A1	9319682 9319699	8002166 8002167
S	P21A1 P21A1	9319698	8002168
T		9319697	8002169
ľυ	P21A1 P21A1	9320515	8002170
V	P21A1 P21A1	9320493	8002170
l v	P21A1	9320493	8002171
X	P21A1	9320492	8002172
Ŷ	P21A1	9319694	8002173
Z	P21A1	9319693	8002174
NUMBERS	FZIAI	9319093	0002173
1	P21A2	9320029	8002326
2	P21A2	9320028	8002327
3	P21A2	9320027	8002328
4	P21A2	9320026	8002329
5	P21A2	9320025	8002330
6 OR 9	P21A2	9320024	8002331
7	P21A2	9320023	8002332
8	P21A2	9320022	8002333
0	P21A2	9320021	8002335
1/2	P21A2	9314318	0810550
DASH -	P21A3	9320020	8002336


MMTEDIMI	DESCRIPTION

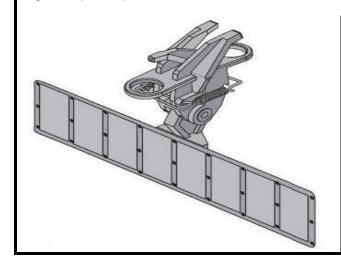
PAGE NUMBER	ISSUE
22 – P21A1-	7/13
P21A3	1/13

NUMBER OR LETTER, 21/8" REFLECTIVE VINYL

 $1 \frac{3}{4}$ " x $2\frac{7}{6}$ " reflective vinyl markers for switch identification. Self adhesive high-intensity grade encapsulated-lens sheeting with liner. Yellow characters on black backing.

reliew characters on black backing.			
	STD		
LETTERS	ITEM	SAP ITEM ID	PS ITEM ID
Α	P21L	9319855	8002601
В	P21L	9319854	8002602
С	P21L	9319853	8002603
D	P21L	9319852	8002604
E	P21L	9321576	8002605
F	P21L	9321593	8002606
G	P21L	9309331	8002607
Н	P21L	9321595	8002608
1	P21L	9319971	8002609
J	P21L	9319969	8002610
K	P21L	9319968	8002611
L	P21L	9319967	8002612
M	P21L	9319966	8002613
N	P21L	9321610	8002614
0	P21L	9321609	8002615
Р	P21L	9321608	8002616
Q	P21L	9321607	8002617
R	P21L	9321606	8002618
S	P21L	9321605	8002619
Т	P21L	9321604	8002620
U	P21L	9321603	8002621
V	P21L	9321602	8002622
W	P21L	9321601	8002623
X	P21L	9321600	8002624
Υ	P21L	9321599	8002625
Z	P21L	9321598	8002626
PHRASE			
A PHASE	P21L	9389776	
B PHASE	P21L	9389765	
C PHASE	P21L	9389755	
NUMBERS			
0	P21N	9319866	8002700
1/2	P21N	9308115	9202206
1	P21N	9309423	8002701
2	P21N	9321689	8002702
3	P21N	9321688	8002703
4	P21N	9321687	8002704
5	P21N	9321686	8002705
6	P21N	9321685	8002706
7	P21N	9321684	8002707
8	P21N	9321683	8002708
9	P21N	9321682	8002709
- (DASH)	P21N	9306266	9201878

			MATERIAL DESCRIPTION	
	ISSUE	PAGE NUMBER		SMIZZ
Busi	7/16 ness Use	22 - P21L-P21N	OVERHEAD CONSTRUCTION STANDARD	ppl


PANEL, MOUNTING

For mounting self sticking numbers and letters (std item P21L & P21N).

		STD		
	DESCRIPTION	ITEM	SAP ITEM ID	PS ITEM ID
	Black vinyl, self adhesive v	vith liner.		
	3" X 11½" X 0.011"	P21M	9319772	8002402
, /2 "	Non-adhesive XP laminated phenolic with two mounting holes.			oles.
holes	3" X 12" X ¹ / ₁₆ "	P21R12	9319766	8002420
	3" X 15" X ¹ / ₁₆ "	P21R15	9315136	0810186
	3" X 19" X ¹ / ₁₆ "	P21R19	9310709	9200633

SIGN, CLAMP ON

Sign clamp-on 8 panel horizontal hot stick installation to be used with in-line disconnects Std 12-138

STD ITEM	SAP ITEM ID	PS ITEM ID
P21S	9387098	NONE

MATE	RIAL	DESCRI	PTION
------	------	--------	-------

PAGE NUMBER	ISSUE
22 - P21M-P21S	7/13

TAG, 1½" NUMBER OR LETTER

1½" high stamped and embossed aluminum letters and numbers for numbering wood poles.

		STD		
	LETTERS	ITEM	SAP ITEM ID	PS ITEM ID
	A	P22A1	9319692	8002176
	В	P22A1	9319691	8002177
	C	P22A1	9319690	8002178
	D	P22A1	9319689	8002179
	Е	P22A1	9319688	8002180
	F	P22A1	9319687	8002181
	G	P22A1	9319686	8002182
	Н	P22A1	9319685	8002183
	1	P22A1	9319684	8002184
	J	P22A1	9319683	8002185
	K	P22A1	9319661	8002186
	L	P22A1	9319680	8002187
	M	P22A1	9319660	8002188
	N	P22A1	9319445	8002189
→ → 4 →	Р	P22A1	9309334	8002191
で と を に に に に に に に に に に に に に に に に に に	Q	P22A1	9319444	8002192
T C) 2 1	R	P22A1	9319443	8002193
% - % -	S	P22A1	9319442	8002194
nail holes	Т	P22A1	9319441	8002195
- J.Cr. '%"	U	P22A1	9319440	8002196
→ ¾″ ~ ·······	V	P22A1	9319439	8002197
	W	P22A1	9319438	8002198
	X	P22A1	9319616	8002199
	Υ	P22A1	9319615	8002204
	Z	P22A1	9319433	8002209
	NUMBERS			
	1	P22A2	9319437	8002316
	2	P22A2	9309114	8002317
	3	P22A2	9319436	8002318
	4	P22A2	9319435	8002319
	5	P22A2	9319907	8002320
	6 OR 9	P22A2	9319885	8002321
	7	P22A2	9319884	8002322
	8	P22A2	9319883	8002323

		MATERIAL DESCRIPTION	
ISSUE	PAGE NUMBER		WIIV
7/13	22 - P22A1- P22A3	OVERHEAD CONSTRUCTION STANDARD	ppl

0

1/2

DASH -

P22A2

P22A2

P22A3

9320030

9320013^Y

9320019

8002325

 8002360^{Y}

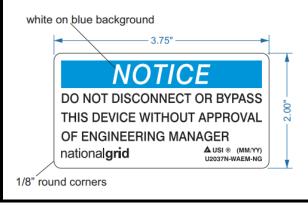
8002337

SIGN, NOT IN PHASE

Self sticking, $2\frac{1}{2}$ " x $11\frac{1}{2}$ " long plastic film with a clear polyurethane coating. Black characters on a yellow background. Mounted on a peel-off adhesive-protecting liner. For use with U.G. & O.H. distribution transformers.

STD ITEM	SAP ITEM ID	PS ITEM ID
P22P	9319410	8002214

DECAL, TRANSFORMER VENT


2" X 7" Subsurface printed polyester self-sticking decal; "vent tank before opening fuse" yellow printing and border on a black background mounted on a liner to protect the adhesive until removal.

STD ITEM	SAP ITEM ID	PS ITEM ID
P22T	9319769 ^Y	8002412 ^Y

MARKER, NOTICE - DO NOT DISCONNECT OR BYPASS

Label, pressure sensitive vinyl decal, NOTICE – white letters on blue background, all other letters – black on white background.

STD ITEM	SAP ITEM ID	PS ITEM ID
P22U	9315133	0810204

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – P22P-P22U	7/19

SIGN, NOTICE - ELECTRIC SYSTEM NEUTRALS SEPARATED

Label, NOTICE – 3.75" X 5.75", aluminum baked enamel with urethane, NOTICE – white letters on blue, all other letters black on white.

STD ITEM	SAP ITEM ID	PS ITEM ID
P22V	9314907	0810206

MARKER, CABLE - ISOLATOR GROUND

 $4 \frac{3}{4}$ " X 8" X 0.010" vinyl. Black letters on yellow for use on special isolated neutral poles. 0.5" -1".

ISOLATOR GROUND
ISOLATOR GROUND
ISOLATOR GROUND

STD ITEM	SAP ITEM ID	PS ITEM ID
P22W	9315143	0810205

SIGN - ELECTRICAL SAFETY DESIGNATION

Dangerous – Keep Away, 14" X 20" W high intensity reflective sign on aluminum base, black letters on white background, "DANGER" to be white on red background. For use on wood poles and structures on right-of-ways in Massachusetts ONLY.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Rigid	P23B1	9302619 ^E	5483458 ^E
Flexible	P23B2	9302633 ^E	5483462 ^E
Adhesive	P23B3	9302632 ^E	5483466 ^E

SIGN - ELECTRICAL SAFETY DESIGNATION

Dangerous – Keep Off, 14" X 20" W high intensity reflective sign on aluminum base, black letters on white background, "DANGER" to be white on red background. For use on wood poles and structures on right-of-ways throughout PPL except for Massachusetts. For Massachusetts see P23B1 & P23B2.

DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
Rigid	P23C1	9302631	5483470
Flexible Base	P23C2	9302630	5483474

MATERIAL DESCRIPTION

ISSUE	PAGE NUMBER	
7/19	22 - P22V-	
	P23C2	

SIGN - NOTICE, SEE BULLETIN

Sign, notice, see bulletin in control cabinet prior to performing work.

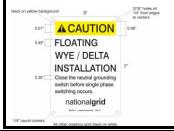
STD ITEM	SAP ITEM ID	PS ITEM ID
P23CC	9390365	N/A

SIGN - NOTICE, SEE BULLETIN

Sign, notice, equipment participates in centralized control scheme, follow all procedures prior to operating or performing work.

ST ITE		SAP ITEM ID	PS ITEM ID
P2	3CS	9392555	N/A

HOLDER, TAG


If used, the aluminum wood pole tag holder for wood poles shall be placed in a location making it inaccessible to the public (8' min. height from final grade, fenced in, etc.). $2\frac{1}{2}$ " wide x $4\frac{1}{4}$ " long.

STD ITEM	SAP ITEM ID	PS ITEM ID
P23E	9309618	5473850

SIGN - CAUTION FLOATING WYE/DELTA INSTALLATION

"CAUTION FLOATING WYE/DELTA INSTALLATION, CLOSE THE NEUTRAL GROUNDING SWITCH BEFORE SINGLA PHASE SWITCHING OCCURS", 4 inches by 6 inches with 4 holes (0.125 inch diameter), made of co-extruded polymer, yellow base with black extruded lettering.

STD ITEM	SAP ITEM ID	PS ITEM ID
P23F	9306597	9201725

MATERIAL DESCRIPTION

PAGE NUMBER	ISSUE
22 – P23CC-P23F	7/19

SIGN - GROUND GRID PRESENT

4 inch by 6 inch with 4 holes, (.125 inch diameter), one hole in each corner, made of co-extruded polymer, white letters on blue or black letters on white.

STD ITEM	SAP ITEM ID	PS ITEM ID
P23G	9308347	9201741

SIGN - WARNING HAND DIG ONLY

Sign, warning hand dig only, underground utilities in the immediate area, 5inx7in, with 4 holes 0.125in dia in each corner, u2450p polycarbonate, reflective, per MS0109.

STD ITEM	SAP ITEM ID	PS ITEM ID
P23HD	9391366	N/A

SIGN - CAUTION LOOP SCHEME

"CAUTION LOOP SCHEME DISBLE THE RECLOSER LOOP SCHEME BEFORE DE-ENERGIZING THE TRANSFORMERS", 4 inches by 6 inches with 4 holes (.25 inch diameter), made of co-extruded polymer, yellow base with black extruded lettering.

STD ITEM	SAP ITEM ID	PS ITEM ID
P23LS	9308364	9201742

SIGN - DANGER OVERHEAD POWER LINES

Sign, danger, overhead power lines, keep clear. Can be used for awareness on distribution poles with transmission lines in close proximity.

STD ITEM	SAP ITEM ID	PS ITEM ID
P23OPL	9391769	N/A

MATERIAL DESCRIPTION

ISSUE	PAGE NUMBER
7/19	22 - P23G-
1119	P23OPL

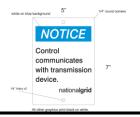
SIGN - NOTICE SUPPLEMENTAL PPE REQUIRED

Sign, notice, supplemental PPE required when switching operations is performed from the ground, switchman shall wear EH overshoes rated at 15kv or greater, 5inx7in.

NOTICE		
Supplemental PPE required when switching operation is performed from the ground.		
Switchman shall wear EH Overshoes rated at 15kV or greater.		
Autre (837) nationalgrid		

STD ITEM	SAP ITEM ID	PS ITEM ID
P23S	9390983	N/A

TAG. POLE MARKER


2" H X 2½" W X 1/64" defective pole marker. Painted aluminum with two nail holes for field attachment to deteriorated wood poles. Red background with white or aluminum colored arrow.

STD ITEM	SAP ITEM ID	PS ITEM ID
P24	9314344	0810101

SIGN - NOTICE CONTROL COMMUNICATES WITH TRANSMISSION DEVICE

Sign, notice control communicates with transmission device. Approximate size 7" x 5" Material: flexible reflective polycarbonate

STD ITEM	SAP ITEM ID	PS ITEM ID
P23T	9393395	N/A

SIGN - LOW VOLTAGE SUPPLY

Sign, low voltage supply to transmission switch motor control. Approximate size 7" x 5" Material: flexible reflective polycarbonate.

STD ITEM	SAP ITEM ID	PS ITEM ID
P23T2	9393443	N/A

MATERIAL DESCRIPTION			
		PAGE NUMBER	ISSUE
national grid	OVERHEAD CONSTRUCTION STANDARD	22 – P23S-P24	7/20

TAG, ROCK ANCHOR INSTALLED

Sign indicating use of pole rock anchors with two nail holes for field attachment to wood poles where rock anchors (Std Item P14A) are installed. Yellow background with black lettering.

STD ITEM	SAP ITEM ID	PS ITEM ID
P25	9307547	9202879

DECAL, WARNING, RECLOSER WITH DTT

Decal, Warning, Recloser with DTT. Recloser with direct transfer trip, label to be installed on the outside of the control panel door.

STD ITEM	SAP ITEM ID	PS ITEM ID
P25PR	9307756	9202987

GUARD, POLE HUB

Galvanized steel 16" X 18" X 1/8", EEI Standard TD12. Item 2.

STD ITEM	SAP ITEM ID	PS ITEM ID
P26G	9311950 ^Y	3502147 ^Y

KIT – CLEARANCE AND CONTROL TAGGING

Kit, clearance and control tagging, includes plastic case with Company logo, and custom foam insert for tags.

STD ITEM	SAP ITEM ID	PS ITEM ID
P30	9391886	N/A

PAINT

DESIGNATION	DESCRIPTION	STD ITEM	SAP ITEM ID	PS ITEM ID
N.M. #32	Black tower paint. One gallon. Use for protecting surface of friction tape.	P32	9314490 ^Y	1008032 ^Y

MATERIAL DESCRIPTION

ISSUE	PAGE NUMBER	
7/20	22 – P25-P32	

MATERIAL DESCRIPTION			
SMIZE.		PAGE NUMBER	ISSUE
ppl	OVERHEAD CONSTRUCTION STANDARD	22 – BLANK	7/20

TAG, 5" WIDE X 7" HIGH, NUMBER OR LETTER

5" wide X 7" high, poly, black letter on yellow background for aerial identification.

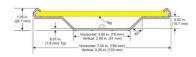
6	0.31*
7.0*	
6.0"	
0.38*	

		SAP ITEM	
LETTERS	STD ID	ID	PS ITEM ID
Α	P33A1	9310748	5105803
В	P33A1	9310979	5105804
С	P33A1	9310978	5105805
D	P33A1	9310977	5105806
E	P33A1	9310976	5105807
F	P33A1	9310975	5105808
G	P33A1	9310974	5105809
Н	P33A1	9310973	5105810
I	P33A1	9310980	5105811
J	P33A1	9310990	5105812
K	P33A1	9310991	5105813
L	P33A1	9310992	5105814
М	P33A1	9311009	5105815
N	P33A1	9311008	5105816
0	P33A1	9310737	5105802
Р	P33A1	9311007	5105818
Q	P33A1	9319617	5105819
R	P33A1	9311006	5105821
S	P33A1	9311005	5105822
Т	P33A1	9311004	5105823
U	P33A1	9311003	5105824
V	P33A1	9310926	5105825
W	P33A1	9310925	5105826
Х	P33A1	9310924	5105827
Υ	P33A1	9310923	5105828
Z	P33A1	9310922	5105829
NUMBERS			
1	P33A2	9310841	5105793
2	P33A2	9310840	5105794
3	P33A2	9310735	5105795
4	P33A2	9310734	5105796
5	P33A2	9310733	5105797
6 OR 9	P33A2	9310732	5105798
7	P33A2	9310731	5105799
8	P33A2	9310730	5105801
0	P33A2	9310737	5105802
DASH -	P33A3	9389455	N/A

MATERIAL DESCRIPT		MATERIAL DESCRIPTION		
	ISSUE	PAGE NUMBER		SMIZZ
	7/20	22 - P33A1-P33A3	OVERHEAD CONSTRUCTION STANDARD	ppl

AERIAL HAZARD SIGN

Aerial hazard warning sign, 20" X 20", uv resistant polycarbonate with Type 1 (Engineer Grade). Use two, B9N1 lag screws for mounting. Twelve 7/16" diameter holes provided for correct orientation.



DESCRIPTION	STD ID	SAP ITEM ID	PS ITEM ID
Black letter on yellow background	P34A	9387937	N/A
White letter on red background	P34B	9387936	N/A

AERIAL SIGNAGE CHANNEL

3 Position aluminum channel for 5" x 7" aerial signage P33A1.

STD ID	SAP ITEM ID	PS ITEM ID
P35	9310510	5473853

MATERIAL	. DESCRIP	TION
----------	-----------	------

PAGE NUMBER	ISSUE
22 – P34A-P35	7/08

GUARD, PREFORMED LINE

~~~~

| DESCRIPTION           | ROD<br>LENGTH,<br>(IN) | DIA RANGE,<br>(IN) | ROD<br>DIA, (IN) | STD<br>ITEM | SAP ITEM<br>ID | PS ITEM<br>ID |
|-----------------------|------------------------|--------------------|------------------|-------------|----------------|---------------|
| #1/0 ACSR - 6/1       | 25                     | 0.390 - 0.413      | 0.121            | P51C        | 9314043        | 3506727       |
| 336.4 ACSR - 18/1     | 35                     | 0.680 - 0.703      | 0.146            | P51G        | 9314041        | 3506731       |
| 795 AAC - 37 Strand   | 47                     | 1.017 – 1.064      | 0.182            | P51K        | 9307907        | 9202853       |
| #1/0 AAAC - 7 Strand  | 37                     | 0.390 - 0.413      | 0.121            | P51L        | 9307906        | 9202854       |
| 336.4 AAC - 19 Strand | 47                     | 0.656 - 0.679      | 0.146            | P51M        | 9307905        | 9202855       |
| 336.4 ACSR - 18/1     | 47                     | 0.680 - 0.703      | 0.146            | P51N        | 9307904        | 9202856       |
| 477 AAC - 19 Strand   | 51                     | 0.793 - 0.840      | 0.146            | P51P        | 9307903        | 9202857       |
| 477 ACSR - 26/7       | 53                     | 0.841 - 0.898      | 0.146            | P51Q        | 9307902        | 9202858       |
| 795 AAC - 37 Strand   | 59                     | 1.017 – 1.064      | 0.182            | P51R        | 9307901        | 9202859       |
| 795.0 ACSR - 54/7     | 49                     | 1.065 - 1.098      | 0.204            | P51U        | 9313182        | 5989468       |
| 1113.0 ACSR - 54/19   | 53                     | 1.269 - 1.327      | 0.250            | P51V        | 9307382        | 9200410       |

# **DEADEND, PREFORMED**

Stranded wire connectors for terminating primary or secondary spans. Aluminum coated steel for bare conductors and messengers. Not to be reused.

|                                                            |           | STD   |                      |                      |
|------------------------------------------------------------|-----------|-------|----------------------|----------------------|
| APPLICATION                                                | LENGTH    | ITEM  | SAP ITEM ID          | PS ITEM ID           |
| #4 ACSR 7/1 Full Tension                                   | 17" – 22" | P52A1 | 9312413 <sup>Y</sup> | 3506197 <sup>Y</sup> |
| #4 ACSR 6/1 Lt. Duty – For Services Only                   | 11" – 13" | P52A2 | 9311555 <sup>Y</sup> | 3506199 <sup>Y</sup> |
| #2 AAAC 7 Str. Full Tension                                | 24"       | P52B1 | 9314663 <sup>Y</sup> | 0811112 <sup>Y</sup> |
| #2 AAAC 7 Str. Lt. Duty                                    | 15"       | P52B2 | 9314646              | 0811111              |
| 4/0 SAAC Full Tension                                      | 32" – 35" | P52F  | 9315815              | 3506715              |
| 336.4 SAAC Full Tension                                    | 44"       | P52G  | 9315814              | 3506716              |
| 1/0, 7 Str. Al., 0.170 PE Spacer Cable                     |           | P52J2 | 9309140              | 3506748              |
| 1/0 ACSR & 6201 Full Tension                               | 26"       | P52J3 | 9311495              | 3506750              |
| 1/0 ACSR 6/1 & 6201 7 strand Lt. Duty for<br>Services Only | 19"       | P52J4 | 9311494              | 3506751              |
| 336.4 And 477.0 Spacer Cable                               | 45"       | P52L2 | 9315735              | 3506749              |
| 477.0, 19 Str. EC-Compact, 35KV                            |           | P52M  | 9313346 <sup>E</sup> | 5989151 <sup>E</sup> |
| 1/0, 7 str. EC-Compact, 15kV                               |           | P52P  | 9313348 <sup>E</sup> | 5989145 <sup>E</sup> |

|       |                | MATERIAL DESCRIPTION              |     |
|-------|----------------|-----------------------------------|-----|
| ISSUE | PAGE NUMBER    |                                   | WHA |
| 7/20  | 22 - P51C-P52P | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |

### **GRIP, PREFORMED GUY OR MESSENGER DEADENDS**

Stranded full tension preformed wire dead-ends. 3 or 7 strand B galvanized steel for bare conductors, guys and messengers.



| APPLICATION                                                                 | COLOR<br>CODE | LENGTH    | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------------------------------------------------------------------------|---------------|-----------|-------------|----------------------|----------------------|
| For maintenance on ¼"                                                       | Yellow        |           | P54A        |                      | 3543554              |
| For maintenance on 1/0 – 4/3 AWAC                                           | Yellow        |           | P54AA       | 9313350 <sup>E</sup> | 5989142 <sup>E</sup> |
| For maintenance on 3/6", 7 - #8 CW                                          | White         |           | P54AB       | 9320255 <sup>E</sup> | 5989135 <sup>E</sup> |
| 6M <sup>5</sup> ∕ <sub>16</sub> " Utility Grade GS<br>(Std. Item No. G15A)  | Black         | 25" – 31" | P54B        | 9313474              | 3503555              |
| 10M ¾" Utility Grade GS<br>(Std. Item No. G15A)                             | Orange        | 27" – 35" | P54C        | 9313473              | 3503556              |
| 16M <sup>7</sup> ∕ <sub>16</sub> " Utility Grade GS<br>(Std. Item No. G17A) | Green         | 33" – 38" | P54D        | 9313472 <sup>Y</sup> | 3503557 <sup>Y</sup> |
| 12.5M 7 Str. #9 Alumoweld<br>(Std. Item No. G16A)                           | Yellow        | 29"       | P54E        | 9314657              | 0811119              |
| $16M \frac{7}{16}$ " EHS CW (Std. Item No. G17B)                            | Yellow        | 36"       | P54H        | 9313470              | 3503567              |
| 2/0 AWAC 5/2 STR, NO.1 AWAC 2/5<br>STR, 1/0 AWAC ¾ STR                      | Blue          | 35"       | P54J        | 9313477              | 3503569              |

### **DEADEND, AUTOMATIC SERVICE**

For deadending services only.

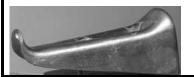


|                                                          | STD   |                      |                      |
|----------------------------------------------------------|-------|----------------------|----------------------|
| DESCRIPTION                                              | ITEM  | SAP ITEM ID          | PS ITEM ID           |
| #6 Copper service cable – house and pole ends.           | P55A1 | 9303025 <sup>E</sup> | 5967605 <sup>E</sup> |
| #2 and 1/0 Aluminum service cable – house and pole ends. | P55A2 | 9303024              | 5967992              |
| #4 Aluminum service cable – house and pole ends.         | P55B  | 9313341              | 5967991              |

### **POLES, FIBERGLASS**

Distribution fiberglass pole. Standard duty with climbing attachments for tangent, backyard and guyed applications. Heavy duty for unguyed 'Self Supporting' applications. Poles shall comply with MS2010.

| POLE LENGTH,<br>POLE CLASS | STD<br>ITEM | SAP ITEM<br>ID | PS ITEM ID | CATEGORY      | COLOR        |
|----------------------------|-------------|----------------|------------|---------------|--------------|
| 35 FT, Class 4             | P77A4       | 9306760        | 9201670    | Standard Duty | Brown/Bronze |
| 40 FT, Class 3             | P77B3       | 9306761        | 9201671    | Standard Duty | Brown/Bronze |
| 45 FT, Class 2             | P77C2       | 9306778        | 9201672    | Standard Duty | Brown/Bronze |
| 45 FT, Class H4            | P77DH4      | 9389020        | N/A        | Heavy Duty    | Gray         |
| 50 FT, Class H5            | P77DH5      | 9389022        | N/A        | Heavy Duty    | Gray         |
| 55 FT, Class H6            | P77DH6      | 9389023        | N/A        | Heavy Duty    | Gray         |


### MATERIAL DESCRIPTION



| PAGE NUMBER | ISSUE |
|-------------|-------|
| 22 - P54A-  | 7/17  |
| P77DH6      | //1/  |

### STEP, REMOVABLE

Galvanized steel removable step used for fiberglass pole installations.



| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| P78      | 9315123     | 0808639    |

### KIT, WOODPECKER HOLE REPAIR

Epoxy filler kit, mix in bag style, for repairing woodpecker holes on wood poles. Includes clip-pack and 1, 12" x 12" cloth cover. Summer Kit: For application in temperatures between 65°F and 100°F. Winter Kit: For application in temperature below 65°F.

| STD ITEM | SAP ITEM ID | PS ITEM ID | TYPE             |
|----------|-------------|------------|------------------|
| P80      | 9306254     | 9202073    | Summer           |
| P80C     | 9386502     | 9202997    | Winter           |
| P80D     | 9386522     | 9202998    | Additional Cloth |

### KIT, WOODPECKER HOLE REPAIR

Epoxy filler kit, Timberbond NSG cartridge style for repairing woodpecker holes on wood poles. To be used with twin tube applicator Power Push 7000. Applicator comes with battery and charger. Apply at any temperature (product must be stored at room temperature prior to use.)



| DESCRIPTION                      | STD ITEM | SAP ITEM<br>ID | PS ITEM ID |
|----------------------------------|----------|----------------|------------|
|                                  |          |                |            |
|                                  |          |                |            |
|                                  |          |                |            |
|                                  |          |                |            |
| PowerPush 7000<br>Applicator     | P80a     | 9390166        | N/A        |
| Timberbond NSG Twin<br>Cartridge | P80B     | 9388967        | N/A        |
|                                  |          |                |            |
|                                  |          |                |            |
|                                  |          |                |            |
|                                  |          |                |            |

| ISSUE | PAGE NUMBER   |
|-------|---------------|
| 7/17  | 22 – P78-P80B |



# KIT, POLE FOAM.

Includes 2 liquids needed to create foam and a pair of vinyl gloves to wear during application.

| TO A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DESCRIPTION  | STD ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|-------------|------------|
| #A34988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 cubic feet | P85A     | 9308034     | 9202187    |
| POLE SETTING FORM BUILD OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF STREET OF | 6 cubic feet | P85B     | 9308033     | 9202188    |



| PAGE NUMBER    | ISSUE |
|----------------|-------|
| 22 – P85A-P85B | 7/17  |

#### REGULATOR, VOLTAGE

Automatic single phase step-type pole or platform mounted voltage regulator. For bidirectional application on all 2.4 through 7.9 kV primary circuits. Includes control cabinet and 40 ft. control cable. Shall comply with latest MS2821 and ANSI C57.15.

### NOTE:

Regulators are designed to regulate 10% of the total circuit power. (167 kVA @ 7620V = 21.9A or 10% of that unit's 219A cont. max. load).

| (101 KVA @ 1020V = 21.9A 01 10/6 01 that unit 3 219A cont. max. 10au). |                               |                             |     |             | THE STATE OF |            |
|------------------------------------------------------------------------|-------------------------------|-----------------------------|-----|-------------|--------------|------------|
| KVA<br>RATING                                                          | MAXIMUM<br>CONTINUOUS<br>LOAD | MAXIMUM<br>WEIGHT<br>(LBS.) | Α   | STD<br>ITEM | SAP ITEM ID  | PS ITEM ID |
| 76.2                                                                   | 100A                          | 1500                        | 24" | R40A1       | 9300399      | 4275590    |
| 167                                                                    | 219A                          | 2000                        | 36" | R40B1       | 9300403      | 4278590    |
| 333                                                                    | 437A                          | 3500                        | 36" | R40C1       | 9300241      | 9201657    |

#### **REGULATOR, LOW VOLTAGE IN-LINE POWER**

Low voltage pole-mounted 50kVA In-line Power Regulator. Solid state 120/240V voltage regulator with load voltage regulation under forward and reverse power flow, Reactive power compensation, load voltage and source current harmonic cancellation (3rd to 7th harmonic), power quality monitoring, autonomous operation, or local or remote (centralized) management, built-in bypass mechanism, operating temperature: -40° to 55°C andNEMA-4 enclosure.



| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| R40S     | 9390771     | N/A        |

### **REGULATOR CONTROL - M-2001D**

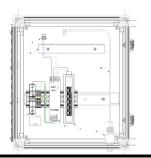
Replacement comprehensive control with LCD display for standard regulators utilizing existing control cabinet. 120V AC provides bi-directional capability without additional P.T.



| DESCRIPTION           | REGULATOR                    | STD ITEM | SAP ITEM ID |
|-----------------------|------------------------------|----------|-------------|
| CABINET +<br>CONTROL  | Howard, GE,<br>Siemens       | R41A     | 9390949     |
| CABINET +<br>CONTROL  | Cooper                       | R41C     | 9390948     |
| STANDALONE<br>CONTROL | All w/ correct adapter panel | R42A     | 9391264     |

### MATERIAL DESCRIPTION




| PAGE NUMBER     | ISSUE |
|-----------------|-------|
| 22 – R40A1-R42A | 7/18  |

# **REGULATOR CONTROL ADAPTER PANEL**

| ADAPTER<br>PANEL | STD ITEM | SAP ITEM ID | PS ITEM ID |
|------------------|----------|-------------|------------|
| Cooper           | R42C     | 9315135     | 0810187    |
| Соорег           | K420     | 9313133     | 0010107    |
| GE               | R42G     | 9315142     | 0810191    |
| Siemens          | R42S     | 9315134     | 0810192    |
| Howard           | R42T     | 9389646     | N/A        |

# **REGULATOR, COMMUNICATION CABINET**

Regulator Communication Cabinet for multi-phase voltage regulator installations to use one radio.



| STD ITEM | SAP ITEM ID |
|----------|-------------|
| R43C     | 9393738     |

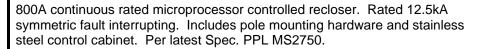
# **REGULATOR, CONTROL CABLE**

Replacement control cable for old General Electric regulators. 40 ft. length.

| CONNECTOR       | STD ITEM | SAP ITEM ID |
|-----------------|----------|-------------|
| Shorting Pin    | R43GS    | 9391625     |
| J2 and J3 Molex | R43GM    | 9391628     |

| ISSUE | PAGE NUMBER |  |  |
|-------|-------------|--|--|
| 7/21  | 22 - R42C-  |  |  |
|       | R43GM       |  |  |




### RECLOSER, THREE PHASE WITH CONTROL & CABINET (560A)

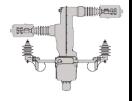

560A microprocessor controlled recloser. Requires 120V supply (+3% / -20%). Includes pole mounting hardware and double-size control cabinet.



| VOLTAGE         | APPLICATION | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-----------------|-------------|-------------|-------------|------------|
| 15kV, 10kA sym. | Radial      | R50A        | 9312197     | 6486723    |
| 15kV, 10kA sym. | Loop Scheme | R50E        | 9309201     | 5100154    |
| 35kV, 8kA sym.  | Radial      | R50F        | 9312195     | 6486915    |
| 35kV, 8kA sym.  | Loop Scheme | R50G        | 9308787     | 5100152    |
|                 | ·           |             |             |            |

# RECLOSER, THREE PHASE WITH CONTROL & CABINET (800A) - MAINTENANCE ONLY






| VOLTAGE                                       | CONTROL | APPLICATION   | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------------------------------------------|---------|---------------|-------------|----------------------|----------------------|
| *15kV                                         | SEL651R | Radial        | R50AA       | 9306582              | 9201979              |
| **12.47kV w/ PT's                             | SEL651R | Radial        | R50A1       | 9306588 <sup>E</sup> | 9201973 <sup>E</sup> |
| **13.2kV w/ PT's                              | SEL651R | Radial        | R50A2       | 9306586              | 9201974              |
| **13.8kV w/ PT's                              | SEL651R | Radial        | R50A3       | 9306585 <sup>E</sup> | 9201975 <sup>E</sup> |
| *15kV                                         | SEL651R | Loop Scheme   | R50EE       | 9306581              | 9201980              |
| ***12.47kV w/ Sensing & PT's                  | SEL651R | Loop Scheme   | R50E1       | 9306525 <sup>E</sup> | 9201970 <sup>E</sup> |
| ***13.2kV w/ Sensing & PT's                   | SEL651R | Loop Scheme   | R50E2       | 9306524              | 9201971              |
| ***13.8kV w/ Sensing & PT's                   | SEL651R | Loop Scheme   | R50E3       | 9306523 <sup>E</sup> | 9201972 <sup>E</sup> |
| *35kV                                         | SEL651R | Radial        | R50FF       | 9306580              | 9201981              |
| *35kV (SubT)                                  | SEL651R | Radial        | R50FS       | 9306447 <sup>Y</sup> | 9201809 <sup>Y</sup> |
| *35kV `                                       | SEL651R | Loop Scheme   | R50GG       | 9306583              | 9201978              |
| *35kV (SubT)                                  | SEL651R | Loop Scheme   | R50GS       | 9306446 <sup>Y</sup> | 9201810 <sup>Y</sup> |
| 35 kV (SubT) w/ Line and Load voltage Sensing | SEL651R | Sectionalizer | R50HA       | 9386620 <sup>Y</sup> | 9203061 <sup>Y</sup> |

<sup>\*</sup>Requires 120V supply (+3% /-20%).

### RECLOSER, SINGLE PHASE WITH CONTROL & CABINET (800A)

800A continuous rated microprocessor controlled recloser. Rated 12.5kA symmetric fault interrupting. Includes pole mounting hardware, 10 pin Control cable, Voltage Supply Cable and stainless steel control cabinet. Requires 120V supply. Per latest Spec. PPL MS2750.

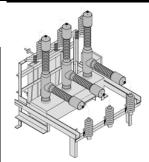


| VOLTAGE | CONTROL              | APPLICATION | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|---------|----------------------|-------------|-------------|-------------|------------|
| 15kV    | SEL-351RS<br>Kestrel | Radial      | R50SP       | 9388969     | -          |

### MATERIAL DESCRIPTION

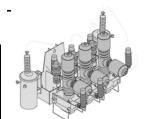


| PAGE NUMBER | ISSUE |
|-------------|-------|
| 22 - R50A - | 7/21  |
| R50SP       | 1121  |


<sup>\*\*</sup>Includes voltage specific instrument PT's to meet control power supply requirements. Use a 3K fuse link for primary fuses feeding PT's.

<sup>\*\*\*</sup>Includes integrated voltage sensing in Source 1 bushings and voltage specific instrument PT's to meet control power supply requirements

RECLOSER, THREE PHASE (800A) 800amp continuous rated microprocessor controlled recloser. Rated 12.5kA symmetric fault interrupting.


Includes pole mounting hardware. Per PPL MS2750.

| System Voltages                   | Dealtage Description |                                                           | Mechanism   |             |  |
|-----------------------------------|----------------------|-----------------------------------------------------------|-------------|-------------|--|
| System Voltages                   | Package              | Description                                               | SAP Item ID | STD Item ID |  |
| 3,740GRDY/2160<br>4,160GRDY/2,400 | D                    | Viper (6IVS)<br>with frame<br>mounted<br>line/load<br>PTs | 9392285     | R50S15B     |  |
| 12,470GRDY/7,200                  |                      | Viper (6IVS)                                              |             |             |  |
| 13,200GRDY/7,600                  | С                    | with frame<br>mounted                                     | 9392244     | R50S15C     |  |
| 13,800GRDY/7,960                  | -                    | line/load<br>PTs                                          |             |             |  |
| 24,940GRDY/14,400                 |                      | Viper (6IVS)                                              |             |             |  |
| 34,500GRDY/19,900                 | E                    | - 38kv<br>(External<br>PT                                 | 9392284     | R50S38A     |  |
| 23,000Y                           | L                    |                                                           |             |             |  |
| 34,500Y                           |                      | required)                                                 |             |             |  |
| 2,400Δ                            |                      | Viper S -<br>15kV<br>A (External                          | 9392283     | R50S15A     |  |
| 8,320GRDY/4,800                   |                      |                                                           |             |             |  |
| 4,800Δ                            |                      |                                                           |             |             |  |
| 7,200Δ                            | Α                    |                                                           |             |             |  |
| 11,000Δ                           |                      | PT<br>required)                                           |             |             |  |
| 12,000Δ                           |                      | requireu)                                                 |             |             |  |
| 13,800Δ                           |                      |                                                           |             |             |  |
| 23,000Δ                           |                      | Viper S -                                                 |             |             |  |
| 34,500Δ                           | В                    | 38kV<br>(External<br>PT<br>required)                      | 9392282     | R50S38B     |  |



RECLOSER, THREE PHASE (800A) 800amp continuous rated microprocessor controlled recloser. Rated 12.5kA symmetric fault interrupting. Includes Six Integrated Voltage Sensing (6IVS), Per PPL MS2750.

| System Valtages   | Daaliaaa | Doscrintion                                   | Mechanism   |             |
|-------------------|----------|-----------------------------------------------|-------------|-------------|
| System Voltages   | Package  | Description                                   | SAP Item ID | STD Item ID |
| 3,740GRDY/2160    | Р        | NOVA NX-T with frame                          | 9392582     | R50SE15B    |
| 4,160GRDY/2,400   | ٢        | mounted line/load PTs                         | 9392362     | KOUSEISB    |
| 12,470GRDY/7,200  |          | NOVA NIV T with frame                         |             |             |
| 13,200GRDY/7,600  | Q        | NOVA NX-T with frame<br>mounted line/load PTs | 9392618     | R50SE15C    |
| 13,800GRDY/7,960  |          | mounted interioad F13                         |             |             |
| 24,940GRDY/14,400 |          |                                               |             |             |
| 34,500GRDY/19,900 | ,        |                                               |             |             |
| 23,000Y           | R        | NOVA NX-T - 38kv                              | 9392564     | R50SE38A    |
| 34,500Y           | , K      | (External PT required)                        |             |             |



|  | MATE | RIAL L | DESCRI | PTION |
|--|------|--------|--------|-------|
|--|------|--------|--------|-------|

| ISSUE | PAGE NUMBER    |  |  |  |
|-------|----------------|--|--|--|
| 7/24  | 22 - R50S15B - |  |  |  |
| 7/21  | R50SE38A       |  |  |  |



© 2022 PPL Corporation. All rights reserved.

### **CONTROL, RECLOSER (FOR 560A RECLOSERS)**

Form 6 recloser control complete with cables, junction box, and accessories. For use on all 35kV and below applications.



| APPLICATION | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|-------------|------------|
| Radial      | R51A        | 9307380     | 9200415    |
| Loop Scheme | R51B        | 9307379     | 9200416    |
|             |             |             |            |

### **CONTROL, RECLOSER (FOR 800A 3 PHASE RECLOSERS)**

SEL recloser control complete with cabinet, cables and accessories. For use on all 35KV and below applications per PPL MS2750.



| APPLICATION                             | STD ITEM | SAP ITEM ID | PS ITEM ID |
|-----------------------------------------|----------|-------------|------------|
| G&W Viper – S Recloser                  | R51B2    | 9392281     | -          |
| Cooper/Eaton NOVA NX-T<br>6IVS Recloser | R51B3    | 9392580     | -          |

### **CELLULAR RADIO MODEM**

Modem, 4G LTE-4G/3G (VERIZON) Cellular Radio Modem for communication in remote devices including overhead reclosers on the distribution system. Requires antenna kit and conversion kit.



| DESCRIPTION              | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------|-------------|-------------|------------|
| Cellular Radio<br>Modem  | R51C        | 9389636     | N/A        |
| Antenna Kit for above    | R51C1       | 9389708     | N/A        |
| High gain<br>Antenna Kit | R51C2       | 9391629     | N/A        |
| Conversion Kit           | R51C5       | 9392253     | N/A        |

| MATER | IIAL DE | SCRIP | HON |
|-------|---------|-------|-----|
|-------|---------|-------|-----|



| PAGE NUMBER     | ISSUE |
|-----------------|-------|
| 22 – R51A-R51C5 | 7/21  |

# CABLES FOR USE WITH 800A RECLOSER

| 1                                                            | DESCRIPTION                                                              | APPLICATION                                                                         | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|--------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------|----------------|---------------|
| 15'<br>-\$-4   -\$-                                          | Secondary Supply Cable,<br>15 ft, 2 conductor, LINE                      | Radial scheme recloser application                                                  | R52A        | 9307582        | 9202485       |
| 15'<br>-\$                                                   | Secondary Supply Cable,<br>15 ft,2 conductor, LOAD                       | Radial scheme recloser application                                                  | R52B        | 9307584        | 9202484       |
| R 15'                                                        | Secondary Supply Cable,<br>15 ft,4 conductor, LINE                       | Loop Scheme recloser application, 3 Phase                                           | R52C        | 9307568        | 9202483       |
| R 15'                                                        | Secondary Supply Cable,<br>15 ft, 4 conductor, LOAD                      | Loop scheme recloser application, 3 Phase                                           | R52D        | 9307940        | 9202338       |
| R 10' J                                                      | 3 Phase Voltage Sensing<br>Cable                                         | 3 phase voltage sensing cable for voltage specific LS reclosers.                    | R52E        | 9307939        | 9202337       |
| R 40°                                                        | Recloser Voltage Supply<br>Cable, 19 Pin, Armored,<br>BLUE, 40 FT Length | Replacement Voltage supply cable between the Viper and Schweitzer SEL-651R control. | R52I        | 9386987        |               |
| R 40'                                                        | Recloser Control Cable,<br>14 Pin, Armored,<br>YELLOW, 40 FT Length      | Replacement control cable between the Viper and Schweitzer SEL-651R control.        | R52J        | 9386988        |               |
| R 10' J                                                      | AC power cable for Viper J-box to Head unit                              | Replacement Voltage cable between the Viper and Junction box.                       | R52K        | 9389570        |               |
| R 40°                                                        | Recloser Control Cable,<br>42 Pin, Armored,40 FT<br>Length               | Control cable between the NOVA NX-T mechanism and Schweitzer SEL-651R control.      | R52K1       | 9392587        | -             |
| VOLTAGE SPECIFIC FRAME-MOUNTED POTENTIAL TRANSFORMERS (PT's) |                                                                          |                                                                                     |             |                |               |
|                                                              | VOLTAGE                                                                  | APPLICATION                                                                         | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|                                                              | 7200/12470V *                                                            | Replacement or retrofitting 800A G&W recloser units (includes sec cable)            | R52F        | 9306528        | 9201967       |
|                                                              | 7620/13200V *                                                            | Replacement or retrofitting 800A G&W recloser units (includes sec cable)            | R52G        | 9306535        | 9201968       |
| 0                                                            | 7960/13800V *                                                            | Replacement or retrofitting 800A G&W recloser units (includes sec cable)            | R52H        | 9306527        | 9201969       |

 $<sup>\</sup>ensuremath{^{*}}$  Note: Potential Transformers to be fused on the primary side @ 3K.

| MATERIAL DESCRIPTION |                |                                   |      |
|----------------------|----------------|-----------------------------------|------|
| ISSUE                | PAGE NUMBER    |                                   | MIZZ |
| 7/21                 | 22 – R52A-R52H | OVERHEAD<br>CONSTRUCTION STANDARD | ppl  |

# RECLOSER - CUTOUT MOUNTED

Cutout mounted 15 kV, 100 amp recloser is self-powered, electronically controlled, single phase, vacuum fault interrupter mounted with the included factory shipped fuse cutout. Symmetrical Interrupting rating is 6300 amperes. Includes Polymer cutout mounting.



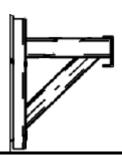


| SIZE              | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID |
|-------------------|-------------|----------------------|---------------|
|                   |             | ROGRAMMED            |               |
|                   |             |                      |               |
| 40K               | R53A        | 9387110 <sup>E</sup> | N/A           |
| 65K               | R53B        | 9387111 <sup>E</sup> | N/A           |
| 100K              | R53C        | 9387112 <sup>E</sup> | N/A           |
|                   |             |                      |               |
|                   |             |                      |               |
|                   |             |                      |               |
|                   |             |                      |               |
|                   |             |                      |               |
|                   |             |                      |               |
|                   |             |                      |               |
| USER PROGRAMMABLE |             |                      |               |
| _                 | R53G        | 9392057              | N/A           |
| CUTO              | OUT REPLAC  | EMENT (CMR (         | ONLY)         |
|                   | R53H        | 9392286              | N/A           |

|  | MATE | RIAL L | DESCRI | PTION |
|--|------|--------|--------|-------|
|--|------|--------|--------|-------|



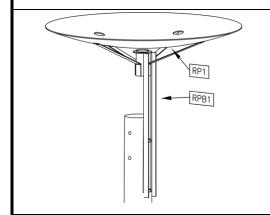
OVERHEAD CONSTRUCTION STANDARD


PAGE NUMBER ISSUE

22 - R53A - 7/20

R53M

### **BRACKET, RECLOSER LADDER**


For use where extension ladders are required to access elevated pole mounted control installations. The bracket is made of galvanized steel. Additional equipment required for mounting and bonding: #6 Cu bonding wire (Item ID 4015002), ¾" x 12" through bolt (Item ID 7001556) or ¾"x14" through bolt (Item ID 7001520). Manufactured per MS2230.



| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| R55      | 9307148     | 5984615    |

### RAPTER NESTING PLATFORM AND BRACKET

For use when relocating raptor nests from electric facilities. Platform is made of UV resistant fiberglass and is 63-inches in diameter, 6-inch depth, ¼-inch thick, 9 drain holes and weighs 52 lbs. Bracket is made of aluminum channel and is 46-inches in height. Platform and bracket stocked as separate items.



| DESCRIPTION        | STD<br>ITEM | SAP ITEM<br>ID | PS ITEM<br>ID |
|--------------------|-------------|----------------|---------------|
| FIBERNEST PLATFORM | RP1         | 9390176        | N/A           |
| BRACKET            | RPB1        | 9390175        | N/A           |
|                    |             |                |               |
|                    |             |                |               |
|                    |             |                |               |

| MATERIAL | DESCRIPTION |
|----------|-------------|
|----------|-------------|

7/20 22 – R55-RPB1



### **MOLDING, POLYETHYLENE**

Black UV resistant plastic molding for use with S33B staples over bare or covered down ground wires.

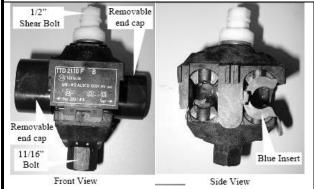


| SIZE               | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------|-------------|-------------|------------|
| ½" X 0.100" X 8'6" | S1          | 9313613     | 3503053    |

### COMPOUND, SEALING - PLASTIC PUTTY

Moldable, non-hardening, multi-purpose sealing and caulking compound. Grey in color, completely inert with high adhesion and shape retention. For use in sealing openings in conduit, etc.




| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| S3          | 9320377     | 8010262    |

# **CONNECTOR, WEATHERPROOF SECONDARY**

To be used in coastline salt contaminated areas. The connector can be used to connect aluminum to aluminum, aluminum to copper, and copper to copper secondary/service cables. It can also be used to connect bare secondary/service messengers.

<u>Note:</u> Leave the blue insert intact if the main wire is bare. Remove the blue insert if the main wire is covered.

See Bulletin #10-26 for more information.



| STD<br>ITEM | RUN          | TAP          | SAP<br>ITEM ID | PS<br>ITEM ID |
|-------------|--------------|--------------|----------------|---------------|
| S5          | 1/0 to<br>#8 | 1/0 to<br>#8 | 9308203        | 9201787       |
| S6          | 4/0 to<br>#2 | 4/0 to<br>#4 | 9314553        | 9202592       |

### MATERIAL DESCRIPTION



OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 – S1-S6 7/13

| 4       |             |           |       | CONDUCTOR RANGE TOOL    | CONDUCTOR RANGE |             |                |                             |          | 1001   |          |        |          | 7                    |
|---------|-------------|-----------|-------|-------------------------|-----------------|-------------|----------------|-----------------------------|----------|--------|----------|--------|----------|----------------------|
|         |             | RUN       | ¥     |                         |                 | _           | ΤΑΡ            |                             | Y35/Y45  | 충      | MD6      |        |          |                      |
|         | ACSR        | STR       | SOL.  | STR STEEL /<br>WIRE DIA | ACSR            | STR         | SOL.           | STR.<br>STEEL /<br>WIRE DIA | E        | CRIMPS | 먊        | CRIMPS | STD      | SAP<br>ITEM ID       |
| _       | #4 - #6     | *3        | **    |                         | #4 - #6         | <b>3</b> 5  | **             |                             | 9        | 2      | <u>ې</u> | 4      | S13B     | 9312301              |
|         | #4 - #6     | #2 - #6   |       |                         |                 | **          | #14            |                             |          |        | 8        | ω      | S139     | 9312300              |
|         | 1/0 - #2    | 2/0 - #1  |       |                         |                 | **          | #14            |                             | 5        | N      | <u></u>  |        | S13E     | 9312299              |
|         | 10-#3       | 2/0 - #2  |       | 416"-116"               | #2 - #6         | <b>*</b> 5  | #6 - #4        |                             | 5        | 2      | <u></u>  |        | S13H     | 9312298              |
| ì       | 2/0 – 1/0   | 2/0 – 1/0 |       | .477"365"               | #2 - #4         | #1 - #3     | <b>#</b><br>22 | .332" — .236"               | <u>6</u> | 2      | 8        |        | S13H     | 9315227              |
| 1       | á           | 2/0 – 1/0 |       | 3/2" — 7/16"            | 2               | 2/0 – 1/0   |                | 3/3" — 7/6"                 | <u>6</u> | 2      | 8        |        | <u>8</u> | 8                    |
| 1000    | 397 - 266   | 477 - 250 |       |                         | 4,0 - 2,0       | 4/0 – 2/0   |                |                             | Ž        | ω      |          |        | S13K     | 9312297              |
| Sept 19 | 4,0 - 3,0   | 4/0 – 3/0 |       |                         | 4/0 – 3/0       | 4,00 – 3,00 |                |                             | ᅜ        | ω      | 8        | 7      | S13K1    | 83                   |
| 1       | 4,0 - 3,0   | 4,0       |       |                         | 2/0 - #1        | 2/0 – 1/0   |                |                             | <u>6</u> | ω      |          |        | S13L     | 8                    |
|         | 4,0 - 3,0   | 4,0       |       |                         | #2-#6           | #1 - #6     | 1/0#6          |                             | <u>6</u> | 2      | 8        | σı     | S13LI    | 83                   |
|         | 397 - 266   | 400 – 250 |       |                         | 1/0 - #6        | 2/0         | **             |                             | ż        | 2      |          |        | S13N     | 9312315              |
|         | 477 - 400   | 500 – 4/0 |       |                         | 477 - 4.00      | 500 – 4,0   |                |                             | ż        | 4      |          |        | S13P     | 9312333              |
|         | 477 - 795   | 600 - 900 |       | .879" —1.108"           | 1/0 - 336       | 2/0 - 350   | 2/0 - 350      | .398"684"                   | U-R*     | ω      |          |        | S13R     | 9315734 <sup>Y</sup> |
|         | #2 - #6     | #2 - #6   | #2-#4 |                         |                 | **          | #14            |                             | U-BG     | _      | 8        | 2      | S13D6    | 9312081              |
|         | 2/0 - #2    | 2/0 - #1  |       |                         |                 | **          | # 4            |                             | 6        |        | ≨<br>o   | N      | S13E6    | 9312080 <sup>7</sup> |
|         | 397 – 266   | 477 - 250 |       |                         | 4,0 - 2,0       | 4,0 - 2,0   |                |                             | ž        | ω      |          |        | S13K6    | 9312314 <sup>x</sup> |
|         | 4,00 — 3,00 | 4/0 – 3/0 | 8     |                         | 4/0 – 2/0       | 4,0 - 2,0   | \$             |                             | <u>6</u> | N      |          |        | S13KI6   | 9312584              |
| 4       | 4/0 – 1/0   | 4/0 – 1/0 |       |                         | 4/0 – 1/0       | 2/0 - #4    | 2/0 - #3       |                             | <u>6</u> | 2      |          |        | S13L3    | 9312559°             |
|         | 397 – 266   | 400 – 250 |       |                         | 397 – 266       | 400 – 250   |                |                             | ż        | ω      |          |        | S13M6    | 9312583 <sup>Y</sup> |
|         | 397 - 266   | 400 - 250 |       |                         | 1/0 - #6        | 2,0         | #5             |                             | υŸ       | 2      |          |        | S13N6    | 9312582"             |
| _       | 1.0-#3      | 2/0 - #2  |       |                         | #2 - #6         | *5          | 13 #5          |                             | 5        | _      |          | 4      | 233      | 9312312              |

| 7-4/0 500-4/0 7-785 600-900 2-#6 #2-#6 #2-#4 0.:#2 2/0.:#1 7-266 477-250 0-3/0 4/0-3/0 4/0 0-1/0 4/0-1/0 7-266 400-250 7-266 400-250 | \$00 - 4/0<br>600 - 900<br>#2 - #6<br>2/0.::#1<br>4/7 - 250<br>4/0 - 3/0<br>4/0 - 1/0<br>400 - 250 | 500 – 4/0<br>600 – 900<br>#2 - #6<br>2/0.::#1.<br>477 – 250<br>4/0 – 3/0<br>4/0 – 3/0<br>4/0 – 3/0 | #2 - #6<br>2,0,#1<br>4,77 - 250<br>4,00 - 1,0 | #2-#6<br>2,0,#1<br>477-250<br>4,0-3,0 | 500 – 4/0<br>600 – 900<br>#2 - #6<br>2/0#1<br>477 – 250 | 500 – 4/0<br>600 – 900<br>#2 - #6<br>2/0 : #1 | 500 – 4/0<br>600 – 900<br>#2 - #6 | +       |             | _              | _         |          | 1 3/0 4/0      |           |           |           |             | 0-1/0 2/0-1/0        |               |          |                      | 4-#6 #3 #6 | ICSR STR SOL                |          | RIN       |                 |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------------------------|-----------------------------------------------|-----------------------------------|---------|-------------|----------------|-----------|----------|----------------|-----------|-----------|-----------|-------------|----------------------|---------------|----------|----------------------|------------|-----------------------------|----------|-----------|-----------------|
|                                                                                                                                      |                                                                                                    |                                                                                                    |                                               |                                       |                                                         |                                               |                                   | 4       | .073 -1.100 | 07011 4 4 1001 |           |          |                |           |           |           | 3/," — 7/," | .477"365"            | 1/16" - ()18" |          |                      |            | STR STEEL /<br>WIRE DIA     |          |           | COMDUCT         |
| ±5                                                                                                                                   | 10000000                                                                                           | 13 180                                                                                             | 397   266                                     | 4/0 – 1/0                             | 4/0 – 2/0                                               | 4,0 - 2,0                                     |                                   |         | 170 - 330   | 3 .            | 477 — 4M  | 1/0-#6   | #2 - #6        | 2/0 - #1  | 4/0 – 3/0 | 4,0 - 2,0 | á           | #2 - #4              | #2 - #6       |          |                      | #4 - #6    | ACSR                        |          |           | CONDUCTOR RANGE |
| #2                                                                                                                                   | 2/0                                                                                                | UC - 004                                                                                           | 400 - 250                                     | 2/0 - #4                              | 4/0 - 2/0                                               | 4/0 - 2/0                                     | **                                | *8      | 2/0 - 000   | 300            | 500 - 400 | 2/0      | <b>#1 - #6</b> | 2/0 – 1/0 | 4/0 – 3/0 | 4/0 – 2/0 | 2/0 – 1/0   | #1 - #3              | **            | **       | **                   | 25         | STR.                        |          | -         |                 |
| 10-#5                                                                                                                                | 3                                                                                                  | ŧ,                                                                                                 |                                               | 2/0 - #3                              | 4,0                                                     |                                               | <b>#</b> 14                       | #<br>4  | 2/0 - 000   | 360            |           | <b>*</b> | 1,0 - #6       |           |           |           |             | <b>#</b> 2           | #6 - #4       | #4       | #<br>4               | ð          | SOL.                        | <u> </u> | TΔP       |                 |
|                                                                                                                                      |                                                                                                    |                                                                                                    |                                               |                                       |                                                         |                                               |                                   |         | .000004     | 2001 10041     |           |          |                |           |           |           | 3/2" — 7/6" | .332" — .236"        |               |          |                      |            | STR.<br>STEEL /<br>WIRE DIA |          |           |                 |
| 5                                                                                                                                    | 9                                                                                                  | = q                                                                                                | Ę                                             | 8                                     | <u>5</u>                                                | Ż                                             | 5                                 | OB-U    | 5           | = (<br>0 :     | Ę         | c<br>Ż   | <u>5</u>       | 8         | <u>8</u>  | ż         | 8           | Ë                    | 5             | 5        |                      | 9          | DIE                         |          | 30 M 35 A |                 |
| _                                                                                                                                    | ١                                                                                                  | J (                                                                                                | ω                                             | N                                     | Ŋ                                                       | ω                                             | -                                 | _       | ٥           | υ.             | 1         | N        | 2              | ω         | ω         | ω         | Ν           | 2                    | N             | N        |                      | Ŋ          | CRIMPS                      | -        | 5         | 100L            |
|                                                                                                                                      |                                                                                                    |                                                                                                    |                                               |                                       |                                                         |                                               | Ş<br>0                            | ଞ       |             |                |           |          | 8              |           | 8         |           | 8           | 8                    | ≨<br>0        | ≨<br>6   | 8                    | 9          | DIE                         |          | MIN       | '               |
| 4                                                                                                                                    | 1                                                                                                  |                                                                                                    |                                               |                                       |                                                         |                                               | 2                                 | 4       | 1           |                |           |          | თ              |           | 7         |           | ഗ           | ഗ                    | თ             | 4-       | ω                    | 4          | CRIMPS                      | Ţ,       |           |                 |
| S136                                                                                                                                 | 010140                                                                                             | 200                                                                                                | 21346                                         | S13L3                                 | S13K16                                                  | S13K6                                         | S13E6                             | S13D6   | 01017       | 20             | 238       | S138     | S13LI          | S132      | S13K1     | S13<br>-  | 212         | S13HB                | S13<br>모      | S13E     | S138                 | S138       | ITEM                        | 3        |           |                 |
| 93123121                                                                                                                             | 2002100                                                                                            | 021252                                                                                             | 93125837                                      | 9312559°                              | 9312584 <sup>Y</sup>                                    | 9312314 <sup>Y</sup>                          | 9312080 <sup>Y</sup>              | 9312081 | 901004      | 004.5704       | 93123331  | 9312315  | 9312295        | 9312296   | 9315733   | 9312297   | 9314950     | 9315227 <sup>r</sup> | 9312298       | 9312299" | 9312300 <sup>Y</sup> | 9312301    | ITEM ID                     | ;        |           |                 |
| 3507306                                                                                                                              | 201000                                                                                             | 350733                                                                                             | 350731                                        | 350741                                | 350731                                                  | 350731                                        | 3507305 <sup>Y</sup>              | 350730  | 0007110     | 0007446        | 3507119   | 3507120  | 350711:        | 350711    | 3507117   | 350711    | 350711      | 0804299              | 350710        | 3507105  | 3507104              | 350710     | ITEM ID                     | 3        |           |                 |

|       |                         | `               |                                   |    |      |
|-------|-------------------------|-----------------|-----------------------------------|----|------|
|       |                         |                 | MATERIAL DESCRIPTION              |    |      |
|       | ISSUE                   | PAGE NUMBER     |                                   |    | 11/2 |
| Busir | <b>7/13</b><br>ness Use | 22 - S13B-S13N6 | OVERHEAD<br>CONSTRUCTION STANDARD | pp | Ĭ\$  |

# **CONNECTOR, COMPRESSION C**

Copper range-taking compression; C-type tap connector for use with overhead copper conductors and/or underground copper and aluminum conductors without inhibitor.

|                           | OUCTOR<br>NGE          |          | ΜP    | Y35<br>or<br>Y39 | MP    | PLATING |             |                      |                      |
|---------------------------|------------------------|----------|-------|------------------|-------|---------|-------------|----------------------|----------------------|
| RUN                       | TAP                    | MD6      | CRIMP | or<br>Y46        | CRIMP | PLA     | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
| 6 Sol. –                  | 8 Sol. –<br>8 Str.     | W-<br>BG | 1     | U-BG             | 1     | NA      | S14A        | 9312168              | 3507129              |
| 4 Str.                    | 4 Sol. –<br>4 Str.     | W-<br>BG | 1     | U-BG             | 1     | NA      | S14B        | 9314949              | 3507126              |
| 2 Sol. –                  | 8 Sol. –<br>4 Str.     | W-C      | 2     | U-C              | 1     | TIN     | S14C        | 9312169              | 3507128              |
| 2 Str.                    | 2 Sol. –<br>2 Str.     | W-C      | 2     | U-C              | 1     | NA      | S14D        | 9312328              | 3507127              |
| 6 Sol. –<br>4 Str.        | 6 Sol. –<br>6 Str.     | BG       |       |                  |       | TIN     | S14E        | 9313033 <sup>E</sup> | 5960407 <sup>E</sup> |
| 1/0 Sol.<br>- 2/0<br>Str. | 8 Sol. –<br>2 Str.     | 0        |       |                  |       | NA      | S14F        | 9313031              | 5960411              |
| 1/0 Sol.<br>- 2/0<br>Str. | 1/0 Sol. –<br>2/0 Str. | 0        |       | UE-3             |       | TIN     | S14G        | 9313030              | 5960412              |
| 0/0.04                    | 6 Sol. –<br>2 Str.     | -        |       | U-D3             | 1     | NA      | S14H        | 9315824              | 3506644              |
| 3/0 Str<br>- 4/0<br>Str.  | 1/0 Str. –<br>2/0 Str. | ı        |       | U-D3             | 1     | NA      | S14J        | 9315822              | 3506654              |
| ou.                       | 3/0 Str. –<br>4/0 Str. |          |       | U-D3             | 1     | NA      | S14K        | 9315825              | 3506643              |
| 3/0 Str<br>- 250<br>Str.  | 3/0 Str –<br>250 Str.  |          |       | U997<br>-1       |       | NA      | S14L        | 9313861              | 5960428              |



| MATERIAL DESCRIPTION           |                |       |
|--------------------------------|----------------|-------|
|                                | PAGE NUMBER    | ISSUE |
| OVERHEAD CONSTRUCTION STANDARD | 22 - S14A-S14L | 7/16  |

### **CONNECTOR -FIRED-ON WEDGE TAP CARTRIDGES**

Cartridges are for use with fired-on wedge type connectors. The color represents strength of charge and corresponds with color code of taps and other connectors.



| DESCRIPTION | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-------------|-------------|----------------------|----------------------|
| Blue        | S15CB       | 9312051 <sup>Y</sup> | 3507241 <sup>Y</sup> |
| Red         | S15CR       | 9312050 <sup>Y</sup> | 3507242 <sup>Y</sup> |
| White       | S15CW       | 9315820 <sup>Y</sup> | 3506672 <sup>Y</sup> |
| Yellow      | S15CY       | 9312049 <sup>Y</sup> | 3507243 <sup>Y</sup> |

### **CONNECTOR -FIRED-ON WEDGE TAPS, ALUMINUM**

Powder actuated two-piece (removable) compression tap connectors for aluminum to aluminum or aluminum to copper taps. Connectors to be furnished compound filled, individually packaged and labeled. ANSI C119.4; Class A, Class 3.

| CONDU                               | ICTOR RANGE                                                                                       | SHELL<br>COLOR                                     |                                                  |                                                                                                                                   |                                                                                                              |
|-------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| RUN                                 | TAP                                                                                               | CODE                                               | STD ITEM                                         | SAP ITEM ID                                                                                                                       | PS ITEM ID                                                                                                   |
| 1/0 Al. &<br>ACSR                   | 1/0 AI. & ACSR<br>#2 AI. & Cu.<br>#4 AI. & ACSR & Cu.                                             | Blue<br>White<br>Red                               | S15G<br>S15H<br>S15J                             | 9312048 <sup>Y</sup><br>9314948 <sup>Y</sup><br>9312047 <sup>Y</sup>                                                              | 3507245 <sup>Y</sup><br>3507246 <sup>Y</sup><br>3507247 <sup>Y</sup>                                         |
|                                     | 336.4 AI. & ACSR<br>336.4 A1. & ACSR<br>#4/0 Cu.<br>#2/0 AWAC.                                    | Blue<br>Yellow<br>Blue<br>Blue                     | S15L<br>S15LL<br>S15M<br>S15N                    | 9314114 <sup>Y</sup><br>9312053 <sup>Y</sup><br>9314115 <sup>Y</sup><br>9314116 <sup>Y</sup>                                      | 0810220 <sup>Y</sup><br>3507260 <sup>Y</sup><br>0810219 <sup>Y</sup><br>0810218 <sup>Y</sup>                 |
| 336.4 AI. &<br>ACSR                 | #1/0 AI. & ACSR<br>2/0 AI. & ACSR<br>#2 AI. ACSR & Cu.<br>#4 Cu.<br>500 AI. & Cu.<br>750 AI & Cu. | Blue<br>Yellow<br>Blue<br>Blue<br>Yellow<br>Yellow | S15N1<br>S15NN<br>S15P<br>S15Q<br>S15R5<br>S15R7 | 9314117 <sup>Y</sup><br>9392055**<br>9314118 <sup>Y</sup><br>9306668 <sup>Y</sup><br>9312046 <sup>Y</sup><br>9314717 <sup>Y</sup> | 0810217 <sup>Y</sup> N/A 0810216 <sup>Y</sup> 9201643 <sup>Y</sup> 3507250 <sup>Y</sup> 0801961 <sup>Y</sup> |
| 750 AI AAC                          | #4/0 Cu.                                                                                          | Yellow                                             | S15R20                                           | 9308205 <sup>Y</sup>                                                                                                              | 9201788 <sup>Y</sup>                                                                                         |
| 477 AL AAC<br>or 477<br>(compact) * | #2 Cu.                                                                                            | Yellow                                             | S15S                                             | 9387498                                                                                                                           |                                                                                                              |
| 477<br>(compact) *                  | #4/0 Cu.                                                                                          | Yellow                                             | S15T                                             | 9315234                                                                                                                           |                                                                                                              |
| 477 AL AAC                          | #4/0 Cu.                                                                                          | Yellow                                             | S15U                                             | 9387500                                                                                                                           |                                                                                                              |
| 477<br>(compact)*                   | 477 (compact)*                                                                                    | Yellow                                             | S15V                                             | 9387555                                                                                                                           |                                                                                                              |
| 477 AL AAC                          | 477 AL AAC                                                                                        | Yellow                                             | S15W                                             | 9387504                                                                                                                           |                                                                                                              |
| 477 AL AAC                          | 477 (compact)*                                                                                    | Yellow                                             | S15X                                             | 9387503                                                                                                                           |                                                                                                              |

<sup>\*\* =</sup> Can also be used for 4/0 to 4/0 connections

<sup>\* =</sup> Spacer Cable

|       |                 | MATERIAL DESCRIPTION              |     |
|-------|-----------------|-----------------------------------|-----|
| ISSUE | PAGE NUMBER     |                                   | SMI |
| 7/19  | 22 - S15CB-S15X | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |

### **COVER - FIRED-ON WEDGE**

Black polyethylene snap-on insulating covers for fired-on wedge tap connectors.



| DESCRIPTION                                      | STD ITEM | SAP ITEM ID          | PS ITEM ID           |
|--------------------------------------------------|----------|----------------------|----------------------|
| For all Red and Blue coded taps.                 | S15W     | 9312082 <sup>Y</sup> | 3507280 <sup>Y</sup> |
| For yellow coded taps sized 336.4 – 556.5 kcmil. | S15Y     | 9312065 <sup>Y</sup> | 3507279 <sup>Y</sup> |
| For yellow coded taps sized 795 – 1033.5 kcmil.  | S15Z     | 9308146              | 9201786              |

### **COVER – SPACER CABLE**

For spacer cable, cold shrink. Including silicone grease applicator. For applications on all installations except 1/0 15KV . THIS COVER IS NO LONGER AVAILABLE FROM THE MANUFACTURER. USE GELWRAP C61 OR C62 OR HAND TAPE PER 16.4.60 B.

| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| S16      | 9306467     | 5106039    |

### **COVER - SECONDARY SERVICE NEUTRAL**

For maintenance only, this cover is use for secondary service neutral.



| STD ITEM | SAP ITEM ID          | PS ITEM ID |
|----------|----------------------|------------|
| S16N     | 9393251 <sup>E</sup> |            |

### **CONNECTOR – FIRED-ON WEDGE TAP, COPPER**

Powder actuated (shoot-on) two-piece removable compression tap service connector. Copper body, for copper-to-copper connection. Compound filled and individually packaged.



| CONDU  | CONDUCTOR RANGE |                        |      | SAP ITEM ID          | PS ITEM ID           |
|--------|-----------------|------------------------|------|----------------------|----------------------|
| RUN    | TAP             | SHELL<br>COLOR<br>CODE | S17R | 9314168 <sup>Y</sup> | 0810926 <sup>Y</sup> |
| 500 Cu | 4/0 Cu          | Blue                   |      |                      |                      |
| 4/0 CU | 4/0 CU          | Blue                   | S17S | 9389969 <sup>Y</sup> |                      |
| 2/0 CU | 2/0 CU          | Blue                   | S17T | 9389957 <sup>Y</sup> |                      |

| MATERIAL DESCRIPTION |                       |                  |       |  |  |
|----------------------|-----------------------|------------------|-------|--|--|
|                      | OVERHEAD              | PAGE NUMBER      | ISSUE |  |  |
| ppl                  | CONSTRUCTION STANDARD | 22 – S15W – S17T | 7/20  |  |  |

### SPLICE, AUTOMATIC - Cu, CCW, OR CW MESSENGER

Full-tension for Cu, CCW or CW messenger, copper body.



Copper

| CONDUCTOR                 | STD ITEM | SAP ITEM ID | PS ITEM ID |
|---------------------------|----------|-------------|------------|
| #6 Sol. Cu.               | S19A     | 9311550     | 3506305    |
| #4 Sol. Cu.               | S19B     | 9311549     | 3506306    |
| #2 - #3 Sol., #3 Str.     | S19BB    | 9313260     | 5968403    |
| 1/0 Sol., #1 Str., 3A CCW |          | 9313259     | 5968405    |
| 2 Str. Cu., 4A CCW        | S19C     | 9311548     | 3506307    |
| 2/0 Str. Cu.              | S19D     | 9311547     | 3506308    |
| 4/0 Str. Cu.              | S19E     | 9311554     | 3506309    |
| 6A CCW., #4 Str. Cu.      | S19G     | 9311640     | 3506333    |
| 1/0 Str. Cu.              | S19I     | 9311564     | 3506319    |

### **SPLICE, AUTOMATIC - AI OR ACSR CONDUCTORS**

Full-tension for stranded aluminum or ACSR conductors. Aluminum body pre-filled (inhibitor loaded) and capped. Color coded end guides included for easy identification. ANSI C119.4; Class A, Class 1.

| LENGTH                               | COLOR<br>CODE                                  | CONDUCTOR        | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|--------------------------------------|------------------------------------------------|------------------|-------------|----------------|---------------|
| 12" – 14"                            | Orange /<br>Red                                | •                |             | 9314903        | 0810500       |
| 16"                                  | Yellow                                         | 1/0 ACSR         | S19K        | 9311566        | 3506321       |
|                                      | 1/0 - 3/4,<br>1/0 - 4/3 AWAC<br>(Spacer Cable) |                  | S19L        | 9313755        | 5969624       |
| -                                    | #2/0 - #3/0 SAL &<br>ACSR                      |                  | S19N        | 9312560        | 3507324       |
| 16" Pink / 4/0 ACSR, AAC, Black AAAC |                                                | S19S             | 9312756     | 5968612        |               |
| 18" Green 336.4 SAL & AC             |                                                | 336.4 SAL & ACSR | S19M        | 9311642        | 3506323       |
| 21.64"                               | Aqua                                           | 477.0 ECA        | S19T        | 9313284        | 5968606       |

Aluminum & ACSR

| IOOLIE | DA 05 11111050 |                      |
|--------|----------------|----------------------|
|        |                | MATERIAL DESCRIPTION |

| SSUE | PAGE NUMBER | 7/16 | 22 - \$19A-\$19T |





### SPLICE, AUTOMATIC - STEEL AND ALUMOWELD GUY STRAND

Full-tension splice for steel and alumoweld guy strand. Aluminum body pre-filled and individually packaged.



Steel and Alumoweld

| GUY STRAND                                 | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------------------------|-------------|-------------|------------|
| ⁵‰" 6M Galvanized steel                    | S19P        | 9314616     | 0810876    |
| %" 10M Galvanized steel or 12.5M Alumoweld | S19Q        | 9314615     | 0810877    |
| 7∕ <sub>16</sub> " (16M) G.S. or CW        | S19R        | 9311641     | 3506324    |

<u>NOTE</u>: Do not use "Automatic" connectors for non-tension applications.

# **SPLICE, AUTOMATIC - MESSENGER**

For spacer cable and copper aerial cable messenger applications.



| CONDUCTOR      | STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------------|----------|-------------|------------|
| 3/8 CW, 7 Str. | S19U     | 9313288     | 5968510    |
| ½ CW, 7 Str.   | S19V     | 9313287     | 5968515    |

### SPLICE, STANDARD COMPRESSION

One piece, full-tension splice connectors for <u>ACSR conductors and AAAC conductors</u>. Seamless aluminum with center stop, pre-filled and capped. ANSI C119.4; Class A, Class 1.



|                              |               |          | STD   |                      |                      |
|------------------------------|---------------|----------|-------|----------------------|----------------------|
| CONDUCTOR                    | LENGTH        | DIE      | ITEM  | SAP ITEM ID          | PS ITEM ID           |
| #4 ACSR (6/1 & 7/1)          | 12"           | BG, 243  | S20B  | 9316664              | 2014307              |
| #2 ACSR (6/1)                | 101/4"-121/4" | BG, 243  | S20C1 | 9316639 <sup>Y</sup> | 2014329 <sup>Y</sup> |
| #2 ACSR to #1/0 ACSR         | 13"           | 167, 702 | S20D1 | 9316638 <sup>Y</sup> | 2014330 <sup>Y</sup> |
| 1/0 ACSR (6/1), AAAC<br>6201 | 13"-14¾"      | 167, 702 | S20D2 | 9316636              | 2014332              |
| 1/0 AWG, 2/5 AWAC            | 151⁄8"        | 679, 726 | S20D3 | 9313754 <sup>E</sup> | 5969625 <sup>E</sup> |
| 2/0 AWAC (5/2)               | 15"           | 679, 726 | S20E  | 9316635 <sup>Y</sup> | 2014337 <sup>Y</sup> |
| 4/0 ACSR, 6201, ECA          |               | 12A, 13A | S20H  | 9313752              | 5969705              |
| 336.4 ACSR (18/1)            | 19"           | 655      | S20G  | 9316637 <sup>Y</sup> | 2014331 <sup>Y</sup> |

| MATERIAL DESCRIPTION |                       |                  |       |  |  |
|----------------------|-----------------------|------------------|-------|--|--|
|                      | OVERHEAD              | PAGE NUMBER      | ISSUE |  |  |
| ppl                  | CONSTRUCTION STANDARD | 22 - S19P - S20G | 7/16  |  |  |

# SPLICE, STANDARD COMPRESSION

Two piece, full-tension splice connectors for **ACSR conductors**.



|                     |        |          | STD   |                      |                      |
|---------------------|--------|----------|-------|----------------------|----------------------|
| CONDUCTOR           | LENGTH | DIE      | ITEM  | SAP ITEM ID          | PS ITEM ID           |
| 336.4 ACSR (26/7)   |        | 08 CD-60 | S20R1 | 9315286              | 0803393              |
| 477.0 ACSR (26/7)   |        | 10 CD-60 | S20R2 | 9312853              | 5969010              |
| 795.0 ACSR (54/7)   |        | 12 CD-60 | S20R3 | 9312759 <sup>E</sup> | 5969165 <sup>E</sup> |
| 1113.0 ACSR (54/19) |        | 14 CD-60 | S20R4 | 9315760 <sup>E</sup> | 3506596 <sup>E</sup> |

### **SPLICE, STANDARD COMPRESSION**

One piece, full-tension splice connectors for <u>aluminum conductors</u>. Seamless aluminum with center stop, pre-filled and capped. ANSI C119.4; Class A, Class 1.



| CONDUCTOR                   | LENGTH         | DIE                     | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------------------------|----------------|-------------------------|-------------|----------------------|----------------------|
| #4 Sol. Aluminum            | 23/4"          | 162/P, P                | S21C1       | 9315979 <sup>Y</sup> | 3506569 <sup>Y</sup> |
| 3/0 AWG, 6201, 7 Str.       |                | (658) or 1LA            | S21D        | 9313012 <sup>E</sup> | 5969420 <sup>E</sup> |
| 4/0 7 or 19 Str. AAC        | 81/4" - 101/2" | 249                     | S21A        | 9311468              | 3506505              |
| 336.4 19 Str ACSR.          |                | 13A                     | S21E        | 9315874              | 5968967              |
| 336.4 19 Str. AAC           | 10"            | 321                     | S21B1       | 9313674              | 3506570              |
| 394.5, 6201, 19 Str<br>AAC. |                | (642),13A               | S21F        | 9313771 <sup>E</sup> | 5969807 <sup>E</sup> |
| 636.0, 37 Str.AAC           |                | (125H) or 125,<br>10 CD | S21G        | 9312839              | 5968973              |
| 795.0, 37 Str.AAC           |                | (140H) or 140,<br>11 CD | S21H        | 9312838              | 5968975              |
| 900.0, 37 Str. AAC          |                | (150H) or 150,<br>12 CD | S21J        | 9312837 <sup>E</sup> | 5968977 <sup>E</sup> |
| 1113.0, 61 Str. AAC         |                | 13 CD                   | S21K        | 9312836 <sup>E</sup> | 5968980 <sup>E</sup> |
| 477 19str. AAC              |                |                         | S21L        | 9311473              | 3506472              |
| 556.4 19str. AAC            |                | 261, U261               | S21M        | 9315766              | 3506575              |

| <br> | _                    |
|------|----------------------|
|      | MATERIAL DESCRIPTION |
|      |                      |

| ISSUE | PAGE NUMBER     |
|-------|-----------------|
| 7/19  | 22 - S20R1-S21M |





### **SPLICE, STANDARD COMPRESSION**

One piece, partial-tension service drop splice connectors for <u>aluminum or ACSR conductors</u>. Seamless aluminum with center stop, pre-filled and capped. ANSI C119.4; Class A, Class 2.



| CONDUCTOR                                        | LENGTH | DIE          | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|--------------------------------------------------|--------|--------------|-------------|----------------------|----------------------|
| #4 Str. Alum. or ACSR                            | 41/8"  | BG           | S22H        | 9313772              | 5969825              |
| #4 Str. Alum. or ACSR to #2<br>Str. AAAC Reducer | 41/4"  | BG, 243      | S22G        | 9314413              | 0811137              |
| #2 AAAC AI or ACSR                               | 5"     | BG, 243, 239 | S22F        | 9311470              | 3506490              |
| #1/0 ACSR (6/1)                                  | 61/4"  | 247, 702     | S22F1       | 9311498 <sup>Y</sup> | 3506527 <sup>Y</sup> |
| 336.4 Alum. or ACSR (18/1)                       | 51/4"  | 655          | S22E        | 9315849 <sup>Y</sup> | 3506807 <sup>Y</sup> |

# **SPLICE, STANDARD COMPRESSION**

One piece, full-tension splice connectors for **Copper and CCW conductors**. Seamless copper with center conductor stop.



|                   |                                    |          | STD   |                      |                      |
|-------------------|------------------------------------|----------|-------|----------------------|----------------------|
| CONDUCTOR         | LENGTH                             | DIE      | ITEM  | SAP ITEM ID          | PS ITEM ID           |
| #8 Solid Cu.      | 2" – 21/2"                         | 161/J, J | S23A  | 9316694 <sup>Y</sup> | 2014149 <sup>Y</sup> |
| #6 Solid Cu.      | 21/4"                              | 161/J, J | S23B  | 9316657 <sup>Y</sup> | 2014688 <sup>Y</sup> |
| #4 Solid Cu.      | 23/4"                              | 162/P, P | S23C1 | 9315873              | 3506572              |
| #4 Stranded Cu.   | 23/4"                              | 162/P, P | S23E1 | 9315872 <sup>Y</sup> | 3506573 <sup>Y</sup> |
| #2 Stranded Cu.   | 3" – 4"                            | 163/X, X | S23F  | 9311471              | 3506517              |
| #6A CCW (2/1)     | 5½"                                | 162/P, P | S23G1 | 9315789 <sup>Y</sup> | 3506574 <sup>Y</sup> |
| #4A CCW (2/1)     | $5\frac{3}{4}$ " $-6\frac{3}{4}$ " | 163/X, X | S23H  | 9311499 <sup>Y</sup> | 3506525 <sup>Y</sup> |
| #1/0 Stranded Cu. | 53/8" - 71/4"                      | 165      | S23K  | 9311481              | 3506518              |
| #2/0 Stranded Cu. | 6" - 71/4"                         | 166      | S23L  | 9312464              | 3506389              |
| #3/0 Stranded Cu. | 7"                                 | 167      | S23M  | 9311482 <sup>Y</sup> | 3506519 <sup>Y</sup> |
| #4/0 Stranded Cu. | 7"                                 | 168      | S23N  | 9312463              | 3506390              |

| MATI | ERIAL | DESCRI | PTION |
|------|-------|--------|-------|
|      |       |        |       |



| PAGE NUMBER    | ISSUE |
|----------------|-------|
| 22 – S22H-S23N | 7/17  |

### SPLICE, STANDARD COMPRESSION

One piece non-tension loop splice connectors for **copper conductors**. Seamless cooper with center conductor stop.



| CONDUCTOR     | LENGTH     | DIE | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|---------------|------------|-----|-------------|----------------------|----------------------|
| #2/0 Str. Cu. | 33/8" – 4" | 166 | S24E        | 9311483 <sup>Y</sup> | 3506520 <sup>Y</sup> |
| #4/0 Str. Cu. | 31/8" – 6" | 168 | S24G        | 9311500 <sup>Y</sup> | 3506522 <sup>Y</sup> |

### **SPLICE, STANDARD COMPRESSION**

One piece non-tension loop splices for <u>aluminum conductors</u>. Seamless aluminum with center stop, prefilled and capped. ANSI C119.4, class A, class 3. For secondary phase conductors.



| CONDUCTOR    | LENGTH   | DIE     | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------|----------|---------|-------------|-------------|------------|
| #2 Str. Al   | 2½" – 3" | 0, BG   | S26C        | 9311725     | 2015200    |
| #1/0 Str. Al | 2½" – 3" | 243, BG | S26D        | 9311724     | 2015201    |

### SPLICE, JUMPER LOOP, NON-TENSION



One piece non-tension loop splices for ACSR and AAC conductors. Seamless aluminum with center stop, prefilled and capped. ANSI C119.4, class A, class 3.

| CONDUC        |              |      |          |             |            |
|---------------|--------------|------|----------|-------------|------------|
| ACSR          | ACSR AAC     |      | STD ITEM | SAP ITEM ID | PS ITEM ID |
| 336.4         | 336.4 - 350  | 13A  | S26E     | 9312767     | 5969140    |
| 397.5         | 397.5 - 477  | 14A  | S26F     | 9312765     | 5969143    |
| 477           | 500 - 556.6  | 15A  | S26G     | 9312766     | 5969142    |
| 556.6         | 600 - 650    | 722  | S26H     | 9312761     | 5969149    |
| 666.6         | 700 - 800    | 724  | S26I     | 9312764     | 5969144    |
| 715.5 - 874.5 | 874.5 - 1000 | 725  | S26J     | 9312763     | 5969146    |
| 954 - 1272    | 1192 - 1300  | 14CD | S26K     | 9312762     | 5969147    |
| 1510.5 - 1590 | 1700 - 1800  | 16CD | S26L     | 9313006     | 5969065    |
| 2167 - 2312   | 2250 - 2300  | 19CD | S26M     | 9312760     | 5969151    |

|     |                        | MATERIAL DESCRIPTION |                                   |       |  |  |  |  |  |
|-----|------------------------|----------------------|-----------------------------------|-------|--|--|--|--|--|
|     | ISSUE                  | PAGE NUMBER          |                                   | SMIZZ |  |  |  |  |  |
| Bus | <b>7/16</b> siness Use | 22 - S24E-S26M       | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |  |  |  |  |  |

# **CONNECTOR – TERMINAL PLUG**

Aluminum or tinned copper compression connector with a solid, smooth, tinned copper 6" plug 46 kV and below. Aluminum connectors shall be compound filled and capped. ANSI C119.4, Class A, Class 2 min.



|               |                                 |                   |          | CRIMPING TOOL / DIE / # OF CRIMPS |       |       |           |              |                       |             |                      |                      |
|---------------|---------------------------------|-------------------|----------|-----------------------------------|-------|-------|-----------|--------------|-----------------------|-------------|----------------------|----------------------|
|               |                                 |                   |          | MD6                               |       | Y34A  | Y34<br>PR | Y35 O        | R Y39                 |             |                      |                      |
| CABLE<br>SIZE |                                 | D. (In.)          | L. (In.) | DIE                               | #/CR. | NEST  | INDENT    | DIE          | #/CR.                 | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|               | #2                              | .312              | 8        | W162                              | 4     | A2CD  | 1         | U2CRT        | 2                     | S27A        | 9313409 <sup>Y</sup> | 2015373 <sup>Y</sup> |
| С             | #4/0                            | .460              | 8.7      |                                   |       | A28D  | 1         | U28RT        | 2                     | S27B        | 9313408 <sup>Y</sup> | 2015375 <sup>Y</sup> |
| O<br>P        | 500                             | .750              | 9.6      |                                   |       | A34D  | 1         | U34RT        | 4                     | S27C        | 9311801 <sup>Y</sup> | 2015376 <sup>Y</sup> |
| Р             | 500*                            | .38               | 9.6      |                                   |       | A34D  | 1         | U34RT        | 4                     | S27C1       | 9313639 <sup>Y</sup> | 2015385 <sup>Y</sup> |
| E<br>R        | * For u                         | se with           | 200A     | cutouts a                         | nd b  | elow. |           |              |                       |             |                      |                      |
|               | #2                              | .312<br>-<br>.324 | 8.7      | W243                              | 3     | A243  | 3         | U243         | 2                     | S27F        | 9313642              | 2015382              |
|               | #1/0<br>Al. or<br>ACSR          | .312<br>-<br>.364 | 9.75     | BG<br>WBG                         | 8     |       |           | UBG          | 4                     | S27H        | 9311799              | 2015380              |
| A<br>L<br>U   | 336.4<br>- 350<br>Al or<br>ACSR | .460<br>-<br>.562 | 10.4     |                                   |       |       |           | U655         | 3                     | S27J        | 9311798 <sup>Y</sup> | 2015381 <sup>Y</sup> |
| M             | 500                             | .562              | 11       |                                   |       |       |           | U34A<br>RT   | 4                     | S27K        | 9313641 <sup>Y</sup> | 2015383 <sup>Y</sup> |
| N<br>U<br>M   | 750                             | .87               | 11       |                                   |       |       |           | U608<br>U786 | 6<br>5                | S27L1       | 9308422 <sup>Y</sup> | 9202019 <sup>Y</sup> |
|               | 750                             | .750              | 12       |                                   |       |       |           | U39A<br>RT   | 4<br>DO<br>NOT<br>USE | S27L        | 9313640 <sup>Y</sup> | 2015384 <sup>Y</sup> |

### NOTES:

- 1.) In **Y45** tool use Y35 die with "S" adapter (Burndy Cat. No. PT-6515).
- 2.) In Y46 tool use Y35 die with "P" adapter (Burndy Cat. No. P-UADP).

|       | MATERIAL DESCRIPTION              |                |       |
|-------|-----------------------------------|----------------|-------|
| SMIZZ |                                   | PAGE NUMBER    | ISSUE |
| ppl   | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – S27A-S27L | 7/14  |

Y35 TOOL

### SPLICE, COPPER AUTOMATIC REDUCING

Full tension copper automatic reducing connector for copper conductors. Splice provides full strength of the weaker of the two conductors and a resistance lower than the equivalent conductor.

|     | CONDUCTOR                     |                               | STD   |                      |                      |
|-----|-------------------------------|-------------------------------|-------|----------------------|----------------------|
|     | LARGE END                     | SMALL END                     | ITEM  | SAP ITEM ID          | PS ITEM ID           |
|     | #4 solid, #6 strand, #8A      | #6 solid, #8 strand           | S28A  | 9313256              | 5968415              |
|     | #2 solid, #3 strand           | #6 solid, #8 strand           | S28B  | 9313255              | 5968420              |
|     | #2 solid, #3-#4 strand        | #4 solid, #6 strand           | S28C  | 9313254              | 5968425              |
|     | #1 solid, #2 strand           | #2 solid, #3 strand           | S28C1 | 9308134 <sup>E</sup> | 9201781 <sup>E</sup> |
| 100 | 1/0 solid, #1 strand          | #2-#3 solid, #3<br>strand     | S28D  | 9313253              | 5968440              |
|     | 2/0 solid, 1/0 strand,<br>#2A | 1/0 solid, #1 strand, 3A      | S28E  | 9313252              | 5968460              |
|     | 3/0 solid, 2/0 strand         | #2 solid, #3 strand           | S28F  | 9313269              | 5968465              |
|     | 3/0 solid, 2/0 strand         | 1/0 solid, #1 strand          | S28G  | 9313290              | 5968475              |
|     | 3/0 solid, 2/0 strand         | 2/0 solid, 1/0<br>strand, #2A | S28H  | 9313272              | 5968480              |
|     | 4/0 strand                    | 3/0 solid, 2/0 strand         | S28J  | 9313289              | 5968490              |

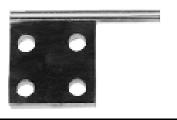
### SPLICE, ALUMINUM AUTOMATIC REDUCING

Full tension automatic aluminum reducing splice for aluminum conductors. Splice provides full strength of the weaker of the two conductors and a resistance lower than the equivalent conductor.

|        | CONDUCTOR  |              | STD ITEM |                      |                      |
|--------|------------|--------------|----------|----------------------|----------------------|
| -      | LARGE END  | SMALL END    | SIDIIEM  | SAP ITEM ID          | PS ITEM ID           |
|        | 477 Strand | 336.4 Strand | S28K     | 9303020 <sup>E</sup> | 5968608 <sup>E</sup> |
| 150.01 | 1/0        | #2 - #4      | S28K1    | 9314337              | 0810147              |

### SPLICE, ALUMINUM COMPRESSION REDUCING

Non-tension aluminum compression reducing connector for aluminum conductors. These connectors are used to splice spacer cable.




| CONDUCTOR |           | STD ITEM |                      |                      |
|-----------|-----------|----------|----------------------|----------------------|
| LARGE END | SMALL END | SIDIIEM  | SAP ITEM ID          | PS ITEM ID           |
| 4/0 AL    | 477.0 AL  | S28L     | 9312754 <sup>E</sup> | 5968620 <sup>E</sup> |
| 477.0 AL  | 336.4 AL  | S28M     | 9313010 <sup>E</sup> | 5969470 <sup>E</sup> |
| 556.5 AL  | 477.0 AL  | S28N     | 9390879 <sup>E</sup> | N/A                  |

|    |                    |                | MATERIAL DESCRIPTION              |       |
|----|--------------------|----------------|-----------------------------------|-------|
|    | ISSUE              | PAGE NUMBER    |                                   | W1772 |
| Bu | 7/19<br>siness Use | 22 – S28A-S28N | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |

### **CONNECTOR, TERMINAL, FLAG STYLE**

Tinned copper stud connector for hot line or grounding clamp connection at riser switch terminals. 1 3/4" standard NEMA hole spacing.



| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| S30B     | 9313877     | 3504018    |

Ampacity of 4/0 Cu. Is 360A @ 75° C, 405A @ 90° C.

### STAPLES, GALVANIZED STEEL

Galvanized, rolled diamond-point staples for wood poles. Per latest ANSI C135.14.



| APPLICATION            | LENGTH | INSIDE<br>WIDTH | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|------------------------|--------|-----------------|-------------|-------------|------------|
| Anti-Theft             |        | 3/8"            | S33A1       | 9388968     | N/A        |
| Ground Wire            | 13/4"  | 3/8"            | S33A        | 9313388     | 3503451    |
| Ground Wire<br>Molding | 2"     | 5/8"            | S33B        | 9314525     | 0811201    |
| 1" Conduit             | 3"     | 11/16"          | S33C        | 9313387     | 3503453    |

### KIT, GROUNDING ACCESSORIES - FOR FIBERGLASS POLES AND CROSSARMS

Includes 40 black nylon cable hangers (0.375 inch diameter), 10 black nylon cable hangers (0.75 inch diameter), and 50 1-inch #10 hex head mounting screws.

| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| S34      | 9306205     | 9201848    |

| MATERIA | AL DESCRIP | HON |
|---------|------------|-----|
|---------|------------|-----|



**OVERHEAD CONSTRUCTION STANDARD** 

PAGE NUMBER ISSUE 22 - S30B-S34

### KIT, ARMORED GROUND WIRE

18' of armored #4 AWG soft-drawn copper down ground wire with 4" prefinished ends and 36 cleated tamper resistant staples. For installation on wood poles. Use to replace stolen ground wires on distribution poles or for new ground wires in areas where ground wire theft has been a problem.







| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| S35      | 9387556     | N/A        |

### STRAP, TRANSFORMER NEUTRAL/ARRESTER GROUND

Strap used to ground transformer secondary neutral bushing to the transformer tank. Can also be used to connect a transformer arrester ground to the transformer tank.



| DESCRIPTION                         | STD ITEM | SAP ITEM ID | PS ITEM ID |
|-------------------------------------|----------|-------------|------------|
| 0.04"x1.25'x9", 25/64 & 33/64 Holes | S40      | 9315697     | 9202614    |
| 0.04x1.25x12", two 33/64<br>Holes   | S40B     | 9388936     |            |

### **LINE SENSOR, POWER**

A Medium Voltage Power Sensor that measures both Voltage and Current. It is attached directly to the primary voltage conductors of a Overhead Distribution or SubT lines (maximum 38kV) via a clamping action using a hotstick. Each sensor is capable of wireless communication with a paired data collector mounted on the utility pole. Collector box requires Radio Modem communications (Use R51C and R51C1) to communicate back to EMS. Units must be calibrated on the line before being put into service.



| DESCRIPTION                                              | STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------------------------------------------------------|----------|-------------|------------|
| Line Power Sensor                                        | SP1      | 9390510     | N/A        |
| Power Sensor Collector<br>Box (Requires R51C &<br>R51C1) | SP1A     | 9390512     | N/A        |

### MATERIAL DESCRIPTION

| ISSUE | PAGE NUMBER   |  |
|-------|---------------|--|
| 7/20  | 22 – S35-SP1A |  |





### **TAPE, GENERAL PURPOSE FRICTION - BLACK**

General purpose black friction tape for cable terminations and splices, consisting of a cotton fabric that has been thoroughly impregnated and evenly coated on both sides with a tacky adhesive insulating compound. ASTM D69.



| DESCRIPTION                                          | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|------------------------------------------------------|-------------|-------------|------------|
| <sup>3</sup> ⁄ <sub>4</sub> " X .015" X 82½'<br>Roll | T1A         | 9316053     | 2005503    |

### **TAPE, SEMICONDUCTING**

High voltage electrical EPR based semi-conducting tape, furnished with a liner. Tape to be continuously imprinted with the word "conducting" or "semi-conducting". Do not use on PILC cables.



| DESCRIPTION            | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|------------------------|-------------|-------------|------------|
| ³¼" X .030" X 15' Roll | T1S         | 9316267     | 2005679    |

### **BRAID, GROUNDING**

Flat tinned copper wire woven braid constructed of 240 strands of #30 AWG wire having a current carrying capacity equivalent to #6 AWG copper wire. To be furnished on labeled spools.



| DESCRIPTION   | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|---------------|-------------|-------------|------------|
| ½" X 15′ Roll | T1T5        | 9316288     | 2005681    |

MATERIAL DESCRIPTION



OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 – T1A-T1T5 7/13

### **TAPE, VINYL PLASTIC**

General purpose electrical insulating tape consisting of a black elastomeric backing made from vinyl chloride plastic coated on one side with a pressure sensitive adhesive. Tape to be in accordance with the current A.S.T.M. Specification D 3005.



| DESCRIPTION              | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------|-------------|-------------|------------|
| 3/4" X .0085" X 66' Roll | T2W1        | 9316070     | 2005620    |
| 1½" X .0085" X 66' Roll  | T2W2        | 9314120     | 0810652    |

### **TAPE, INSULATING**

High voltage ozone, U.V. and weather resistant EPR rubber insulating electrical tape. Self-amalgamating, black.



| LINER | DESCRIPTION             | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------|-------------------------|-------------|-------------|------------|
| None  | 1" X 0.030" X 30' Roll  | T5B         | 9316047     | 2005547    |
| None  | 1½" X 0.030" X 30' Roll | T5B6        | 9316067     | 2005656    |

### **TAPE, PLASTIC SEALER**

Plastic sealer compound tape, grey in color; furnished with a liner.



| DESCRIPTION           | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------------------|-------------|----------------------|----------------------|
| 4" X .125" X 10' Roll | T5D4        | 9316052 <sup>Y</sup> | 2005515 <sup>Y</sup> |

### TAPE, ELECTRICAL FILLER

Moldable - Scotchfil



| DESCRIPTION             | STD ITEM | SAP ITEM ID          | PS ITEM ID           |
|-------------------------|----------|----------------------|----------------------|
| 1.5" X .125" X 60" Roll | T5E      | 9310669 <sup>E</sup> | 5487015 <sup>E</sup> |

### MATERIAL DESCRIPTION

| ISSUE | PAGE NUMBER   |
|-------|---------------|
| 7/13  | 22 – T2W1-T5E |





### **TAPE, SILICONE RUBBER**

High voltage, weather and tracking resistant, non-contaminating, self-cleaning, terminating electrical tape. Light grey, non-adhesive self-amalgamating.



| DESCRIPTION           | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-----------------------|-------------|-------------|------------|
| 1" X .020" X 30' Roll | T5S1        | 9316069     | 2005621    |

#### MOUNT, TRANSFORMER PLATFORM

Two-pole, assembled aluminum platform mount for mounting three 333 and 500kVA stepdown transformers and regulators weighing 2000 lbs. to 4500 lbs. each. Attaches with four 3/4" machine bolts (two in each pole). Includes tie down clips.



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| Т6          | 9314028     | 3012522    |

### BRACKET, TRANSFORMER OR REGULATOR TWO PIECE STEEL

Two piece steel bracket 24" and 36" lug spacing for ANSI C57.12.20 type B and modified type C support lugs. For 250kVA transformers and 167kVA regulators. Two piece set includes (6)  $\frac{3}{4}$ " x 2" equipment mounting bolts. NOTE: Adapter plates (T10) are used to adapt/modify type C lugs on large transformers for single-bolt mounting.

Larger diameter poles may require additional band segments and so an additional steel bracket assembly may be needed.



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| T9AS        | 9314025     | 3012556    |

### MATERIAL DESCRIPTION



| PAGE NUMBER    | ISSUE |
|----------------|-------|
| 22 - T5S1-T9AS | 7/13  |

### **MOUNTS, TRANSFORMER CLUSTER - 3 PHASE**

Heavy duty galvanized cluster mount brackets for banking transformers.

| DESCRIPTION                                                                                                                                                                                | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------|
| SMALL Cluster For up to 3 x 25kVA, 500 lbs. per position. Includes (6) 5/8" x 2" equipment mounting bolts. * Use two 5/8" thru bolts & 2-1/4" square washers.                              | T9C         | 9313179     | 5989815    |
| MEDIUM Cluster For 3 x 37.5kVA to 3 x 100kVA, 2000 lbs. per position. Includes (6) 5%" x 2" & (6) 3/4" x 2" equipment mounting bolts.  ** Use three 3/4" thru bolts** & 3" curved washers. | T9D         | 9313178     | 5989820    |
| LARGE Cluster For 3 x 167kVA to 3 x 333kVA, 3000 lbs. per position. Includes (6) 3/4" x 2" equipment mounting bolts.                                                                       | T9E         | 9313177     | 5989825    |
| **Use three 3/4" thru bolts & 3" curved washers.  * Pole drilling - two 11/16" holes spaced                                                                                                | 12"         |             |            |



# PLATES, TRANSFORMER ADAPTER - ONE PAIR

Heavy galvanized steel adapter plates for modifying ANSI Type C equipment lugs (i.e. transformers over 167KVA). Each plate is 4½" X 16" X ½" with a 3" 'offset'. Includes (2) %" equipment mounting bolts. Approximately 22 lbs. per pair.



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| T10         | 9314026     | 3012553    |

### WRAP, SPIRAL

Black PE outdoor spiral wrapping. To tie triplex conductor at ends and secondary breaks. ½" O.D.,50' roll.



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| T15         | 9315739     | 3506738    |

| MATERIAL DESCRIPTION |
|----------------------|
|                      |

| ISSUE | PAGE NUMBER         |
|-------|---------------------|
| 09/05 | 22 <b>–</b> T9C-T15 |





Pole drilling - two 11/16" holes spaced 12

<sup>\*\*</sup> Pole drilling - three 13/16" holes spaced 12"

# **GUARD, ANIMAL - ELECTROSTATIC**

Formerly the Guthrie Guard, without center nubs trimmed, one person operation

| <br>STD ITEM | SAP ITEM ID | PS ITEM ID |
|--------------|-------------|------------|
| T21          | 9308137     | 9201775    |

### **GUARD, ANIMAL - BUSHINGS**

Primary bushing animal guards / covers for overhead line equipment. Light grey polypropylene, or equivalent, UV resistant, (1) piece hinged bushing covers retrofit to insulate energized bushings from animal contact. Install over the top bushing skirt.



| DESCRIPTION                                                                        | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|------------------------------------------------------------------------------------|-------------|-------------|------------|
| Hotstick application for<br>transformer/terminator<br>bushings                     | T22A        | 9314091     | 0810616    |
| Full profile for most<br>transformers and #2 - 4/0<br>terminators                  | T22B        | 9314474     | 0811154    |
| Full profile for recloser/regulator and pot-<br>head bushings.                     | T22C        | 9314397     | 0811157    |
| Short profile for arrester/capacitor bushings                                      | T22D        | 9314398     | 0811156    |
| Full profile.                                                                      | T22E        | 9314514     | 0811165    |
| Full profile, can be applied<br>easily with hotstick or<br>shotgun. Spring-loaded. | T22F        | 9307868     | 9202268    |
| Hotstick adapter for T22F                                                          | T22F1       | 9307813     | 9202281    |



OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 – T21-T22F1 7/13

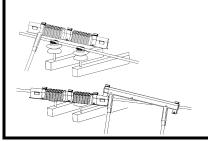
### **GUARD, ANIMAL – LINE POST SENSOR**

For installation on line post sensors. Covers are hot-stickable and snap onto the conductor.



| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| T22M     | 9394100     | N/A        |

### **GUARD, ANIMAL - STINGER COVERS**


Stinger covers protect against phase to phase and phase to ground animal contacts. Can be installed without disconnecting leads/taps.



| INSIDE<br>DIAMETER<br>(INCHES) | DIMENSION<br>(FEET) | FLASHOVER<br>TEST<br>VOLTAGE | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|--------------------------------|---------------------|------------------------------|-------------|----------------|---------------|
| <sup>3</sup> / <sub>8</sub>    | 50 coil             | 13 kV                        | T23A        | 9314476        | 0811218       |
| <sup>5</sup> / <sub>8</sub>    | 12 coil             | 18 kV                        | T23B        | 9314892        | 0811219       |
| 3/4                            | 12 coil             | 20.5 kV                      | T23C        | 9314468        | 0811220       |

# PROTECTOR, WILDLIFE

Protective cover for insulators and conductors - fits conductors #2 to 795 kcmil. Both items can be installed using a hotstick. 35kV maximum.



| DESCRIPTION                    | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------------|-------------|-------------|------------|
| Fits over pin type insulators. | T40         | 9308366     | 9201765    |
| Fits over conductors.          | T43         | 9308367     | 9201767    |

### **GUARD, ANIMAL - POLYMER CUTOUTS**

For installation on polymer cutouts, light grey polypropylene or equivalent, UV resistant, includes (1) 5½ inch snap fit pin and (1) 3½ inch snap fit pin, hotstickable.



| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| T45      | 9306197     | 9201856    |

### MATERIAL DESCRIPTION

| ISSUE | PAGE NUMBER   |
|-------|---------------|
| 7/21  | 22 – T22M-T45 |



# TRANSFORMER, SINGLE - PHASE POLE TYPE

Oil filled overhead conventional transformers for primary distribution circuits per NG MS2523 (Physical Data Codes beginning with "10") & MS2526 - Stainless Steel tanks (Physical Data Codes beginning with "11).

| PHYSICAL DATA<br>CODE  | PRIMARY VOLTAGE                                  | SECONDARY  | KVA | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID<br>(see Note) |
|------------------------|--------------------------------------------------|------------|-----|-------------|----------------------|--------------------------|
|                        |                                                  |            | 10  |             | 9301141              | 0110103                  |
|                        |                                                  |            | 25  | 1           | 9300853              | 0125103                  |
| 10-109-10-00-00        | 2400 / 4160Y                                     | 120 / 240  | 50  | T91AA       | 9301186              | 0150103                  |
| (OH-PRI-SEC-TAPS-FUSE) |                                                  |            | 75  | 1           | 9301215              | 0175103                  |
|                        |                                                  |            | 100 | 1           | 9301201              | 0176103                  |
| 10-109-10-22-00        | 2400/4160Y Taps 2-<br>2½ % above, 2-2½%<br>below | 120/240    | 250 | T91AA1      | 9300722 <sup>E</sup> | 5411130 <sup>E</sup>     |
|                        | 0.400 / 4400)/                                   |            | 50  |             | 9301189 <sup>Y</sup> | 0150185 <sup>Y</sup>     |
| 10-109-33-22-00        | 2400 / 4160Y<br>Taps 2-2½% above,                | 277 / 480Y | 75  | T91AB       | 9301223 <sup>Y</sup> | 0175185 <sup>Y</sup>     |
| 10-109-33-22-00        | 2-21/2% below                                    | 211 / 4001 | 100 | ISIAD       | 9301202 <sup>Y</sup> | 0176185 <sup>Y</sup>     |
|                        | 2-2/2/0 Delow                                    |            | 167 | 1           | 9300898 <sup>Y</sup> | 0178185 <sup>Y</sup>     |
|                        | 2400 / 4160Y                                     |            | 25  |             | 9300529 <sup>E</sup> | 5417164 <sup>E</sup>     |
| 10-258-10-00-00        | X                                                | 120 / 240  | 50  | T91AC       | 9300530 <sup>E</sup> | 5417166 <sup>E</sup>     |
|                        | 7200 / 12470Y                                    |            | 100 | 1           | 9300531 <sup>E</sup> | 5417170 <sup>E</sup>     |
|                        |                                                  |            | 10  |             | 9301142              | 0110501                  |
|                        |                                                  |            | 25  | 1           | 9301161              | 0125501                  |
|                        | 2400 / 4160Y                                     |            | 50  | 1           | 9301104              | 0150501                  |
| 10-259-10-00-00        | X                                                | 120 / 240  | 75  | T91AD       | 9301218 <sup>Y</sup> | 0175501 <sup>Y</sup>     |
|                        | 7620 / 13200Y                                    |            | 100 |             | 9300856              | 0176501                  |
|                        |                                                  |            | 167 |             | 9300903 <sup>Y</sup> | 0178501 <sup>Y</sup>     |
|                        |                                                  |            | 25  |             | 9301095              | 0125552                  |
|                        | 2400 / 4160Y<br>X<br>7620 / 13200Y               | 277 / 480Y |     | T91AE       |                      |                          |
|                        |                                                  |            | 50  |             | 9301119              | 0150552                  |
| 10-259-33-00-00        |                                                  |            | 75  |             | 9301205 <sup>Y</sup> | 0175552 <sup>Y</sup>     |
|                        |                                                  |            | 100 |             | 9300940 <sup>Y</sup> | 0176552 <sup>Y</sup>     |
|                        |                                                  |            | 167 |             | 9301012 <sup>Y</sup> | 0178552 <sup>Y</sup>     |
|                        |                                                  |            | 333 |             | 9300844 <sup>Y</sup> | 0184552 <sup>Y</sup>     |
|                        |                                                  |            | 10  |             | 9300799 <sup>E</sup> | 5417500 <sup>E</sup>     |
|                        | 2400 / 4160Y                                     |            | 25  |             | 9300535 <sup>E</sup> | 5417520 <sup>E</sup>     |
| 10-260-10-00-00        | X                                                | 120 / 240  | 50  | T91AF       | 9300536 <sup>E</sup> | 5417530 <sup>E</sup>     |
| 10 200 10 00 00        | 7970 / 13800Y                                    | 120 / 240  | 100 |             | 9300537 <sup>E</sup> | 5417540 <sup>E</sup>     |
|                        | 10.07 100001                                     |            | 167 |             | 9300774 <sup>E</sup> | 5417543 <sup>E</sup>     |
|                        |                                                  |            | 250 |             | 9300747 <sup>E</sup> | 5417545 <sup>E</sup>     |
|                        | 1100 0 - 1 / 0100                                |            | 10  |             | 9300600 <sup>E</sup> | 5418010 <sup>E</sup>     |
| 10-315-10-00-00        | 4160 GrdY / 2400<br>X                            | 120 / 240  | 25  | T91AG       | 9300601 <sup>E</sup> | 5418030 <sup>E</sup>     |
| 10-313-10-00-00        | 12470 GrdY / 7200                                | 120 / 240  | 50  | ISIAG       | 9300602 <sup>E</sup> | 5418040 <sup>E</sup>     |
|                        | 12470 Glu 1 / 7200                               |            | 100 | 1           | 9300603              | 5418050                  |
|                        |                                                  |            | 10  |             | 9300606 <sup>E</sup> | 5418100 <sup>E</sup>     |
| 40.040.40.00.00        | 4160 GrdY / 2400                                 | 100 / 040  | 25  | T04411      | 9300617              | 5418120                  |
| 10-316-10-00-00        | X                                                | 120 / 240  | 50  | T91AH       | 9300572              | 5418130                  |
|                        | 13200 GrdY / 7620                                |            | 100 | 1           | 9300573 <sup>E</sup> | 5418140 <sup>E</sup>     |
|                        |                                                  |            | 10  |             | 9300778 <sup>E</sup> | 5418270 <sup>E</sup>     |
|                        | 4160 GrdY / 2400                                 |            | 25  | 1           | 9300574 <sup>E</sup> | 5418290 <sup>E</sup>     |
| 10-317-10-00-00        | X                                                | 120 / 240  | 50  | T91AJ       | 9300575 <sup>E</sup> | 5418300 <sup>E</sup>     |
|                        | 13800 GrdY / 7970                                |            | 100 | 1           | 9300375 <sup>E</sup> | 5418320 <sup>E</sup>     |
| 11-317-10-00-00        | 4160 GrdY/2400<br>X                              | 120/240    | 25  | T91AJS      | 9300369 <sup>E</sup> | 9201577 <sup>E</sup>     |
| [Stainless Steel]      | 13800 GrdY/7970                                  |            | 50  |             | 9300373 <sup>E</sup> | 9201580 <sup>E</sup>     |
|                        | 3740 GrdY / 2160                                 |            | 10  |             | 9300596 <sup>E</sup> | 5417970 <sup>E</sup>     |
| 10-310-10-00-00        | X                                                | 120/240    | 25  | T91AK       | 9300597 <sup>E</sup> | 5417990 <sup>E</sup>     |
| 10-310-10-00-00        | 13200 GrdY / 7620                                | 120/270    |     | TETAK       | 9300598 <sup>E</sup> | 5418000 <sup>E</sup>     |
|                        | 10200 0101 / 7020                                |            | 50  |             | 9300098°             | 3416UUU <sup>-</sup>     |

|     | MATERIAL DESCRIPTION |             |
|-----|----------------------|-------------|
| WW. |                      | PAGE NUMBER |
|     | OVERHEAD             |             |

**CONSTRUCTION STANDARD** 

ISSUE

7/13

22 - T21-T22F1

© 2022 PPL Corporation. All rights reserved.

# TRANSFORMER, SINGLE - PHASE POLE TYPE (CONTINUED)

Oil filled overhead conventional transformers for primary distribution circuits per NG MS2523 (Physical Data Codes beginning with "10") & MS2526 - Stainless Steel tanks (Physical Data Codes beginning with "11).

|                                                            | ginning with "                                           | 10") & MS2526          | <u> </u>                           | inless Steel tanks | s (Physical Data Code                                                                        | es beginning with "11).                                                                                 |
|------------------------------------------------------------|----------------------------------------------------------|------------------------|------------------------------------|--------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| PHYSICAL<br>DATA<br>CODE                                   | PRIMARY<br>VOLTAGE                                       | SECONDARY              | KVA                                | STD ITEM           | SAP ITEM ID                                                                                  | PS ITEM ID (see<br>Note)                                                                                |
| 10-310-33-<br>00-00                                        | 3740 GrdY /<br>2160 X<br>13200 GrdY /<br>7620            | 277 / 480              | 50                                 | T91AL              | 9300599 <sup>E</sup>                                                                         | 5418005 <sup>E</sup>                                                                                    |
| 10-273-10-<br>00-00                                        | 4800 / 8320Y<br>X<br>7620 /<br>13200Y                    | 120 / 240              | 10<br>25<br>50<br>75<br>100        | T91BA              | 9301143<br>9301160<br>9301185<br>9301219<br>9301232                                          | 0110504<br>0125504<br>0150504<br>0175504<br>0176504                                                     |
| 10-273-33-                                                 | 4800 / 8320Y<br>X                                        | 277 / 480Y             | 167<br>25<br>50<br>75              | T91BB              | 9301232<br>9300904 <sup>Y</sup><br>9301094 <sup>Y</sup><br>9301123<br>9301194 <sup>Y</sup>   | 0178504 <sup>Y</sup><br>0125553 <sup>Y</sup><br>0150553<br>0175553 <sup>Y</sup>                         |
| 10-275-10-                                                 | 7620 /<br>13200Y<br>4800 / 8320Y<br>X                    | 2777 4001              | 100<br>167<br>10                   |                    | 9300941 <sup>Y</sup><br>9301011 <sup>Y</sup><br>9300695 <sup>E</sup><br>9300568 <sup>E</sup> | 0176553 <sup>Y</sup><br>0178553 <sup>Y</sup><br>5417830 <sup>E</sup><br>5417850 <sup>E</sup>            |
| 00-00<br>(OH-PRI-SEC-<br>TAPS-FUSE)<br>10-118-10-<br>00-00 | 7970 /<br>13800Y<br>7200 /<br>12470Y                     | 120 / 240<br>120 / 240 | 25<br>50<br>25<br>50               | T91BC<br>T91CA     | 9300595 <sup>E</sup><br>9300546 <sup>E</sup><br>9300668 <sup>E</sup>                         | 5417850°<br>5417860°<br>5412640°<br>5412650°                                                            |
|                                                            | 127701                                                   |                        | 250                                | 75<br>100<br>167   | 9300694 <sup>E</sup><br>9300547 <sup>E</sup><br>9300657 <sup>E</sup><br>9300684 <sup>E</sup> | 5412630<br>5412695 <sup>E</sup><br>5412658 <sup>E</sup><br>5412660 <sup>E</sup><br>5412663 <sup>E</sup> |
| 10-165-10-<br>00-00                                        | 12470GrdY /<br>7200                                      | 120 / 240              | 10<br>25<br>50                     | T91CB              | 9300464<br>9300565<br>9300555                                                                | 5415980<br>5416000<br>5416010                                                                           |
| 11-165-10-<br>00-00<br>[Stainless<br>Steel]                | 12470GrdY /<br>7200                                      | 120 / 240              | 50<br>50                           | T91CBS             | 9300370 <sup>E</sup><br>9300371 <sup>E</sup>                                                 | 9201578 <sup>E</sup><br>9201579 <sup>E</sup>                                                            |
| 10-165-33-<br>00-00                                        | 12470 GrdY /<br>7200                                     | 277 / 480Y             | 25<br>50<br>100<br>167             | T91CBA             | 9300463 <sup>E</sup><br>9300518 <sup>E</sup><br>9300462 <sup>E</sup><br>9300449 <sup>E</sup> | 5416031 <sup>E</sup><br>5416032 <sup>E</sup><br>5416033 <sup>E</sup><br>5416040 <sup>E</sup>            |
| 10-119-10-<br>00-00                                        | 7620 /<br>13200Y                                         | 120 / 240              | 10<br>25<br>50<br>75<br>100<br>167 | T91DA              | 9301145<br>9301131<br>9300854<br>9301206<br>9300938<br>9300908 <sup>Y</sup>                  | 0110515<br>0125515<br>0150515<br>0175515<br>0176515<br>0178515 <sup>Y</sup>                             |
| 10-119-10-<br>14-00                                        | 7620 / 13200<br>Taps 4 @<br>2½% below                    | 120 / 240              | 10<br>25<br>50                     | T91DB              | 9301173 <sup>Y</sup><br>9301096 <sup>Y</sup><br>9301118 <sup>Y</sup>                         | 0110544 <sup>Y</sup><br>0125544 <sup>Y</sup><br>0150544 <sup>Y</sup>                                    |
| 10-119-23-<br>22-00                                        | 7620/13200Y<br>Taps 2-2½%<br>above, 2-<br>2½% below      | 292 x 584              | 50<br>100<br>167<br>500            | T91DB1             | 9300203 <sup>E</sup><br>9300691 <sup>E</sup><br>9300688 <sup>E</sup><br>9300687 <sup>E</sup> | 5413565 <sup>E</sup><br>5413470 <sup>E</sup><br>5413480 <sup>E</sup><br>5413482 <sup>E</sup>            |
| 10-119-33-<br>22-00                                        | 7620 /<br>13200Y<br>Taps 2-2½%<br>above, 2-<br>2½% below | 277 / 480Y             | 50<br>75<br>100<br>167             | T91DC              | 9301126 <sup>Y</sup><br>9301187 <sup>Y</sup><br>9300942 <sup>Y</sup><br>9300955 <sup>Y</sup> | 0150554 <sup>Y</sup><br>0175554 <sup>Y</sup><br>0176554 <sup>Y</sup><br>0178554 <sup>Y</sup>            |
| 10-119-12-<br>22-00                                        | 7620 /<br>13200Y<br>Taps 2-2½%<br>above, 2-              | 240/480                | 25<br>500                          | T91DD              | 9300693 <sup>E</sup><br>9300692 <sup>E</sup>                                                 | 5413390 <sup>E</sup><br>5413430 <sup>E</sup>                                                            |

|      | MATERIAL DESCRIPTION |              |                                |       |  |  |
|------|----------------------|--------------|--------------------------------|-------|--|--|
|      | ISSUE                | PAGE NUMBER  |                                | SMIZZ |  |  |
|      | 7/17                 | 22 – T91AL - | OVERHEAD CONSTRUCTION STANDARD | nnl   |  |  |
| Busi | ness Use             | T91DE        | CONSTRUCTION STANDARD          | bbi   |  |  |

|            | 21/2% below  |           |     |       |                      |                      |
|------------|--------------|-----------|-----|-------|----------------------|----------------------|
|            |              |           | 10  |       | 9301144              | 0110511              |
|            |              |           | 25  |       | 9301159              | 0125511              |
| 10-167-10- | 13200 GrdY / | 120 / 240 | 50  | T91DE | 9301110              | 0150511              |
| 00-00      | 7620         | 120 / 240 | 75  | ISIDE | 9301221              | 0175511              |
|            |              |           | 100 |       | 9300430              | 5416130              |
|            |              |           | 250 |       | 9301006 <sup>Y</sup> | 0182511 <sup>Y</sup> |

# TRANSFORMER, SINGLE - PHASE POLE TYPE (CONTINUED)

Oil filled overhead conventional transformers for primary distribution circuits per NG MS2523 (Physical Data Codes beginning with "10") & MS2526 - Stainless Steel tanks (Physical Data Codes beginning with "11).

| PHYSICAL DATA<br>CODE | PRIMARY VOLTAGE                                   | SECONDARY   | KVA | STD ITEM | SAP ITEM ID          | PS ITEM ID<br>(see Note) |
|-----------------------|---------------------------------------------------|-------------|-----|----------|----------------------|--------------------------|
|                       |                                                   |             | 25  |          | 9300521              | 5416297                  |
| 40 407 00 00 00       | 12200 0 - 1/ / 7020                               | 077 / 400\/ | 50  | TOADEA   | 9300522              | 5416300                  |
| 10-167-33-00-00       | 13200 GrdY / 7620                                 | 277 / 480Y  | 100 | T91DEA   | 9300503              | 5416310                  |
|                       |                                                   |             | 167 | 1        | 9300513              | 5416320                  |
|                       |                                                   |             | 25  |          | 9301170 <sup>Y</sup> | 0125536 <sup>Y</sup>     |
| 10-264-10-00-00       | 4160 / 7200Y X                                    | 120 / 240   | 50  | T91DF    | 9301112 <sup>Y</sup> | 0150536 <sup>Y</sup>     |
|                       | 7620/13200Y                                       |             | 75  | 1        | 9301214 <sup>Y</sup> | 0175536 <sup>Y</sup>     |
|                       |                                                   |             | 15  |          |                      | 5413750 <sup>E</sup>     |
|                       |                                                   |             | 25  | 1        | 9300108 <sup>E</sup> | 5413760 <sup>E</sup>     |
| 10-120-10-00-00       | 7970 / 13800Y                                     | 120 / 240   | 50  | T91EA    | 9300107 <sup>E</sup> | 5413770 <sup>E</sup>     |
|                       |                                                   |             | 100 |          | 9300106 <sup>E</sup> | 5413790 <sup>E</sup>     |
|                       |                                                   |             | 333 |          | 9300178 <sup>E</sup> | 5414043 <sup>E</sup>     |
| 10-120-33-00-00       | 7970/13800Y                                       | 277/480Y    | 500 | T91EA3   | 9300103 <sup>E</sup> | 5414044 <sup>E</sup>     |
|                       | 7970 / 13800Y                                     |             | 25  |          | 9300551 <sup>E</sup> | 5413990 <sup>E</sup>     |
| 10-120-23-22-00       | Taps 2-2½% above,                                 | 292 x 584   | 50  | T91EA4   | 9300552 <sup>E</sup> | 5414000 <sup>E</sup>     |
|                       | 2-21/2% below                                     |             | 100 | 1        | 9300554 <sup>E</sup> | 5414010 <sup>E</sup>     |
| 10-120-14-22-00       | 7970 / 13800Y<br>Taps 2-2½% above,<br>2-2½% below | 292 / 584   | 250 | T91EA5   | 9300026 <sup>E</sup> | 5413939 <sup>E</sup>     |
|                       |                                                   |             | 10  |          | 9300524 <sup>E</sup> | 5416500 <sup>E</sup>     |
|                       | 13800GrdY / 7970                                  | 120 / 240   | 25  | T91EB    | 9300525 <sup>E</sup> | 5416520 <sup>E</sup>     |
| 10-169-10-00-00       |                                                   |             | 50  |          | 9300526 <sup>E</sup> | 5416540 <sup>E</sup>     |
|                       |                                                   |             | 100 |          | 9300500 <sup>E</sup> | 5416550 <sup>E</sup>     |
|                       |                                                   |             | 250 |          | 9300499 <sup>E</sup> | 5416552 <sup>E</sup>     |
|                       |                                                   |             | 25  |          | 9300528 <sup>E</sup> | 5416638 <sup>E</sup>     |
| 10-169-33-00-00       | 13800GrdY / 7970                                  | 277 / 480Y  | 50  | T91EBA   | 9300485 <sup>E</sup> | 5416640 <sup>E</sup>     |
|                       |                                                   | 2,          | 100 |          | 9300484 <sup>E</sup> | 5416650 <sup>E</sup>     |
| 10-010-10-22-00       | 11500<br>Taps 2-2½% above,<br>2-2½% below         | 120 / 240   | 100 | T91EC    | 9300749 <sup>E</sup> | 5410003 <sup>E</sup>     |
| 10-010-23-22-00       | 11500<br>Taps 2-2½% above,<br>2-2½% below         | 292 X 584   | 250 | T91ED    | 9300527 <sup>E</sup> | 5410007 <sup>E</sup>     |
| 10-109-12-00-00       | 2400 / 4160Y                                      | 240 / 480   | 25  | T91EE    | 9300723 <sup>E</sup> | 5411230 <sup>E</sup>     |
| 10 103 12 00 00       |                                                   | 240 / 400   | 50  | TOTEL    | 9300543 <sup>E</sup> | 5411240 <sup>E</sup>     |
|                       | 2400 / 4160Y                                      |             | 25  |          | 9300796 <sup>E</sup> | 5411540 <sup>E</sup>     |
| 10-109-23-22-00       | Taps 2-21/2% above,                               | 292 x 584   | 100 | T91EF    | 9300795 <sup>E</sup> | 5411560 <sup>E</sup>     |
|                       | 2-21/2% below                                     |             | 167 |          | 9300822 <sup>E</sup> | 5411570 <sup>E</sup>     |
| 10-109-33-00-00       | 2400 / 4160Y                                      | 277 / 480Y  | 50  | T91EG    | 9300545              | 5411665                  |
|                       |                                                   |             | 100 |          | 9300821 <sup>E</sup> | 5411670 <sup>E</sup>     |
| 10-114-12-00-00       | 4800 / 8320Y                                      | 240 / 480   | 10  | T91EH    | 9300321              | 5412280                  |
|                       |                                                   |             | 10  | 1        | 9301172 <sup>Y</sup> | 0110643 <sup>Y</sup>     |
| 10-011-10-14-00       | 12000                                             | 120 / 240   | 25  | T91F     | 9301235 <sup>Y</sup> | 0125643 <sup>Y</sup>     |
|                       | Taps 4 - 2½ % below                               |             | 50  | 1        | 9301100 <sup>Y</sup> | 0150643 <sup>Y</sup>     |
|                       | 40000                                             |             | 75  | <b> </b> | 9301200 <sup>Y</sup> | 0175643 <sup>Y</sup>     |
| 10-014-10-14-00       | 13200<br>Taps 4 - 2½ % below                      | 120 / 240   | 25  | T91G     | 9301244 <sup>Y</sup> | 0125743 <sup>Y</sup>     |

# MATERIAL DESCRIPTION

OVERHEAD 22 - T91DEACONSTRUCTION STANDARD T91G3

ISSUE

7/16

|   | 10 121 10 07 00 | 13800/23900Y                                   | 120 / 240 | 25  | T04C0 | 9300049 <sup>E</sup> | 5414675 <sup>E</sup> |
|---|-----------------|------------------------------------------------|-----------|-----|-------|----------------------|----------------------|
| ı | 10-131-10-87-00 | Taps 14400/14100/<br><u>13800</u> /13500/13200 | 120 / 240 | 167 | T91G2 | 9300021 <sup>E</sup> | 5414690 <sup>E</sup> |
|   |                 | 13800/23900Y                                   |           | 250 |       | 9300018 <sup>E</sup> | 5414760 <sup>E</sup> |
|   | 10-131-12-87-00 | Taps 14400/14100/<br><u>13800</u> /13500/13200 | 240 / 480 | 500 | T91G3 | 9300017 <sup>E</sup> | 5414763 <sup>E</sup> |

|      | MATERIAL DESCRIPTION |                                                  |                       |     |  |  |  |  |
|------|----------------------|--------------------------------------------------|-----------------------|-----|--|--|--|--|
|      | ISSUE                | PAGE NUMBER                                      |                       | WHA |  |  |  |  |
|      | 7/21                 | 7/21 22 - T91G4 - OVERHEAD CONSTRUCTION STANDARD |                       |     |  |  |  |  |
| Busi | ness Use             | T91HF                                            | CONCINCOTION STANDARD | bb: |  |  |  |  |

# TRANSFORMER, SINGLE - PHASE POLE TYPE (CONTINUED)

Oil filled overhead conventional transformers for primary distribution circuits per NG MS2523 (Physical Data Codes beginning with "10") & MS2526 - Stainless Steel tanks (Physical Data Codes beginning with "11).

| PHYSICAL<br>DATA CODE | PRIMARY VOLTAGE                                                                         | SECONDARY   | KVA | STD<br>ITEM | SAP ITEM<br>ID                  | PS ITEM ID<br>(see Note) |
|-----------------------|-----------------------------------------------------------------------------------------|-------------|-----|-------------|---------------------------------|--------------------------|
|                       | 13800 / 23900Y                                                                          |             | 333 |             | 9300016 <sup>E</sup>            | 5414835 <sup>E</sup>     |
| 10-131-23-22-00       | Taps 2-2½% above, 2-2½% below                                                           | 292 x 584   | 500 | T91G4       | 9300031 <sup>E</sup>            | 5414840 <sup>E</sup>     |
| 10-131-23-87-00       | 13800/23900Y<br>Taps 14400/14100/<br>13800/13500/13200                                  | 292 x 584   | 25  | T91G5       | 9300332 <sup>E</sup>            | 5414910 <sup>E</sup>     |
| 10-131-12-22-00       | 13800 / 23900Y<br>Taps 2-2½% above, 2-2½%<br>below                                      | 240 / 480   | 167 | T91G6       | 9300020 <sup>E</sup>            | 5414720 <sup>E</sup>     |
| 10-015-10-92-00       | 22900 Taps 24100/23500/ 22900/22300/21700 NON-PRECAP – TRANSMISSION CLASS PROJECTS ONLY | 120 / 240   | 10  | T91GG       | 9390995                         | N/A                      |
|                       |                                                                                         |             | 10  |             | 9300819                         | 5410210                  |
|                       | 22900                                                                                   |             | 25  | _           | 9300517 <sup>E</sup>            | 5410220 <sup>E</sup>     |
| 10-015-10-92-00       | Taps 24100/23500/                                                                       | 120 / 240   | 50  | T91GG       | 9300818                         | 5410212                  |
|                       | <u>22900</u> /22300/21700                                                               |             | 100 | 1           | 9300817 <sup>E</sup>            | 5410230 <sup>E</sup>     |
|                       |                                                                                         |             | 500 | 7           | 9300816 <sup>E</sup>            | 5410233 <sup>E</sup>     |
| 40.045.00.00.00       | 22900 Taps 24100/23500/22900/                                                           | 077 / 400\/ | 50  | T04000      | 9300810 <sup>E</sup>            | 5410324 <sup>E</sup>     |
| 10-015-33-92-00       | 22300/21700                                                                             | 277 / 480Y  | 167 | T91GG2      | 9300809 <sup>E</sup>            | 5410327 <sup>E</sup>     |
| 10-015-23-92-00       | 22900 Taps 24100/23500/ <u>22900</u> /<br>22300/21700                                   | 292 x 584   | 333 | T91GG4      | 9300814 <sup>E</sup>            | 5410263 <sup>E</sup>     |
|                       | 24940GrdY/14400 Taps 14400/                                                             |             | 10  |             | 9300728 <sup>E</sup>            | 5416792 <sup>E</sup>     |
| 10-177-10-84-00       | 13800/13200/                                                                            | 120 / 240   | 25  | T91GJ       | 9300727 <sup>E</sup>            | 5416795 <sup>E</sup>     |
|                       | 12870/12450                                                                             | ,           | 50  |             | 9300726 <sup>E</sup>            | 5416796 <sup>E</sup>     |
| 10-017-10-22-00       | 34400 Taps 2-2½% above, 2-2½% below NON-PRECAP – TRANSMISSION CLASS PROJECTS ONLY       | 120 / 240   | 10  | Т91НА       | 9390285                         | N/A                      |
|                       | 34400                                                                                   |             | 10  |             | 9301166                         | 0110935                  |
| 10-017-10-22-00       | Taps 2-2½% above, 2-2½%                                                                 | 120 / 240   | 25  | T91HA       | 9301238 <sup>Y</sup>            | 0125935 <sup>Y</sup>     |
|                       | below                                                                                   | ,           | 50  | 1           | 9301211 <sup>Y</sup>            | 0150935 <sup>Y</sup>     |
|                       |                                                                                         |             | 25  |             | 9301237                         | 0125922                  |
| 10-180-10-00-00       | 34500 GrdY / 19920                                                                      | 120 / 240   | 50  | T91HC       | 9300539                         | 5416841                  |
| 10 100 10 00 00       | 04000 3/41 / 10020                                                                      | 120,270     | 100 | 1           | 9300339                         | 5416843                  |
|                       |                                                                                         |             | 25  | 1           | 9300723                         | 5416845 <sup>E</sup>     |
| 10-180-33-00-00       | 34500 GrdY / 19920                                                                      | 277 / 480Y  | 50  | T91HD       | 9300724<br>9300734 <sup>E</sup> | 5416848 <sup>E</sup>     |
|                       |                                                                                         |             | 25  | +           | 9300683 <sup>E</sup>            | 5412730 <sup>E</sup>     |
|                       |                                                                                         |             | 50  | 1           | 9300681 <sup>E</sup>            | 5412740 <sup>E</sup>     |
| 10-118-12-00-00       | 7200 / 12470Y                                                                           | 240 / 480   | 100 | T91HE       | 9300680 <sup>E</sup>            | 5412750 <sup>E</sup>     |
| 10 110 12 00 00       | 1200, 124701                                                                            | 270 / 700   | 167 | ┧ '˘'''╚    | 9300679 <sup>E</sup>            | 5412760 <sup>E</sup>     |
|                       |                                                                                         |             | 250 | 1           | 9300079<br>9300415 <sup>E</sup> | 5415678 <sup>E</sup>     |
| 10-133-23-84-00       | 14400 / 24940Y<br>Taps 2-2½% above, 2-2½%<br>below                                      | 292 x 584   | 167 | T91HE1      | 9300416 <sup>E</sup>            | 5415677 <sup>E</sup>     |
| 10-275-12-00-00       | 4800 / 8320Y<br>X<br>7970 / 13800Y                                                      | 240 / 480   | 50  | T91HE3      | 9300663 <sup>E</sup>            | 5417890 <sup>E</sup>     |
|                       | 7000 / 40470                                                                            |             | 25  |             | 9300706 <sup>E</sup>            | 5412800 <sup>E</sup>     |
| 10 110 22 22 22       | 7200 / 12470Y<br>Taps 2-2½% above, 2-2½%                                                | 202 v 504   | 50  | TOTHE       | 9300548 <sup>E</sup>            | 5412810 <sup>E</sup>     |
| 10-118-23-22-00       | below                                                                                   | 292 x 584   | 100 | T91HF       | 9300705 <sup>E</sup>            | 5412820 <sup>E</sup>     |
|                       | i DEIOW                                                                                 |             |     | _           | 9300549 <sup>E</sup>            | 5412830 <sup>E</sup>     |

# MATERIAL DESCRIPTION



OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 – T91DEAT91G3 7/16

# TRANSFORMER, SINGLE - PHASE POLE TYPE (CONTINUED)

Oil filled overhead conventional transformers for primary distribution circuits per NG MS2523 (Physical Data Codes beginning (Physical Data Codes beginning with "11).

| PHYSICAL DATA<br>CODE |                | PRIMARY VOLTAGE                                 |                                    |                          |             |                                              |                                              |  |  |
|-----------------------|----------------|-------------------------------------------------|------------------------------------|--------------------------|-------------|----------------------------------------------|----------------------------------------------|--|--|
|                       | )-315-33-00-00 | 4160 GrdY / 2400<br>0 X 277                     |                                    | 25<br>7 / 480Y 50 T91HF1 |             | 9300660 <sup>E</sup><br>9300604 <sup>E</sup> | 5418059 <sup>E</sup><br>5418060 <sup>E</sup> |  |  |
|                       | -010 00 00 00  | 12470 GrdY / 7200                               | 2117 100.                          | 100                      | - '`''      | 9300784 <sup>E</sup>                         | 5418070 <sup>E</sup>                         |  |  |
| 7                     |                |                                                 | 160 GrdY / 2400                    | -1                       |             |                                              |                                              |  |  |
| 10-316-33-00-00       |                |                                                 | Χ                                  |                          |             |                                              | 277 / 480Y                                   |  |  |
| !                     | <u> </u>       |                                                 | 200 GrdY / 7620                    |                          |             |                                              |                                              |  |  |
| 10-317-33-00-00       |                | 41                                              | 160 GrdY / 2400<br>X               |                          |             |                                              | 277 / 480Y                                   |  |  |
| 10-317-33-00-00       |                | 13'                                             | 8800 GrdY / 7970                   |                          |             |                                              | 211/4001                                     |  |  |
|                       |                |                                                 | 470 GrdY / 7200                    |                          |             |                                              | +                                            |  |  |
| 10-330-10-00-00       |                |                                                 | Χ                                  |                          |             |                                              | 120 / 240                                    |  |  |
|                       | <u> </u>       |                                                 | 500 GrdY / 19920                   |                          |             |                                              |                                              |  |  |
| 10 004 40 00 00       |                | 137                                             | 200 GrdY / 7620                    |                          |             |                                              | 420 / 240                                    |  |  |
| 10-331-10-00-00       |                | 345                                             | X<br>500 GrdY / 19920              | 1                        |             |                                              | 120 / 240                                    |  |  |
|                       | +              |                                                 | 7620 / 13200Y                      |                          |             |                                              | 100 / 040                                    |  |  |
| 10-119-10-22-00       |                | Taps 2-2½                                       | 2% above, 2-21/2%                  |                          |             |                                              | 120 / 240                                    |  |  |
| 10-165-33-22-00       |                | 124                                             | 470 GrdY / 7200                    |                          |             |                                              | 277 / 480Y                                   |  |  |
| 10-100 00 22 00       | <u> </u>       |                                                 | 2% above, 2-2½%                    | below                    |             |                                              | 211,1001                                     |  |  |
| 10-133-10-22-00       |                | 14400 / 24940Y<br>Taps 2-2½% above, 2-2½% below |                                    |                          |             |                                              |                                              |  |  |
|                       | <del> </del>   |                                                 | ½% above, 2-2½%<br>200 GrdY / 7620 |                          |             |                                              |                                              |  |  |
| 10-167-10-22-00       |                |                                                 | 2% above, 2-21/2%                  |                          |             |                                              | 120 / 240                                    |  |  |
|                       |                |                                                 | 2400 / 4160Y                       |                          |             |                                              |                                              |  |  |
| 10-258-23-22-00       |                |                                                 | X<br>7000 / 40470V                 |                          |             |                                              | 292 x 584                                    |  |  |
| 10 200 20 2 2 2 3 1   |                |                                                 | 7200 / 12470Y<br>% above, 2-2½%    | / halaw                  |             |                                              |                                              |  |  |
|                       | 1              |                                                 | 2% above, 2-2½%<br>2400 / 4160Y    | below                    |             |                                              |                                              |  |  |
| 10-258-33-00-00       |                |                                                 | X                                  |                          |             |                                              | 277 / 480Y                                   |  |  |
|                       |                |                                                 | 7200 / 12470Y                      |                          |             |                                              |                                              |  |  |
|                       |                |                                                 | 2400 / 4160Y                       |                          | <del></del> | <del></del>                                  |                                              |  |  |
| 10-260-07-00-00       |                |                                                 | X<br>7070 / 13800V                 |                          |             |                                              | 600                                          |  |  |
|                       |                |                                                 | 7970 / 13800Y<br>2400 / 4160Y      |                          |             |                                              | _                                            |  |  |
| 10-260-12-00-00       |                | -                                               | X                                  |                          |             |                                              | 240 / 480                                    |  |  |
|                       |                |                                                 | 7970 / 13800Y                      |                          |             |                                              |                                              |  |  |
|                       |                | <del></del>                                     | 2400 / 4160Y                       |                          |             |                                              |                                              |  |  |
| 10-260-12-22-00       |                |                                                 | X<br>7970 / 13800Y                 |                          |             |                                              | 240 / 480                                    |  |  |
| Į.                    |                |                                                 | 7970 / 138001<br>2% above, 2-2½%   | 6 helow                  |             |                                              |                                              |  |  |
|                       |                |                                                 | 2400 / 4160Y                       |                          |             |                                              |                                              |  |  |
| :                     |                | -                                               | X                                  |                          |             |                                              | 200 504                                      |  |  |
| 10-260-23-22-00       |                |                                                 | 7970 / 13800Y<br>½% above, 2-2½%   |                          |             |                                              | 292 x 584                                    |  |  |
|                       |                |                                                 |                                    |                          |             |                                              |                                              |  |  |

# TRANSFORMER, SINGLE - PHASE POLE TYPE (CONTINUED)

|      | MATERIAL DESCRIPTION |                     |                                |       |  |  |
|------|----------------------|---------------------|--------------------------------|-------|--|--|
|      | ISSUE                | PAGE NUMBER         |                                | SMIZZ |  |  |
|      | 7/21                 | 22 <b>–</b> T91G4 - | OVERHEAD CONSTRUCTION STANDARD | nnl   |  |  |
| Busi | ness Use             | T91HF               | CONSTRUCTION STANDARD          | bbi   |  |  |

Oil filled overhead conventional transformers for primary distribution circuits per NG MS2523 (Physical Data Codes beginning with "10") & MS2526 - Stainless Steel tanks (Physical Data Codes beginning with "11").

| PHYSICAL DATA<br>CODE | PRIMARY VOLTAGE    | SECONDARY  | KVA | STD ITEM | SAP ITEM ID          | PS ITEM ID<br>(see Note) |
|-----------------------|--------------------|------------|-----|----------|----------------------|--------------------------|
|                       | 2400 / 4160Y       |            | 25  |          | 9300746 <sup>E</sup> | 5417583 <sup>E</sup>     |
| 10-260-33-00-00       | X                  | 277 / 480Y | 50  | T91HN5   | 9300567 <sup>E</sup> | 5417585 <sup>E</sup>     |
|                       | 7970 / 13800Y      |            | 100 |          | 9300786 <sup>E</sup> | 5417587 <sup>E</sup>     |
|                       | 4160 / 7200Y       |            | 10  |          | 9300650 <sup>E</sup> | 5417645 <sup>E</sup>     |
| 10-265-10-00-00       | X<br>7970 / 13800Y | 120 / 240  | 25  | T91HN6   | 9300649 <sup>E</sup> | 5417646 <sup>E</sup>     |
|                       | 40000 Owl)/ / 7000 | 400 / 040  | 10  | T91HPS   | 9300433 <sup>E</sup> | 5416085 <sup>E</sup>     |
|                       |                    |            | 25  |          | 9300432 <sup>E</sup> | 5416105 <sup>E</sup>     |
| 11-167-10-00-00       |                    |            | 50  |          | 9300431 <sup>E</sup> | 5416125 <sup>E</sup>     |
| [Stainless Steel]     | 13200 GrdY / 7620  | 120 / 240  | 75  | 19102    | 9300409 <sup>E</sup> | 5416128 <sup>E</sup>     |
|                       |                    |            | 100 |          | 9300519 <sup>E</sup> | 5416135 <sup>E</sup>     |
|                       |                    |            | 167 | ]        | 9300520 <sup>E</sup> | 5416142 <sup>E</sup>     |
| 11-169-10-00-00       | 12000 C#dV / 7070  | 120 / 240  | 25  | TOTHOS   | 9300367 <sup>E</sup> | 9201575 <sup>E</sup>     |
| [Stainless Steel]     | 13800 GrdY / 7970  | 120 / 240  | 50  | T91HQS   | 9300368 <sup>E</sup> | 9201576 <sup>E</sup>     |

#### **AUTOTRANSFORMERS, SINGLE-PHASE POLE TYPE**

Oil filled overhead autotransformers for primary distribution circuits per PPL MS2528 (Physical Data Codes beginning with "20").

| PHYSICAL DATA<br>CODE | PRIMARY<br>VOLTAGE       | SECONDARY     | KVA   | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID<br>(see Note) |
|-----------------------|--------------------------|---------------|-------|-------------|----------------------|--------------------------|
| 20-120-38-00-00       | 7970 / 13800Y<br>No Taps | 7620 / 13200Y | 2,500 | T91HR1      | 9300891 <sup>E</sup> | 5421948 <sup>E</sup>     |
|                       |                          |               |       |             |                      |                          |

Note: For transformers, an ITEM ID with an "E" superscript at the end of the number means this transformer is used only in Rhode Island. An ITEM ID with a "Y" superscript at the end of the number means this transformer was formerly used in other jurisdictions outside of Rhode Island and should no longer be used. An ITEM ID with no superscript at the end of the number means this transformer is used throughout the PPL system.

# MATERIAL DESCRIPTION



**OVERHEAD CONSTRUCTION STANDARD** 

PAGE NUMBER ISSUE 22 - T91HF1-**T91HN4** 

# TRANSFORMER, SINGLE PHASE 'STEP-UP / STEP-DOWN' Oil filled pole type conventional ratio transformers for step-up or step-down applications on overhead primary distribution circuits per MS2541. N H O O O D A R Y **PHYSICA** VOLTAGE **PRIMARY VOLTAGE (HV)** STD ITEM L DATA T **PS ITEM ID** CODE L V 2 4 0 9 3 0 10-118-35-00-00 7200 / 12470Y T91J 5412875<sup>E</sup> 6 9 9 E (OH-PRI-SEC-TAPS-FUSE) 6 0 Y 5412880 100 9 5412890 167 6 9 8 9 0 250 5412900 6 7

| MATERIAL DESCRIPTION |                                   |                |       |  |  |  |  |  |
|----------------------|-----------------------------------|----------------|-------|--|--|--|--|--|
| SMIZZ                |                                   | PAGE NUMBER    | ISSUE |  |  |  |  |  |
| ppl                  | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – T91J-T91S | 7/19  |  |  |  |  |  |

| 1 0                             |                |                  |             | 50    |       | 9<br>3<br>0<br>0<br>6<br>7<br>0      | 5412930              |  |
|---------------------------------|----------------|------------------|-------------|-------|-------|--------------------------------------|----------------------|--|
| -<br>1<br>1<br>8<br>-<br>3      |                |                  |             | 500   | T91J1 | 9<br>3<br>0<br>6<br>6<br>9           | 5412965              |  |
| 5<br>-<br>2<br>2<br>2<br>-<br>0 |                |                  |             | 750   | 13101 | 9<br>3<br>0<br>0<br>1<br>0<br>5      | 5412967              |  |
| 0                               |                |                  |             | 1667  |       | 9<br>3<br>0<br>0<br>1<br>0<br>4      | 5412975              |  |
|                                 |                |                  | 1<br>0<br>0 |       |       | 9<br>3<br>0<br>6<br>8<br>6<br>E      | 5413530 <sup>E</sup> |  |
| 10-119-35-                      | 7000 / 40000 / | 2<br>4<br>0<br>0 | 1<br>6<br>7 | T041/ |       | 9<br>3<br>0<br>9<br>9<br>8           | 0178578 <sup>E</sup> |  |
| 00-00                           | 6 0            | 1<br>6           | 2<br>5<br>0 | T91K  |       | 3<br>0<br>0<br>6<br>8<br>5           | 5413542 <sup>E</sup> |  |
|                                 |                |                  | 3 3 3       |       |       | 9<br>3<br>0<br>0<br>1<br>9<br>2<br>E | 5413567 <sup>E</sup> |  |
| 10-116-36-<br>04-00             | 6930 / 12000Y  | 4<br>8<br>0<br>0 | 2<br>5<br>0 | T91KK |       | 9<br>3<br>0<br>0<br>2<br>3           | 9201876              |  |

MATERIAL DESCRIPTION

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 - T91HF1T91HN4 7/18

|                     |               | 8<br>3<br>2<br>0<br>Y      |             |      | 3                                    |                      |
|---------------------|---------------|----------------------------|-------------|------|--------------------------------------|----------------------|
|                     |               |                            | 5           |      | 9<br>3<br>0<br>1<br>1<br>2<br>7      | 0150570Y             |
| 10-119-34-<br>00-00 |               | 4                          | 7<br>5      |      | 9<br>3<br>0<br>0<br>6<br>6<br>Y      | 0175579 <sup>Y</sup> |
|                     | 7620 / 13200Y | 6<br>0<br>/<br>7<br>2<br>0 | 1<br>0<br>0 | T91L | 9<br>3<br>0<br>0<br>9<br>4<br>3<br>Y | 0470570 <sup>Y</sup> |
|                     |               | 0<br>Y                     | 1<br>6<br>7 |      | 9 3 0 0 9 9 9 Y                      | 0470570 <sup>Y</sup> |
|                     |               |                            | 2<br>5<br>0 |      | 9<br>3<br>0<br>0<br>9<br>5<br>3<br>Y | 0182579 <sup>Y</sup> |
|                     |               | 4                          | 5<br>0      |      |                                      | 5413608 <sup>E</sup> |
| 10-119-36-<br>00-00 | 7620 / 13200Y | 8<br>0<br>0<br>/<br>8<br>3 | 1<br>0<br>0 | T91M | 9<br>0<br>0<br>1<br>8<br>9<br>E      | 5413610 <sup>E</sup> |
|                     |               | 8<br>3<br>2<br>0<br>Y      | 1<br>6<br>7 |      | 9<br>3<br>0<br>0<br>1                | 5413620 <sup>E</sup> |

|       |                | MATERIAL DESCRIPTION              |                      |
|-------|----------------|-----------------------------------|----------------------|
| ISSUE | PAGE NUMBER    |                                   | 388 SA SA            |
| 7/19  | 22 – T91T-T91W | OVERHEAD<br>CONSTRUCTION STANDARD | national <b>grid</b> |

| 10-119-44-00-00     | 7620 / 13200Y | 24000 / 41660 Y 48000 / 8320 Y | 50 75 1000 167 250 333<br>500 | T91N | 88   93011111   9301222   9301234   9300907   9301007   9300846   930095 | 0176513<br>0178513<br>0182513 |
|---------------------|---------------|--------------------------------|-------------------------------|------|--------------------------------------------------------------------------|-------------------------------|
| 10-120-35-<br>00-00 | 7970 / 13800Y | 2<br>4<br>0<br>0<br>/          | 5 0                           | T91P | 9 3 0 0 3 3 7                                                            | 9201040 <sup>E</sup>          |

|       | MATERIAL DESCRIPTION              |                        |       |
|-------|-----------------------------------|------------------------|-------|
| SMIZZ |                                   | PAGE NUMBER            | ISSUE |
| ppl   | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – T91HF1-<br>T91HN4 | 7/18  |

© 2022 PPL Corporation. All rights reserved.

Doc. # ST. 22.00.016

|                                                   | 4                               |                                                                                |                                                                                                                         | Е                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   | 1<br>6<br>0<br>Y                | 1<br>0<br>0                                                                    |                                                                                                                         | 9<br>3<br>0<br>1<br>7<br>6<br>E                                                                                                                                                                                                              | 5414060 <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   |                                 | 1<br>6<br>7                                                                    |                                                                                                                         |                                                                                                                                                                                                                                              | 5414070 <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   |                                 | 5 0                                                                            |                                                                                                                         | 9 3 0 0 1 7 5 E                                                                                                                                                                                                                              | 5414120 <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10-120-35-<br>22-00 Taps 2-2½% above, 2-2½% below | 2                               | 1 0 0                                                                          |                                                                                                                         | 9<br>0<br>0<br>1<br>7<br>4<br>E                                                                                                                                                                                                              | 5414130 <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   | 0<br>0<br>/<br>4<br>1<br>6<br>0 | 1<br>6<br>7                                                                    | T91PP                                                                                                                   | 3<br>0<br>1<br>7<br>3<br>E                                                                                                                                                                                                                   | 5414140 <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   | Y                               | 3 3 3                                                                          |                                                                                                                         | 3<br>0<br>1<br>7<br>2<br>E                                                                                                                                                                                                                   | 5414150 <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                   |                                 | 5<br>0<br>0                                                                    |                                                                                                                         | 9<br>0<br>0<br>1<br>7                                                                                                                                                                                                                        | 5414151 <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7970 / 13800Y                                     | 4<br>8<br>0<br>0<br>/<br>8      | 1 0 0                                                                          | T91Q                                                                                                                    | 9<br>0<br>0<br>1<br>9<br>7<br>E                                                                                                                                                                                                              | 5414170 <sup>E</sup> 5414180 <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                   | Taps 2-2½% above, 2-2½% below   | 7970/13800Y<br>Taps 2-2½% above, 2-2½% below 4<br>16<br>00<br>17970 / 13800Y / | 7970/13800Y<br>Taps 2-2½% above, 2-2½% below  7970 / 13800Y   7970/13800Y Taps 2-2½% above, 2-2½% below  7970 / 13800Y   7970/13800Y Taps 2-2½% above, 2-2½% below  7970/13800Y Taps 2-1½% above, 2-2½% abov |

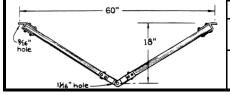
|       | MATERIAL DESCRIPTION |                                   |                      |  |  |  |  |  |  |
|-------|----------------------|-----------------------------------|----------------------|--|--|--|--|--|--|
| ISSUE | PAGE NUMBER          |                                   |                      |  |  |  |  |  |  |
| 7/19  | 22 – T91T-T91W       | OVERHEAD<br>CONSTRUCTION STANDARD | national <b>grid</b> |  |  |  |  |  |  |

|                     |                | 2 6<br>0 7<br>Y                                                                                                                          | 3<br>0<br>0<br>1<br>9<br>6<br>E                                                                                         |
|---------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 10-126-36-<br>04-00 | 12000 / 20785Y | 4<br>8<br>0<br>0<br>0<br>7<br>5<br>5<br>7<br>7<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1 | 9<br>3<br>0<br>0<br>2<br>9201875 <sup>Y</sup><br>3<br>2<br>Y                                                            |
| 10-017-38-<br>00-00 | 34400          | 7<br>6<br>2<br>0<br>/ 5<br>1 0 T91R<br>3 0<br>2<br>0<br>0<br>0<br>Y                                                                      | 9<br>3<br>0<br>1<br>0<br>1<br>0<br>9<br>1<br>1                                                                          |
| 10-140-35-<br>00-00 | 19920/34500Y   | 2<br>4 5<br>0 0<br>0<br>/<br>T91S<br>4<br>1 1<br>6 0<br>0<br>Y                                                                           | 9<br>3<br>0<br>0<br>4<br>5415958 <sup>E</sup><br>8<br>1<br>E<br>9<br>3<br>0<br>0<br>4<br>5415961 <sup>E</sup><br>7<br>9 |
|                     | ·              | 167                                                                                                                                      | 9300470 <sup>E</sup> 5415971 <sup>E</sup> 9300472 <sup>E</sup> 5415968 <sup>E</sup>                                     |
|                     |                | 5 0 0                                                                                                                                    | 9<br>3<br>0<br>0<br>4<br>5415973 <sup>E</sup><br>9<br>4<br>E                                                            |

|   |       | MATERIAL DESCRIPTION  |              |       |
|---|-------|-----------------------|--------------|-------|
|   | SMIZZ |                       | PAGE NUMBER  | ISSUE |
|   | nnl   | OVERHEAD              | 22 - T91HF1- | 7/40  |
| e | phi 🎨 | CONSTRUCTION STANDARD | T91HN4       | 7/18  |

# TRANSFORMER, SINGLE PHASE 'STEP-UP / STEP-DOWN'

Oil filled pole type conventional ratio transformers for step-up or step-down applications on overhead primary distribution circuits per MS2541.




| PHYSICAL DATA<br>CODE | PRIMARY<br>VOLTAGE<br>(HV)                       | SECONDARY<br>VOLTAGE<br>(LV) | KVA | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------------------|--------------------------------------------------|------------------------------|-----|-------------|----------------------|----------------------|
|                       | 13800                                            |                              | 50  |             | 9300730 <sup>E</sup> | 5416699 <sup>E</sup> |
| 40 400 05 00 00       | GRDY/7970<br>Taps 2-2½%<br>above, 2-2½%<br>below | 2400 / 4160Y                 | 250 | T91T        | 9300731 <sup>E</sup> | 5416697 <sup>E</sup> |
| 10-169-35-22-00       |                                                  |                              | 333 |             | 9300172 <sup>E</sup> | 5414150 <sup>E</sup> |
|                       |                                                  |                              | 500 |             | 9300171 <sup>E</sup> | 5414151 <sup>E</sup> |
|                       |                                                  |                              | 75  |             | 9301217              | 0175371              |
| 10-114-35-00-00       | 4800/8320Y                                       | 2400 / 4160Y                 | 167 | T91W        | 9300901              | 0178371              |
|                       |                                                  |                              | 500 |             | 9300949              | 0185371              |

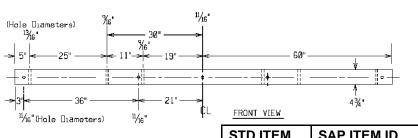
| 19 | ISSUE | PAGE NUMBER    |                                   |                      |
|----|-------|----------------|-----------------------------------|----------------------|
| 7  | 7/19  | 22 – T91T-T91W | OVERHEAD<br>CONSTRUCTION STANDARD | national <b>grid</b> |

#### BRACE, WOOD CROSSARM PAIR

Pentachlorophenol treated wood transmission crossarm braces with galvanized steel end fittings. One pair 'reversible' braces provide 60/72" spread and 18/22" drop.



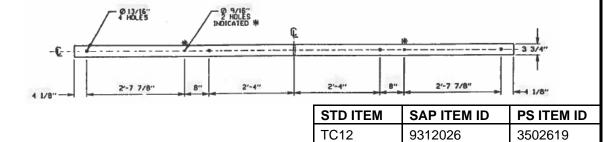
| SPREAD | DROP | STD ITEM | SAP ITEM ID | PS ITEM ID |
|--------|------|----------|-------------|------------|
| 60"    | 18"  | TB60     | 9311873     | 3502879    |
| 72"    | 22"  | TB60E    | 9311783     | 3502685    |


# BRACE, WOOD CROSSARM

Wood X-, with center clamp, 2 3/4" X 3 1/2", 6' - 6" spacing. For distribution supply installations.

| STD ITEM | SAP ITEM ID | PS ITEM ID           |
|----------|-------------|----------------------|
| TB60C    | 9310815     | 5105648 <sup>E</sup> |

#### CROSSARM, 4 PIN HIGH TENSION


3 3/4" X 4 3/4" X 10' Douglas Fir, pentachlorophenol treated per latest MS 2121.



| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| TC10     | 9312031     | 3502602    |

#### CROSSARM, 4 PIN HIGH TENSION

3 3/4" X 4 3/4" X 12' Douglas Fir, pentachlorophenol treated per latest MS 2121.



| MAI | ERIAL | DESCRIP | MOIT |
|-----|-------|---------|------|
|-----|-------|---------|------|



OVERHEAD CONSTRUCTION STANDARD

| PAGE NUMBER    | ISSUE |
|----------------|-------|
| 22 - TB60-TC12 | 7/16  |

#### CROSSARM, ASSEMBLY

Two (2) transmission Douglas Fir crossarms.  $3^5/8$  " x  $7\frac{1}{2}$ " x 18'. Pentachlorophenol treated per PPL E-1099 Spec. All associated mounting and assembly hardware included. For use when constructing an equipment platform.

| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| TC20     | 9312027     | 3502618    |

#### PLATE, GRID

Single curve, spiked one side only. 41/8" x 41/8" with 15/16" diameter hole. Hot dip galvanized, malleable iron.



| STD ITEM | EM SAPITEMID PSITEMI |         |
|----------|----------------------|---------|
| TC22     | 9311891              | 3502248 |

#### **CONNECTOR, GROUND**

Cable to flat grounding connector for #4 solid through #2/0 stranded Cu. conductors to 1/4" thick flat surface. Cast copper body with silicon bronze bolt, nut and lock washer.



| STD<br>ITEM |      | SAP ITEM ID | PS ITEM ID |  |
|-------------|------|-------------|------------|--|
|             | TC27 | 9316301     | 2007822    |  |

#### **CABLE, BARE - PRIMARY LINE WIRE, 15kV**

For employment of 3000lb maximum design tension installations.

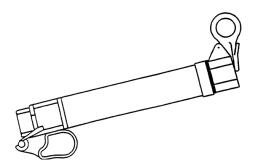
| SIZE        | KIND                                                                           | COVERING       | QUANTITY                              | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|--------------------------------------------------------------------------------|----------------|---------------------------------------|-------------|-------------|------------|
| 336.4 kcmil | Single conductor-<br>18/1 Str. (ACSR)<br>Standard 3 Phase<br>Primary Conductor | Bare<br>MERLIN | 3795' N.R.<br>Reel<br>(365lb/1000ft.) | TC52        | 9315752     | 4035236    |

#### **CLAMP, POST INSULATING**

Clamps for use with both upright and horizontally mounted clamp top line post insulators (I13B, I13D). Clamps are mounted on a metal cap cemented to the top of the line post insulator.



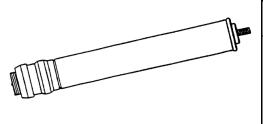
| DESCRIPTION                        | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|------------------------------------|-------------|-------------|------------|
| 0.35" - 0.84" Conductors, aluminum | TC80A       | 9311563     | 3506444    |
| 1.0" - 1.5" Conductors, aluminum   | TC80B       | 9312462     | 3504636    |
|                                    |             |             |            |


| ISSUE | PAGE NUMBER     |
|-------|-----------------|
| 7/16  | 22 – TC20-TC80B |

OVERHEAD CONSTRUCTION STANDARD



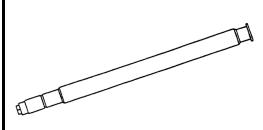
# **POWER FUSE - HOLDER**


S & C type SM-5, outdoor power fuse holder for use with S & C type SM-5 power fuse, item TF3 and S & C type SM-5 power fuse mounting, item TS2.



| CTD         |         |        |      | MAX RATING            |                     |                |                      |
|-------------|---------|--------|------|-----------------------|---------------------|----------------|----------------------|
| STD<br>ITEM | VOLTAGE | BIL    | TYPE | CONTINUOUS<br>CURRENT | INTERRUPT<br>(SYM.) | SAP ITEM<br>ID | PS ITEM ID           |
| TF2A        | 34.5 kV | 200 kV | SM-5 | 300E AMPS             | 17.500              | 9311486        | 2023305 <sup>Y</sup> |

#### **POWER FUSES - SM-5**


S & C type SM-5, 34.5 kV, power fuses for use with S & C type SM-5 power fuse holder, item TF2 and S & C type SM-5 power fuse mounting, item TS2. Units to be standard speed T.C.C. No. 153-4.



| FUSE RATING<br>(AMPERES) | STD ITEM | SAP ITEM ID          | PS ITEM<br>ID        |
|--------------------------|----------|----------------------|----------------------|
| 100E                     | TF3A     | 9315204 <sup>Y</sup> | 0808053 <sup>Y</sup> |
| 125E                     | TF3B     | 9315203 <sup>Y</sup> | 0808054 <sup>Y</sup> |
| 150E                     | TF3C     |                      | 0808055 <sup>Y</sup> |
| 175E                     | TF3D     | 9315202 <sup>Y</sup> | 0808056 <sup>Y</sup> |
| 200E                     | TF3E     | 9315187 <sup>Y</sup> | 0808051 <sup>Y</sup> |
| 250E                     | TF3F     | 9315201 <sup>Y</sup> | 0808057 <sup>Y</sup> |

#### **POWER FUSES - SMD-1A**

S & C type SMD-1A, 46 kV, power fuses for use with S & C vertical mounted power fuse and switch, item TS2P2. Units to be standard speed, T.C.C. number 153-1.



| FUSE RATING (AMPERES) | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------------------|-------------|----------------------|----------------------|
| 100E                  | TF4A        | 9315330 <sup>Y</sup> | 0808410 <sup>Y</sup> |
| 125E                  | TF4B        | 9315312 <sup>Y</sup> | 0808411 <sup>Y</sup> |
| 150E                  | TF4C        | 9315329 <sup>Y</sup> | 0808412 <sup>Y</sup> |
| 175E                  | TF4D        | 9315328 <sup>Y</sup> | 0808413 <sup>Y</sup> |
| 200E                  | TF4E        | 9315327 <sup>Y</sup> | 0808414 <sup>Y</sup> |

| MATERIAL DESCRIPTION |                                   |                |       |  |
|----------------------|-----------------------------------|----------------|-------|--|
| WW.                  |                                   | PAGE NUMBER    | ISSUE |  |
| ppl                  | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – TF2A-TF4E | 7/16  |  |

# **PLATE, GUY EYE**

Ductile iron per ASTM A536, hot dip galvanized per ASTM A153, applicable guy angle shall be 10° – 90° mounting hardware not included. For clevis and pin attachment of guys/strain insulators to pole.

|     | DESCRIPTION                                            | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-----|--------------------------------------------------------|-------------|-------------|------------|
|     | 20,000 lbs. ultimate, 4" and 5" mounting bolt centers. | TG13        | 9313391     | 3503425    |
|     | 36,000 lbs. ultimate, 8" mounting bolt center.         | TG13D       | 9315098     | 0808691    |
|     | 28,000 lbs. ultimate, 4" and 5" mounting bolt centers. | TG14        | 9306920     | 9200396    |
| 020 | 30,000 lb. ultimate. 6" on center.                     | TG15        | 9307178     | 5994090    |
|     | For fiberglass pole guy installations - 12.5M max.     | TG17        | 9306207     | 9201846    |

# **GROUND ROD, COPPER BONDED/COPPER-CLAD (SINGLE)**

5%" X 8' solid ground rod, conically pointed at one end 60°, cut square and chamfered at other end, 75,000 PSI minimal high strength steel core, 10 mils minimal copper plating thickness. Rods shall meet ANSI UL 467 and GR-1 specifications.



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| TG20        | 9313616     | 3503013    |

#### **GRID, 8" X 8" POTENTIAL EQUALIZING**

8" X 8" mesh fabricated of #6 AWG copperweld. 30% conductivity mesh with brazed joints supplied in 6' wide X 100' long rolls.



| STD ITEM | SAP ITEM ID | PS ITEM ID | DESCRIPTION    |
|----------|-------------|------------|----------------|
| TG21     | 9313614     | 3503039    | 6' X 100' Roll |
| TG21A    | 9307626     | 9202952    | 6' X 5'-4" Mat |

| MATERIAL DESCRIPTION |
|----------------------|
|                      |

| ISSUE | PAGE NUMBER      |                                   |                      |
|-------|------------------|-----------------------------------|----------------------|
| 7/16  | 22 -TG13 - TG21A | OVERHEAD<br>CONSTRUCTION STANDARD | national <b>grid</b> |

# **WIRE, GROUNDING LEAD**

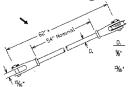
#10-7 strand, copperweld, dead soft, annealed, 40% conductivity, supplied in 100lb coil.

| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| TG30     | 9314222     | 0809871    |

#### WIRE, GROUNDING LEAD

7-strand, 3/8-inch common grade galvanized steel strand, 4,250 lb , 250-foot coils. For Subtransmission down ground applications.

| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| TG30A    | 9306353     | 5998530    |


# **WIRE, GROUNDING LEAD**

7-strand, 3/8-inch EHS, 15,400 lb, Class C galvanized coating per ASTM A363, 5,000-foot wood reel. For Sub-transmission shield wire applications.

| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| TG51D    | 9309833     | 5105907    |

#### **INSULATOR, GUY STRAIN**

Pultruded fiberglass with galvanized ferrous clevis and roller. For use with STD Items TG13 and P54.



| D.                              | CLEVIS<br>PINS | TENSILE<br>STRENGTH<br>(MIN. ULT.) | LENGTH | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|---------------------------------|----------------|------------------------------------|--------|-------------|-------------|------------|
| 5/8"                            | 5∕8" d.        | 15000 lb.                          | 54"    | TI95B       | 9315006     | 3503621    |
| <sup>13</sup> / <sub>16</sub> " | ³⁄₄" d.        | 30000 lb.                          | 54"    | TI95C       | 9313698     | 3503623    |
| <sup>13</sup> / <sub>16</sub> " | ³⁄₄" d.        | 30000 lb.                          | 78"    | TI95D       | 9307240     | 5990864    |

| MATERIAL DESCRIPTION |                                   |                   |      |
|----------------------|-----------------------------------|-------------------|------|
| PAGE NUMBER ISS      |                                   |                   |      |
| national <b>grid</b> | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – TG30 – TI95D | 7/18 |


# **SUB T LIGHTNING ARRESTER (WITH SUSPENSION CAP)**

Intermediate Class Polymer housed MOV Surge Arrester furnished with a four hole NEMA pad line terminal and a loop through ground connector.

|              | STD ITEM | SYS L-L<br>VOLTAGE | DUTY<br>CYCLE | MCOV<br>RATING | SAP ITEM ID          | PS ITEM<br>ID        |
|--------------|----------|--------------------|---------------|----------------|----------------------|----------------------|
| <del>*</del> | TL3N     | 23kV               | 24kVrms       | 19.5kV         | 9315336 <sup>Y</sup> | 0805062 <sup>Y</sup> |
|              | TL3K     | 34.5kV             | 36kVrms       | 29kV           | 9315335 <sup>Y</sup> | 0805071 <sup>Y</sup> |
|              | TL3L     | 46kV               | 48kVrms       | 39kV           | 9315334 <sup>Y</sup> | 0805076 <sup>Y</sup> |

# SUB T CROSSARM MOUNTING BRACKET FOR INTERMEDIATE CLASS SURGE ARRESTER

Single crossarm mounting. Electric clearances must be observed. Maximum arrester size - 48kV MCOV. Pipe spacers included with attachment bolts to clear channel thickness and permit mounting the arrester with bracket in an inverted position. For crossarms 1  $\frac{1}{2}$ " x 4  $\frac{1}{2}$ " MIN., 4" x 6  $\frac{1}{2}$ " MAX.



| STD<br>ITEM | SAP ITEM ID | PS ITEM<br>ID |
|-------------|-------------|---------------|
| TL11        | 9314998     | 0806623       |

#### TIE, PREFORMED

Consists of helix formed aluminum alloy wire element, protected in the center with a sheath of conductive neoprene complete with neoprene pad for use between conductor and insulator for F neck insulators. Use for distribution 336kcmil ACSR 3000lb construction per NESC rule 261F1a



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| TT1B        | 9315812     | 3506719    |

| ISSUE | PAGE NUMBER     |
|-------|-----------------|
| 7/16  | 22 -TL3N - TT1B |





# SUB TRANSMISSION SWITCH, LOADBREAK

Gang-operated load break 200 kV BIL, switch with post insulators, interface shaft, vertical operating rod. (includes 7' FRP insulated section or Cypoxy insulator section), lockable operator handle and NEMA two hole terminal pads. Switch shall comply with latest ANSI STD C37.30 and Specification MS2778 and MS2779. Operating rod extension kits are available for taller pole installations (see below).







| NOMINAL<br>VOLTAGE | CURR<br>ENT | STYLE                             | Rod<br>Extension<br>kit | STD<br>ITEM | SAP ITEM ID          | PS ITEM<br>ID        |
|--------------------|-------------|-----------------------------------|-------------------------|-------------|----------------------|----------------------|
| 25-34.5kV          | 600A        | Horizontal                        | TSKIT15                 | D7F         | 9314410 <sup>E</sup> | 0811140 <sup>E</sup> |
| 25-34.5kV          | 600A        | Horizontal                        | TSKIT15                 | TS6H        | 9315174              | 0807653              |
| 25-34.5kV          | 600A        | Vertical                          | TSKIT125                | TS6V        | 9315252              | 0805307              |
| 25-34.5kV          | 600A        | Phase-over-phase                  | TSKIT125                | TS6P        | 9315298              | 0808314              |
| 46kV               | 600A        | Integer style Horizontal          | TSKIT2                  | TS7K        | 9306245 <sup>Y</sup> | 9201832 <sup>Y</sup> |
| 46kV               | 600A        | Horizontal w/vacuum interrupters  | TSKIT2CP                | TS7H        | 9393417              |                      |
| 34.5kV             | -           | 3P Double Break with Power fuse * | TSKIT15                 | TS2P1       | 9315163 <sup>Y</sup> | 0808191 <sup>Y</sup> |
| 46kV               | -           | 3P Double Break with Power fuse * | TSKIT15                 | TS2P2       | 9315164 <sup>Y</sup> | 0808190 <sup>Y</sup> |

<sup>\*</sup> For fuses, see 22 - TF2A-TF4E.

#### **Pipe Operating Rod Extension Kits**

Consists of 10'- 4" section of galvanized pipe with rod guide or a guide bearing assembly and required hardware for S&C switches.

| Description        | STD ITEM |             |
|--------------------|----------|-------------|
| Description        |          | SAP ITEM ID |
| 1 ¼" Reciprocating | TSKIT125 | 9391228     |
| 1 ½" Torsional     | TSKIT15  | 9391227     |
| 2" Torsional       | TSKIT2   | 9391230     |
|                    |          |             |

#### Pipe Operating Rod Extension Kit for Cleveland Price Switch

Consists of 21'- 2" section of galvanized pipe, pipe coupling and additional guide bracket for Cleveland Price switches.

| Description  | STD ITEM | SAP ITEM ID |
|--------------|----------|-------------|
| 2" Torsional | TSKIT2CP | 9393536     |

# MATERIAL DESCRIPTION

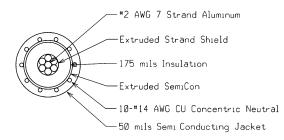


OVERHEAD CONSTRUCTION STANDARD

| PAGE NUMBER   | ISSUE |
|---------------|-------|
| 22 - TSKIT15- | 7/20  |
| TSKIT2CP      | 1120  |

|       |             | MATERIAL DESCRIPTION              |       |
|-------|-------------|-----------------------------------|-------|
| ISSUE | PAGE NUMBER |                                   | SMIZZ |
| 7/18  | 22 –BLANK   | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |

Doc. # ST. 22.00.017


#### CABLE, 600V, COPPER, 1/C

600V, soft drawn copper conductor, standard concentric round or compressed, thermosetting black cross linked polyethylene, for use with 3 phase transformer bank connections.

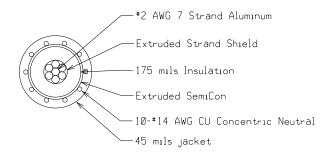
| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| UC5G     | 9302666     | 5949290    |

#### CABLE, 15 kV, ALUMINUM, URD PRIMARY

#2 AWG, single conductor, shielded, solid dielectric, insulated aluminum power cable with concentric neutral wires and semi conducting polyethylene jacket. For URD applications only. Suitable for random lay direct burial installations or for duct installation. Cables shall be in accordance with <a href="National-GridPPL">National-GridPPL</a> specification MS 5013 latest edition.



Max. Reel Size54" W x 70" DPreferred Splice – URD ApplicationUR50Preferred Splice – Duct & Manhole ApplicationUR51APreferred TerminationUR42


| CONDUCTOR |         | O.D.   |        | REEL  |        |        |             |            |
|-----------|---------|--------|--------|-------|--------|--------|-------------|------------|
| SIZE      | PACKAGE | INS.   | JACKET | CKT.  | WEIGHT | STD    | SAP ITEM ID | PS ITEM ID |
| AWG       | PACKAGE | INO.   | JACKET | FT.   | WEIGHT | IIEW   | SAPTIEMID   | PSTIEMID   |
| 2 Al      | 1/C     | 0.695" | 1.015  | 3000' | 1500   | UC11BC | 9313027     | 5948279    |

|              |                   | MATERIAL DESCRIPTION              |                      |       |
|--------------|-------------------|-----------------------------------|----------------------|-------|
|              | SMI               |                                   | PAGE NUMBER          | ISSUE |
| Rusiness I I | appl nationalgrid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC5G-<br>UC11BC | 7/21  |

Formatted: Space Before: 4 pt

#### CABLE, 15 kV, ALUMINUM

#2 AWG, single conductor, shielded, solid dielectric, insulated aluminum power cable with concentric neutral wires and polyethylene jacket. Cables shall be in accordance with National GridPPL specification MS 4168 latest edition.



Max. Reel Size Preferred Splice Preferred Termination 44" W x 72" D UR51A UR42

| CON         | DUCTOR  | C      | ).D.   | REEL        |               |             |             |            |
|-------------|---------|--------|--------|-------------|---------------|-------------|-------------|------------|
| SIZE<br>AWG | PACKAGE | INS.   | JACKET | CKT.<br>FT. | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| 2 Al        | 3-1/C   | 0.695" | 1.015  | 2000'       | 3360          | UC11BJ      | 9315698     | 4026122    |

|   |      |                         |             | MATERIAL DESCRIPTION              |                  |  |
|---|------|-------------------------|-------------|-----------------------------------|------------------|--|
| ١ |      | ISSUE                   | PAGE NUMBER |                                   | SMIZ             |  |
|   | Busi | <b>7/21</b><br>ness Use | 22 – UC11BJ | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |  |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs <sup>2</sup>This CU contains additional items needed for installation per standards

<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

Doc. # ST. 22.00.017

#### CABLE, 15 kV, COPPER

#2 AWG, single conductor, shielded, solid dielectric, insulated copper power cable with concentric neutral wires and polyethylene jacket. Cables shall be in accordance with National GridPPL specification MS 4168 latest edition



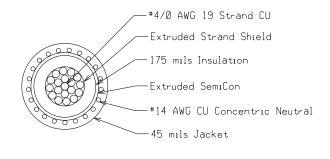
Max. Reel Size
Preferred Splice
Preferred Termination

54" W x 70" D UR51A UR42

| CON  | DUCTOR  | (      | D.D.   | REEL  |        |        |             |            |
|------|---------|--------|--------|-------|--------|--------|-------------|------------|
| SIZE |         |        |        | CKT.  | WEIGHT | STD    |             |            |
| AWG  | PACKAGE | INS.   | JACKET | FT.   | LBS    | ITEM   | SAP ITEM ID | PS ITEM ID |
| 2 Cu | 1/C     | 0.695" | 1.015  | 2000' | 1200   | UC11BK | 9301804     | 5430350    |
| 2 Cu | 3-1/C   | 0.695" | 1.015  | 2000' | 3600   | UC11BL | 9309888     | 5106006    |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

|            |                                    | MATERIAL DESCRIPTION              |                        |       |
|------------|------------------------------------|-----------------------------------|------------------------|-------|
|            | SMI                                |                                   | PAGE NUMBER            | ISSUE |
| Business U | se <b>ppl</b> national <b>grid</b> | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC11BK-<br>UC11BL | 7/21  |


Formatted: Space Before: 4 pt

<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards

<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

#### CABLE, 15 kV, COPPER

#4/0 AWG, single conductor, shielded, solid dielectric, insulated copper power cable with concentric neutral wires and polyethylene jacket. Cables shall be in accordance with <a href="https://dx.doi.org/10.108/national-GridPPL">National-GridPPL</a> specification MS 4168 latest edition

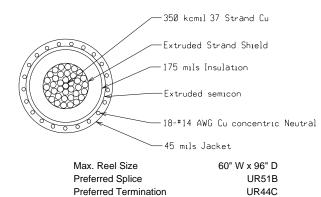


Max. Reel Size Preferred Splice Preferred Termination 54" W x 72" D UR51A UR44C

| CON         | DUCTOR  |       | O.D. REEL |             |               |             |             |            |
|-------------|---------|-------|-----------|-------------|---------------|-------------|-------------|------------|
| SIZE<br>AWG | PACKAGE | INS.  | JACKET    | CKT.<br>FT. | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| 4/0 Cu      | 3-1/C   | 0.92" | 1.24"     | 1500'       | 6750          | UC11E       | 9314217     | 0809935    |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

|      |                         |             | MATERIAL DESCRIPTION              |                  |
|------|-------------------------|-------------|-----------------------------------|------------------|
| 1    | ISSUE                   | PAGE NUMBER |                                   | SMA              |
| Busi | <b>7/21</b><br>ness Use | 22 – UC11E  | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |


<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards

<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

Doc. # ST. 22.00.017

#### CABLE, 15 kV, COPPER

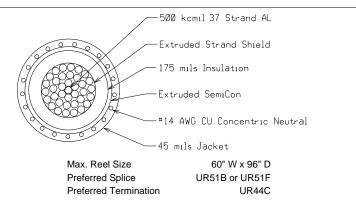
350 kcmil, single conductor, shielded, solid dielectric, insulated copper power cable with concentric neutral wires and polyethylene jacket. Cables shall be in accordance with National GridPPL specification MS 4168 latest edition



| CON           | DUCTOR  | O.D. REEL |        |             |        |             |             |            |
|---------------|---------|-----------|--------|-------------|--------|-------------|-------------|------------|
| SIZE<br>kcmil | PACKAGE | INS.      | JACKET | CKT.<br>FT. | WEIGHT | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| 350           | 3-1/C   | 1.08"     | 1.42"  | 1000'       | 5400   | UC12F       | 9308986     | 5107155    |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

|            |                      | MATERIAL DESCRIPTION              |             |       |
|------------|----------------------|-----------------------------------|-------------|-------|
|            | SMI                  |                                   | PAGE NUMBER | ISSUE |
| Business U | se ppi national grid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC12F  | 7/21  |


Formatted: Space Before: 4 pt

<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards

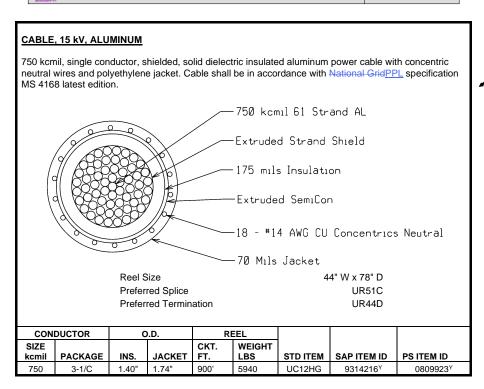
<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

#### CABLE, 15 kV, ALUMINUM

500 kcmil, single conductor, shielded, solid dielectric, insulated aluminum power cable with concentric neutral wires and polyethylene jacket. Cables shall be in accordance with National GridPPL specification MS 4168 latest edition



| CON           | DUCTOR  |       | O.D.   | R           | REEL          |             |             |            |
|---------------|---------|-------|--------|-------------|---------------|-------------|-------------|------------|
| SIZE<br>kcmil | PACKAGE | INS.  | JACKET | CKT.<br>FT. | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| 500           | 3-1/C   | 1.21" | 1.55"  | 1500'       | 6750          | UC12GG      | 9314218     | 0809922    |


<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

|      |                         |             | MATERIAL DESCRIPTION              |                  |
|------|-------------------------|-------------|-----------------------------------|------------------|
|      | ISSUE                   | PAGE NUMBER |                                   | SMIZE            |
| Busi | <b>7/21</b><br>ness Use | 22 – UC12GG | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |

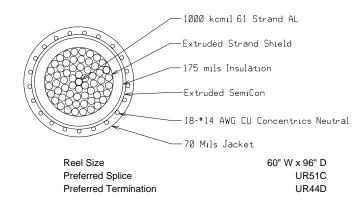
<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards

<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

#### Formatted: Space Before: 4 pt



<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

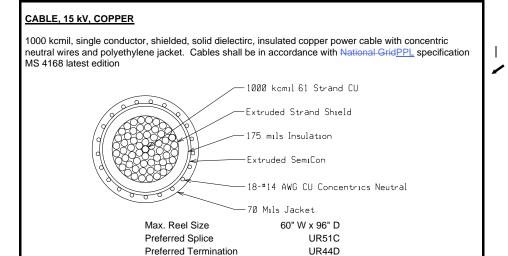

|              |                      | MATERIAL DESCRIPTION              |             |       |
|--------------|----------------------|-----------------------------------|-------------|-------|
| MAS          |                      |                                   | PAGE NUMBER | ISSUE |
| Business Use | national <b>grid</b> | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC12HG | 7/21  |

<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards

<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

#### CABLE, 15 kV, ALUMINUM

1000 kcmil, single conductor, shielded, solid dielectric insulated aluminum power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.




| CON           | DUCTOR  | C      | ).D.   | RI          | EEL           |          |                      |                      |
|---------------|---------|--------|--------|-------------|---------------|----------|----------------------|----------------------|
| SIZE<br>kcmil | PACKAGE | INS.   | JACKET | CKT.<br>FT. | WEIGHT<br>LBS | STD ITEM | SAP ITEM ID          | PS ITEM ID           |
| 1000          | 3-1/C   | 1.545" | 1.98"  | 1000'       | 8100          | UC12TA   | 9308997              | 5107173              |
| 1000          | 1/C     | 1.545" | 1.98"  | 3000'       | 8100          | UC12TB   | 9310595 <sup>E</sup> | 9200995 <sup>E</sup> |

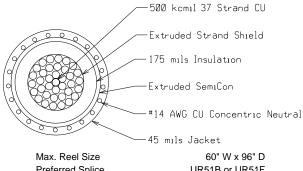
|                                       | MATERIAL DESCRIPTION           |                  |
|---------------------------------------|--------------------------------|------------------|
| 7/21 PAGE NUMBER 22 – UC12TA - UC12TB | OVERHEAD CONSTRUCTION STANDARD | ppl nationalgrid |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs <sup>2</sup>This CU contains additional items needed for installation per standards <sup>3</sup>This item has a CU with labor/material and a CU with material only

#### Formatted: Space Before: 4 pt



| COND          | UCTOR   | 0      | .D.    | RI       | EEL           |             |                      |            |
|---------------|---------|--------|--------|----------|---------------|-------------|----------------------|------------|
| SIZE<br>kcmil | PACKAGE | INS.   | JACKET | Ckt. Ft. | Weight<br>Lbs | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID |
| 1000          | 3-1/C   | 1.545" | 1.98"  | 900'     | 11340         | UC12TC      | 9309012              | 5107262    |
| 1000          | 1-1/C   | 1.545" | 1.98"  | 2700'    | 11340         | UC12TD      | 9389825 <sup>E</sup> | N/A        |


<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

|                               | MATERIAL DESCRIPTION              |                                    |      |
|-------------------------------|-----------------------------------|------------------------------------|------|
| Business Use ppl nationalgrid | OVERHEAD<br>CONSTRUCTION STANDARD | PAGE NUMBER  22 - UC12TC -  UC12TD | 7/21 |

<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards <sup>3</sup>This item has a CU with labor/material and a CU with material only

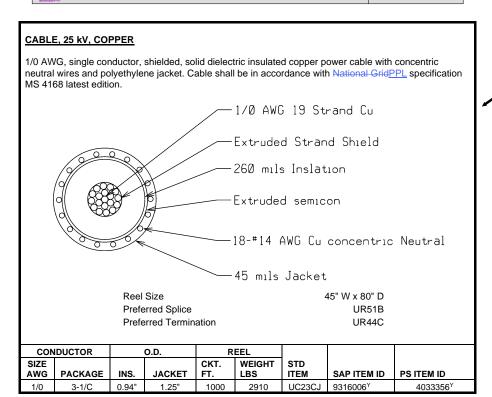
#### CABLE, 15 kV, COPPER

500 kcmil, single conductor, shielded, solid dielectric, insulated copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with <a href="National-GridPPL">National-GridPPL</a> specification MS 4168 latest edition.



Preferred Splice
Preferred Termination

60" W x 96" D UR51B or UR51F UR44C


| CON   | IDUCTOR | •     | O.D.   | RE       | EL     |      |             |            |
|-------|---------|-------|--------|----------|--------|------|-------------|------------|
| SIZE  |         |       |        |          |        | STD  |             |            |
| kcmil | PACKAGE | INS.  | JACKET | CKT. FT. | WEIGHT | ITEM | SAP ITEM ID | PS ITEM ID |
| 500   | 3-1/C   | 1.21" | 1.55"  | 1100     | 9240   | UC17 | 9314186     | 0810376    |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

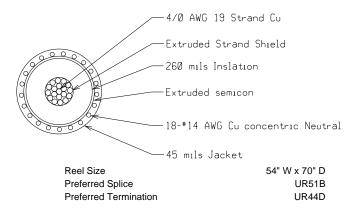
|       |             | MATERIAL DESCRIPTION              |                  |
|-------|-------------|-----------------------------------|------------------|
| ISSUE | PAGE NUMBER |                                   | SMI              |
| 7/21  | 22 – UC17   | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |

<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards

<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only



<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

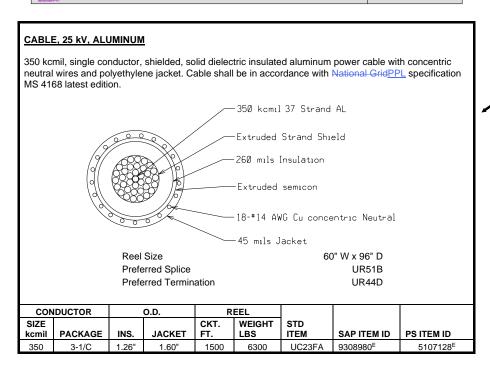

|                               | MATERIAL DESCRIPTION              |             |       |
|-------------------------------|-----------------------------------|-------------|-------|
| SMI                           |                                   | PAGE NUMBER | ISSUE |
| Business Use ppl national gri | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC23CJ | 7/21  |

<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards

<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

#### CABLE, 25 kV, COPPER

4/0 AWG, single conductor, shielded, solid dielectric insulated copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.




| CON         | IDUCTOR |       | O.D.   | R           | EEL    |             |                      |                      |
|-------------|---------|-------|--------|-------------|--------|-------------|----------------------|----------------------|
| SIZE<br>AWG | PACKAGE | INS.  | JACKET | CKT.<br>FT. | WEIGHT | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
| 4/0         | 3-1/C   | 1.09" | 1.43"  | 1000        | 4500   | UC23EC      | 9308996 <sup>E</sup> | 5107164 <sup>E</sup> |

|       | MATERIAL DESCRIPTION |                                   |                  |  |  |  |  |  |
|-------|----------------------|-----------------------------------|------------------|--|--|--|--|--|
| ISSUE | PAGE NUMBER          |                                   | SMIZ             |  |  |  |  |  |
| 7/21  | 22 – UC23EC          | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs <sup>2</sup>This CU contains additional items needed for installation per standards <sup>3</sup>This item has a CU with labor/material and a CU with material only

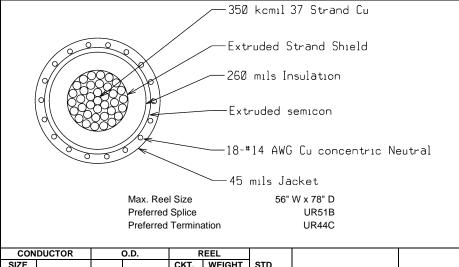
#### Formatted: Space Before: 4 pt



<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

|            | MATERIAL DESCRIPTION |                                   |             |       |  |
|------------|----------------------|-----------------------------------|-------------|-------|--|
|            | SMIZ                 |                                   | PAGE NUMBER | ISSUE |  |
| Business U | se ppi national grid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC23FA | 7/21  |  |

<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards


<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

PS ITEM ID

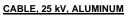
4033357<sup>Y</sup>

#### CABLE, 25 kV, COPPER

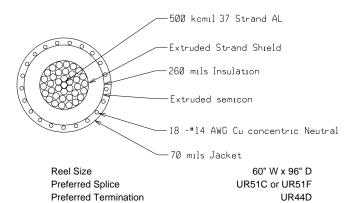
350 kcmil, single conductor, solid dielectric insulated copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition



| SIZE<br>kcmil | PACKAGE | INS.  | JACKET | CKT.<br>FT. | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID          |
|---------------|---------|-------|--------|-------------|---------------|-------------|----------------------|
| 350           | 3-1/C   | 1.26" | 1.58"  | 1000'       | 6600          | UC23FJ      | 9316005 <sup>Y</sup> |
|               |         |       |        |             |               |             |                      |


<sup>1</sup>This Item appears in other CUs

| MATERIAL DESCRIPTION |             |                                   |                  |  |  |  |
|----------------------|-------------|-----------------------------------|------------------|--|--|--|
| ISSUE                | PAGE NUMBER |                                   | SMIZE            |  |  |  |
| 7/21                 | 22 – UC23FJ | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |  |  |  |


<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards

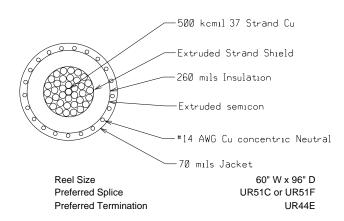
<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

Doc. # ST. 22.00.017



500 kcmil, single conductor, shielded, solid dielectric insulated aluminum power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.




| CON           | DUCTOR  |       | O.D.   | REEL        |        |             |             |            |  |  |
|---------------|---------|-------|--------|-------------|--------|-------------|-------------|------------|--|--|
| SIZE<br>kcmil | PACKAGE | INS.  | JACKET | CKT.<br>FT. | WEIGHT | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |  |  |
| KCIIIII       | PACKAGE | IINO. | JACKET | Г1.         | LDO    | I I ⊏IVI    | SAPITEMID   | POLICINID  |  |  |
| 500           | 2 1/0   | 1 20" | 1 705" | 1000        | E400   | LICOSCA     | 020000F     | 5107199F   |  |  |

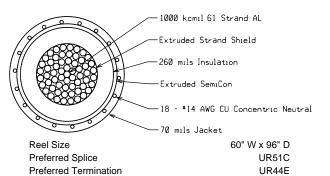
|            |                      | MATERIAL DESCRIPTION              |             |       |
|------------|----------------------|-----------------------------------|-------------|-------|
|            | SMI                  |                                   | PAGE NUMBER | ISSUE |
| Business U | se ppl national grid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC23GA | 7/21  |

Formatted: Space Before: 4 pt

#### CABLE, 25 kV, COPPER

500 kcmil, single conductor, shielded, solid dielectric insulated copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.

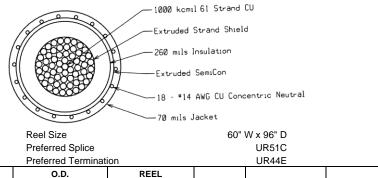



| CON           | NDUCTOR |       | O.D.   | REEL        |               |             |             |            |
|---------------|---------|-------|--------|-------------|---------------|-------------|-------------|------------|
| SIZE<br>kcmil | PACKAGE | INS.  | JACKET | CKT.<br>FT. | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| 500           | 3-1/C   | 1.39" | 1.665" | 1000        | 9300          | UC23GJ      | 9314170     | 0810924    |

|       |             | MATERIAL DESCRIPTION              |                  |
|-------|-------------|-----------------------------------|------------------|
| ISSUE | PAGE NUMBER |                                   | SMIZE            |
| 7/21  | 22 – UC23GJ | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |

Doc. # ST. 22.00.017

#### CABLE, 25 kV, ALUMINUM


1000 kcmil, single conductor, shielded, solid dielectric insulated aluminum power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.

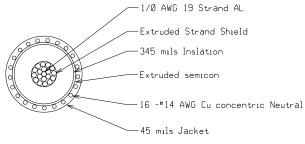


| CON   | IDUCTOR | C      | ).D.   | REEL |        |        |             |            |
|-------|---------|--------|--------|------|--------|--------|-------------|------------|
| SIZE  |         |        |        | CKT. | WEIGHT | STD    |             |            |
| kcmil | PACKAGE | INS.   | JACKET | FT.  | LBS    | ITEM   | SAP ITEM ID | PS ITEM ID |
| 1000  | 3-1/C   | 1.725" | 2.16"  | 1000 | 9000   | UC23TA | 9309015     | 5107191    |

#### CABLE, 25 kV, COPPER

1000 kcmil, single conductor, shielded, solid dielectric insulated copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.




| CON   | IDUCTOR | C      | ).D.   | REEL |        |        |             |            |
|-------|---------|--------|--------|------|--------|--------|-------------|------------|
| SIZE  |         |        |        | CKT. | WEIGHT | STD    |             |            |
| kcmil | PACKAGE | INS.   | JACKET | FT.  | LBS    | ITEM   | SAP ITEM ID | PS ITEM ID |
| 1000  | 3-1/C   | 1.725" | 2.16"  | 850  | 13770  | UC23TC | 9306707     | 9201889    |

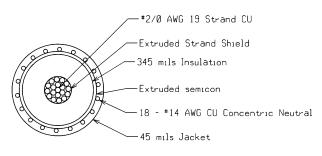
|            |                                    | MATERIAL DESCRIPTION              |                         |       |
|------------|------------------------------------|-----------------------------------|-------------------------|-------|
|            | SMI                                |                                   | PAGE NUMBER             | ISSUE |
| Business U | se <b>ppl</b> national <b>grid</b> | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC23TA –<br>UC23TC | 7/21  |

Formatted: Space Before: 4 pt

#### CABLE, 35 kV, ALUMINUM

1/0 AWG, single conductor, shielded, solid dielectric insulated, aluminum power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with <a href="National-GridPPL">National-GridPPL</a> specification MS 4168 latest edition.




Reel Size Preferred Splice Preferred Termination 54" W x 70" D UR51D UR45B1

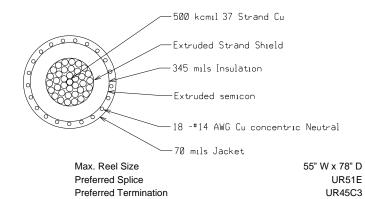
| CON         | DUCTOR  | O.D.  |        | REEL       |               |             |                      |                      |
|-------------|---------|-------|--------|------------|---------------|-------------|----------------------|----------------------|
| SIZE<br>AWG | PACKAGE | INS.  | JACKET | CKT.<br>FT | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
| 1/0         | 1/C     | 1.11" | 1.45"  | 3000       | 2880          | UC35C1      | 9321948 <sup>E</sup> | 5948318 <sup>E</sup> |
| 1/0         | 3-1/C   | 1.11" | 1.45"  | 1500       | 4320          | UC35C3      | 9312773              | 5948319              |

|       |               | MATERIAL DESCRIPTION              |                  |
|-------|---------------|-----------------------------------|------------------|
| ISSUE | PAGE NUMBER   |                                   | SAID             |
| 7/21  | 22 – UC35C1 – | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |

#### CABLE, 35 kV, COPPER

2/0 AWG, single conductor, shielded, solid dielectric insulated copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL Specification MS 4168 latest edition.




Max. Reel Size Preferred Splice Preferred Termination 42" W x 75" D UR51D UR45B1

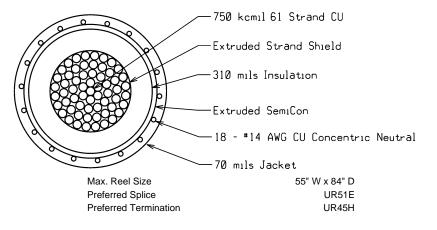
| CON         | IDUCTOR | (     | O.D.   | REEL    |               |             |                      |                      |
|-------------|---------|-------|--------|---------|---------------|-------------|----------------------|----------------------|
| SIZE<br>AWG | PACKAGE | INS.  | JACKET | CKT. FT | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
| 2/0         | 3-1/C   | 1.20" | 1.53"  | 1000    | 4050          | UC35DJ      | 9316002 <sup>Y</sup> | 4034002 <sup>Y</sup> |

|                  | MATERIAL DESCRIPTION              |             |       |
|------------------|-----------------------------------|-------------|-------|
| WW.              |                                   | PAGE NUMBER | ISSUE |
| ppl nationalgrid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC35DJ | 7/21  |

#### CABLE, 35 kV, COPPER

500 kcmil, single conductor, shielded, solid dielectric insulated, copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.



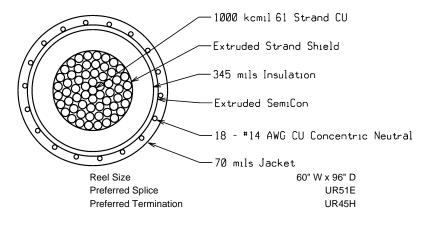

| CONI          | CONDUCTOR O.D. REEL |       |        |            |               |             |             |            |
|---------------|---------------------|-------|--------|------------|---------------|-------------|-------------|------------|
| SIZE<br>kcmil | PACKAGE             | INS.  | JACKET | CKT.<br>FT | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| 500           | 3-1/C               | 1.56" | 1.96"  | 1000       | 10200         | UC35GJ      | 9306942     | 9200387    |

|       |             | MATERIAL DESCRIPTION              |                  |
|-------|-------------|-----------------------------------|------------------|
| ISSUE | PAGE NUMBER |                                   | SMIZ             |
| 7/21  | 22 – UC35GJ | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |

Doc. # ST. 22.00.017

#### CABLE, 35 kV, COPPER

750 kcmil, single conductor, shielded, solid dielectric insulated copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.



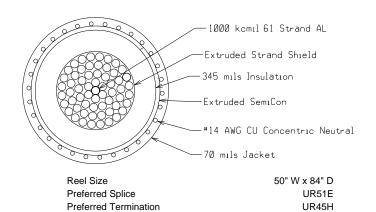

| CON           | DUCTOR  | C     | ).D.   | RI         | EEL           |             |                      |                      |
|---------------|---------|-------|--------|------------|---------------|-------------|----------------------|----------------------|
| SIZE<br>kcmil | PACKAGE | INS.  | JACKET | CKT.<br>FT | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
| 750           | 3-1/C   | 1.73" | 2.09"  | 900        | 12420         | UC35HJ      | 9316001 <sup>Y</sup> | 4034075 <sup>Y</sup> |

| MATERIAL DESCRIPTION |                                   |             |       |  |  |  |
|----------------------|-----------------------------------|-------------|-------|--|--|--|
| SMIZE.               |                                   | PAGE NUMBER | ISSUE |  |  |  |
| ppl nationalgrid     | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC35HJ | 7/21  |  |  |  |

#### CABLE, 35 kV, COPPER

1000 kcmil, single conductor, shielded, solid dielectric insulated, copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with <a href="National-GridPPL">National-GridPPL</a> specification MS 4168 latest edition.



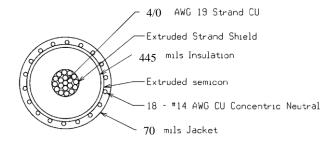

| CON           | DUCTOR  | C     | ).D.   | REEL       |               |             |                      |                      |
|---------------|---------|-------|--------|------------|---------------|-------------|----------------------|----------------------|
| SIZE<br>kcmil | PACKAGE | INS.  | JACKET | CKT.<br>FT | WEIGHT<br>LBS | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
| 1000          | 3-1/C   | 1.95" | 2.31"  | 800        | 13680         | UC35TC      | 9302670 <sup>E</sup> | 5949570 <sup>E</sup> |
| 1000          | 1/C     | 1.95" | 2.31"  | 2000       | 11400         | UC35TD      | 9306247              | 9201830              |

|       |                         | MATERIAL DESCRIPTION              |                  |
|-------|-------------------------|-----------------------------------|------------------|
| ISSUE | PAGE NUMBER             |                                   | SMIZ             |
| 7/21  | 22 – UC35TC –<br>UC35TD | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |

Doc. # ST. 22.00.017

#### CABLE, 35 kV, ALUMINUM

1000 kcmil, single conductor, shielded, solid dielectric insulated, aluminum power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL specification MS 4168 latest edition.




| CON           | DUCTOR   | O     | ).D.     | RI   | EEL    |             |                   |            |
|---------------|----------|-------|----------|------|--------|-------------|-------------------|------------|
| SIZE<br>kcmil | PACKAGE  | INS.  | JACKET   | CKT. | WEIGHT | STD<br>ITEM | SAP ITEM ID       | PS ITEM ID |
| KOIIIII       | . AGIGGE |       | O/COILE! |      | ***    |             | O/ 11 11 2 111 12 |            |
| 1000          | 3-1/C    | 1.95" | 2.31"    | 1000 | 9900   | UC35TJ      | 9309014           | 5107208    |

|                   | MATERIAL DESCRIPTION              |             |       |
|-------------------|-----------------------------------|-------------|-------|
| WW.               |                                   | PAGE NUMBER | ISSUE |
| ppl national grid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC35TJ | 7/21  |

#### CABLE, 46 kV, COPPER

4/0 AWG, single conductor, shielded, solid dielectric insulated copper power cable with concentric neutral wires and polyethylene jacket. Cable shall be in accordance with National GridPPL Specification MS 4169 latest edition.



Max. Reel Size Preferred Splice Preferred Termination 60" W x 96" D

UR46

| CON         | NDUCTOR |       | O.D.   | REEL    |                 |             |                      |            |
|-------------|---------|-------|--------|---------|-----------------|-------------|----------------------|------------|
| SIZE<br>AWG | PACKAGE | INS.  | JACKET | CKT. FT | WEIGHT<br>LBS * | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID |
| 4/0         | 3-1/C   | 1.46" | 1.788" | 1000    | 6210            | UC46        | 9390798 <sup>Y</sup> | n/a        |

<sup>\*</sup>Approximate weight of cable does not include weight of reel.

#### CONNECTOR, COMPRESSION, COPPER

Tinned copper compression connector with center oil / water stop. Designed for joining copper conductors end to end. These connectors are selected to meet the dimensional requirements of all high voltage splice kits used in the company. Splice shall be in accordance with ANSI C119.4, Class A, Class 2 min.

|              | BCT   | 500   | Y3    | 5     | Y   | 46    |          |                |               |
|--------------|-------|-------|-------|-------|-----|-------|----------|----------------|---------------|
| WIRE<br>SIZE | Die   | Crimp | Die   | Crimp | Die | Crimp | STD ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
| 4/0          | W28RT | 4     | U28RT | 2     | *   | 2     | UC60E    | 9310121        | 9201227       |

# MATERIAL DESCRIPTION ISSUE PAGE NUMBER 7/21 22 - UC46 - OVERHEAD CONSTRUCTION STANDARD PPI National Grid

#### CLEANER, CABLE, CAN



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| UC80F       | 9305779     | 5643847    |

#### END CAP, CABLE, COLD SHRINK

Cable end cap intended for use on solid dielectric cable at all voltages to prevent the ingress of moisture during storage and installation.\_\_\_\_



|      | OUTER JACKET<br>O.D. |       |             |            |
|------|----------------------|-------|-------------|------------|
| MIN  | MAX                  | ITEM  | SAP ITEM ID | PS ITEM ID |
| 0.46 | 0.86                 | UC90C | 9306242     | 9201844    |
| 0.63 | 1.18                 | UC90E | 9309862     | 5102002    |
| 1.02 | 1.94                 | UC90H | 9304341     | 5641118    |
| 1.79 | 3.32                 | UC90J | 9304340     | 5641119    |
|      |                      |       |             |            |

#### FOAM, EXPANDING

Expanding foam, for sealing conduits on riser poles and transformer pads. With nozzle. UV Resistant. Replacement nozzle also available.

| A (186)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|-------------|------------|
| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Can w/ Nozzle      | UF10        | 9305542     | 5106645    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Replacement nozzle | UF10A       |             | 5106647    |

| MATERIAL DESCRIPTION |                                   |                       |       |
|----------------------|-----------------------------------|-----------------------|-------|
| SMIZE.               |                                   | PAGE NUMBER           | ISSUE |
| ppl nationalgrid     | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UC80F –<br>UF10A | 7/21  |

#### FOAM, FIREPROOF

Foam, fireproof, for use in UG conduit systems, fire rated polyurethane expanding foam, 10oz can with spray type nozzle applicator, foam expands two to three times its size when dispensed, pink, cures fully in 12 hours. 24oz cans have been discontinued okay to use up existing stock..



| _ |           | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|---|-----------|-------------|-------------|------------|
|   | 24 Oz can | UF20        | 9307975     | 9202670    |
|   | 10 Oz can | UF20        | 9387426     | none       |

#### CLIP, GALVANIZED CONDUIT

Galvanized steel, 2-hole pipe strap. For fastening rigid galvanized steel conduit to a riser pole. In accordance with National GridPPL Material Specification MS-3255.



| CONDUIT<br>SIZE | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-----------------|-------------|-------------|------------|
| 2"              | UK3B        | 9309510     | 5641200    |
| 3"              | UK3C        | 9309509     | 5641205    |
| 4"              | UK3D        | 9310459     | 5641210    |
| 5"              | UK3E        | 9309516     | 5641215    |
| 6"              | UK3F        | 9309527     | 5641216    |

#### **CONDUIT, PVC, TYPE DB**

Polyvinyl-chloride (PVC) type DB conduit. Designed for direct burial without encasement in concrete; also suitable for concrete encasement. One belled end per length, solvent welded.



|      | MIN   |        | STD   |             |            |
|------|-------|--------|-------|-------------|------------|
| SIZE | WALL  | LENGTH | ITEM  | SAP ITEM ID | PS ITEM ID |
| 2"   | .060" | 20'    | UK6A2 | 9316084     | 2010402    |
| 3"   | .092" | 20'    | UK6A3 | 9317764     | 5692158    |
| 4"   | .121" | 20'    | UK6A4 | 9314994     | 2010404    |
| 5"   | .152" | 20'    | UK6A5 | 9316083     | 2010405    |
| 6"   | .182" | 20'    | UK6A6 | 9316185     | 2010406    |

|       |             | MATERIAL DESCRIPTION              |                     |
|-------|-------------|-----------------------------------|---------------------|
| ISSUE | PAGE NUMBER |                                   | SVIVA               |
| 7/21  | 22 – UF20 – | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid    |
| 1121  | UK6A6       |                                   | PPI & Hationalgi iu |

#### **COUPLING, PVC**

Female coupling for type DB conduit, solvent welded. Sizes 2" and smaller also suitable for use with Schedule 40 conduit.



| SIZE  | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-------|-------------|----------------------|----------------------|
| 3/4"  | UK6C0       | 9316135 <sup>Y</sup> | 2010457 <sup>Y</sup> |
| 11/4" | UK6C1       | 9316134              | 2010458              |
| 2"    | UK6C2       | 9316140              | 2010452              |
| 3"    | UK6C3       | 9316139              | 2010453              |
| 4"    | UK6C4       | 9316138              | 2010454              |
| 5"    | UK6C5       | 9316137              | 2010455              |
| 6"    | LIKECE      | 9316136              | 2010/56              |

#### ADAPTER, PVC, FEMALE

Adapter for type DB or Schedule 40 conduit. Female solvent welded to female threads. For transition from PVC conduit to threaded steel conduit.



| SIZE | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|------|-------------|----------------------|----------------------|
| 3/4" | UK6F0       | 9320824 <sup>E</sup> | 5690060 <sup>E</sup> |
| 2"   | UK6F2       | 9316195              | 2010432              |
| 3"   | UK6F3       | 9316194              | 2010433              |
| 4"   | UK6F4       | 9316193              | 2010434              |
| 5"   | UK6F5       | 9316192              | 2010435              |
| 6"   | UK6F6       | 9316191              | 2010436              |

#### CEMENT, PVC

Solvent cement for use with PVC conduit and fittings. Furnished in pint cans with brush top applicator.



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |  |
|-------------|-------------|------------|--|
| UK6S        | 9320383     | 8010168    |  |

| MATERIAL DESCRIPTION |                                   |                      |       |
|----------------------|-----------------------------------|----------------------|-------|
| SMD                  |                                   | PAGE NUMBER          | ISSUE |
| ppl nationalgrid     | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UK6C0 –<br>UK6S | 7/21  |

#### CONDUIT, PVC, SCHEDULE 40

Polyvinyl-chloride (PVC) schedule 40 conduit. For installations where conduit will remain exposed. For buried installations, use type DB conduit, standard item UK6A. One belled end per length.



| SIZE  | MIN.<br>WALL | LENGTH | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-------|--------------|--------|-------------|----------------------|----------------------|
| 3/4"  | 0.113"       | 10'    | UK7A0       | 9316557              | 2011155              |
| 11/4" | 0.140"       | 10'    | UK7A1       | 9316549              | 2011156              |
| 2"    | 0.154"       | 20'    | UK7A2       | 9316596              | 2011028              |
| 3"    | 0.216"       | 20'    | UK7A3       | 9316543              | 2011169              |
| 4"    | 0.237"       | 20'    | UK7A4       | 9316545              | 2011167              |
| 5"    | 0.258"       | 10'    | UK7A5       | 9316560              | 2011185              |
| 6"    | 0.280"       | 10'    | UK7A6       | 9317747 <sup>E</sup> | 5692130 <sup>E</sup> |

#### BEND/SWEEP, PVC, 90°

Bend/sweep for Schedule 40 conduit, one belled end per bend/sweep, solvent welded.



| SIZE  | RADIUS | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-------|--------|-------------|----------------------|----------------------|
| 3/4"  | 41/2"  | UK7B0       | 9316098 <sup>Y</sup> | 2010169 <sup>Y</sup> |
| 11/4" | 71/4"  | UK7B1       | 9316097 <sup>Y</sup> | 2010170 <sup>Y</sup> |
| 2"    | 18"    | UK7B2       | 9316096              | 2010171              |
| 4"    | 36"    | UK7B4       | 9320743              | 5690493              |
| 5"    | 36"    | UK7B5       | 9320742              | 5690494              |
| 4"    | 24"    | UK7B6       | 9307496              | 9202438              |
| 5"    | 24"    | UK7B7       | 9307552              | 9202440              |

NOTE: UK7B6 and UK7B7 are for network services ONLY.

#### ADAPTER, MALE, SCHEDULE 40 PVC CONDUIT

Adapter for type DB or Schedule 40 conduit. Female solvent welded to male threads. For transition from PVC conduit to threaded steel conduit or outlet boxes.



| SIZE | STD<br>ITEM SAP ITEM ID |                      | PS ITEM ID           |  |
|------|-------------------------|----------------------|----------------------|--|
| 3/4  | UK7M0                   | 9316190              | 2010437              |  |
| 11⁄4 | UK7M1                   | 9316189 <sup>Y</sup> | 2010438 <sup>Y</sup> |  |
| 3    | UK7M3                   | 9321562 <sup>E</sup> | 5690087 <sup>E</sup> |  |

## MATERIAL DESCRIPTION ISSUE PAGE NUMBER 7/21 22 - UK7A0UK7M3 CONSTRUCTION STANDARD PPI national grid

#### TEE, PVC

Tee for Schedule 40 conduit, solvent welded.



| SIZE | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|------|-------------|-------------|------------|
| 3/4  | UK7T0       | 9316085     | 2010325    |
|      |             |             |            |

#### BOX, RECEPTACLE, PVC - 3/4"

Molded PVC outdoor receptacle housing with non-threaded  $\mbox{\em 34}\mbox{\em "}$  conduit entrance. Light grey.



| STD ITEM | SAP ITEM ID | PS ITEM ID |
|----------|-------------|------------|
| UK8B     | 9311821     | 2030350    |

#### RECEPTACLE, ELECTRICAL BOX

Weatherproof and corrosion resistant single 20A, 125V polarized receptacle with mounting plate, screws and hinged lift cover. Yellow.





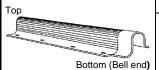
| /   | Ĺ  | ╌    | , |
|-----|----|------|---|
| NEN | ЛΑ |      |   |
| NO  | 5  | - 20 | ٦ |

| STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-------------|----------------------|----------------------|
| UK8R        | 9311819 <sup>Y</sup> | 2030352 <sup>Y</sup> |

#### WEATHERHEAD - 3/4" PVC SERVICE ENTRANCE

Non-threaded molded PVC weatherhead for ¾" PVC conduit (STD ITEM UK7A0). 3-wire, light grey.




|   | STD<br>TEM | SAP ITEM ID          | PS ITEM ID           |
|---|------------|----------------------|----------------------|
| ι | JK8W       | 9311822 <sup>Y</sup> | 2030348 <sup>Y</sup> |

#### MATERIAL DESCRIPTION PAGE NUMBER ISSUE ppl nationalgrid OVERHEAD CONSTRUCTION STANDARD 22 - UK7T0 -7/21 UK8W

#### PRIMARY METERING SECONDARY MISC FITTINGS STD DESCRIPTION ITEM SAP ITEM ID PS ITEM ID 9388416 1" x 5" Galvanized Nipple UK9 UK9B 1" Cast Aluminum Meter hub 9388415 UK10 1" T Conduit Body - Aluminum 9316174 1" T T Conduit Body - Aluminum Cover UK10A 9316173

#### GUARD, RISER (U-DUCT)

High Density Polyethylene furnished in 5' lengths. Attach to wood pole using  $\frac{1}{4}$ " X 2" lag screws. (STD ITEM B10B).



| COND. SIZE | STD ITEM | SAP ITEM ID | PS ITEM ID |
|------------|----------|-------------|------------|
| 2"         | UK11D    | 9310574     | 9201325    |
| 3"         | UK11E    | 9306271     | 9201880    |
| 4"         | UK11F    | 9306263     | 9201881    |
| 5"         | UK11G    | 9306261     | 9201882    |
| 6"         | UK11H    | 9306713     | 9201883    |

#### **GUARD, RISER, GALVANIZED STEEL**

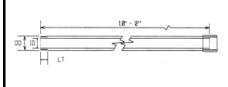
Galvanized steel, U-Guard, furnished in 8' lengths, to protect cables. This item shall only be used on risers built to old NiMo standard, not for new construction.



| Type  | INSIDE DIA | STD ITEM | SAP ITEM ID | PS ITEM ID |  |
|-------|------------|----------|-------------|------------|--|
| Guard | 3.7"       | UK12     | 9389845     | N/A        |  |
| Strap |            | UK12A    | 9389846     | N/A        |  |

|       |             | MATERIAL DESCRIPTION           |                    |
|-------|-------------|--------------------------------|--------------------|
| ISSUE | PAGE NUMBER |                                | SMI                |
| 7/21  | 22 – UK9 –  | OVERHEAD CONSTRUCTION STANDARD | ppl nationalgrid   |
| 1121  | UK12A       | CONSTRUCTION STANDARD          | PPI & Hationalgina |

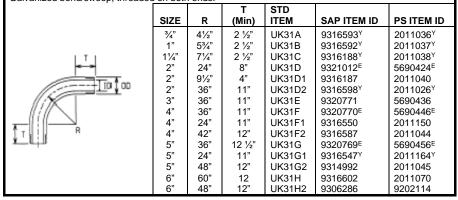
#### **GUARD, RISER, REDUCER**


PVC / acrylic reducer, for use with riser guard STD ITEM UK11 and for connecting riser guard item UK11 to steel conduit item UK31.



| SIZE    | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|---------|-------------|-------------|------------|
| 6" X 4" | UK14GF      | 9316156     | 2010545    |

#### **CONDUIT, GALVANIZED STEEL**


Hot-dip galvanized mild rigid steel in accordance with Underwriters' Laboratories Standard UL6, Federal Specification WW-C-581d, and ANSI C80. Threads shall be galvanized, threaded both ends, supplied with 1 coupling.



| SIZE  | STD   | SAP ITEM ID | PS ITEM ID |
|-------|-------|-------------|------------|
| 3/4"  | UK30A | 9316148     | 2011016    |
| 1"    | UK30B | 9316147     | 2011017    |
| 11/4" | UK30C | 9316146     | 2011018    |
| 2"    | UK30D | 9316330     | 2011020    |
| 3"    | UK30E | 9317751     | 5692107    |
| 4"    | UK30F | 9316663     | 2011024    |
| 5"    | UK30G | 9316374     | 2011025    |
| 6"    | UK30H | 9316597     | 2011027    |

#### SWEEP, GALVANIZED CONDUIT, 90°

Galvanized bend/sweep, threaded on both ends.



|                  | MATERIAL DESCRIPTION              |                         |       |
|------------------|-----------------------------------|-------------------------|-------|
| WIII.            |                                   | PAGE NUMBER             | ISSUE |
| ppl nationalgrid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UK14GF –<br>UK31H2 | 7/21  |

### COUPLING, GALVANIZED CONDUIT



| SIZE (in) | STD ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------|----------|----------------------|----------------------|
| 1         | UK32B    | 9316586 <sup>Y</sup> | 2011057 <sup>Y</sup> |
| 11/4      | UK32C    | 9316585 <sup>Y</sup> | 2011058 <sup>Y</sup> |
| 2         | UK32D    | 9316583              | 2011060              |
| 3         | UK32E    | 9317481              | 5693350              |
| 4         | UK32F    | 9316599              | 2011064              |
| 5         | UK32G    | 9316601              | 2011065              |
| 6         | UK32H    | 9316620              | 2011067              |

#### PLUG, GALVANIZED

Galvanized steel plug for threaded rigid galvanized steel conduit (Std Item UK30).



| SIZE (in) | STD ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------|----------|----------------------|----------------------|
| 2         | UK34D    | 9307515              | 9202870              |
| 3         | UK34E    | 9306819              | 9201659              |
| 4         | UK34F    | 9316062              | 2011254              |
| 5         | UK34G    | 9314990              | 2011255              |
| 6         | UK34H    | 9315221 <sup>Y</sup> | 0803813 <sup>Y</sup> |

#### PLUG, CONDUIT

Used to temporarily plug conduits/riser pipes. Metal loop allows for muletape to be tied off to the plug.



| PIPE ID | PLUG<br>RANGE | STD ITEM | SAP ITEM ID | PS ITEM ID |
|---------|---------------|----------|-------------|------------|
| 2"      | 1.83" - 2.36" | UK34J    | 9308104     | 9202199    |
| 3"      | 2.99" - 3.46" | UK34K    | 9308121     | 9202200    |
| 4"      | 3.94" - 4.17" | UK34K2   | 9316161     | 9202624    |
| 5"      | 5.00" - 5.35" | UK34L    | 9308120     | 9202201    |
| 6"      | 5.82" - 6.37" | UK34M    | 9308119     | 9202202    |

#### MATERIAL DESCRIPTION

| ISSUE | PAGE NUMBER  |
|-------|--------------|
| 7/21  | 22 – UK32B – |
| 1/21  | LIKSAM       |

OVERHEAD CONSTRUCTION STANDARD



#### CLAMP, CONDUIT GROUND

Heavy duty corrosion-resistant ground clamp with silicone bronze hardware for galvanized steel conduit, item UK30, to ground steel conduit. Furnished with a mechanical grounding cable connector permitting the grounding cable to be attached either parallel with or at right angles to the steel conduit, with a cable range of #4 solid thru #4/0 stranded.



| PIPE SIZE (IN) |         | STD     |       |             |            |
|----------------|---------|---------|-------|-------------|------------|
|                | IPS     | OD      | ITEM  | SAP ITEM ID | PS ITEM ID |
|                | 11/4-2  | 1.6-2.3 | UK38D | 9313608     | 3503073    |
|                | 2.5-3.5 | 2.8-4.0 | UK38E | 9313606     | 3503075    |
|                | 4-5     | 4.5-5.5 | UK38F | 9313607     | 3503074    |
|                | 6       | 6.6     | UK38H | 9313611     | 3503067    |

#### CLAMP, RISER CONDUIT GROUND

Bronze clamp connector used to bond metallic conduit on riser poles to down ground. Clamp installs at the top of the metallic conduit, at open end. Connector comes with a 24" long #4 AWG insulated conductor brazed to the bronze clamp.



| 1 | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|---|-------------|-------------|------------|
| - | UK39        | 9387032     | NONE       |

#### STRAP, CONDUIT - IRON

Galvanized malleable iron, single hole clamp for use with standard  $\frac{1}{2}$ " &  $\frac{3}{4}$ " rigid conduit.



| STEEL CONDUIT SIZE (NOMINAL, INCHES) | STD ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------------------|----------|-------------|------------|
| 1/2                                  | UK45A1   | 9316128     | 2010474    |
| 3/4                                  | UK45A2   | 9316127     | 2010475    |
| 1"                                   | UK45A3   | 9387021     | None       |

|                   | MATERIAL DESCRIPTION              |              |       |
|-------------------|-----------------------------------|--------------|-------|
| Wille             |                                   | PAGE NUMBER  | ISSUE |
| ppl national grid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UK38D – | 7/21  |

#### LEADER, CONDUIT - NYLON

Clear, flexible nylon cable protector with end sleeve for standard riser conduit or cable ducts. Approximately 0.06" or  $1.52~\mathrm{mm}$  thick.



| NOMINAL CONDUIT<br>SIZE | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------------------|-------------|-------------|------------|
| 2" – 2½"                | UK49A       | 9316538     | 2015106    |
| 3" – 5"                 | UK49B       | 9311889     | 2015110    |

#### BRACKET, CONDUIT STANDOFF

Bracket used to attach riser conduits to a pole. Mounts to pole using two holes spaced 3 5/8" apart using 5/8" thrubolts and  $\frac{1}{2}$ " lag (not included). Stands 6" away from the pole.



| BRACKET<br>LENGTH | STD ITEM | SAP ITEM ID | PS ITEM ID |
|-------------------|----------|-------------|------------|
| 12"               | UK60     | 9306797     | 9202147    |
| 24"               | UK60A    | 9307865     | 9202271    |

#### KIT, CONDUIT STRAP

ISSUE

7/21

UK61E

Conduit strap to be used with Std Item UK60 (Conduit Standoff Bracket). Includes strap, two hex-head bolts, two lockwashers, and two hex nuts. The bolt heads are sized to be able to slide into the standoff bracket.

| 11/4"         | CONDUIT SIZE | STD ITEM | SAP ITEM ID | PS ITEM ID |
|---------------|--------------|----------|-------------|------------|
|               | 2"           | UK61A    | 9306738     | 9202142    |
| <b>(</b> → •  | 3"           | UK61B    | 9306739     | 9202143    |
|               | 4"           | UK61C    | 9306740     | 9202144    |
| 1 2 11/4"     | 5"           | UK61D    | 9306741     | 9202145    |
| hex head bolt | 6"           | UK61E    | 9306798     | 9202146    |

|              | MATERIAL DESCRIPTION              |                  |
|--------------|-----------------------------------|------------------|
| PAGE NUMBER  |                                   | SMI              |
| 22 – UK49A – | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalarid |

Doc. # ST. 22.00.017

#### LIMITER, CURRENT LIMITING, CABLE-TO-MOLE

 $\label{lem:cable-to-mole limiter, current limiting, 200,000 amps symmetrical interrupting rating, 600V. For use on network secondary services. Use insulating sleeve UL5S.$ 

| TOOL & DIE        |       |       |         |                  |        |     |        |     |        |
|-------------------|-------|-------|---------|------------------|--------|-----|--------|-----|--------|
| CU.<br>CABLE SIZE | Y3.   | 4A    | Indents | Y35<br>or<br>Y39 | Crimps | Y45 | Crimps | Y46 | Crimps |
| OABLE GIZE        | IND.  | NEST. |         |                  |        |     |        |     |        |
| 4/0               | Y28PR | A28D  | 1       | U28RT            | 1      | *   | 1      | **  | 1      |
| 500               | Y34PR | A34D  | 2       | U34RT            | 2      | *   | 2      | **  | 2      |

\* Use Y35 die with "S" adapter (Burndy Cat. No. PT-6515)

\*\* Use Y35 die with "P" adapter (Burndy Cat. No. P-UADP)

| Cable<br>Size | Socket | Cone   | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|---------------|--------|--------|-------------|-------------|------------|
| 4/0<br>AWG    | UC51A  | UC52A2 | UL3B        | 9306612     | 9201989    |
| 500<br>kcMil  | UC51C  | UC52C6 | UL3E        | 9306610     | 9201991    |

| MATERIAL DESCRIPTION |                                   |                  |       |
|----------------------|-----------------------------------|------------------|-------|
| SMIZ                 |                                   | PAGE NUMBER      | ISSUE |
| ppl national grid    | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UL3B – UL3E | 7/21  |

Formatted: Space Before: 4 pt

#### LUG, TERMINAL, COPPER

Tinned copper lug with NEMA 2 or 4 hole pad (9/16" holes @ 1 3/4" spacing). Lugs are sealed to prevent water intrusion into the cable. For use on copper cable terminations. See Section 34 for die / crimping information.



| SIZE<br>AWG / kcmil | STD ITEM | SAP ITEM ID | PS ITEM ID |
|---------------------|----------|-------------|------------|
| 4                   | UL15A    | 9310081     | 9201248    |
| 2                   | UL15B    | 9310082     | 9201247    |
| 1/0                 | UL15C    | 9310080     | 9201249    |
| 2/0                 | UL15D    | 9310079     | 9201250    |
| 4/0                 | UL15E    | 9310086     | 9201251    |
| 350                 | UL15K    | 9310097     | 9201252    |
| 500 / 500 comp      | UL15M    | 9310106     | 9201253    |
| 500 – 4 hole        | UL15M4   | 9389616     | n/a        |
| 500 Stackable Lug   | UL15MS   | 9306510     | 9201699    |
| 600                 | UL15N    | 9310098     | 9201254    |
| 750                 | UL15P    | 9310114     | 9201255    |
| 1000 - 2 hole       | UL15R    | 9310227     | 9201256    |
| 1000 - 4 hole       | UL15R4   | 9310085     | 9201244    |

| MATERIAL DESCRIPTION |                                   |                                   |                  |  |
|----------------------|-----------------------------------|-----------------------------------|------------------|--|
| 7/21                 | PAGE NUMBER  22 - UL15A -  UL15R4 | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |  |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs <sup>2</sup>This CU contains additional items needed for installation per standards

<sup>&</sup>lt;sup>3</sup>This item has a CU with labor/material and a CU with material only

#### LUG, TERMINAL, ALUMINUM

Tinned aluminum lug with NEMA 2 or 4 hole pad (9/16" holes @ 1 3/4" spacing). Lugs are sealed to prevent water intrusion into the cable. For use on aluminum cable terminations. See Section 34 for die / crimping information.



| SIZE<br>AWG / kcmil | STD ITEM | SAP ITEM ID | PS ITEM ID |
|---------------------|----------|-------------|------------|
| 4                   | UL16A    | 9310225     | 9201258    |
| 2                   | UL16B    | 9310226     | 9201257    |
| 1/0                 | UL16C    | 9310224     | 9201259    |
| 2/0                 | UL16D    | 9310223     | 9201260    |
| 4/0                 | UL16E    | 9310222     | 9201261    |
| 350                 | UL16K    | 9310221     | 9201262    |
| 500                 | UL16M    | 9310220     | 9201263    |
| 600                 | UL16N    | 9310199     | 9201264    |
| 750                 | UL16P    | 9310198     | 9201265    |
| 1000 - 2 holes      | UL16R    | 9310197     | 9201266    |
| 1000 - 4 hole       | UL16R4   | 9310083     | 9201246    |
|                     |          |             |            |

<sup>&</sup>lt;sup>1</sup>This Item appears in other CUs

|                  | MATERIAL DESCRIPTION              |                        |       |
|------------------|-----------------------------------|------------------------|-------|
| SAME.            |                                   | PAGE NUMBER            | ISSUE |
| ppl nationalgrid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UL16A –<br>UL16R4 | 7/21  |

<sup>&</sup>lt;sup>2</sup>This CU contains additional items needed for installation per standards <sup>3</sup>This item has a CU with labor/material and a CU with material only

#### TAG, LETTER

% inch wide x 1% inch high, hot stamped polyethelene, black characters embossed on yellow background. All inks shall be treated for U.V. exposure. Use with slide in tag holder, UP21W.



| ,          |             |             |            |
|------------|-------------|-------------|------------|
| LETTER     | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| "A"        | UP21L       | 9314869     | 0800029    |
| "B"        | UP21L       | 9314868     | 0800030    |
| "C"        | UP21L       | 9314867     | 0800031    |
| "D"        | UP21L       | 9314866     | 0800032    |
| "E"        | UP21L       | 9314865     | 0800033    |
| "F"        | UP21L       | 9314957     | 0800034    |
| "G"        | UP21L       | 9314864     | 0800035    |
| "H"        | UP21L       | 9314863     | 0800036    |
| "["        | UP21L       | 9314862     | 0800037    |
| "J"        | UP21L       | 9314861     | 0800038    |
| "K"        | UP21L       | 9314860     | 0800039    |
| "L"        | UP21L       | 9314859     | 0800040    |
| "M"        | UP21L       | 9314858     | 0800041    |
| "N"        | UP21L       | 9314757     | 0800042    |
| "O"        | UP21L       | 9314756     | 0800043    |
| "P"        | UP21L       | 9314755     | 0800044    |
| "Q"        | UP21L       | 9314857     | 0800045    |
| "R"        | UP21L       | 9314856     | 0800046    |
| "S"        | UP21L       | 9314855     | 0800047    |
| "T"        | UP21L       | 9314833     | 0800048    |
| "U"        | UP21L       | 9314832     | 0800049    |
| "V"        | UP21L       | 9314831     | 0800050    |
| "W"        | UP21L       | 9314830     | 0800051    |
| "X"        | UP21L       | 9314808     | 0800052    |
| "Y"        | UP21L       | 9314807     | 0800053    |
| "Z"        | UP21L       | 9314806     | 0800054    |
| "-" (dash) | UP21L       | 9314805     | 0800055    |

| MATERIAL DESCRIPTION |             |                                   |                  |  |
|----------------------|-------------|-----------------------------------|------------------|--|
| ISSUE                | PAGE NUMBER |                                   | SMI              |  |
| 7/21                 | 22 – UP21L  | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |  |

#### TAG, NUMBER

% inch wide x 1% inch high, hot stamped polyethelene, black characters embossed on yellow background. All inks shall be treated for U.V. exposure. Use with slide in tag holder, UP21W.



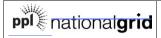
| NUMBER | STD ITEM | SAP ITEM ID | PS ITEM ID |
|--------|----------|-------------|------------|
| "0"    | UP21N    | 9314804     | 0800056    |
| "1"    | UP21N    | 9314803     | 0800057    |
| "2"    | UP21N    | 9314802     | 0800058    |
| "3"    | UP21N    | 9314809     | 0800059    |
| "4"    | UP21N    | 9314958     | 0800060    |
| "5"    | UP21N    | 9314801     | 0800061    |
| "6"    | UP21N    | 9314799     | 0800062    |
| "7"    | UP21N    | 9314798     | 0800063    |
| "8"    | UP21N    | 9314797     | 0800064    |
| "9"    | UP21N    | 9314796     | 0800065    |
| "1/2"  | UP21N    | 9306442     | 9201816    |

#### CABLE TIES

12 inch long, black, high quality nylon, self locking with minimum loop tensile strength of 50 lbs. U.V. resistant. For use with tag holder, item UP21W



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |  |
|-------------|-------------|------------|--|
| UP21T       | 9314871     | 0800027    |  |

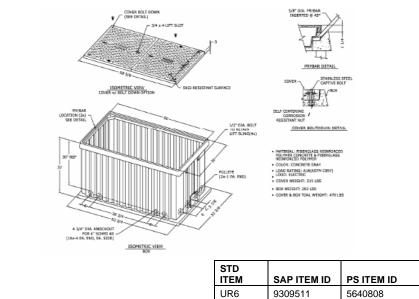

#### **TAG HOLDER**

Tag Holder, black polyethylene, easy slide-in design. For use with items UP21L, UP21N, and UP21T



| STD ITEM | DIGIT LENGTH | SAP<br>ITEM ID | PS<br>ITEM ID |
|----------|--------------|----------------|---------------|
| UP21W    | 6            | 9314870        | 0800028       |
| UP21W1   | 10           | 9314330        | 0810508       |
| LIP21W2  | 2            | 9310998        | 5103066       |

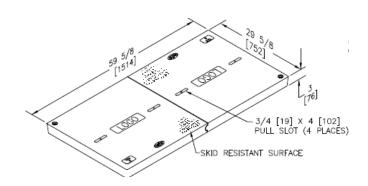
#### MATERIAL DESCRIPTION




OVERHEAD CONSTRUCTION STANDARD

| PAGE NUMBER            | ISSUE |
|------------------------|-------|
| 22 – UP21N –<br>UP21W2 | 7/21  |

#### **BOX, PRIMARY PULL & SPLICE, RECTANGULAR**


Primary cable pull / splice box, Fiberglass, with polymer concrete cover, cable pulling eyes, and conduit knockouts. For use in conduit URD systems. In accordance with <a href="National-GridPPL">National-GridPPL</a> Material Specification MS 5057.



| MATERIAL DESCRIPTION |             |                                   |                  |  |  |
|----------------------|-------------|-----------------------------------|------------------|--|--|
| ISSUE                | PAGE NUMBER |                                   | SMIZ             |  |  |
| 7/21                 | 22 – UR6    | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid |  |  |

#### COVER, TWO PIECE, FOR PRIMARY PULL & SPLICE BOX, RECTANGULAR

Two piece polymer concrete cover, for primary pull / splice box. For use in conduit URD systems. In accordance with National GridPPL Material Specification MS 5057. Cover can be used as a replacement for the one piece cover.



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| UR6C        | 9308054     | 9202714    |

|                  | MATERIAL DESCRIPTION              |             |       |
|------------------|-----------------------------------|-------------|-------|
| SMI              |                                   | PAGE NUMBER | ISSUE |
| ppl nationalgrid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – UR6C   | 7/21  |

#### TERMINATION, COLD SHRINK, 15 kV, #2 ONLY

Cold shrink termination designed for terminating #2 conductor, 15kV cable only. This terminator to be used on poles only. For switchgear, use item UR44B. This kit contains the pin connector and single clamp bracket for mounting the terminator to the pole bracket, item C35 or E12M.



| STD<br>ITEM                         | SAP ITEM ID | PS ITEM ID |
|-------------------------------------|-------------|------------|
| UR42                                | 9307129     | 9201104    |
| UR42A<br>Clamp<br>Bracket<br>Single | 9387015     | n/a        |

TERMINATION, COLD SHRINK, 5–15 kV
This item has been discontinued - use up remaining stock.

Cold shrink termination designed for terminating the following cables, 5 kV \$ #4/0 AWG - 400 MCM \$ 15 kV \$ #2 \$ AWG - #4/0 AWG

| INSUL. O.D.RANGE | STD ITEM | SAP ITEM ID | PS ITEM ID |  |
|------------------|----------|-------------|------------|--|
| 0.64" - 1.08"    | UR43     | 9314094     | 0810502    |  |

| MATERIAL DESCRIPTION |                  |                                   |                   |  |  |
|----------------------|------------------|-----------------------------------|-------------------|--|--|
| ISSUE                | PAGE NUMBER      |                                   | SMIZE             |  |  |
| 7/21                 | 22 – UR42 – UR43 | OVERHEAD<br>CONSTRUCTION STANDARD | ppl national grid |  |  |

#### TERMINATION, COLD SHRINK, 5-25 kV

Cold shrink termination designed for terminating cables up to 25kV. Kits do not include connectors. Choose kit based on cable insulation O.D.



2-Strips sealing mastic

| ORIENTATION | INSUL.<br>O.D.<br>RANGE | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-------------|-------------------------|-------------|----------------------|----------------------|
| Upright     | 0.64" - 1.08"           | UR44B       | 9314648              | 0810937              |
| Upright     | 0.83" - 1.53"           | UR44C       | 9303963              | 5643876              |
| Upright     | 1.05" - 1.80"           | UR44D       | 9314293              | 0810501              |
| Upright     | 1.53" - 2.32"           | UR44E       | 9303964              | 5643878              |
| Inverted    | 0.72" - 1.29"           | UR44L       | 9310182 <sup>Y</sup> | 9201305 <sup>Y</sup> |
| Inverted    | 1.05" - 1.80"           | UR44M       | 9310183 <sup>Y</sup> | 9201304 <sup>Y</sup> |

#### TERMINATION, COLD SHRINK, 35 kV

Cold shrink termination designed for terminating 35kV cables. Kit does not include connector. Choose kit based on cable insulation O.D.



Molded Rubber Silicone 8-skirt Termination

| INSUL. O.D. RANGE | STD ITEM | SAP ITEM ID | PS ITEM ID |
|-------------------|----------|-------------|------------|
| 0.72" - 1.29"     | UR45B1   | 9314555     | 0810901    |
| 1.05" - 1.80"     | UR45C3   | 9314447     | 0810976    |
| 1.53" - 2.32"     | UR45H    | 9314501     | 0811180    |

### MATERIAL DESCRIPTION PAGE NUMBER ISSUE OVERHEAD CONSTRUCTION STANDARD OVERHEAD LUR44B - UR45H 7/21

#### **TERMINATION, COLD SHRINK, 46 kV**

Cold shrink termination designed for terminating 46kV cables. Kits do not include connectors.



| Insulation<br>OD | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|------------------|-------------|-------------|------------|
| 1.31 – 2.1"      | UR46        | 9390156     | N/A        |

#### **CABLE POSITIONER**

Aluminum bracket to attach terminator to pole bracket. Required for terminations on all cable with conductor larger that #2.



| STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------|-------------|------------|
| UR47CP      | 9309543     | 5642411    |
|             |             |            |

#### KIT, GROUNDING, TERMINATION

PAGE NUMBER

22 - UR46 -

**UR47T4** 

ISSUE

7/21

Accessory kit for neutral connection / grounding of cables with copper tape insulation shield. This kit is needed in addition to the cold shrink terminator, item UR43.

| Insulation<br>OD | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|------------------|-------------|-------------|------------|
| 0.82 - 1.63"     | UR47T4      | 9310177     | 9201267    |

## MATERIAL DESCRIPTION OVERHEAD CONSTRUCTION STANDARD OVERHEAD PPI national grid

### SPLICE, COLD SHRINK, 5 – 35 Kv (DISCONTINUED) NOTE: FOR MAINTENANCE ONLY – USE UP REMAINING STOCK

Cold Shrink splice kit for concentric neutral XLP and EPR cables, copper or aluminum conductor. Each kit contains parts for 1 single phase splice. Select proper connector from UC60 - UC63. Connector must meet dimensional requirements of splice kit. See instructions.

For aerial cable applications, replace outer jacket in splice kit with silicone jacket, Standard Item UR49D1 or UR49D3.



| VOLTAGE                            | INSULATION  | STD     | CARITEMIA   | DC ITEM ID |
|------------------------------------|-------------|---------|-------------|------------|
| kV                                 | O. D.       | ITEM    | SAP ITEM ID | PS ITEM ID |
| 5-15                               | 0.84-1.38"  | UR49A2  | 9314458     | 0811159    |
| 35                                 | 1.07-1.70"  | UR49C1  | 9314471     | 0811215    |
| Silicone Outer Jacket for Aerial A | UR49D1      | 9314470 | 0811216     |            |
| Silicone Outer Jacket for Aerial A | -фрисацон 5 | UR49D3  | 9306802     | 9201658    |

#### SPLICE, PREMOLDED, 15 kV, #2 ALUMINUM

Premolded straight cable splice for two #2 AWG concentric neutral primary cables in URD applications. Use for aluminum and / or copper conductors. The kit includes a shielded splice housing, one crimp connector and silicone grease. If both cables are jacketed, cover the splice with rejacketing kit, item UR75A.



| CABLE<br>SIZE | INSULATION O.D. | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|---------------|-----------------|-------------|-------------|------------|
| #2            | 0.64" - 0.82"   | UR50        | 9315156     | 0809726    |

### MATERIAL DESCRIPTION PAGE NUMBER I



OVERHEAD CONSTRUCTION STANDARD

| PAGE NUMBER           | ISSUE |
|-----------------------|-------|
| 22 – UR49A2 –<br>UR50 | 7/21  |

#### SPLICE, COLD SHRINK, 5 - 35 KV, "ALL IN ONE"

Cold Shrink splice kit for jacketed concentric neutral, flat strap and tape shield XLP and EPR cables, copper or aluminum conductor. Each kit contains parts for 1 single phase splice. The "All In One" design incorporates a silicone rubber splice body, integrated neutral sock and EPDM re-jacketing sleeve in one tube. For aerial applications the re-jacketing sleeve is UV resistant. Select proper connector from UC60 - UC63. Connector must meet dimensional requirements of splice kit. See instructions.



| VOLTAGE (kV) | NOMINAL CABLE<br>RANGE | INSULATION<br>O. D. | STD ITEM | SAP ITEM ID |
|--------------|------------------------|---------------------|----------|-------------|
| 5            | 4/0 - 500              | 0.64"-1.20"         | UR51A    | 9388525     |
| 15           | #2 – 4/0               | 0.64"-1.20"         | UR51A    | 9388525     |
| 15           | 350 - 500              | 0.87"-1.40"         | UR51B    | 9388526     |
| 15           | 500-1000               | 1.03"-1.58"         | UR51F    | 9389651     |
| 15           | 750 - 1000             | 1.28"-2.05"         | UR51C    | 9388535     |
| 25           | 1/0 - 350              | 0.87"-1.40"         | UR51B    | 9388526     |
| 25           | 500 - 1000             | 1.28"-2.05"         | UR51C    | 9388535     |
| 35           | 1/0 - 2/0              | 1.03"-1.49"         | UR51D    | 9388506     |
| 35           | 500 - 1000             | 1.36"-2.05"         | UR51E    | 9388499     |

|       | MATERIAL DESCRIPTION |                                   |                    |  |  |  |
|-------|----------------------|-----------------------------------|--------------------|--|--|--|
| ISSUE | PAGE NUMBER          |                                   | SMIZE.             |  |  |  |
| 7/21  | 22 – UR51A –         | OVERHEAD<br>CONSTRUCTION STANDARD | ppl nationalgrid   |  |  |  |
| //21  | UR51E                |                                   | PPI & Hationalgriu |  |  |  |

#### CLAMP, SPRING

Constant force spring clamp for connecting tinned copper braid to cables with copper tape shield or lead sheath.



| DIAMETER<br>OVER SHIELD | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-------------------------|-------------|-------------|------------|
| 0.67" - 1.14"           | US1A        | 9311246     | 5105523    |
| 0.99" - 1.54"           | US1B        | 9311244     | 5105524    |

|                  | MATERIAL DESCRIPTION              |                 |       |
|------------------|-----------------------------------|-----------------|-------|
| SMI              |                                   | PAGE NUMBER     | ISSUE |
| ppl nationalgrid | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – US1A –US1B | 7/15  |

#### WASHER, SQUARE FLAT, STANDARD

Galvanized steel, for normal loadings on wood; standard  $\frac{5}{8}$ " or  $\frac{3}{4}$ " bolts (B13 or B14) per EEI Std. TDJ-10.



|        | DIMENSION                       |                                | STD  |             |            |
|--------|---------------------------------|--------------------------------|------|-------------|------------|
| O.D.   | DIA. OF HOLE                    | THK.                           | ITEM | SAP ITEM ID | PS ITEM ID |
| 2 1/4" | <sup>13</sup> ⁄ <sub>16</sub> " | <sup>3</sup> ⁄ <sub>16</sub> " | W1   | 9319833     | 7006014    |
| 3"     | <sup>13</sup> ⁄ <sub>16</sub> " | 1/4"                           | W1A  | 9319618     | 5997740    |
| 4"     | <sup>13</sup> ⁄ <sub>16</sub> " | 1/2"                           | W1B  | 9319619     | 5997745    |

### WASHER, SQUARE CURVED, HEAVY

Galvanized steel large washer for heavy loading on wood using 3/4" bolts. EEI – Standard TDJ-10.



| D    | IMENSION                        | STD  |             |            |
|------|---------------------------------|------|-------------|------------|
| O.D. | DIA. OF HOLE                    | ITEM | SAP ITEM ID | PS ITEM ID |
| 3"   | <sup>13</sup> ⁄ <sub>16</sub> " | W2   | 9321670     | 7006023    |
|      | <sup>11</sup> / <sub>16</sub> " | W2A  | 9306399     | 5997820    |
| 4"   | <sup>15</sup> ⁄ <sub>16</sub> " | W3   | 9321674     | 7006009    |

|      |                         |             | MATERIAL DESCRIPTION              |     |
|------|-------------------------|-------------|-----------------------------------|-----|
|      | ISSUE                   | PAGE NUMBER |                                   | AMZ |
| Busi | <b>7/13</b><br>ness Use | 22 – W1-W3  | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |

### WASHER, ROUND

Flat, galvanized steel construction, EEI Standard TDJ- 10.



|                      | DIMENSION           |                                 |           |             |                      |                      |
|----------------------|---------------------|---------------------------------|-----------|-------------|----------------------|----------------------|
| DESCRIPTION          | OUT<br>SIDE<br>DIA. | HOLE<br>DIA.                    | THICKNESS | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
| Fits For use with B1 | 1"                  | <sup>7</sup> ⁄ <sub>16</sub> "  | .083"     | W5          | 9321579              | 7006001              |
| For use with B3      | 1¾"                 | <sup>9</sup> ⁄16"               | .109"     | W7          | 9309339              | 7006003              |
| For use with B13     | 2"                  | <sup>13</sup> ⁄ <sub>16</sub> " | .148"     | W8          | 9321675              | 7006006              |
| Fits 5⁄8" bolts      | 1 3/4"              | <sup>11</sup> / <sub>16</sub> " | .1045"    | W8A         | 9306405              | 5997445              |
| 1" Nominal Size      | 6"                  | 11⁄4"                           | 7/8"      | W8B         | 9306402 <sup>E</sup> | 5997565 <sup>E</sup> |

### WASHER, FLAT

Galvanized steel, flat washer.



| DIMENSION |                                 |                                | STD ITEM |             |            |
|-----------|---------------------------------|--------------------------------|----------|-------------|------------|
| O.D.      | I.D.                            | THK.                           | SIDIIEM  | SAP ITEM ID | PS ITEM ID |
| 8"        | <b>1</b> 5⁄ <sub>16</sub> "     | 1/2"                           | W8C      | 9306400     | 5997800    |
| 21/4"     | <sup>13</sup> ⁄ <sub>16</sub> " | <sup>5</sup> ⁄ <sub>16</sub> " | W8D      | 9306401     | 5997790    |

|  | MATI | ERIAL | DESCRI | PTION |
|--|------|-------|--------|-------|
|--|------|-------|--------|-------|



OVERHEAD **CONSTRUCTION STANDARD**  PAGE NUMBER ISSUE

| WIRE, MISCELLANEOUS |          |                                                                         |                 |                          |             |                      |                      |  |  |
|---------------------|----------|-------------------------------------------------------------------------|-----------------|--------------------------|-------------|----------------------|----------------------|--|--|
| SIZE                |          | KIND                                                                    | COVERING        | QUANTITY                 | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |  |  |
| #6 AWG Cu.<br>SD.   |          | Solid O.D. = .252"<br>(.1620 +.09)                                      | 30 mils PE      | 46 lb. coil<br>(500')    | W9E         | 9312558              | 4001038              |  |  |
| #6 AWG Cu.          | 8        | CCW (6A)-3 Strand<br>(Maintenance<br>ONLY)                              | Bare            |                          | W9F         | 9315670 <sup>Y</sup> | 4015064 <sup>Y</sup> |  |  |
| #4 AWG Cu.<br>HD    |          | Solid<br>(.2043" D.)                                                    | Bare            | 100 lb. coil<br>(794')   | W11B        | 9315667 <sup>Y</sup> | 4015073 <sup>Y</sup> |  |  |
| #4 AWG Cu.          | 8        | CCW (4A)-3 Strand<br>(Maintenance<br>ONLY)                              | Bare            |                          | W11D        | 9315668 <sup>Y</sup> | 4015066 <sup>Y</sup> |  |  |
| #4 AWG Cu.<br>HD    |          | Solid                                                                   | 30 mils PE      | 100 lb. coil<br>(730')   | W11E        | 9312557 <sup>Y</sup> | 4001041 <sup>Y</sup> |  |  |
| #4 AWG Cu.<br>SD    |          | Std. OH Grounding<br>Solid Cond.<br>O.D. = .2943"<br>(.2043 + .09)      | 45 mils PE      | 50 lb. coil<br>(350')    | W11F        | 9316528              | 4005640              |  |  |
| #3 AWG Cu.<br>HD    |          | 7 Strand Overhead<br>Conductor.<br>(Maintenance<br>ONLY)                | Bare            | 500' reel<br>(81.5 lbs.) | W11G        | 9302814 <sup>E</sup> | 5943080 <sup>E</sup> |  |  |
| #3 AWG Cu.<br>HD    |          | 7 Strand<br>(Maintenance<br>ONLY)                                       | 45 mils PE      | 185lbs / 1000'           | W11H        | 9302709              | 5944080              |  |  |
| #2 AWG<br>ACSR 6/1  | <b>₩</b> | 7 Strand<br>(Maintenance<br>ONLY)                                       | Bare<br>Sparrow | 46 lb. coil<br>(500')    | W12B        | 9306926 <sup>Y</sup> | 9200816 <sup>Y</sup> |  |  |
| #2 AWG Cu.<br>HD    |          | 7 Strand                                                                | Bare            | 500 lb. reel<br>(2400')  | W13B        | 9315684              | 4015074              |  |  |
| #2 AWG Cu.          |          | CCW (2A)-3 Strand<br>(Maintenance<br>ONLY)                              | Bare            |                          | W13D        | 9315669 <sup>Y</sup> | 4015065 <sup>Y</sup> |  |  |
| #2 AWG Cu.<br>SD    |          | Trans. Pole & 3Ø<br>Riser Pole Framing<br>Cond. ~190A.<br>4.366 ft./lb. | 45 mils PE      | 50 lb. coil<br>(220')    | W13E        | 9312556              | 4001042              |  |  |
|                     |          | 0.292" Dia.                                                             | Bare            | 60 lb. Coil<br>(244')    | W13G        | 9315672              | 4015032              |  |  |
| #1 AWG Cu.          |          | 7 Strand<br>(Maintenance<br>ONLY)                                       | Bare            |                          | W13I        | 9302805              | 5943097              |  |  |
|                     |          | CCW 3 Strand<br>(Maintenance<br>ONLY)                                   | Bare            |                          | W13J        |                      | 5943093 <sup>E</sup> |  |  |
| 1/0 AWG Cu.<br>HD.  |          | 7 Strand                                                                | Bare            | 163lb / 500'             | W13K        | 9315933              | 4035253              |  |  |
| 1/0 AWG Cu.<br>HD.  |          | 7 Strand                                                                | 90 mils PE      | 184lb / 500'             | W13L        | 9313369              | 5944107              |  |  |

|      | MATERIAL DESCRIPTION    |               |                                   |     |  |  |  |
|------|-------------------------|---------------|-----------------------------------|-----|--|--|--|
|      | ISSUE                   | PAGE NUMBER   |                                   | WW. |  |  |  |
| Busi | <b>7/21</b><br>ness Use | 22 – W9E-W13L | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |  |  |  |

| CABLE, TR                                        | RIPLEX S                               | ECONDARY A                                                                          | ND SERVICE                                                  |                                                             |             |                      |                      |
|--------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------|----------------------|----------------------|
| SIZE                                             |                                        | KIND                                                                                | COVERING                                                    | QUANTITY                                                    | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
| #2<br>Aluminum<br>Triplex<br>Service<br>Cable    | ************************************** | Phase (2) -<br>#2 7 Str.<br>1350 AAC<br>Neutral (1) -<br>#2 7 Str.<br>6201 AAAC     | 45 mils XLP<br>w/bare neutral<br>Code –<br>Shrimp/XLP       | 250' Coil<br>(63 lbs.)<br>1200' reel<br>(300lbs)            | W15B        | 9387696<br>9302729   | none<br>5940040      |
| 1/0 Aluminum Triplex Service and Secondary Cable | <b>***</b>                             | Phase (2) -<br>#1/0 7 Str.<br>1350 AAC<br>Neutral (1) -<br>#1/0 7 Str.<br>6201 AAAC | 60 mils XLP<br>w/bare neutral<br>Code –<br>GAMMARUS/<br>XLP | 60 mils XLP 200' Coil (80 lbs.) Code – GAMMARUS/ 1800' N.R. |             | 9387708<br>9312688   | none<br>4003311      |
| #4 Copper<br>Triplex<br>Service<br>Cable         | ***<br>****                            | Phase (2) #4<br>7 Str.<br>Neutral (1) -<br>#4 7 Str.<br>(Nantucket<br>ONLY)         | 45 mils XLP<br>w/bare neutral<br>Code –<br>CASLON/XLP       | 1000' Reel                                                  | W15F        | 9302001 <sup>E</sup> | 5430364 <sup>E</sup> |
| #2 Copper<br>Triplex<br>Service<br>Cable         | ##<br>###                              | Phase (2) #2<br>- 7 Str.<br>Neutral (1) -<br>#2 7 Str.<br>(Nantucket<br>ONLY)       | 45 mils XLP<br>w/bare neutral<br>Code –<br>CENTURY/<br>XLP  | 1000' Reel                                                  | W15G        | 9301801 <sup>E</sup> | 5430356 <sup>E</sup> |
| #2 Copper<br>Triplex<br>Secondary<br>Cable       | ##<br>###                              | Phase (2) #2  - 7 Str.  Neutral (1) -  1/0 7 Str.  (Nantucket  ONLY)                | 45 mils XLP<br>w/bare neutral                               | 1000' Reel                                                  | W15J        | 9307609 <sup>E</sup> | 9202446 <sup>E</sup> |

| CABLE, QUA                                            | CABLE, QUADRUPLEX SECONDARY AND SERVICE |                                                                                         |                                                           |                                                 |             |             |            |  |  |  |
|-------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-------------|-------------|------------|--|--|--|
| SIZE                                                  |                                         | KIND                                                                                    | COVERING                                                  | QUANTITY                                        | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |  |  |  |
| 1/0 Aluminum Quadruplex Service and Secondary Cable   |                                         | Phase (3)<br>#1/0 19 Str.<br>1350 AAC<br>Neutral (1) -<br>#1/0 7 Str.<br>6201 AAAC      | 60 mils/XLP<br>w/ bare neutral<br>Code-Shetland<br>/XLP   | 1100' N.R<br>Reel<br>(Approx.<br>.560 lb/ft.)   | W16C        | 9312668     | 4004410    |  |  |  |
| 336.4 Aluminum Quadruplex Service and Secondary Cable |                                         | Phase (3)<br>#336.4 19<br>Str. 1350<br>AAC<br>Neutral (1) -<br>#4/0 7 Str.<br>6201 AAAC | 60 mils / XLP<br>w/ bare neutral<br>Code –<br>Exmoor /XLP | 1000' N.R.<br>Reel<br>(Approx.<br>1.509 lb/ft.) | W16E        | 9312646     | 4004436    |  |  |  |

| MATERIAL DESCRIPTION |                                   |                |       |  |  |  |  |  |
|----------------------|-----------------------------------|----------------|-------|--|--|--|--|--|
| WW.                  |                                   | PAGE NUMBER    | ISSUE |  |  |  |  |  |
| ppl                  | OVERHEAD<br>CONSTRUCTION STANDARD | 22 – W15B-W16E | 7/18  |  |  |  |  |  |

|   | COND              | UCTOR, P                                                                     | OLE TOP TA                                                 | <u>P</u>                            |                      |                                                        |              |                      |                      |
|---|-------------------|------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|----------------------|--------------------------------------------------------|--------------|----------------------|----------------------|
|   | SIZE              |                                                                              | KIND                                                       |                                     | COVERI<br>NG         | QUANTITY                                               | STD<br>ITEM  | SAP ITEM ID          | PS ITEM ID           |
|   | 2/0               |                                                                              |                                                            |                                     | Bare                 | 100 lb. Coil<br>(243')                                 | W17B         | 9315784 <sup>Y</sup> | 4035282 <sup>Y</sup> |
|   | Cu.               |                                                                              | Single Conductor<br>Med. Hard<br>(Maintenand               | d Drawn                             |                      | 200 lb. N.R<br>Reel (500')                             | W17B         | 9315333              | 0806403              |
| l |                   | )                                                                            | Cinala                                                     |                                     | 60 mils<br>PE        | 500 lb. N.R.<br>Reel (1095')                           | W17C         | 9312555              | 4001043              |
|   | 2/0<br>Cu.        |                                                                              | Single Conductor – Stranded Soft Drawn  Single 19 Str. Cu. | Bare                                | 50 lb Coil<br>(120') | W17G                                                   | 9310172      | 9201272              |                      |
|   | 4/0<br>Alum.      | Single Conductor – Stranded hard Drawn (Maintenance ONLY)  Single 7 Str. Al. | Bare                                                       |                                     | W18B                 | 9315759                                                | 4035219      |                      |                      |
|   |                   | 8                                                                            |                                                            | 7 Str. HD<br>(Primary<br>Line Wire) | Bare                 | 100 lb. Coil<br>(153')<br>654 lb. N.R.<br>Reel (1000') | W19B<br>W19B | 9315783<br>9315352   | 4035283<br>0806404   |
|   | 4/0<br>AWG<br>Cu. |                                                                              | Single<br>Conductor -<br>Stranded                          | 19 Str SD<br>(Pole Top<br>Wiring)   | 60 mils<br>PE        | 500 lb. N.R.<br>Reel (706')                            | W19C         | 9312554              | 4001044              |
|   |                   | A 300                                                                        |                                                            | 19 Str SD<br>(Grounding             | Bare                 | 100 lb. Coil<br>(153')                                 | W19G         | 9316038              | 4035019              |
|   |                   | <b>A</b>                                                                     |                                                            | Conductor)                          | Daie                 | 2000 lb. N.R.<br>Reel (3061')                          | W19G         | 9315355              | 0806400              |

| CONDUCT     | OR, PRIM | IARY BARE – 15k                                                                     | <u>:V-35kV</u>  |                                        |             |             |            |
|-------------|----------|-------------------------------------------------------------------------------------|-----------------|----------------------------------------|-------------|-------------|------------|
| SIZE        |          | KIND                                                                                | COVERING        | QUANTITY                               | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| 1/0 (6201)  | 88       | Single conductor –<br>7 Str. (AAAC)<br>Standard 1Ø<br>Primary Conductor             | Bare<br>AZUZA   | 6000' N.R.<br>Reel<br>(116lb/1000ft.)  | W20A        | 9314544     | 0811017    |
| 2/0         | 88       | Single conductor –<br>7 str. (ACSR)<br>MAINTENANCE<br>ONLY                          | Bare<br>QUAIL   | 1000' N.R.<br>Reel<br>(124lb/1000ft.)  | W21NK       | 9392167     | N/A        |
| 336.4 kcmil | 88888    | Single Conductor-<br>19 Str. (AAC)<br>Standard 3 Phase<br>Primary Conductor<br>Bare | Bare<br>TULIP   | 4022' N.R.<br>Reel<br>(316lb/1000ft.)  | W20B        | 9316037     | 4035204    |
| 477.0 kcmil | 6888     | Single conductor-<br>19 Str. (AAC)<br>Standard 3 Phase<br>Primary Conductor         | Bare<br>COSMOS  | 4245' N.R.<br>Reel<br>(448lb/1000ft.)  | W21BA       | 9314655     | 0811125    |
| 795 kcmil   |          | Single conductor-<br>37 Str. (AAC)<br>Standard 3 Phase<br>Primary Conductor         | Bare<br>ARBUTUS | 5000' Steel<br>Reel<br>(746lb/1000ft.) | W21BF       | 9302781     | 5941790    |

|      | MATERIAL DESCRIPTION |                   |                                |       |  |  |  |  |
|------|----------------------|-------------------|--------------------------------|-------|--|--|--|--|
|      | ISSUE                | PAGE NUMBER       |                                | SMIZZ |  |  |  |  |
|      | 7/10                 | 22 <b>–</b> W17B- | OVERHEAD CONSTRUCTION STANDARD | nnl   |  |  |  |  |
| Busi | ness Use             | W21BF             | CONCINCOTION CTANDARD          | pp.   |  |  |  |  |

### **CONDUCTOR, PRIMARY TREE- 15 kV**

Tree conductor to be used on 15kV crossarm, armless, and spacer cable configurations per NG MS5102.



| KIND                                 | COVERING | QUANTITY                       | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|--------------------------------------|----------|--------------------------------|-------------|----------------------|----------------------|
| 1/C-1/0 7Str<br>6201 Reg<br>Conc Rnd | 165 mils | 3000' Reel<br>(252lbs/1000ft.) | W20CA       | 9302832              | 5942105              |
| 1/C-336-19Str<br>ECCompact           | 165 mils | 4000' Reel<br>(497lbs/1000ft.) | W21C        | 9305136              | 5106085              |
| 1/C-477-19Str<br>ECCompact           | 160 mils | 4000' Reel<br>(633lbs/1000ft.) | W21BD       | 9302808              | 5942638              |
| 1/C-795-19Str<br>EC Compact          | 180 mils | 3000' Reel<br>(1012lbs/1000ft) | W21BG       | 9313226 <sup>E</sup> | 5942646 <sup>E</sup> |

# **CONDUCTOR, PRIMARY TREE-35 kV**

Tree conductor to be used on 35kV crossarm and spacer cable configurations per NG MS5102.







| KIND                                 | COVERING | QUANTITY                      | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|--------------------------------------|----------|-------------------------------|-------------|-------------|------------|
| 1/C-1/0 7Str<br>6201 Reg<br>Conc Rnd | 315 mils | 2500' Reel<br>(423lb/1000ft)  | W21NA       | 9313250     | 5942107    |
| 1/C-477-19Str<br>EC Compact          | 320 mils | 3000' Reel<br>(912lb/1000ft)  | W21NB       | 9313248     | 5942639    |
| 1/C-795-19Str<br>EC Compact          | 320 mils | 3000' Reel<br>(1327lb/1000ft) | W21ND       | 9313225     | 5942647    |

### WIRE, MESSENGER, SPACER CABLE

Messenger shall be Class AA high strength alumoweld-aluminum conductors (AWAC), in accordance with requirements of ASTM B-549 and ASTM B-502.



| SIZE      | KIND                             | COVERING | QUANTITY          | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
|-----------|----------------------------------|----------|-------------------|-------------|-------------|------------|
| 1/0 – 3/4 | 3 Al wires, 4<br>Alumoweld wires | Bare     | (312.6lbs/1000ft) | W21NE       | 9320429     | 5998117    |
| 1/0 – 2/5 | 2 Al wires, 5<br>Alumoweld wires | Bare     | (428.0lbs/1000ft) | W21NF       | 9306375     | 5998116    |

# MATERIAL DESCRIPTION



OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
22 – W20CAW21NF
7/17

| COND          | CONDUCTOR, PRIMARY BARE - 35KV DISTRIBUTION SUPPLY |                                                                                 |                |                                      |             |                      |                      |  |  |  |  |  |
|---------------|----------------------------------------------------|---------------------------------------------------------------------------------|----------------|--------------------------------------|-------------|----------------------|----------------------|--|--|--|--|--|
| SIZE          |                                                    | KIND                                                                            | COVERING       | QUANTITY                             | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |  |  |  |  |  |
| 1113<br>kcmil |                                                    | Single conductor-<br>54/19 Str. (ACSR)<br>Standard 3 Phase<br>Primary Conductor | Bare<br>FINCH  | Per PO Reel<br>(1431lb/1000ft.)      | W21NG       | 9302828              | 5941814              |  |  |  |  |  |
| 795<br>kcmil  |                                                    | Single conductor-<br>54/7 Str. (ACSR)<br>Standard 3 Phase<br>Primary Conductor  | Bare<br>CONDOR | 6000' R.M.T Reel<br>(1024lb/1000ft.) | W21NH       | 9302831 <sup>E</sup> | 5941794 <sup>E</sup> |  |  |  |  |  |
| 477<br>kcmil  |                                                    | Single conductor 26/7<br>Str. (ACSR) Standard<br>3 Phase Primary<br>Conductor   | Bare<br>HAWK   | 5785' Per Reel<br>(656lb/1000ft.)    | W21NI       | 9302780              | 5941551              |  |  |  |  |  |

| <u>TIEWIRE</u>         |   |                                                                                                                                               |                |           |             |             |            |
|------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|-------------|-------------|------------|
| SIZE                   |   | KIND                                                                                                                                          | COVERING       | QUANTITY  | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| #6 AWG Cu.<br>Tie Wire |   | Sol. Cu. SD                                                                                                                                   | Bare           | 500' coil | W22A        | 9315002     | 4015002    |
| #4 AWG Cu.<br>Tie Wire |   | Sol. Cu. SD                                                                                                                                   | Bare           | 792' coil | W22B        | 9316523     | 4015001    |
| #4 AWG AI.<br>Tie Wire | 0 | Sol. Al. SD<br>- For Ties on Bare<br>Alum. & ACSR                                                                                             | Bare           | 650' coil | W22C        | 9315703     | 4015201    |
| #4 AWG AI.             | 0 | Tie Wire Sol. Al. SD<br>O.D30", 0.053 lb./ft<br>For Ties on All<br>Covered Primary<br>Conductor with HDPE<br>(Polymer) Pin<br>Insulator (I6P) | 45 mils<br>TPR | 500' coil | W22D        | 9314472     | 0811214    |

# CABLE, 5KV 1/C NON-SHIELDED MEDIUM VOLTAGE - COPPER

5000V insulated softdrawn copper.

|               | DIA OF     |                                       | *AMPACITIES |           | STD.                     |             |             |            |
|---------------|------------|---------------------------------------|-------------|-----------|--------------------------|-------------|-------------|------------|
| AWG<br>SIZE   | Cu<br>ONLY | COVERING                              | BURIED      | IN<br>AIR | SHIPPING<br>LENGTH       | STD<br>ITEM | SAP ITEM ID | PS ITEM ID |
| #6<br>solid   | .1620"     | 110 mils black PE                     | 65          | 95        | 2500'                    | W33A        | 9316531     | 4005323    |
| #2<br>7 str,  | .292"      | 125 mils insulation<br>80 mils jacket | 115         | 170       | 1000'<br>(.46 lbs / ft.) | W33B        | 9316530     | 4005324    |
| 4/0 – 19 str. | .528"      | 125 mils insulation<br>95 mils jacket | 230         | 360       | 1000'<br>(.72 lbs / ft)  | W33C        | 9315700     | 4020111    |

<sup>\*</sup>Ampacities (from NEC) are for Insulated copper conductors at 75°C and 30°C ambient temperatures.

|      | MATERIAL DESCRIPTION |             |                                |     |  |
|------|----------------------|-------------|--------------------------------|-----|--|
|      | ISSUE PAGE NUMBER    |             |                                |     |  |
|      | 7/16                 | 22 – W21NG- | OVERHEAD CONSTRUCTION STANDARD | lqq |  |
| Busi | ness Use             | W33C        |                                |     |  |

MATERIAL DESCRIPTION

ppl

OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

22 – BLANK 7/11

# SIGNS, "PCB" WARNING

Black on yellow background. In accordance with Federal Register Vol. 43, No. 34 (Mark I) dated February 17, 1978.



| DESCRIPTION                                                                                   | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|-----------------------------------------------------------------------------------------------|-------------|----------------------|----------------------|
| CLASS II 6" X 6" Flexible sign for field attachment to wood pole with a PCB filled capacitor. | Z5          | 9319940 <sup>Y</sup> | 8002300 <sup>Y</sup> |
| CLASS III 6" X 6" Self sticking for shop attachment to PCB filled capacitors.                 | Z6          | 9319939              | 8002301              |
| CLASS III  2" X 2" Self Sticking for shop attachments to PCB filled capacitors.               | Z7          | 9319938 <sup>Y</sup> | 8002302 <sup>Y</sup> |

# SIGNS, "PCB" INFORMATION

Self Sticking Vinyl 3" Wide X 2" High.

| NON-PCB                             |
|-------------------------------------|
| PCB<br>CONTAMINATED                 |
| OIL SAMPLE<br>TAKEN FOR<br>PCB TEST |

| DESCRIPTION                                          | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|------------------------------------------------------|-------------|----------------------|----------------------|
| "NON-PCB"<br>White on Blue                           | Z8          | 9319944 <sup>Y</sup> | 8002296 <sup>Y</sup> |
| "PCB CONTAMINATED"<br>White on Green                 | <b>Z</b> 9  | 9319943 <sup>Y</sup> | 8002297 <sup>Y</sup> |
| "OIL SAMPLE TAKEN<br>FOR PCB TEST"<br>Black on White | Z10         | 9319942 <sup>Y</sup> | 8002298 <sup>Y</sup> |

|      | MATERIAL DESCRIPTION    |             |                                   |       |
|------|-------------------------|-------------|-----------------------------------|-------|
|      | ISSUE                   | PAGE NUMBER |                                   | SMIZE |
| Busi | <b>7/13</b><br>ness Use | 22 – Z5-Z10 | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |

# **MARKER – BLUE WITH GREY LETTERING**

Blue marker with grey lettering measures 41/2" X 2", aluminum foil less than 50 PPM-PCB.





| DESCRIPTION                                             | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|---------------------------------------------------------|-------------|----------------------|----------------------|
| Aluminum foil less<br>than 50 PPM-PCB                   | Z11A        | 9318679 <sup>E</sup> | 5467249 <sup>E</sup> |
| Vinyl retro-filled with<br>non-PCB dielectric<br>fluid. | Z11B        | 9318678 <sup>E</sup> | 5467250 <sup>E</sup> |

# REFLECTORS, WOOD POLE AND METAL/FIBERGLASS POLE

3" X 10", 3M, 3800 series high intensity reflective acrylic and polyester film pole reflectors.



| DESCRIPTION                                                                                 | STD<br>ITEM | SAP ITEM ID          | PS ITEM ID           |
|---------------------------------------------------------------------------------------------|-------------|----------------------|----------------------|
| White reflective marker for wood poles, 3003 alloy backing.                                 | Z12A        | 9318597 <sup>E</sup> | 5480420 <sup>E</sup> |
| White reflective marker for metal/fiberglass poles, backslit removable polyethylene liner.  | Z12B        | 9309448              | 5480425              |
| Yellow reflective marker for wood poles, 3003 alloy backing.                                | Z12C        | 9309505 <sup>E</sup> | 5480430 <sup>E</sup> |
| Yellow reflective marker for metal/fiberglass poles, backslit removable polyethylene liner. | Z12D        | 9309507              | 5480435              |

| MATERIAL DESCRIPT | HON |
|-------------------|-----|
|-------------------|-----|



OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

22 – Z11A-Z12D 7/13

# Footnotes Used in the Distribution Standards Material Catalogs

An "E" at the end of an Item ID indicates that the item is currently available in Rhode Island. A "Y" at the end of an Item ID indicates that the item was formerly in use in jurisdictions outside of Rhode Island.

|                   | MATERIAL DESCRIPTION FOOTNOTES |          |                                   |                      |  |
|-------------------|--------------------------------|----------|-----------------------------------|----------------------|--|
| ISSUE PAGE NUMBER |                                |          |                                   | 100 A                |  |
| Busi              | <b>7/17</b><br>ness Use        | 22-BLANK | OVERHEAD<br>CONSTRUCTION STANDARD | national <b>grid</b> |  |

| MATERIAL                                                         | STD ITEM      | ILLUSTRATION |
|------------------------------------------------------------------|---------------|--------------|
| Connectors - Conduit                                             |               |              |
| <ul> <li>Connector</li> </ul>                                    | C7AA          |              |
| <ul> <li>○ Conduit Flexible – ½" PVC</li> </ul>                  | C29A          |              |
| Brackets – Wood Pole                                             |               |              |
| Street Light for Wood Pole                                       | SB04 – SB08   |              |
| <ul> <li>Street Light for Wood Pole – Heavy Duty</li> </ul>      | SB06A – SB08A |              |
| o Street Light for Wood Pole – Truss Style                       | SB10 – SB20   |              |
| <ul> <li>Flood Light for Wood Pole – Single</li> </ul>           | SB30          |              |
| <ul> <li>Flood Light for Wood Pole – Twin</li> </ul>             | SB31          |              |
| o "Fairview" – Decorative for Wood Pole                          | SB40          | 0/9          |
| <ul> <li>"Park Ave. South" – Decorative for Wood Pole</li> </ul> | SB42          | 1111         |
| Controls – Photoelectric                                         |               |              |
| Photoelectric – Twistlock                                        | SC01 – SC04   |              |
| o Photoelectric - Button                                         | SC17          |              |
| o Receptacle Caps - Twistlock                                    | SC20 – SC21   |              |
| Receptacle – Twistlock Photoelectric                             | SC30          | 6            |
| o PEC Visor                                                      | SC31          | Thing min    |

| MATERIAL DESCRIPTION - INDEX |                                           |             |       |
|------------------------------|-------------------------------------------|-------------|-------|
| SMIZZ                        |                                           | PAGE NUMBER | ISSUE |
| ppl                          | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | 23-i        | 7/16  |

© 2022 PPL Corporation. All rights reserved.

| MATERI     | AL                                 | STD ITEM       | ILLUSTRATION |
|------------|------------------------------------|----------------|--------------|
| 0 <b>L</b> | amps                               |                |              |
| C          | Incandescent                       | SH01           |              |
| C          | Mercury Vapor                      | SH02C – SH02K  | - Albert     |
| C          | High Pressure Sodium Vapor         | SH03A – SH03G2 |              |
| C          | Metal Halide                       | SH04E – SH05H  | (1)          |
| • L        | uminaires - Setback                |                |              |
| C          | High Pressure Sodium Vapor         | SI03G – SI03H  |              |
| 0 L        | uminaires - Floodlight             |                |              |
| C          | High Pressure Sodium Vapor         | SJ03B – SJ03K  | 25           |
| C          | Metal Halide                       | SJ04K – SJ05H  |              |
| C          | Light Emitting Diode – LED         | SJ06E- SJ06F   |              |
| o #        | Accessories & Replacement Parts    |                |              |
| C          | GE – P154 Floodlight Luminaires    | SJ10A – SJ10D  |              |
| C          | GE – PF154 Floodlight Luminaires   | SJ11A – SJ11D  |              |
| C          | GE – PF400 Floodlight Luminaires   | SJ12A – SJ12D  |              |
| C          | GE – PF1000 Floodlight Luminaires  | SJ13A – SJ13D  |              |
| C          | Cooper – CFB Floodlight Luminaires | SJ20A – SJ20D  |              |

| MATERIAL DESCRIPTION – INDEX |             |                                           |       |
|------------------------------|-------------|-------------------------------------------|-------|
| ISSUE                        | PAGE NUMBER |                                           | SMIZZ |
| 7/20                         | 23-ii       | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl   |

| MATERIA | _                                                                               | STD ITEM        | ILLUSTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|---------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0       | Cooper – GPF Floodlight Luminaires                                              | SJ21A – SJ21D   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • Lu    | minaires – Horizontal Roadway                                                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | High Pressure Sodium Vapor – Semi-Cutoff                                        | SK03A – SK03K   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | High Pressure Sodium Vapor – Cutoff                                             | SK03A1 – SK03H1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | Metal Halide – Semi-Cutoff                                                      | SK05H           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0       | Light Emitting Diode – (LED)                                                    | SK06A – SK06H   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | High Pressure Sodium Vapor – 240 VAC                                            | SK10C1 – SK10G  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | High Pressure Sodium Vapor – 277 VAC                                            | SK20C – SK20H   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • Ac    | cessories & Replacement Parts                                                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | Semi-Cutoff Refractors                                                          | SK50A1 – SK50B2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | Security Refractor for LED Roadway                                              | SK51            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | Cutoff Flat Glass Lens                                                          | SK60A3 – SK60B4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | 360° External Light Trespass Shield                                             | SK70            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | House Shield & Light trespass shield – LED For STD Items SK06A1,SK06A and SK06C | SK70A – SK70B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | House Shield & Light trespass shield – LED For STD Item SK06G                   | SK70C – SK70D   | House Side Shield Light Treopers Shield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0       | House Shield & Light trespass shield – LED For STD Item SK06H                   | SK70E – SK70F   | Hone Side Shedt Light Transposs Shald                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0       | Bird Guard                                                                      | SK71            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0       | Capacitor                                                                       | SK80A – SK80B   | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |

| MATERIAL DESCRIPTION – INDEX |                                           |             |       |
|------------------------------|-------------------------------------------|-------------|-------|
| SMIZZ                        |                                           | PAGE NUMBER | ISSUE |
| ppl                          | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | 23-iii      | 7/20  |

| MATER | IAL                                                                                   | STD ITEM        | ILLUSTRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|---------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •     | Luminaires – Security                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0     | Residential – Powerbracket                                                            | SN03C           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0     | Optical Assembly                                                                      | SN10            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •     | Luminaires – Teardrop                                                                 |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | o "Delaware Park" Roadway Teardrop Luminaires                                         | SP10D – SP12H2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | <ul> <li>"Delaware Park" Roadway Teardrop Luminaires<br/>Replacement Parts</li> </ul> | SP10W1 – SP10Z2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | o "Westminster" - LED                                                                 | SP20CB – SP30CG |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •     | Luminaires – Accessories & Replacement Parts                                          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | NEMA Wattage Labels                                                                   | SR03A1 – SR05H  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | Luminaire Ownership Label                                                             | SR11            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | HPS Starters – GE Lighting Systems                                                    | SR20A – SR20G   | IN AN PARTIES. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | HPS Starters – Cooper Lighting                                                        | SR21A – SR21C   | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | HPS Starters – American Electric Lighting                                             | SR22A – SR22D   | Table and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same |
|       | HPS Starters – Holophane                                                              | SR23A – SR23B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •     | Wire & Cable – Outdoor Lighting                                                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | <ul> <li>Luminaire Supply Conductors – #10 AWG</li> </ul>                             | SY4A2           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| MATERIAL DESCRIPTION – INDEX |             |                                             |       |
|------------------------------|-------------|---------------------------------------------|-------|
| ISSUE                        | PAGE NUMBER |                                             | SMIZZ |
| 7/20                         | 23-iv       | OUTDOOR LIGHTING CONSTRUCTION STANDARD  ppl |       |

# **CONNECTOR - OVERHEAD**


Connector, street light, aluminum, parallel groove, non-tension, used to connect #10 AWG stranded copper street light fixture wire to #1/0 AWG aluminum secondary conductor. Use with STD Item C60R cover.



| STD  | SAP     | PS      |
|------|---------|---------|
| ITEM | ITEM ID | ITEM ID |
| C7AA | 9306443 | 9201815 |

# **CONDUIT - FLEXIBLE PVC**

 $\frac{1}{2}$ " grey PVC flexible conduit. Used for mechanical protection of #10 AWG luminaire supply conductors on all wood pole streetlight and floodlight installations.



| STD  | SAP     | PS      |
|------|---------|---------|
| ITEM | ITEM ID | ITEM ID |
| C29A | 9306805 | 9201925 |

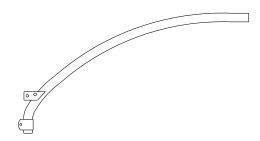
| MAT | ERIAL | DESCRIP | MOIT |
|-----|-------|---------|------|
|-----|-------|---------|------|



OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 23 - C7 - C29 7/15

#### BRACKET - STREET LIGHT FOR WOOD POLE


Upsweep pipe style, aluminum, 2" diameter schedule 40 pipe, 2" NPS slipfitter. Requires 12" of pole space. Mounting hardware = (1) 5/8" thru-bolt and (2) ½" x 4" lag screws. In accordance with PPL Material Specification Standard MS-6310.

Approximate Weight

4' bracket = 8 pounds

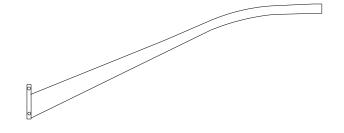
6' bracket = 11 pounds

8' bracket = 15 pounds



**Note:** The 8-foot bracket has a <sup>3</sup>/<sub>4</sub>" diameter aluminum pipe underbrace.

| BRACKET<br>LENGTH | USE                             | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|-------------------|---------------------------------|-------------|----------------|---------------|
| 4 Foot            | 50 W – 400 W roadway luminaires | SB04        | 9310697        | 5820352       |
| 6 Foot            | 50 W – 250 W roadway luminaires | SB06        | 9314574        | 0811030       |
| 8 Foot            | 50 W – 250 W roadway luminaires | SB08        | 9314575        | 0811029       |


### BRACKET - STREET LIGHT FOR WOOD POLE - HEAVY DUTY

Tapered elliptical style, aluminum, 2" NPS slipfitter. Requires 12" of pole space. Mounting hardware = (1) 5/8" thru-bolt and  $(2) \frac{1}{2}$ " x 4" lag screws. In accordance with PPL Material Specification Standard MS-6310.

Approximate Weight

6' bracket = 13 pounds

8' bracket = 18 pounds

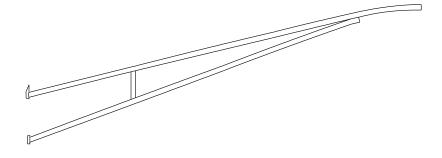


| BRACKET<br>LENGTH | USE                                | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|-------------------|------------------------------------|-------------|----------------|---------------|
| 6 Foot            | 400 W & 1,000 W roadway luminaires | SB06A       | 9317630        | 5820378       |
| 8 Foot            | 400 W & 1,000 W roadway luminaires | SB08A       | 9310695        | 5820379       |

|        |             | MATERIAL DESCRIPTION |
|--------|-------------|----------------------|
| ICCLIE | DACE NUMBER |                      |

| ISSUE | PAGE NUMBER    |
|-------|----------------|
| 7/13  | 23-SB04 - SB08 |

OUTDOOR LIGHTING CONSTRUCTION STANDARD




### BRACKET - STREET LIGHT FOR WOOD POLE

Tapered truss style, aluminum, 2" NPS slip-fitter. Requires 24" of pole space. Mounting hardware = (1) 5/8" thru-bolt and  $(4) \frac{1}{2}$ " x 4" lag screws. In accordance with PPL Material Specification Standard MS-6310.

### **Approximate Weight**

- 10' bracket = 35 pounds
- 12' bracket = 41 pounds
- 16' bracket = 58 pounds
- 20' bracket = 89 pounds

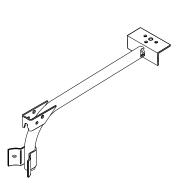


| BRACKET<br>LENGTH | USE                             | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|-------------------|---------------------------------|-------------|----------------------|----------------------|
| LENGIH            | USE                             | I I CIVI    | IIEMID               |                      |
| 10 Foot           | 50 W – 400 W roadway luminaires | SB10        | 9309600              | 5820487              |
| 12 Foot           | 50 W – 400 W roadway luminaires | SB12        | 9309601              | 5820468              |
| 16 Foot           | 50 W – 400 W roadway luminaires | SB16        | 9310694              | 5820563              |
| 20 Foot           | 50 W – 400 W roadway luminaires | SB20        | 9307225 <sup>Y</sup> | 9200483 <sup>Y</sup> |

| MATERIA | L DESCRII | JION |
|---------|-----------|------|
|---------|-----------|------|



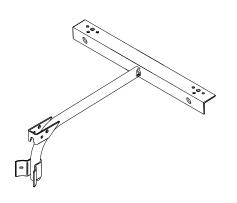
OUTDOOR LIGHTING CONSTRUCTION STANDARD


PAGE NUMBER ISSUE

23-SB10 – SB20 7/13

# BRACKET - FLOOD LIGHT FOR WOOD POLE - SINGLE

30" length, aluminum, 2" diameter schedule 40 pipe. Use to mount one floodlight luminaire. Requires 12" of pole space. Mounting hardware = (1) 5/8" thru-bolt and (2) ½" x 4" lag screws. In accordance with PPL Material Specification Standard MS-6320.


Approximate Weight = 14 pounds.



| STD  | SAP     | PS      |  |
|------|---------|---------|--|
| ITEM | ITEM ID | ITEM ID |  |
| SB30 | 9314576 | 0811027 |  |

### BRACKET - FLOOD LIGHT FOR WOOD POLE - TWIN

30" length, aluminum, 2" diameter schedule 80 pipe. Requires 12" of pole space. Mounting hardware = (1) 5/8" thru-bolt and (2) ½" x 4" lag screws. Use to mount two floodlight luminaires on the same bracket. In accordance with PPL Material Specification Standard MS-6320.



Approximate Weight = 26 pounds.

| STD  | SAP     | PS      |
|------|---------|---------|
| ITEM | ITEM ID | ITEM ID |
| SB31 | 9314573 | 0811032 |

| MATERIAL | DESCRIPTION |
|----------|-------------|
|----------|-------------|

Business Use PAGE NUMBER

7/13
23-SB30-SB31

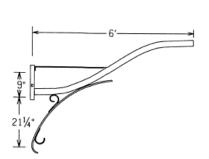
OUTDOOR LIGHTING CONSTRUCTION STANDARD



### "FAIRVIEW" BRACKET - FOR WOOD POLE

Decorative bracket, 30" length, aluminum, 2" diameter schedule 40 pipe, color: BLACK, 3"-tenon. Use to mount a post top style luminaire on a wood pole. Requires 16" of pole space. Mounting hardware = (1) 5/8" thru-bolt and (2) ½" x 4" lag screws.

<u>CLOSED OFFERING</u> – Use is limited to maintenance of existing installations only.




Approximate Weight = 17 pounds.

| STD  | SAP                  | PS                   |
|------|----------------------|----------------------|
| ITEM | ITEM ID              | ITEM ID              |
| SB40 | 9309714 <sup>E</sup> | 5821495 <sup>E</sup> |

#### "PARK AVE SOUTH" BRACKET - FOR WOOD POLE

Decorative bracket, 6' length, aluminum, 2" diameter schedule 80 pipe, color: BLACK, for use with teardrop style luminaires. Requires 36" of pole space. Mounting hardware = (2) 5/8" thru-bolt and (1) ½" x 4" lag screw.



Approximate Weight = 22 pounds.

| STD  | SAP                  | PS                   |
|------|----------------------|----------------------|
| ITEM | ITEM ID              | ITEM ID              |
| SB42 | 9314442 <sup>Y</sup> | 0810983 <sup>Y</sup> |

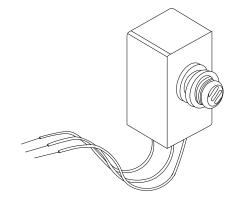


OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
23-SB40-SB42 7/13

|      | MATERIAL DESCRIPTION |             |                                           |       |
|------|----------------------|-------------|-------------------------------------------|-------|
|      | ISSUE                | PAGE NUMBER |                                           | SMIZZ |
| Busi | ness Use             | 23-BLANK    | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl   |

# CONTROL - PHOTOELECTRIC - TWISTLOCK


Solid state electronic, 1,000 W lamp load.  $1\frac{1}{2}$  foot-candle "turn-on" value, 2-5 second time delay on "turn off". In accordance with PPL Material Specification Standard MS-6140.



|                                                                                                       | HOUSING<br>COLOR | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|-------------------------------------------------------------------------------------------------------|------------------|-------------|----------------------|----------------------|
| <b>105 – 130 VAC</b><br>(Use on all 120VAC HID luminaires)                                            | GREY             | SC01        | 9314677              | 0811055              |
| 105 – 300 VAC – Long Life<br>(Use on 240 VAC & 277 VAC HID luminaires)<br>(Use on all LED luminaires) | BLUE             | SC02        | 9314675              | 0811057              |
| 105 – 130 VAC – Part Night<br>(For use in New Hampshire only)                                         | GREEN            | SC04        | 9314766 <sup>E</sup> | 9202661 <sup>E</sup> |

#### CONTROL - PHOTOELECTRIC - BUTTON

105-130 VAC, 500 W lamp load, 1½ foot-candle "turn-on" value, 5 – 10 second time delay on "turn off", with 3-12" long, #18 AWG, stranded copper leads, color coded: black=source, white=neutral, red=load. In accordance with PPL Material Specification Standard MS-6141.



| STD  | SAP     | PS      |
|------|---------|---------|
| ITEM | ITEM ID | ITEM ID |
| SC17 | 9311605 | 2501701 |



OUTDOOR LIGHTING CONSTRUCTION STANDARD

| PAGE NUMBER  | ISSUE |
|--------------|-------|
| 23-SC01-SC17 | 7/16  |

# CONTROL - RECEPTACLE CAPS - TWISTLOCK

Use in place of the twistlock photoelectric control to leave lamp load either permanently "ON" or "OFF". 1,000 W lamp load, In accordance with PPL Material Specification Standard MS-6140.



|                                                   | HOUSING<br>COLOR | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|---------------------------------------------------|------------------|-------------|----------------|---------------|
| OPEN Receptacle Cap<br>(Leave lamp load "OFF")    | RED              | SC20        | 9311953        | 2505407       |
| SHORTING Receptacle Cap<br>(Leave lamp load "ON") | BLACK            | SC21        | 9314674        | 0811058       |

#### RECEPTACLE - TWISTLOCK - FOR PHOTOELECTRIC CONTROL

For mounting twist-lock photo control directly to pole, crossarm, or to  $\frac{1}{2}$ " threaded conduit. With three 18" long #14 AWG (minimum) stranded copper leads, color coded: black=source, white=neutral, red=load.



| STD  | SAP     | PS      |
|------|---------|---------|
| ITEM | ITEM ID | ITEM ID |
| SC30 | 9311954 | 2505403 |

#### VISOR - FOR PHOTOELECTRIC CONTROL

Accessory for use with photoelectric control to prevent false control operation due to stray light interference. Black aluminum visor with stainless steel mounting strap.



| STD  | SAP     | PS      |
|------|---------|---------|
| ITEM | ITEM ID | ITEM ID |
| SC31 | 9306309 | 9202075 |

| ISSUE | PAGE NUMBER  |
|-------|--------------|
| 7/13  | 23-SC20-SC31 |





# LAMP - INCANDESCENT

Filament, 125 VAC, medium screw base, clear bulb, 6,000 hour rated life. In accordance with PPL Material Specification Standard MS-6132.



| LAMP<br>WATTAGE   | AVERAGE<br>INITIAL<br>LUMENS | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|-------------------|------------------------------|-------------|----------------|---------------|
| 189 or 202 or 205 | 2,750                        | SH01F       | 9319567        | 9001959       |

# LAMP - MERCURY VAPOR

High intensity discharge, mogul screw base, phosphor coated bulb, 24,000 hour rated life. In accordance with PPL Material Specification Standard MS-6133.

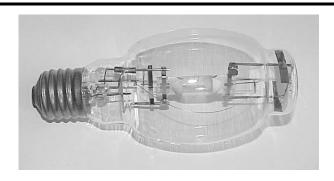


| LAMP<br>WATTAGE | ANSI LAMP<br>CODE | AVERAGE<br>INITIAL<br>LUMENS | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|-----------------|-------------------|------------------------------|-------------|----------------|---------------|
| 100             | H38               | 4,400                        | SH02C       | 9311927        | 2505324       |
| 175             | H39               | 8,500                        | SH02E       | 9311940        | 2505357       |
| 250             | H37               | 13,000                       | SH02G       | 9314788        | 0801051       |
| 400             | H33               | 23,000                       | SH02H       | 9311928        | 2505319       |
| 1,000           | H36               | 63,000                       | SH02K       | 9311957        | 2505361       |

| MATERIAL DESCRIPTION |                                           |              |       |  |  |
|----------------------|-------------------------------------------|--------------|-------|--|--|
|                      |                                           | PAGE NUMBER  | ISSUE |  |  |
|                      | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | 23-SH01-SH02 | 7/13  |  |  |

# LAMP - HIGH PRESSURE SODIUM VAPOR

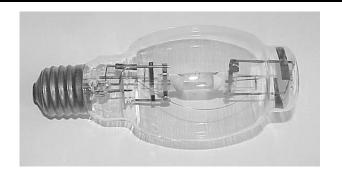
High intensity discharge, mogul screw base, clear bulb, non-cycling, 30,000 hour rated life. In accordance with PPL Material Specification Standard MS-6134.




| LAMP<br>WATTAGE | ANSI LAMP<br>CODE | AVERAGE<br>INITIAL<br>LUMENS | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|-----------------|-------------------|------------------------------|-------------|----------------------|----------------------|
| 50              | S68               | 4,000                        | SH03A       | 9321158 <sup>E</sup> | 5824615 <sup>E</sup> |
| 70              | S62               | 6,300                        | SH03B       | 9313585              | 2508070              |
| 100             | S54               | 9,500                        | SH03C       | 9313602              | 2508100              |
| 150             | S55               | 16,000                       | SH03D       | 9313604              | 2508150              |
| 250             | S50               | 28,500                       | SH03G       | 9313605              | 2508250              |
| 400             | S51               | 50,000                       | SH03H       | 9313622              | 2508400              |
| 1,000           | S52               | 140,000                      | SH03K       | 9313621              | 2508900              |

| MATERIAL DESCRIPTION |             |                                           |     |  |  |  |
|----------------------|-------------|-------------------------------------------|-----|--|--|--|
| ISSUE                | PAGE NUMBER |                                           | WHZ |  |  |  |
| 7/13                 | 23-SH03     | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |  |  |  |

### <u>LAMP – METAL HALIDE</u> <u>PROBE START</u>


High intensity discharge, mogul screw base, clear bulb. In accordance with PPL Material Specification Standard MS-6135.



|                 |                      |                           | FOSITION                 | HORIZONTAL<br>BURNING POSITION |                          |             |                |               |
|-----------------|----------------------|---------------------------|--------------------------|--------------------------------|--------------------------|-------------|----------------|---------------|
| LAMP<br>WATTAGE | ANSI<br>LAMP<br>CODE | AVG.<br>INITIAL<br>LUMENS | RATED<br>LIFE<br>(hours) | AVG.<br>INITIAL<br>LUMENS      | RATED<br>LIFE<br>(hours) | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
| 175             | M57                  | 14,400                    | 10,000                   | 12,800                         | 7,500                    | SH04E       | 9316214        | 1577025       |
| 250             | M58                  | 22,000                    | 10,000                   | 20,000                         | 6,000                    | SH04G       | 9314795        | 0800075       |
| 400             | M59                  | 36,000                    | 20,000                   | 32,000                         | 15,000                   | SH04H       | 9314726        | 0801867       |
| 1,000           | M47                  | 110,000                   | 15,000                   | 107,800                        | 9,000                    | SH04K       | 9316259        | 1571762       |

# <u>LAMP – METAL HALIDE</u> <u>PULSE START</u>

High intensity discharge, mogul screw base, clear bulb. In accordance with PPL Material Specification Standard MS-6135.



|                 |                      |                           | FICAL POSITION           | HORIZONTAL<br>BURNING POSITION |                          |             |                |               |  |  |
|-----------------|----------------------|---------------------------|--------------------------|--------------------------------|--------------------------|-------------|----------------|---------------|--|--|
| LAMP<br>WATTAGE | ANSI<br>LAMP<br>CODE | AVG.<br>INITIAL<br>LUMENS | RATED<br>LIFE<br>(hours) | AVG.<br>INITIAL<br>LUMENS      | RATED<br>LIFE<br>(hours) | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |  |  |
| 175             | M152                 | 14,400                    | 15,000                   | 12,000                         | 12,000                   | SH05E       | 9306259        | 9202096       |  |  |
| 250             | M153                 | 22,000                    | 15,000                   | 19,000                         | 12,000                   | SH05G       | 9306258        | 9202097       |  |  |
| 400             | M155                 | 36,000                    | 20,000                   | 31,000                         | 15,000                   | SH05H       | 9306257        | 9202098       |  |  |

| MATE | RIAL | DESCRI | PTION |
|------|------|--------|-------|
|------|------|--------|-------|



OUTDOOR LIGHTING CONSTRUCTION STANDARD

| PAGE NUMBER    | ISSUE |
|----------------|-------|
| 23-SH04 - SH05 | 7/13  |

# SETBACK LUMINAIRE - HIGH PRESSURE SODIUM VAPOR

HID, Grey Housing, PEC Receptacle, Trunnion Mounted.





Approximate Weight 250w = 60 pounds 400w = 60 pounds

<u>Note 1</u>: STD ITEM SI03G and SI03H are a CLOSED OFFERING. Stock is available for maintenance of existing installations only.

|          | WATTAGE | BALLAST   | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID |
|----------|---------|-----------|-------------|----------------------|---------------|
| 120 volt | 250 W   | Regulated | SI03G       | 9387236 <sup>Y</sup> | none          |
| 120 volt | 400 W   | Regulated | SI03H       | 9387237 <sup>Y</sup> | none          |

|       |             | MATERIAL DESCRIPTION                      |     |
|-------|-------------|-------------------------------------------|-----|
| ISSUE | PAGE NUMBER |                                           | WHZ |
| 07/14 | 23-SI03     | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |

### FLOODLIGHT LUMINAIRE - HIGH PRESSURE SODIUM VAPOR

HID, Grey Housing, PEC Receptacle, In accordance with PPL Material Specification Standard MS-6220.







Approximate Weight

70w = 25 pounds

150w = 25 pounds

250w = 45 pounds400w = 45 pounds

1000w = 65 pounds

70 W & 150 W

250 W & 400 W

1,000 W

<u>Note 1</u>: STD ITEM SJ03K is a CLOSED OFFERING. Stock is available for maintenance of existing installations only.

| motanations only.       | metanations only: |           |        |                      |                      |  |  |
|-------------------------|-------------------|-----------|--------|----------------------|----------------------|--|--|
|                         |                   |           | STD    | SAP                  | PS                   |  |  |
|                         | WATTAGE           | BALLAST   | ITEM   | ITEM ID              | ITEM ID              |  |  |
| 120 volt                | 70 W              | Reactor   | SJ03B  | 9305871 <sup>E</sup> | 5107009 <sup>E</sup> |  |  |
| 120 volt                | 150 W             | Reactor   | SJ03D  | 9305870 <sup>E</sup> | 5107011 <sup>E</sup> |  |  |
| 120 volt                | 250 W             | Regulated | SJ03G  | 9314672              | 0811060              |  |  |
| 120 volt                | 400 W             | Regulated | SJ03H  | 9314671              | 0811061              |  |  |
| 277 volt                | 400 W             | Regulated | SJ03H1 | 9306198              | 9201855              |  |  |
| (see note 1) - 120 volt | 1,000 W           | Regulated | SJ03K  | 9314670              | 0811062              |  |  |

| MATERIAL DESCRIPTION                      |             |       |
|-------------------------------------------|-------------|-------|
|                                           | PAGE NUMBER | ISSUE |
| OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | 23-SJ03     | 7/13  |

# FLOODLIGHT LUMINAIRE - METAL HALIDE

HID, Grey Housing, PEC Receptacle, In accordance with PPL Material Specification Standard MS-6220.





Approximate Weight 250w = 45 pounds 400w = 45 pounds 1000w = 65 pounds

250 W & 400 W

1,000 W

<u>Note 1</u>: 250 watt probe start metal halide floodlights have been discontinued with no replacement luminaire provided. When replacement of existing in service 250 watt metal halide floodlights is required, they shall be converted to 400w pulse start metal halide. Billing changes to customer apply.

<u>Note 2</u>: STD ITEM SJ04K is a CLOSED OFFERING. Stock is available for maintenance of existing installations only.

|                         | WATTAGE    | BALLAST   | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|-------------------------|------------|-----------|-------------|----------------|---------------|
| (see note 2) - 120 volt | 1,000 W    | Regulated | SJ04K       | 9314669        | 0811063       |
| 120 volt                | 400 W PSMH | Regulated | SJ05H       | 9306795        | 9202149       |

### FLOODLIGHT LUMINAIRE - LIGHT EMITTING DIODE (LED)

LED, Grey Housing, PEC Receptacle, In accordance with PPL Material Specification Standard MS-6221.



Approximate Weight 150 W – 28 pounds 275 W – 40 pounds



SJ06F

SJ06E

|              | MAXIMUM<br>WATTAGE | DELIVERED<br>LUMENS | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|--------------|--------------------|---------------------|-------------|----------------|---------------|
| 120/277 volt | 150W               | 14,000-20,000       | SJ06E       | 9393538        | N/A           |
| 120/277 volt | 199W               | 20,000-30,000       | SJ06F       | 9393537        | N/A           |

### MATERIAL DESCRIPTION

| ISSUE | PAGE NUMBER    |  |
|-------|----------------|--|
| 7/20  | 23-SJ04 - SJ06 |  |

OUTDOOR LIGHTING CONSTRUCTION STANDARD



# FLOODLIGHT ACCESSORIES AND REPLACEMENT PARTS GE LIGHTING SYSTEMS - P154 FLOODLIGHT LUMINAIRES



|                                                    | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|----------------------------------------------------|-------------|----------------|---------------|
| Front door and tempered glass lens assembly - GREY | SJ10A       | 9305884        | 5107021       |
| Vandal shield – Wire Guard                         | SJ10B       | future item    | future item   |
| Vandal shield - Polycarbonate                      | SJ10C       | 9305270        | 5106595       |
| Visor – Aluminum, Top & two side                   | SJ10D       | 9305284        | 5106597       |

# FLOODLIGHT ACCESSORIES AND REPLACEMENT PARTS GE LIGHTING SYSTEMS - PF154 FLOODLIGHT LUMINAIRES



|                                                    | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|----------------------------------------------------|-------------|----------------|---------------|
| Front door and tempered glass lens assembly - GREY | SJ11A       | future item    | future item   |
| Vandal shield – Wire Guard                         | SJ11B       | future item    | future item   |
| Vandal shield - Polycarbonate                      | SJ11C       | future item    | future item   |
| Visor – Aluminum, Top & two side                   | SJ11D       | future item    | future item   |

| MAII | ERIAL | DESCRIP | HON |
|------|-------|---------|-----|
|------|-------|---------|-----|



OUTDOOR LIGHTING CONSTRUCTION STANDARD

| PAGE NUMBER    | ISSUE |
|----------------|-------|
| 23-SJ10 - SJ11 | 7/13  |

# FLOODLIGHT ACCESSORIES AND REPLACEMENT PARTS GE LIGHTING SYSTEMS – PF400 FLOODLIGHT LUMINAIRES



|                                                    | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|----------------------------------------------------|-------------|----------------|---------------|
| Front door and tempered glass lens assembly - GREY | SJ12A       | 9309599        | 5820905       |
| Vandal shield – Wire Guard                         | SJ12B       | future item    | future item   |
| Vandal shield - Polycarbonate                      | SJ12C       | 9317662        | 5825811       |
| Visor – Aluminum, Top & two side                   | SJ12D       | 9317640        | 5825814       |

# FLOODLIGHT ACCESSORIES AND REPLACEMENT PARTS GE LIGHTING SYSTEMS - PF1000 FLOODLIGHT LUMINAIRES



|                                                    | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|----------------------------------------------------|-------------|----------------|---------------|
| Front door and tempered glass lens assembly - GREY | SJ13A       | future item    | future item   |
| Vandal shield – Wire Guard                         | SJ13B       | future item    | future item   |
| Vandal shield - Polycarbonate                      | SJ13C       | future item    | future item   |
| Visor – Aluminum, Top & two side                   | SJ13D       | future item    | future item   |

|   | MATERIAL DESCRIPTION |              |                                           |     |  |
|---|----------------------|--------------|-------------------------------------------|-----|--|
| ĺ | ISSUE                | PAGE NUMBER  |                                           | WIN |  |
|   | 7/13                 | 23-SJ12-SJ13 | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |  |

# FLOODLIGHT ACCESSORIES AND REPLACEMENT PARTS COOPER LIGHTING – CFB FLOODLIGHT LUMINAIRES



|                                                    | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|----------------------------------------------------|-------------|----------------|---------------|
| Front door and tempered glass lens assembly - GREY | SJ20A       | 9306324        | 9201363       |
| Vandal shield – Wire Guard                         | SJ20B       | 9306326        | 9201361       |
| Vandal shield - Polycarbonate                      | SJ20C       | future item    | future item   |
| Visor – Aluminum, Top & two side                   | SJ20D       | 9306325        | 9201362       |

# FLOODLIGHT ACCESSORIES AND REPLACEMENT PARTS COOPER LIGHTING – GPF FLOODLIGHT LUMINAIRES



|                                                    | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|----------------------------------------------------|-------------|----------------|---------------|
| Front door and tempered glass lens assembly - GREY | SJ21A       | future item    | future item   |
| Vandal shield – Wire Guard                         | SJ21B       | future item    | future item   |
| Vandal shield - Polycarbonate                      | SJ21C       | future item    | future item   |
| Visor - Aluminum, Top & two side                   | SJ21D       | future item    | future item   |

| MAI | ERIAL | DESCRIP | MOH |
|-----|-------|---------|-----|
|-----|-------|---------|-----|



| OUTDOOR LIGHTING     |   |
|----------------------|---|
| CONSTRUCTION STANDAR | E |

| MATERIAL DESCRIPTION |             |                                           |     |  |
|----------------------|-------------|-------------------------------------------|-----|--|
| ISSUE                | PAGE NUMBER |                                           | WIV |  |
| 07/16                | 23-BLANK    | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |  |

# HORIZONTAL ROADWAY LUMINAIRE HIGH PRESSURE SODIUM VAPOR - SEMI-CUTOFF

HID, High Pressure Sodium Vapor, 120 VAC, IES Medium, Semi-Cutoff, GREY housing, PECR, with 1-1/4" to 2" slip-fitter, In accordance with PPL Material Specification Standard MS-6210.

<u>Note 2</u>: STD ITEM SK03K is a CLOSED OFFERING. Stock is available for maintenance of existing installations only.

# **Approximate Weight**

50w – 150w reactor = 14 pounds 70w – 150w regulated = 30 pounds 250w = 27 pounds 400w = 39 pounds 1,000w = 76 pounds



| WATTAGE                | BALLAST            | IES LIGHT<br>DISTRIBUTION | REFRACTOR                           | STD<br>ITEM    | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|------------------------|--------------------|---------------------------|-------------------------------------|----------------|----------------------|----------------------|
| 50 W                   | Reactor            | Type II                   | Prismatic Acrylic                   | SK03A          | 9309606 <sup>E</sup> | 5821438 <sup>E</sup> |
| 70 W                   | Reactor            | Type II                   | Prismatic Acrylic                   | SK03B          | 9314688              | 0811068              |
| 100 W<br>150 W         | Reactor<br>Reactor | Type II                   | Prismatic Acrylic Prismatic Acrylic | SK03C<br>SK03D | 9314705<br>9314704   | 0811069<br>0811070   |
| 250 W                  | Regulated          | Type III                  | Prismatic Glass                     | SK03G          | 9314703              | 0811071              |
| 400 W                  | Regulated          | Type III                  | Prismatic Glass                     | SK03H          | 9313589              | 2507400              |
| (see note 2) - 1,000 W | Regulated          | Type III                  | Prismatic Glass                     | SK03K          | 9314701              | 0811073              |

| OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | 23-SK03-1   | 7/13  |
|-------------------------------------------|-------------|-------|
|                                           | PAGE NUMBER | ISSUE |
| MATERIAL DESCRIPTION                      |             |       |



# HORIZONTAL ROADWAY LUMINAIRE HIGH PRESSURE SODIUM VAPOR - CUTOFF

HID, High Pressure Sodium Vapor, 120 VAC, IES Medium, Cutoff, GREY housing, PECR, with 1-1/4" to 2" slip-fitter, In accordance with PPL Material Specification Standard MS-6210.



Approximate Weight
50w - 250w = 30 pounds
400w = 39 pounds

| WATTAGE | BALLAST   | IES LIGHT DISTRIBUTION | REFRACTOR           | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|---------|-----------|------------------------|---------------------|-------------|----------------------|----------------------|
| 50 W    | Reactor   | Type III               | Flat Tempered Glass | SK03A1      | 9309717 <sup>E</sup> | 5821440 <sup>E</sup> |
| 70 W    | Reactor   | Type III               | Flat Tempered Glass | SK03B1      | 9315139              | 0810168              |
| 100 W   | Reactor   | Type III               | Flat Tempered Glass | SK03C1      | 9314656              | 0811065              |
| 150 W   | Reactor   | Type III               | Flat Tempered Glass | SK03D1      | 9314687              | 0811066              |
| 250 W   | Regulated | Type III               | Flat Tempered Glass | SK03G1      | 9314706              | 0811067              |
| 400 W   | Regulated | Type III               | Flat Tempered Glass | SK03H1      | 9314700              | 0811074              |

|       |             | MATERIAL DESCRIPTION                      |                      |
|-------|-------------|-------------------------------------------|----------------------|
| ISSUE | PAGE NUMBER |                                           | •                    |
| 7/13  | 23-SK03-2   | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | national <b>grid</b> |

# HORIZONTAL ROADWAY LUMINAIRE PULSE START METAL HALIDE - SEMI-CUTOFF

HID, Pulse Start Metal Halide, 120 VAC, IES Medium, Semicutoff, GREY housing, PECR, with 1-1/4" to 2" slip-fitter, In accordance with PPL Material Specification Standard MS-6210.



Approximate Weight = 39 pounds.

| WATTAGE    | BALLAST   | IES LIGHT<br>DISTRIBUTION | REFRACTOR       | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|------------|-----------|---------------------------|-----------------|-------------|----------------------|----------------------|
| 400 W PSMH | Regulated | Type III                  | Prismatic Glass | SK05H       | 9306796 <sup>Y</sup> | 9202148 <sup>Y</sup> |

# HORIZONTAL ROADWAY LUMINAIRE LIGHT EMITTING DIODE - (LED)

LED, 120-277 VAC, IES type II or III, 4000K LED color temperature, GREY housing, PECR, dimming capable, with 1-1/4" to 2" slip-fitter, In accordance with PPL Material Specification Standard MS-6211.



Approximate Weight 20W – 48W = 12 pounds. 96W = 21 pounds 275W = 30 pounds

| IES<br>DISTRIBUTION | MAXIMUM<br>SYSTEM<br>WATTAGE<br>(Watts) | DELIVERED LUMEN<br>OUTPUT RANGE<br>(Lumens) | STD ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|---------------------|-----------------------------------------|---------------------------------------------|----------|----------------|---------------|
| Type II             | 20                                      | Up to 2,000                                 | SK06A1   | 9390299        | N/A           |
| Type II             | 25                                      | 2,001 - 4,000                               | SK06A    | 9389768        | N/A           |
| Type II             | 48                                      | 4,001 - 8,000                               | SK06C    | 9389795        | N/A           |
| Type III            | 96                                      | 8,001 - 14,000                              | SK06G    | 9389786        | N/A           |
| Type III            | 210                                     | 20,000 - 30,000                             | SK06H    | 9389785        | N/A           |

# MATERIAL DESCRIPTION



OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

23-SK05H - 7/19

SK06H

# HORIZONTAL ROADWAY LUMINAIRE HIGH PRESURE SODIUM VAPOR - 240 VAC

HID, High Pressure Sodium Vapor, 240 VAC – 2-wire source, IES Medium, Cutoff, GREY housing, PECR, with 1-1/4" to 2" slip-fitter, In accordance with PPL Material Specification Standard MS-6210.

(Rhode Island only)



Approximate Weight = 30 pounds.

| WATTAGE | BALLAST   | IES LIGHT<br>DISTRIBUTION | REFRACTOR           | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|---------|-----------|---------------------------|---------------------|-------------|----------------------|----------------------|
| 100 W   | Regulated | Type III                  | Flat Tempered Glass | SK10C1      | 9310320 <sup>E</sup> | 9201152 <sup>E</sup> |

# HORIZONTAL ROADWAY LUMINAIRE HIGH PRESURE SODIUM VAPOR - 240 VAC

HID, High Pressure Sodium Vapor, 240 VAC – 2-wire source, IES Medium, Semi-cutoff, GREY housing, PECR, with 1-1/4" to 2" slip-fitter, In accordance with PPL Material Specification Standard MS-6210.



(Route 295 – Providence, RI)

Approximate Weight = 30 pounds.

| WATTAGE | BALLAST   | IES LIGHT<br>DISTRIBUTION | REFRACTOR       | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|---------|-----------|---------------------------|-----------------|-------------|----------------------|----------------------|
| 250 W   | Regulated | Type III                  | Prismatic Glass | SK10G       | 9321187 <sup>E</sup> | 5821524 <sup>E</sup> |

|       |                      | MATERIAL DESCRIPTION                      |     |
|-------|----------------------|-------------------------------------------|-----|
| ISSUE | PAGE NUMBER          |                                           | WWZ |
| 7/13  | 23-SK10C1 –<br>SK10G | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |

# HORIZONTAL ROADWAY LUMINAIRE HIGH PRESURE SODIUM VAPOR - 277 VAC

HID, High Pressure Sodium Vapor, 277 VAC – 2-wire source, IES Medium, Semi-cutoff, GREY housing, PECR, with 1-1/4" to 2" slip-fitter, In accordance with PPL Material Specification Standard MS-6210.



Approximate Weight 100w - 250w = 30 pounds 400w = 39 pounds

| WATTAGE | BALLAST   | IES LIGHT DISTRIBUTION | REFRACTOR         | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|---------|-----------|------------------------|-------------------|-------------|----------------|---------------|
| 100 W   | Regulated | Type III               | Prismatic Acrylic | SK20C       | 9317388        | 5821456       |
| 150 W   | Regulated | Type III               | Prismatic Acrylic | SK20D       | 9317387        | 5821458       |
| 250 W   | Regulated | Type III               | Prismatic Glass   | SK20G       | 9317386        | 5821459       |
| 400 W   | Regulated | Type III               | Prismatic Glass   | SK20H       | 9309716        | 5821460       |

| MATERIAL | . DESCRIP | TION |
|----------|-----------|------|
|----------|-----------|------|



OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
23-SK20 7/18

# **HORIZONTAL ROADWAY LUMINAIRE**

Replacement semi-cutoff refractors



| FOR USE ON:                                                                                                                    | MATERIAL                 | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------|----------------|---------------|
| GE Lighting Systems – 50 W – 175<br>Cooper Lighting – 50 W – 175 W<br>American Electric – 50 W – 175 W                         | - 50 W – 175 W           |             | 9309719        | 5822031       |
| GE Lighting Systems – 250 W with small housing<br>Cooper Lighting 250 W – 400 W<br>American Electric 250 W with small housing. | Prismatic<br>Glass       | SK50A2      | 9312417        | 2501851       |
| GE Lighting Systems – older 250 W & 400 W with large housing.                                                                  | housing. Prismatic Glass |             | 9321181        | 5822063       |
| GE Lighting Systems – new 400 W<br>American Electric – 400 W                                                                   | Prismatic<br>Glass       | SK50B2      | 9311685        | 2501861       |

# **HORIZONTAL ROADWAY LUMINAIRE**

Refractor attachment for use as security light



| FOR USE ON:                                                  | MATERIAL      | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|--------------------------------------------------------------|---------------|-------------|----------------|---------------|
| American Electric – LED Roadway STD ID SK06A1 and SK06A Only | Polycarbonate | SK51        | 9391626        | N/A           |

# **HORIZONTAL ROADWAY LUMINAIRE**

Replacement cutoff flat glass lens



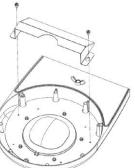
| FOR USE ON:                                                                                              | MATERIAL               | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|----------------------------------------------------------------------------------------------------------|------------------------|-------------|----------------|---------------|
| GE Lighting Systems – 50 W – 250 W<br>Cooper Lighting – 50 W – 400 W<br>American Electric – 50 W – 250 W | Flat Tempered<br>Glass | SK60A3      | 9321183        | 5822033       |
| GE Lighting Systems – 400 W with older style housing                                                     | Flat Tempered<br>Glass | SK60B3      | 9301993        | 5106589       |
| GE Lighting Systems – 400 W with new style housing<br>American Electric – 400 W                          | Flat Tempered<br>Glass | SK60B4      | 9305268        | 5106594       |

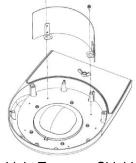
|      | ISSUE            | PAGE NUMBER    |  |
|------|------------------|----------------|--|
| usin | 7/18<br>1855 Use | 23-SK50 - SK60 |  |



# **HORIZONTAL ROADWAY LUMINAIRE**

360 degree external light trespass shield, aluminum




| FOR USE ON:                        | STD  | SAP     | PS      |
|------------------------------------|------|---------|---------|
|                                    | ITEM | ITEM ID | ITEM ID |
| GE Lighting Systems – 50 W – 250 W | SK70 | 9305285 | 5106596 |

# **HORIZONTAL ROADWAY LUMINAIRES**

House side shield and light trespass shield attachments for American Electric Lighting (AEL) LED roadway luminaires STD Items SK06A1, SK06A, and SK06C. Light trespass shield can be installed in 4 positions; 0°, 90°, 180° and 270°.

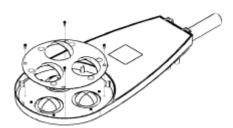


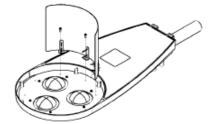


House Side Shield

Light Trespass Shield

| FOR USE ON:               | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|---------------------------|-------------|----------------|---------------|
| AEL House Side Shield     | SK70A       | 9391616        | N/A           |
| AEL Light Trespass Shield | SK70B       | 9391615        | N/A           |


| MATERIAL | DESCRIPTION |
|----------|-------------|
|----------|-------------|



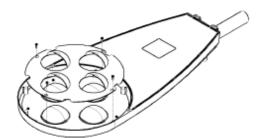

| PAGE NUMBER     | ISSUE |
|-----------------|-------|
| 23-SK70 - SK70B | 7/20  |

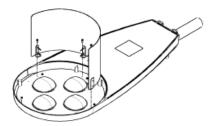
## **HORIZONTAL ROADWAY LUMINAIRES**

House side shield and light trespass shield attachments for American Electric Lighting (AEL) LED roadway luminaires STD Item SK06G. Light trespass shield can be installed in 4 positions; 0°, 90°, 180° and 270°.






House Side Shield


Light Trespass Shield

| FOR USE ON:               | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|---------------------------|-------------|----------------|---------------|
| AEL House Side Shield     | SK70C       | 9393266        | N/A           |
| AEL Light Trespass Shield | SK70D       | 9393256        | N/A           |

# **HORIZONTAL ROADWAY LUMINAIRES**

House side shield and light trespass shield attachments for American Electric Lighting (AEL) LED roadway luminaires STD Item SK06H Light trespass shield can be installed in 4 positions; 0°, 90°, 180° and 270°.





House Side Shield

Light Trespass Shield

| 500 U05 0V                | STD   | SAP     | PS      |
|---------------------------|-------|---------|---------|
| FOR USE ON:               | ITEM  | ITEM ID | ITEM ID |
| AEL House Side Shield     | SK70E | 9393265 | N/A     |
| AEL Light Trespass Shield | SK70F | 9393267 | N/A     |



# **HORIZONTAL ROADWAY LUMINAIRES**

Replacement Bird Guard - Black Plastic



| FOR USE ON:                        | STD  | SAP     | PS      |
|------------------------------------|------|---------|---------|
|                                    | ITEM | ITEM ID | ITEM ID |
| GE Lighting Systems – 50 W – 400 W | SK71 | 9311074 | 9201338 |

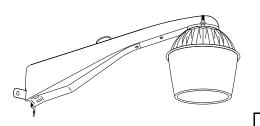
# **HORIZONTAL ROADWAY LUMINAIRE**

Replacement Capacitors – for use *ONLY* on GE Lighting Systems HPS horizontal roadway luminaires.



| FOR USE ON:                                                                    | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|--------------------------------------------------------------------------------|-------------|----------------|---------------|
| GE Lighting Systems – 250 W Roadway Luminaires 28uf 330VAC, 50/60hZ            | SK80A       | 9311090        | 9201339       |
| GE Lighting Systems – 400 W Roadway Luminaires 48uf 280VAC, 50/60hZ – 2" round | SK80B       | 9387158        | none          |

| MATERIAL DESCRIPTION | N           |
|----------------------|-------------|
|                      | PAGE NUMBER |
|                      |             |




ISSUE

| MATERIAL DESCRIPTION |             |                                           |     |  |
|----------------------|-------------|-------------------------------------------|-----|--|
| ISSUE                | PAGE NUMBER | NHI/2                                     |     |  |
| 7/20                 | 23-BLANK    | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |  |

## <u>LUMINAIRE – RESIDENTIAL SECURITY – POWERBRACKET</u>

HID, 120 VAC, reactor ballast, IES Medium, Semi-Cutoff, Type V. Includes ring latch aluminum reflector / acrylic open bottom refractor optical assembly, GREY housing, PECR . In accordance with PPL Material Specification Standard MS-6230.



Approximate Weight = 24 pounds.

|           | STD   | SAP     | PS      |
|-----------|-------|---------|---------|
|           | ITEM  | ITEM ID | ITEM ID |
| 100 W HPS | SN03C | 9305900 | 5107031 |

# **OPTICAL ASSEMBLY**

Ring latch, aluminum reflector / acrylic open bottom refractor optical assembly, IES semi-cutoff type V.



| STD  | SAP     | PS      |
|------|---------|---------|
| ITEM | ITEM ID | ITEM ID |
| SN10 | 9321185 | 5821706 |



OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 23-SN03-SN10 7/13

7/16 23-SP10 – SP12



MATERIAL DESCRIPTION

ppl

OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
23-SP10Z 7/15

# <u>"WESTMINSTER"</u> TEARDROP LUMINAIRE <u>LIGHT EMITTING DIODE – (LED)</u>

LED, 120 – 277 VAC, 3,000 K LED color temperature, semi cutoff, IES Type III, prismatic glass, prepared for external NEMA 7 pin PEC. In accordance with PPL Material Specification Standard MS-6264.

Approximate Weight = 60 pounds.



| HOUSING<br>COLOR | IES<br>DISTRIBUTION | SYSTEM<br>WATTAGE<br>(Maximum) | DELIVERED<br>LUMEN OUTPUT<br>(Minimum) | STD<br>ITEM | SAP<br>ITEM ID       |
|------------------|---------------------|--------------------------------|----------------------------------------|-------------|----------------------|
| BLACK            | III                 | 84 w LED                       | 8,001 – 14,000                         | SP30CB      | 9393103 <sup>Y</sup> |
| GREEN            | III                 | 84 w LED                       | 8,001 – 14,000                         | SP30CG      | 9393104 <sup>Y</sup> |
| BLACK            | III                 | 141 w LED                      | 14,001 – 20,000                        | SP30DB      | 9393105 <sup>Y</sup> |
| GREEN            | III                 | 141 w LED                      | 14,001 – 20,000                        | SP30DG      | 9393106 <sup>Y</sup> |
| BLACK            | III                 | 243 w LED                      | 20,001 - 30,000                        | SP30GB      | 9393107 <sup>Y</sup> |
| GREEN            | III                 | 243 w LED                      | 20,001 - 30,000                        | SP30GG      | 9393108 <sup>Y</sup> |

|      | MATERIAL DESCRIPTION    |             |                                           |     |  |
|------|-------------------------|-------------|-------------------------------------------|-----|--|
|      | ISSUE                   | PAGE NUMBER |                                           | WHA |  |
| Busi | <b>7/20</b><br>ness Use | 23-SP30     | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |  |

# <u>LUMINAIRE REPLACEMENT PART – NEMA WATTAGE LABEL</u>

New luminaires have labels factory applied.
Replacement labels are available for maintenance.
Use 1" x 1" size labels for all post top luminaires.
Use 3" x 3" on all other luminaires. In accordance with PPL Material Specification Standard MS-6110.



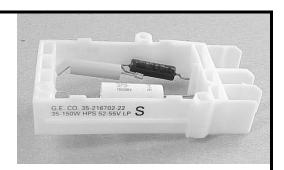
|             |        |               |         |         | _            |             |
|-------------|--------|---------------|---------|---------|--------------|-------------|
| LAMP        |        | BACKGROUND    | LABEL   | STD     | SAP          | PS          |
| WATTAGE     | LEGEND | COLOR         | SIZE    | ITEM    | ITEM ID      | ITEM ID     |
| 50w HPS     | "5"    | Yellow        | 1" x 1" | SR03A1  | 9314602      | 0811044     |
| 70w HPS     | "7"    | Yellow        | 1" x 1" | SR03B1  | 9314623      | 0811045     |
| 100w HPS    | "10"   | Yellow        | 1" x 1" | SR03C1  | 9314624      | 0811046     |
| 150w HPS    | "15"   | Yellow        | 1" x 1" | SR03D1  | 9314625      | 0811047     |
| 50w HPS     | "5"    | Yellow        | 3" x 3" | SR03A   | 9314684      | 0811048     |
| 70w HPS     | "7"    | Yellow        | 3" x 3" | SR03B   | 9314683      | 0811049     |
| 100w HPS    | "10"   | Yellow        | 3" x 3" | SR03C   | 9314682      | 0811050     |
| 150w HPS    | "15"   | Yellow        | 3" x 3" | SR03D   | 9314681      | 0811051     |
| 250w HPS    | "25"   | Yellow        | 3" x 3" | SR03G   | 9314680      | 0811052     |
| 400w HPS    | "40"   | Yellow        | 3" x 3" | SR03H   | 9314679      | 0811053     |
| 1,000w HPS  | "X1"   | Yellow        | 3" x 3" | SR03K   | 9314678      | 0811054     |
| 175w MH     | "17"   | Red           | 1" x 1" | SR04E1  | 9314565      | 0811040     |
| 175w MH     | "17"   | Red           | 3" x 3" | SR04E   | 9314640      | 0811037     |
| 250w MH     | "25"   | Red           | 3" x 3" | SR04G   | 9314564      | 0811041     |
| 400w MH     | "40"   | Red           | 3" x 3" | SR04H   | 9314890      | 0811042     |
| 1,000w MH   | "X1"   | Red           | 3" x 3" | SR04K   | 9314563      | 0811043     |
| 175w PSMH   | "17"   | Red / White   | 1" x 1" | SR05E1  | future item  | future item |
| 175w PSMH   | "17"   | Red / White   | 3" x 3" | SR05E   | future item  | future item |
| 250w PSMH   | "25"   | Red / White   | 3" x 3" | SR05G   | future item  | future item |
| 400w PSMH   | "40"   | Red / White   | 3" x 3" | SR05H   | future item  | future item |
| 400W 1 3WIT | 40     | ixed / writte | 3 73    | 31(03)1 | ratare kerri | Tatare ne   |
|             | 1      |               |         |         |              |             |

| MATERIAL DESCRIPTION                      | PAGE NUMBER    | ISSUE |
|-------------------------------------------|----------------|-------|
| OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | 23-SR03 – SR05 | 7/20  |



# LUMINAIRE ACCESSORY – LUMINAIRE OWNERSHIP LABEL

4" circular, reflective, red label. no legend.


Used to identify customer owned luminaire maintained by Massachusetts Electric Company under street lighting rate "S2".



| STD  | SAP                  | PS      |
|------|----------------------|---------|
| ITEM | ITEM ID              | ITEM ID |
| SR11 | 9317411 <sup>E</sup> |         |

|      |                         |             | MATERIAL DESCRIPTION                      |     |
|------|-------------------------|-------------|-------------------------------------------|-----|
|      | ISSUE                   | PAGE NUMBER |                                           | SMI |
| Busi | <b>7/20</b><br>ness Use | 23-SR11     | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |

# <u>LUMINAIRE REPLACEMENT PART – HPS STARTER – GE LIGHTING SYSTEMS</u>



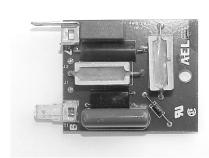
|                                                         | STD<br>ITEM | SAP<br>ITEM ID       | PS<br>ITEM ID        |
|---------------------------------------------------------|-------------|----------------------|----------------------|
| Plug-in replacement for 35w – 150w luminaires           | SR20A       | 9309827              | 5104839              |
| Plug-in replacement for 250w– 400w luminaires           | SR20B       | 9305283              | 5106598              |
| Replacement for 100w luminaires - flat board type       | SR20D       | 9312533 <sup>Y</sup> | 2503036 <sup>Y</sup> |
| Replacement for 35w – 150w luminaires – flat board type | SR20E       | 9311673              | 2503013              |
| Replacement for 250w – 400w luminaires                  | SR20F       | 9311672 <sup>Y</sup> | 2503014 <sup>Y</sup> |
| Replacement for 250w – 1,000w luminaires                | SR20G       | 9311671 <sup>Y</sup> | 2503015 <sup>Y</sup> |

# <u>LUMINAIRE REPLACEMENT PART – HPS STARTER – COOPER LIGHTING</u>



|                                                             | STD<br>ITEM | SAP<br>ITEM ID | PS<br>ITEM ID |
|-------------------------------------------------------------|-------------|----------------|---------------|
| Plug-in replacement for 35w – 150w luminaires – white base  | SR21A       | 9310432        | 5825826       |
| Plug-in replacement for 250w – 400w luminaires – green base | SR21B       | 9310428        | 5825827       |
| Plug-in replacement for 150w– 400w luminaires               | SR21C       | 9311688        | 2503017       |

| MATERIAL DESCRIPTION |
|----------------------|
|----------------------|




OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE

23-SR20 – SR21 7/20

# <u>LUMINAIRE REPLACEMENT PART – HPS STARTER – AMERICAN ELECTRIC</u>



|                                                        | STD SAP PS |                      | PS                   |
|--------------------------------------------------------|------------|----------------------|----------------------|
|                                                        | ITEM       | ITEM ID              | ITEM ID              |
| Plug-in replacement for 35w – 150w luminaires – 2-wire | SR22A      | 9311690 <sup>Y</sup> | 2503018 <sup>Y</sup> |
| Plug-in replacement for 35w – 150w luminaires – 3-wire | SR22B      | 9314599 <sup>Y</sup> | 0810845 <sup>Y</sup> |
| Plug-in replacement for 250w – 400w luminaires         | SR22C      | 9312534 <sup>Y</sup> | 2503030 <sup>Y</sup> |
| Plug-in replacement for 35w – 400w luminaires – DUAL   | SR22D      | 9309746 <sup>E</sup> | 5825828 <sup>E</sup> |

# <u>LUMINAIRE REPLACEMENT PART – HPS STARTER – HOLOPHANE</u>



|                                                | STD SAP |                      | PS                   |  |
|------------------------------------------------|---------|----------------------|----------------------|--|
|                                                | ITEM    | ITEM ID              | ITEM ID              |  |
| Plug-in replacement for 50w – 150w luminaires  | SR23A   | 9311426              | 2503310              |  |
| Plug-in replacement for 250w – 400w luminaires | SR23B   | 9308016 <sup>Y</sup> | 9202995 <sup>Y</sup> |  |

|      | MATERIAL DESCRIPTION    |                |                                           |     |
|------|-------------------------|----------------|-------------------------------------------|-----|
|      | ISSUE                   | PAGE NUMBER    |                                           | SMI |
| Busi | <b>7/15</b><br>ness Use | 23-SR22 – SR23 | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |

MATERIAL DESCRIPTION

ppl

OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE
23-ST09 7/20

# WIRE & CABLE - STREET LIGHTING - LUMINAIRE SUPPLY CONDUCTORS

Use to connect all luminaires to the secondary supply. 7-strand, soft drawn copper, RHH/RHW/USE-2 600-volt insulation. In accordance with PPL Material Specification Standard MS-6150, latest issue.



| DESCRIPTION                              |       | SAP<br>ITEM ID | PS<br>ITEM ID |
|------------------------------------------|-------|----------------|---------------|
| 2-1/C #10 AWG – BLACK-WHITE twisted pair | SY4A2 | 9313590        | 9202617       |

|      | MATERIAL DESCRIPTION    |             |                                           |     |  |
|------|-------------------------|-------------|-------------------------------------------|-----|--|
|      | ISSUE                   | PAGE NUMBER |                                           | SMI |  |
| Busi | <b>7/20</b><br>ness Use | 23-BLANK    | OUTDOOR LIGHTING<br>CONSTRUCTION STANDARD | ppl |  |

Page Intentionally Left Blank

MATERIAL DESCRIPTION



OUTDOOR LIGHTING CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 23-SY 7/20

| SECTION                                                                          | PAGE           |
|----------------------------------------------------------------------------------|----------------|
| • 25.0 GENERAL                                                                   | 25-1           |
| 25.1 IDEAL DISTRIBUTION FEEDER                                                   | 25-1           |
| 25.2 SYSTEM RELIABILITY                                                          | 25-1 THRU 25-3 |
| 25.3 SELF-HEALING ELECTRIC SYSTEMS                                               | 25-3           |
| 25.4 FAULT LOCATION, ISOLATION, SERVICE RESTORATION<br>(FLISR)                   | 25-3 THRU 25-4 |
| 25.5 VOLT-VAR CONTROL AND OPTIMIZATION                                           | 25-4           |
| 25.6 ADVANCED METER INFRASTRUCTURE (AMI)                                         | 25-5           |
| 25.7 COMMUNICATION SYSTEMS                                                       | 25-5           |
| CONSTRUCTION DRAWINGS                                                            |                |
| <ul> <li>Company Owned Pole Mounted Radio Antenna Installation</li> </ul>        | 25-300         |
| <ul> <li>Typical Installation of Power Line Sensor with Collector Box</li> </ul> | 25-650         |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |
|                                                                                  |                |

|              | FEEDER APPLICATION & COMMUNICATIONS INDEX  PAGE NUMBER ISSUE |                                   |             |       |  |
|--------------|--------------------------------------------------------------|-----------------------------------|-------------|-------|--|
|              | SMIZE                                                        |                                   | PAGE NUMBER | ISSUE |  |
| Rusiness Use | ppl                                                          | OVERHEAD<br>CONSTRUCTION STANDARD | 25-i        | 7/21  |  |

 $\odot$  2022 PPL Corporation. All rights reserved.

Doc. # ST.25.00.001

|       | FEEDER APPLICATION & APPLICATIONS INDEX |                                   |      |  |
|-------|-----------------------------------------|-----------------------------------|------|--|
| ISSUE | PAGE NUMBER                             |                                   | SMIZ |  |
| 7/21  | 25-ii                                   | OVERHEAD<br>CONSTRUCTION STANDARD | ppl  |  |

### 25.0 GENERAL

The distribution and sub-transmission systems are the foundation for exceeding customers' expectations in their daily energy needs and enabling a clean energy future for the more than 500 thousand customers the Company serves Rhode Island. This construction standard will support system application based upon safety, environmental, reliability, efficiency, and lifecycle costs.

### 25.1 IDEAL DISTRIBUTION FEEDER

This section describes the ideal distribution feeder. It is intended to represent what the Company would like to construct based upon Asset Management and Engineering principles.

The ideal distribution feeder is typically a 15kV class overhead circuit with underground sections limited to areas adjacent to the substation, urban or congested areas, locations with no overhead alternative (e.g. bridges), Underground Residential Distribution (URD), and Underground Commercial Development (UCD) systems.

- The primary overhead construction will be either open wire on crossarms (preferred) or spacer cable and aerial cable (in heavily treed areas, or multiple circuits on the same poles, or areas where a compact configuration is necessary to maintain proper clearances).
- 2. The feeder mainline will be limited to three phase sections having an open tie point to an adjacent feeder. Mainline on distribution feeders shall be built with a minimum size of 477 kcmil Al.
- 3. On bifurcated feeders (with the bifurcation near the substation) a line recloser will be on each leg of the bifurcation.
- 4. All radial taps will be fused, if proper coordination cannot be maintained with a standard size fuse the use of either a three phase or multiple single phase reclosers should be considered. If it is not possible to install an automatic sectionalizing device at the radial tap location, an automatic sectionalizing device will be installed at the closest allowable location on the radial tap.
- All normally open tie points between feeders will have either a line recloser or gang-operated loadbreak switch.
- All three phase switching points should have either a line recloser or gang-operated loadbreak switch except riser type configurations.
- 7. All secondary and services will be triplex cable (or quadraplex).
- 8. All new overhead primary will have a minimum size of 1/0 Al.
- UG getaway cables exiting from the substation shall be built with a minimum size of 500 to 1000 kcmil aluminum or copper conductor.

## 25.2 SYSTEM RELIABILITY

Reliability of the distribution and sub-transmission system is defined as the ability to perform its function under normal and abnormal conditions. One view of distribution system performance can be determined through the use of reliability indices. To adequately measure performance, both duration and frequency of customer interruptions must be examined at various system levels. The most commonly used indices are System Average Interruption Frequency Index (SAIFI), System Average Interruption Duration Index (SAIDI), and Customer Average Interruption Duration Index (CAIDI), which all provide information about average system performance.

## 25.2.10 <u>Interruption Indices</u>

The IEEE Guide for Electric Power Distribution Reliability Indices (IEEE Std 1366) is a set of terms and definitions which can be used to foster uniformity in the development of distribution service reliability indices, to identify factors which affect the indices, and to aid in consistent reporting practices among utilities. The following are the three main indices used by the Company:

|            | FEEDER APPLICATION & COMMUNICATIONS |                                   |             |       |
|------------|-------------------------------------|-----------------------------------|-------------|-------|
|            | .5077.                              |                                   | PAGE NUMBER | ISSUE |
| Business U | se ppl                              | OVERHEAD<br>CONSTRUCTION STANDARD | 25-1        | 7/21  |

The System Average Interruption Frequency Index (SAIFI) indicates how often the average customer experiences a sustained interruption over a predefined period of time.

The System Average Interruption Duration Index (SAIDI) indicates the total duration of interruption for the average customer during a predefined period of time. It is commonly measured in minutes or hours of interruption.

The Customer Average Interruption Duration Index (CAIDI) represents the average time required to restore service.

## 25.2.20 <u>Material Failure Rate Criteria</u>

Electric material reliability data is one of the most important aspects of distribution and subtransmission system reliability assessment. Without good data, the answers provided by complicated analysis and sophisticated computer programs are meaningless.

Failure rates of overhead distribution equipment are, in general, very system specific due to their dependence on geography, weather, animals, and other factors. The industry accepted failure rates for overhead distribution equipment are shown in Table 1.

Table 1

| Table 1                  |                                 |       |       |  |
|--------------------------|---------------------------------|-------|-------|--|
| Description              | Failure Rate (failure per year) |       |       |  |
|                          | Low Typical High                |       | High  |  |
| Overhead Lines           |                                 |       |       |  |
| Primary Trunk            | 0.020                           | 0.100 | 0.300 |  |
| Lateral Tap              | 0.020                           | 0.160 | 0.300 |  |
| Secondary & Service Drop | 0.020                           | 0.088 | 0.300 |  |
| Pole Mounted Transformer | 0.004                           | 0.010 | 0.015 |  |
| Disconnect Switch        | 0.004                           | 0.014 | 0.140 |  |
| Fuse Cutout              | 0.004                           | 0.009 | 0.030 |  |
| Line Recloser            | 0.005                           | 0.015 | 0.030 |  |
| Shunt Capacitor          | 0.011                           | 0.020 | 0.085 |  |
| Voltage Regulator        | 0.010                           | 0.029 | 0.100 |  |

Failure rates for overhead lines are per circuit mile.

Low & high numbers are the lowest and highest values found in published literature. Typical number is a reasonable generic value for a typical US distribution system.

| 7/21  |
|-------|
| - 1   |
| New   |
| stan  |
| dard. |

|      | FEEDER APPLICATION & COMMUNICATIONS |             |                                   |      |
|------|-------------------------------------|-------------|-----------------------------------|------|
|      | ISSUE                               | PAGE NUMBER |                                   | SMIZ |
| Busi | <b>7/21</b><br>ness Use             | 25-2        | OVERHEAD<br>CONSTRUCTION STANDARD | ppl  |

Although most distribution circuit-miles in PPL's system are overhead, underground distribution systems are becoming more common. This increase can be largely attributed to two factors: aesthetics and reliability. Underground equipment is sheltered from vegetation and weather and usually has lower failure rates than associated overhead equipment. The industry accepted failure rates for underground distribution equipment are shown in Table 2.

Table 2

|                        | I able 2                                    |         |       |
|------------------------|---------------------------------------------|---------|-------|
| Description            | Description Failure Rate (failure per year) |         | year) |
|                        | Low                                         | Typical | High  |
| Underground Cable      |                                             |         |       |
| Primary Cable          | 0.020                                       | 0.100   | 0.300 |
| Secondary Cable        | 0.020                                       | 0.160   | 0.300 |
| Elbow Connectors       | 0.004                                       | 0.010   | 0.015 |
| Cable Splices & Joints | 0.004                                       | 0.014   | 0.140 |
| Padmount Transformers  | 0.004                                       | 0.009   | 0.030 |
| Padmount Switches      | 0.005                                       | 0.015   | 0.030 |

Failure rates for overhead lines are per circuit mile.
Low & high numbers are the lowest and highest values found in published literature.

Once a failure rate for a typical material item is calculated, it can then be compared to such industry accepted failure rates to help determine future risk and exposure.

## SELF-HEALING ELECTRIC SYSTEMS

Self-healing electric systems use Intelligent Electronic Devices (IED) such as: reclosers, switchgear, and sophisticated protective equipment; advanced capacitor banks, voltage regulating equipment (e.g., power electronics / inverters, line regulators, etc.); and power quality sensors. Together, these IEDs allow for a more reliable grid that is less dependent on traditional, distribution equipment. Telemetry from such assets provides increased insight and visibility of distribution and subtransmission system performance. Subsequently, the self-healing grid requires a robust communications infrastructure to monitor, report, control, and optimize the reconfiguration process of the distribution network.

#### 25.4 FAULT LOCATION, ISOLATION, AND SERVICE RESTORATION (FLISR)

Fault Location, Isolation, and Service Restoration (FLISR) is the most recent technology advancement made for fast outage restoration. When a fault is detected, the upstream switch opens, which immediately initiates the FLISR technology. Using programmed logic, FLISR quickly implements a switching scheme to isolate the outage to as few customers as possible.

#### 25.4.10 **Restoration Logic**

pp

**Business Use** 

Restoration logic uses sophisticated processing to ensure that several pre-set constraints are respected. The following factors and priorities should be considered in determining an optimal load restoration strategy:

- 1. Recommendations do not cause new overloads or violations beyond a user-specified tolerance when implemented.
- Recommendations will minimize switching actions.
- The priority is to restore entire de-energized islands. If it is unable to do that, FLISR attempts to restore the maximum load possible by splitting de-energized islands.
- When transferring loads, feeders belonging to the same substation are prioritized. If this is not possible, transfers to feeders from other substations are considered.

Commented [KJH1]: How does "25.3 SELF-HEALING ELECTRIC SYSTEMS" differentiate from "25.4 FAULT LOCATION, ISOLATION, AND SERVICE RESTORATION (FLISR)? (FLISR seems to be one, main, component of a "selfhealing" grid... subsection perhaps?)

Commented [IS2]: Change to "trip signal is sent to the server

| FEEDER APPLICATION & COMMUNICATIONS |                                   |             |       |  |  |
|-------------------------------------|-----------------------------------|-------------|-------|--|--|
| Mes                                 |                                   | PAGE NUMBER | ISSUE |  |  |
| i (                                 | OVERHEAD<br>CONSTRUCTION STANDARD |             | 7/21  |  |  |

Typical number is a reasonable generic value for a typical US distribution system.

- The priority is to transfer loads to immediately adjacent feeders (i.e.: first neighbor). If this is not possible without overloading adjacent feeders, transfers to second neighbors are possible.
- An available configuration option is to consider the estimated network loading for the next 24 hours when validating switching recommendations. This option guarantees that the recommendations are valid for that specified time frame.
- Recommendations include consideration for Distributed Energy Resources (DERs) that may affect loading levels, post-restoration, in accordance with associated interconnection agreements, etc.

## 25.5 VOLT-VAR CONTROL AND OPTIMIZATION

Implementing Volt/Var Optimization (VVO) throughout the distribution system is paramount to optimizing the grid. To do this, remote monitoring via sensors must provide the distribution management system with real-time data from many points along the distribution line down to the grid's edge. These advanced sensors throughout the distribution system allow utilities to control VAR demand and voltage regulation for intelligent decision-making. The smart sensors record and provide real-time and accurate data about distribution feeder line and equipment conditions. This data provides utilities with a comprehensive understanding of feeder load and voltage conditions from the substation to the end of the line. When used in conjunction with advanced capacitor banks and voltage regulating devices, VVO can minimize losses by optimizing VAR levels to control the system voltage. A simple VVO scheme is represented in Figure 1.

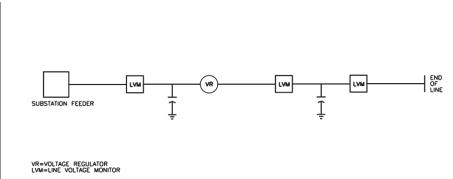



Figure 1 - Simple VVO Scheme

VVO benefits are significant. They provide enhanced reliability, efficiency and more. By optimizing the grid conditions, utilities can minimize system losses and demand through a lower voltage profile and in turn reduce end users' energy consumption, lowering their costs and environmental impacts. This form of distribution automation allows electric utilities to control demand and increase distribution system efficiency. Peak demand can also be alleviated by using VVO, which would optimize asset utilization, extend the life of the infrastructure and, thus, reduce the need for additional investment in new infrastructure.

|      |                         | FEEDER APPLICATION & COMMUNICATIONS |                                   |        |  |  |
|------|-------------------------|-------------------------------------|-----------------------------------|--------|--|--|
|      | ISSUE                   | PAGE NUMBER                         |                                   | .5007. |  |  |
| Busi | <b>7/21</b><br>ness Use | 25-4                                | OVERHEAD<br>CONSTRUCTION STANDARD | ppl    |  |  |

Commented [KJH3]: Possibly consider "VOLT-VAR OPTIMIZATION AND CONSERVATION VOLTAGE REDUCTION"

7/21 – New standard

It may then be good to break into two categories where we first discuss optimizing VAR flow on the grid for enhanced system efficiency, capacity relief, etc. and then a second session describing how voltage profiles are flattened through the optimization process and can then be lowered for reduced energy consumption, etc..

Advanced Metering Infrastructure (AMI) provides monitoring and granular data to support customer decisions, grid operations, and control capabilities that will enable the desired functions of a modern distribution system.

Granular, time-series data from smart meters and other intelligent devices at customers' premises enable advanced analyses, innovative rate designs, and customer engagement strategies which benefit both the customers and the grid. Voltage sensing and measurement functions support increased system efficiency and enable improved outage detection and restoration processes.

Pole-mounted meter aggregation nodes allow for the utilization of AMI by grid system operators.

#### 25.7 **COMMUNICATION SYSTEMS**

Communication infrastructure is critical for the successful operation of the distribution and subtransmission systems. The use of communication technologies ensures the reduction of energy consumption and optimal operation of all intelligent electronic devices.

#### **Distributed Network Protocol (DNP3)** 25.8.10

The Distributed Network Protocol (DNP3) is the standard protocol for distribution and subtransmission devices. The protocol is suitable for operation on a variety of communication media consistent with the makeup of most electric power communication systems. The IEEE Standard for Electric Power Systems Communications—Distributed Network Protocol (DNP3) (IEEE Std 1815) specifies the DNP3 protocol structure, functions, and application alternatives.

#### 25.8.20 **Cellular Communication Solutions**

The Company has standardized on the wireless GE MDS Orbit cellular router. The wireless router enables the Company to extend secure and reliable cellular connectivity using public networks to distribution and sub-transmission devices for monitoring and control. A low-gain omnidirectional pole mounted radio antenna is required to transmit signals.

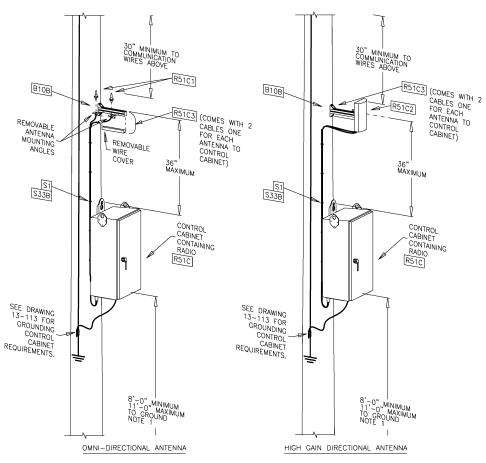
If cellular coverage is limited, a high-gain directional pole mounted radio antenna is required to increase signal strength.

The pole mounted radio antenna construction drawings are shown on drawing 25-

Commented [KJH4]: What "other intelligent devices"? We probably need to be careful here as we, as a utility, often do not have visibility into Home Area Networks (HAN) or Home Energy Management Systems. Not sure what was intended here though..

Commented [KJH5]: May be good to relate to VVO / CVR effors and how AMI systems can help support / augment this capability, and may even result in fewer power sensors required to achieve such functionality.

**Commented [KJH6]:** We should shy away from terms such as "Connected Grid Routers (CGRs)" as that is specific to Cisco and Itron's proposed AMI solution. A vendor has not yet been selected / awarded NG's AMI contract and so I would be looking to keep this as generic as possible.


 $\textbf{Commented [KJH7]:} \ I \ would \ delete \ this \ sentence \ as \ I \ don't$ know that it's all that factual. To-date we have only passed meter traffic via a CGR from an unlicensed, 900MHz. mesh network to a cellular backhaul. No grid equipment has been integrated to CGRs on our production systems

Commented [IS8]: Change Ensures to Enables

Commented [IS9]: Possibly switch the order of 25.8.10 and 25.8.20 - My thought is that Cellular Communication is the conduit and DNP3 is the information.

So, first describe Cellular Communication, then say that DNP3 packets are the data/intelligence that's transmitted through the cellular network

Doc. # ST.25.00.001 © 2022 PPL Corporation. All rights reserved.

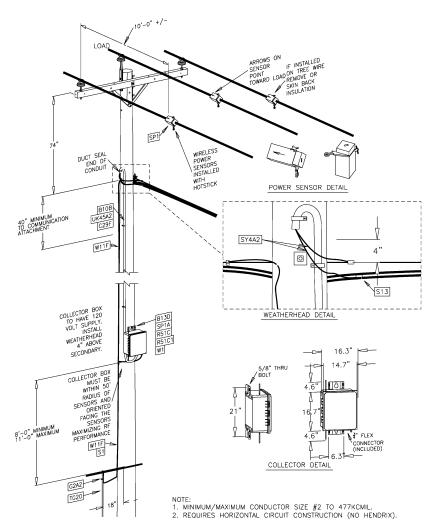


NOTE

1.ON NEW INSTALL 3' MAXIMUM ABOVE ENCLOSURE, FOR RETROFIT ANY DISTANCE ABOVE ENCLOSURE.

OPERATION CAN INSTALL FROM LADDER.

2. OMNI-DIRECTIONAL ANTENNA IS THE STANDARD INSTALLATION TO BE USED ON ANY OVERHEAD


STANDARD ARRANGEMENT WITH EQUIPMENT THAT REQUIRES SUCH. HIGH GAIN DIRECTIONAL ANTENNA TO

BE USED WHEN IT IS DETERMINED BY ENGINEERING AND OPERATIONS.

|     | Drawing |         |
|-----|---------|---------|
| MPR | od25100 | 7/15/19 |

|      | COMPANY OWNED POLE MOUNTED RADIO ANTENNA INSTALLATION |             |                                   |     |  |
|------|-------------------------------------------------------|-------------|-----------------------------------|-----|--|
|      | ISSUE                                                 | PAGE NUMBER |                                   | SMA |  |
| Busi | <b>7/21</b><br>ness Use                               | 25-300      | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |  |

7/21 - New standard.





|            | TYPICAL INSTALLATION OF POWER LINE SENSOR WITH COLLECTOR BOX |                                   |             |       |
|------------|--------------------------------------------------------------|-----------------------------------|-------------|-------|
|            | SMIZ                                                         |                                   | PAGE NUMBER | ISSUE |
| Business U | se ppl                                                       | OVERHEAD<br>CONSTRUCTION STANDARD | 25-650      | 7/21  |

| Version | Date | Modification         | Author(s) | Approval by (Name/Title) |
|---------|------|----------------------|-----------|--------------------------|
| 1       | 7/21 | Created new standard |           |                          |

|   | SUMMARY OF RECENT CHANGES |             |                                   |        |  |  |
|---|---------------------------|-------------|-----------------------------------|--------|--|--|
| Ī | ISSUE                     | PAGE NUMBER |                                   | .5007. |  |  |
|   | 7/21                      | 25-NOTES    | OVERHEAD<br>CONSTRUCTION STANDARD | ppl    |  |  |

| SECTION                                                                             | PAGE           |
|-------------------------------------------------------------------------------------|----------------|
| 25.0 GENERAL                                                                        | 25-1           |
| 25.1 IDEAL DISTRIBUTION FEEDER                                                      | 25-1           |
| 25.2 SYSTEM RELIABILITY                                                             | 25-1 THRU 25-3 |
| 25.3 SELF-HEALING ELECTRIC SYSTEMS                                                  | 25-3           |
| <ul> <li>25.4 FAULT LOCATION, ISOLATION, SERVICE RESTORATION<br/>(FLISR)</li> </ul> | 25-3 THRU 25-4 |
| <ul> <li>25.5 VOLT-VAR CONTROL AND OPTIMIZATION</li> </ul>                          | 25-4           |
| 25.6 ADVANCED METER INFRASTRUCTURE (AMI)                                            | 25-5           |
| 25.7 COMMUNICATION SYSTEMS                                                          | 25-5           |
| CONSTRUCTION DRAWINGS                                                               |                |
| COMPANY OWNED POLE MOUNTED RADIO ANTENNA                                            | 25-100         |
| <ul> <li>VOLTAGE REGULATOR COMMUNICATION WIRING DIAGRAM</li> </ul>                  | 25-101         |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |
|                                                                                     |                |

| FEEDER APPLICATION & COMMUNICATIONS INDEX |  |             |       |  |  |
|-------------------------------------------|--|-------------|-------|--|--|
| CMIZZ                                     |  | PAGE NUMBER | ISSUE |  |  |
| OVERHEAD CONSTRUCTION STANDARD 25-i 7/21  |  |             |       |  |  |

Doc. # ST.25.00.001

© 2022 PPL Corporation. All rights reserved.

|    | FEEDER APPLICATION & COMMUNICATIONS INDEX |             |                                   |     |  |  |
|----|-------------------------------------------|-------------|-----------------------------------|-----|--|--|
| IS | SUE                                       | PAGE NUMBER |                                   | WWZ |  |  |
| 7/ | /21                                       | 25-ii       | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |  |  |

## 25.0 GENERAL

The distribution and sub-transmission systems are the foundation for exceeding customers' expectations in their daily energy needs and enabling a clean energy future for the more than 500 thousand customers the Company serves in Rhode Island. This construction standard will support system application based upon safety, environmental, reliability, efficiency, and lifecycle costs.

## 25.1 <u>IDEAL DISTRIBUTION FEEDER</u>

This section describes the ideal distribution feeder. It is intended to represent what the Company would like to construct based upon Asset Management and Engineering principles.

The ideal distribution feeder is typically a 15kV class overhead circuit with underground sections limited to areas adjacent to the substation, urban or congested areas, locations with no overhead alternative (e.g. bridges), Underground Residential Distribution (URD), and Underground Commercial Development (UCD) systems.

- 1. The primary overhead construction will be either open wire on crossarms (preferred) or spacer cable and aerial cable (in heavily treed areas, or multiple circuits on the same poles, or areas where a compact configuration is necessary to maintain proper clearances).
- 2. The feeder mainline will be limited to three phase sections having an open tie point to an adjacent feeder. Mainline on distribution feeders shall be built with a minimum size of 477 kcmil Al.
- 3. On bifurcated feeders (with the bifurcation near the substation) a line recloser will be on each leg of the bifurcation.
- 4. All radial taps will be fused, if proper coordination cannot be maintained with a standard size fuse the use of either a three phase or multiple single phase reclosers should be considered. If it is not possible to install an automatic sectionalizing device at the radial tap location, an automatic sectionalizing device will be installed at the closest allowable location on the radial tap.
- 5. All normally open tie points between feeders will have either a line recloser or gang-operated loadbreak switch.
- 6. All three phase switching points should have either a line recloser or gang-operated loadbreak switch except riser type configurations.
- 7. All secondary and services will be triplex cable (or quadraplex).
- 8. All new overhead primary will have a minimum size of 1/0 Al.
- 9. UG getaway cables exiting from the substation shall be built with a minimum size of 500 to 1000 kcmil aluminum or copper conductor.

## 25.2 SYSTEM RELIABILITY

Reliability of the distribution and sub-transmission system is defined as the ability to perform its function under normal and abnormal conditions. One view of distribution system performance can be determined through the use of reliability indices. To adequately measure performance, both duration and frequency of customer interruptions must be examined at various system levels. The most commonly used indices are System Average Interruption Frequency Index (SAIFI), System Average Interruption Duration Index (SAIDI), and Customer Average Interruption Duration Index (CAIDI), which all provide information about average system performance.

## 25.2.10 <u>Interruption Indices</u>

The IEEE Guide for Electric Power Distribution Reliability Indices (IEEE Std 1366) is a set of terms and definitions which can be used to foster uniformity in the development of distribution service reliability indices, to identify factors which affect the indices, and to aid in consistent reporting practices among utilities. The following are the three main indices used by the Company:

| FEEDER APPLICATION & COMMUNICATIONS          |  |             |       |  |  |
|----------------------------------------------|--|-------------|-------|--|--|
| SMIZZ                                        |  | PAGE NUMBER | ISSUE |  |  |
| ppl OVERHEAD CONSTRUCTION STANDARD 25-1 7/21 |  |             |       |  |  |

The System Average Interruption Frequency Index (SAIFI) indicates how often the average customer experiences a sustained interruption over a predefined period of time.

The System Average Interruption Duration Index (SAIDI) indicates the total duration of interruption for the average customer during a predefined period of time. It is commonly measured in minutes or hours of interruption.

The Customer Average Interruption Duration Index (CAIDI) represents the average time required to restore service.

## 25.2.20 <u>Material Failure Rate Criteria</u>

Electric material reliability data is one of the most important aspects of distribution and subtransmission system reliability assessment. Without good data, the answers provided by complicated analysis and sophisticated computer programs are meaningless.

Failure rates of overhead distribution equipment are, in general, very system specific due to their dependence on geography, weather, animals, and other factors. The industry accepted failure rates for overhead distribution equipment are shown in Table 1.

Table 1

| Description              | Failure Rate (failure per year) |         |       |  |
|--------------------------|---------------------------------|---------|-------|--|
|                          | Low                             | Typical | High  |  |
| Overhead Lines           |                                 |         |       |  |
| Primary Trunk            | 0.020                           | 0.100   | 0.300 |  |
| Lateral Tap              | 0.020                           | 0.160   | 0.300 |  |
| Secondary & Service Drop | 0.020                           | 0.088   | 0.300 |  |
| Pole Mounted Transformer | 0.004                           | 0.010   | 0.015 |  |
| Disconnect Switch        | 0.004                           | 0.014   | 0.140 |  |
| Fuse Cutout              | 0.004                           | 0.009   | 0.030 |  |
| Line Recloser            | 0.005                           | 0.015   | 0.030 |  |
| Shunt Capacitor          | 0.011                           | 0.020   | 0.085 |  |
| Voltage Regulator        | 0.010                           | 0.029   | 0.100 |  |

Failure rates for overhead lines are per circuit mile.

Low & high numbers are the lowest and highest values found in published literature.

Typical number is a reasonable generic value for a typical US distribution system.

|       | FEEDER APPLICATION & COMMUNICATIONS INDEX |                                   |       |  |  |  |
|-------|-------------------------------------------|-----------------------------------|-------|--|--|--|
| ISSUE | PAGE NUMBER                               |                                   | SMIZZ |  |  |  |
| 7/21  | 25-2                                      | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |  |  |  |

Although most distribution circuit-miles in PPL's system are overhead, underground distribution systems are becoming more common. This increase can be largely attributed to two factors: aesthetics and reliability. Underground equipment is sheltered from vegetation and weather and usually has lower failure rates than associated overhead equipment. The industry accepted failure rates for underground distribution equipment are shown in Table 2.

Table 2

| . 40.0 =               |                                 |         |       |  |
|------------------------|---------------------------------|---------|-------|--|
| Description            | Failure Rate (failure per year) |         | year) |  |
| -                      | Low                             | Typical | High  |  |
| Underground Cable      |                                 |         |       |  |
| Primary Cable          | 0.020                           | 0.100   | 0.300 |  |
| Secondary Cable        | 0.020                           | 0.160   | 0.300 |  |
| Elbow Connectors       | 0.004                           | 0.010   | 0.015 |  |
| Cable Splices & Joints | 0.004                           | 0.014   | 0.140 |  |
| Padmount Transformers  | 0.004                           | 0.009   | 0.030 |  |
| Padmount Switches      | 0.005                           | 0.015   | 0.030 |  |

Failure rates for overhead lines are per circuit mile.

Low & high numbers are the lowest and highest values found in published literature.

Once a failure rate for a typical material item is calculated, it can then be compared to such industry accepted failure rates to help determine future risk and exposure.

## 25.3 SELF-HEALING ELECTRIC SYSTEMS

Self-healing electric systems use Intelligent Electronic Devices (IED) such as: reclosers, switchgear, and sophisticated protective equipment; advanced capacitor banks, voltage regulating equipment (e.g., power electronics / inverters, line regulators, etc.); and power quality sensors. Together, these IEDs allow for a more reliable grid that is less dependent on traditional, distribution equipment. Telemetry from such assets provides increased insight and visibility of distribution and subtransmission system performance. Subsequently, the self-healing grid requires a robust communications infrastructure to monitor, report, control, and optimize the reconfiguration process of the distribution network.

## 25.4 FAULT LOCATION, ISOLATION, AND SERVICE RESTORATION (FLISR)

Fault Location, Isolation, and Service Restoration (FLISR) is the most recent technology advancement made for fast outage restoration. When a fault is detected, the upstream switch opens, which immediately initiates the FLISR technology. Using programmed logic, FLISR quickly implements a switching scheme to isolate the outage to as few customers as possible.

## 25.4.10 Restoration Logic

Restoration logic uses sophisticated processing to ensure that several pre-set constraints are respected. The following factors and priorities should be considered in determining an optimal load restoration strategy:

- 1. Recommendations do not cause new overloads or violations beyond a user-specified tolerance when implemented.
- 2. Recommendations will minimize switching actions.
- 3. The priority is to restore entire de-energized islands. If it is unable to do that, FLISR attempts to restore the maximum load possible by splitting de-energized islands.
- 4. When transferring loads, feeders belonging to the same substation are prioritized. If this is not possible, transfers to feeders from other substations are considered.

| FEEDER APPLICATION & COMMUNICATIONS |                                   |             |       |  |
|-------------------------------------|-----------------------------------|-------------|-------|--|
| SMIZZ                               |                                   | PAGE NUMBER | ISSUE |  |
| ppl                                 | OVERHEAD<br>CONSTRUCTION STANDARD | 25-3        | 7/21  |  |

Typical number is a reasonable generic value for a typical US distribution system.

- 5. The priority is to transfer loads to immediately adjacent feeders (i.e.: first neighbor). If this is not possible without overloading adjacent feeders, transfers to second neighbors are possible.
- 6. An available configuration option is to consider the estimated network loading for the next 24 hours when validating switching recommendations. This option guarantees that the recommendations are valid for that specified time frame.
- Recommendations include consideration for Distributed Energy Resources (DERs) that may affect loading levels, post-restoration, in accordance with associated interconnection agreements, etc.

## 25.5 <u>VOLT-VAR CONTROL AND OPTIMIZATION</u>

Implementing Volt/Var Optimization (VVO) throughout the distribution system is paramount to optimizing the grid. To do this, remote monitoring via sensors must provide the distribution management system with real-time data from many points along the distribution line down to the grid's edge. These advanced sensors throughout the distribution system allow utilities to control VAR demand and voltage regulation for intelligent decision-making. The smart sensors record and provide real-time and accurate data about distribution feeder line and equipment conditions. This data provides utilities with a comprehensive understanding of feeder load and voltage conditions from the substation to the end of the line. When used in conjunction with advanced capacitor banks and voltage regulating devices, VVO can minimize losses by optimizing VAR levels to control the system voltage. A simple VVO scheme is represented in Figure 1.

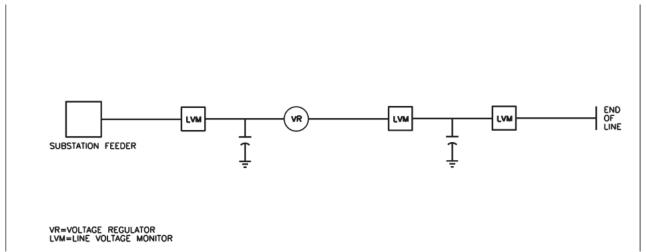



Figure 1 - Simple VVO Scheme

VVO benefits are significant. They provide enhanced reliability, efficiency and more. By optimizing the grid conditions, utilities can minimize system losses and demand through a lower voltage profile and in turn reduce end users' energy consumption, lowering their costs and environmental impacts. This form of distribution automation allows electric utilities to control demand and increase distribution system efficiency. Peak demand can also be alleviated by using VVO, which would optimize asset utilization, extend the life of the infrastructure and, thus, reduce the need for additional investment in new infrastructure.

|      | FEEDER APPLICATION & COMMUNICATIONS |             |                                   |      |  |  |
|------|-------------------------------------|-------------|-----------------------------------|------|--|--|
|      | ISSUE                               | PAGE NUMBER |                                   | WHZ. |  |  |
| Busi | ness Use                            | 25-4        | OVERHEAD<br>CONSTRUCTION STANDARD | ppl  |  |  |

#### 25.6 ADVANCED METER INFRASTRUCTURE (AMI)

Advanced Metering Infrastructure (AMI) provides monitoring and granular data to support customer decisions, grid operations, and control capabilities that will enable the desired functions of a modern distribution system.

Granular, time-series data from smart meters and other intelligent devices at customers' premises enable advanced analyses, innovative rate designs, and customer engagement strategies which benefit both the customers and the grid. Voltage sensing and measurement functions support increased system efficiency and enable improved outage detection and restoration processes.

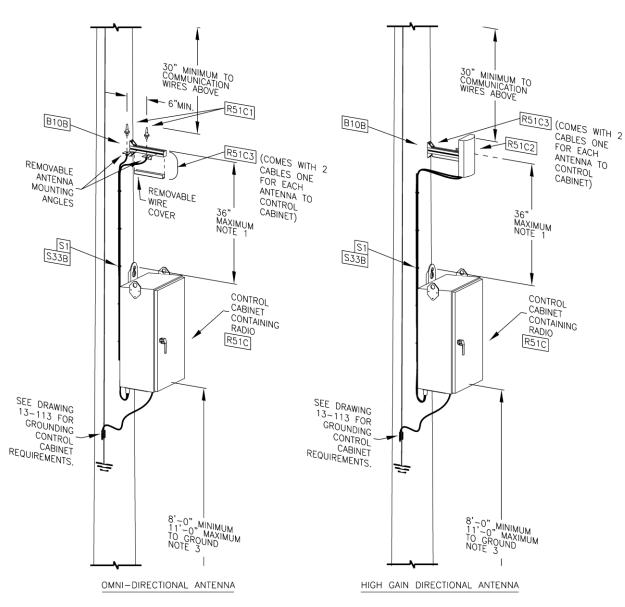
Pole-mounted meter aggregation nodes allow for the utilization of AMI by grid system operators.

#### 25.7 **COMMUNICATION SYSTEMS**

Communication infrastructure is critical for the successful operation of the distribution and subtransmission systems. The use of communication technologies ensures the reduction of energy consumption and optimal operation of all intelligent electronic devices.

#### 25.7.10 **Distributed Network Protocol (DNP3)**

The Distributed Network Protocol (DNP3) is the standard protocol for distribution and subtransmission devices. The protocol is suitable for operation on a variety of communication media consistent with the makeup of most electric power communication systems. The IEEE Standard for Electric Power Systems Communications—Distributed Network Protocol (DNP3) (IEEE Std 1815) specifies the DNP3 protocol structure, functions, and application alternatives.

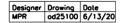

#### 25.7.20 **Cellular Communication Solutions**

The Company has standardized on the wireless GE MDS Orbit cellular router. The wireless router enables the Company to extend secure and reliable cellular connectivity using public networks to distribution and sub-transmission devices for monitoring and control. A low-gain omnidirectional pole mounted radio antenna is required to transmit signals.

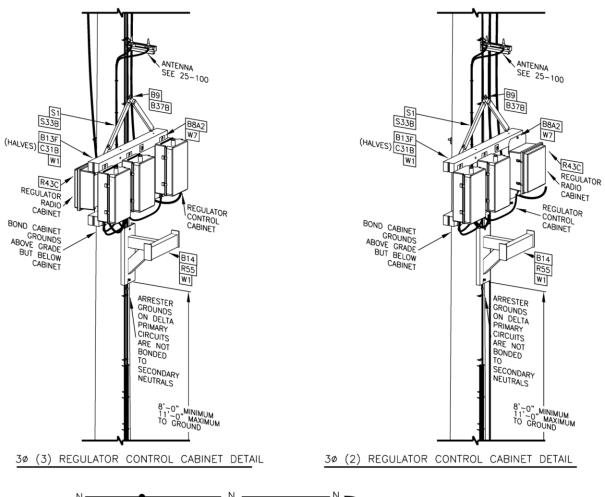
If cellular coverage is limited, a high-gain directional pole mounted radio antenna is required to increase signal strength.

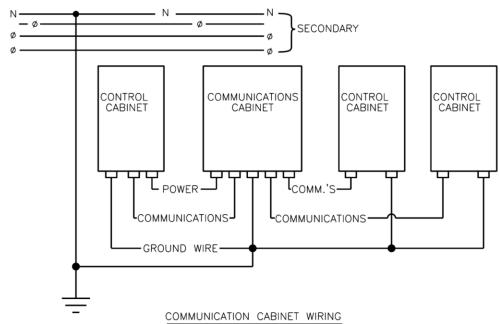
The pole mounted radio antenna construction drawings are shown on drawing 25-100.

| FE  | FEEDER APPLICATION & COMMUNICATIONS |             |       |  |  |  |
|-----|-------------------------------------|-------------|-------|--|--|--|
| 17. |                                     | PAGE NUMBER | ISSUE |  |  |  |
|     | OVERHEAD<br>CONSTRUCTION STANDARD   | 25-5        | 7/21  |  |  |  |




### NOTE


1.0N NEW INSTALL 3' MAXIMUM ABOVE ENCLOSURE, FOR RETROFIT ANY DISTANCE ABOVE ENCLOSURE. OPERATION CAN INSTALL FROM LADDER.


2. OMNI-DIRECTIONAL ANTENNA IS THE STANDARD INSTALLATION TO BE USED ON ANY OVERHEAD STANDARD ARRANGEMENT WITH EQUIPMENT THAT REQUIRES SUCH. HIGH GAIN DIRECTIONAL ANTENNA TO BE USED WHEN IT IS DETERMINED BY ENGINEERING AND OPERATIONS.

3. THE CONTROL CABINET MAY BE MOUNTED LOWER THAN 8' PROVIDED SUCH CONTROL CABINETS DO NOT OVERHANG ROADWAYS OR OBSTRUCT PEDESTRIAN TRAFFIC, AND AFTER FULL CONSIDERATION OF WORKER AND PUBLIC SAFETY, POSSIBLE VANDALISM, AND AESTHETICS. A GROUND GRID (13–114) SHALL BE INSTALLED.



| COMPANY OWNED POLE MOUNTED RADIO ANTENNA |             |                                   |       |
|------------------------------------------|-------------|-----------------------------------|-------|
| ISSUE                                    | PAGE NUMBER |                                   | SMIZZ |
| <b>7/19</b><br>s Use                     | 25-100      | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |





## NOTES:

- 1. REFER TO 25-100 FOR TELECOM REQUIREMENTS.
- 2. REFER TO SECTION 13 FOR GROUNDING DETAILS.

|     | Drawing |         |
|-----|---------|---------|
| MPR | od25101 | 5/14/21 |

|            | VOLTAGE REGULATOR COMMUNICATIONS WIRING DIAGRAM |                                   |             |       |
|------------|-------------------------------------------------|-----------------------------------|-------------|-------|
|            | W/A                                             |                                   | PAGE NUMBER | ISSUE |
| Business U | nnl 🗏                                           | OVERHEAD<br>CONSTRUCTION STANDARD | 25-101      | 7/21  |

Doc. # ST.25.00.001

| Version | Date | Modification                               | Author(s) | Approval by (Name/Title) |
|---------|------|--------------------------------------------|-----------|--------------------------|
| 3       | 7/21 | Text additions/modifications               |           |                          |
|         |      | <ul> <li>Added 25-101</li> </ul>           |           |                          |
| 2       | 7/20 | <ul> <li>Updated drawing 25-100</li> </ul> |           |                          |
|         |      | <ul> <li>Added drawing 25-100</li> </ul>   |           |                          |
| 1       | 7/19 | Created new standard                       |           |                          |

|      | VOLTAGE REGULATOR COMMUNICATION WIRING DIAGRAM |             |                                   |       |
|------|------------------------------------------------|-------------|-----------------------------------|-------|
|      | ISSUE                                          | PAGE NUMBER |                                   | SMIZE |
| Busi | <b>7/21</b><br>ness Use                        | 25-NOTES    | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |

| SECTION                                                                                                         | PAGE           |
|-----------------------------------------------------------------------------------------------------------------|----------------|
| 25.0 GENERAL                                                                                                    | 25-1           |
| 25.1 IDEAL DISTRIBUTION FEEDER                                                                                  | 25-1           |
| 25.2 SYSTEM RELIABILITY                                                                                         | 25-1 THRU 25-3 |
| 25.3 SELF-HEALING ELECTRIC SYSTEMS                                                                              | 25-3           |
| <ul> <li>25.4 FAULT LOCATION, ISOLATION, SERVICE RESTORATION<br/>(FLISR)</li> </ul>                             | 25-3 THRU 25-4 |
| <ul> <li>25.5 VOLT-VAR CONTROL AND OPTIMIZATION</li> </ul>                                                      | 25-4           |
| <ul> <li>25.6 ADVANCED METER INFRASTRUCTURE (AMI)</li> </ul>                                                    | 25-5           |
| <ul> <li>25.7 COMMUNICATION SYSTEMS</li> </ul>                                                                  | 25-5           |
| CONSTRUCTION DRAWINGS                                                                                           |                |
| <ul> <li>COMPANY OWNED POLE MOUNTED RADIO ANTENNA</li> </ul>                                                    | 25-100         |
| COMPANY OWNED CONNECTED GRID ROUTER                                                                             | 25-110         |
| <ul> <li>CONNECTED GRID ROUTER INSTALL ON THIRD PARTY OWNED<br/>FOREIGN UTILITY</li> </ul>                      | 25-100A        |
| <ul> <li>COMPANY INSTALLED NETWORK GATEWAY WITH SINGLE<br/>ANTENNA</li> </ul>                                   | 25-111         |
| <ul> <li>NETWORK GATEWAY WITH SINGLE ANTENNA INSTALL ON THIRD<br/>PARTY OWNED FOREIGN UTILITY</li> </ul>        | 25-111A        |
| <ul> <li>COMPANY INSTALLED NETWORK GATEWAY WITH REMOTE<br/>SINGLE ANTENNA</li> </ul>                            | 25-112         |
| <ul> <li>NETWORK GATEWAY WITH REMOTE SINGLE ANTENNA INSTALL<br/>ON THIRD PARTY OWNED FOREIGN UTILITY</li> </ul> | 25-112A        |
| COMPANY OWNED MESH EXTENDER                                                                                     | 25-113         |
| <ul> <li>MESH EXTENDER INSTALL ON THIRD PARTY OWNED FOREIGN<br/>UTILITY</li> </ul>                              | 25-113A        |
| <ul> <li>TYPICAL INSTALLATION OF POWER LINE SENSOR WITH<br/>COLLECTOR BOX</li> </ul>                            | 25-650         |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |
|                                                                                                                 |                |

### FEEDER APPLICATION & COMMUNICATIONS INDEX



OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE **25-i** 7/21

© 2022 PPL Corporation. All rights reserved. Doc. # ST.25.00.001

#### 25.0 GENERAL

The distribution and sub-transmission systems are the foundation for exceeding customers' expectations in their daily energy needs and enabling a clean energy future for the more than 500 thousand customers the Company serves in Rhode Island. This construction standard will support system application based upon safety, environmental, reliability, efficiency, and lifecycle costs.

#### 25.1 IDEAL DISTRIBUTION FEEDER

This section describes the ideal distribution feeder. It is intended to represent what the Company would like to construct based upon Asset Management and Engineering principles.

The ideal distribution feeder is typically a 15kV class overhead circuit with underground sections limited to areas adjacent to the substation, urban or congested areas, locations with no overhead alternative (e.g. bridges), Underground Residential Distribution (URD), and Underground Commercial Development (UCD) systems.

- 1. The primary overhead construction will be either open wire on crossarms (preferred) or spacer cable and aerial cable (in heavily treed areas, or multiple circuits on the same poles, or areas where a compact configuration is necessary to maintain proper clearances).
- 2. The feeder mainline will be limited to three phase sections having an open tie point to an adjacent feeder. Mainline on distribution feeders shall be built with a minimum size of 477 kcmil Al.
- 3. On bifurcated feeders (with the bifurcation near the substation) a line recloser will be on each leg of the bifurcation.
- 4. All radial taps will be fused, if proper coordination cannot be maintained with a standard size fuse the use of either a three phase or multiple single phase reclosers should be considered. If it is not possible to install an automatic sectionalizing device at the radial tap location, an automatic sectionalizing device will be installed at the closest allowable location on the radial tap.
- 5. All normally open tie points between feeders will have either a line recloser or gang-operated loadbreak switch.
- 6. All three phase switching points should have either a line recloser or gang-operated loadbreak switch except riser type configurations.
- 7. All secondary and services will be triplex cable (or quadraplex).
- 8. All new overhead primary will have a minimum size of 1/0 Al.
- 9. UG getaway cables exiting from the substation shall be built with a minimum size of 500 to 1000 kcmil aluminum or copper conductor.

#### 25.2 SYSTEM RELIABILITY

Reliability of the distribution and sub-transmission system is defined as the ability to perform its function under normal and abnormal conditions. One view of distribution system performance can be determined through the use of reliability indices. To adequately measure performance, both duration and frequency of customer interruptions must be examined at various system levels. The most commonly used indices are System Average Interruption Frequency Index (SAIFI), System Average Interruption Duration Index (SAIDI), and Customer Average Interruption Duration Index (CAIDI), which all provide information about average system performance.

### 25.2.10 <u>Interruption Indices</u>

The IEEE Guide for Electric Power Distribution Reliability Indices (IEEE Std 1366) is a set of terms and definitions which can be used to foster uniformity in the development of distribution service reliability indices, to identify factors which affect the indices, and to aid in consistent reporting practices among utilities. The following are the three main indices used by the Company:

The System Average Interruption Frequency Index (SAIFI) indicates how often the average customer experiences a sustained interruption over a predefined period of time.

|      | FEEDER APPLICATION & COMMUNICATIONS |             |                                   |       |  |  |
|------|-------------------------------------|-------------|-----------------------------------|-------|--|--|
|      | ISSUE                               | PAGE NUMBER |                                   | SMIZZ |  |  |
| Busi | <b>7/21</b><br>ness Use             | 25-1        | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |  |  |

© 2022 PPL Corporation. All rights reserved. Doc. # ST.25.00.001

The System Average Interruption Duration Index (SAIDI) indicates the total duration of interruption for the average customer during a predefined period of time. It is commonly measured in minutes or hours of interruption.

The Customer Average Interruption Duration Index (CAIDI) represents the average time required to restore service.

#### 25.2.20 <u>Material Failure Rate Criteria</u>

Electric material reliability data is one of the most important aspects of distribution and subtransmission system reliability assessment. Without good data, the answers provided by complicated analysis and sophisticated computer programs are meaningless.

Failure rates of overhead distribution equipment are, in general, very system specific due to their dependence on geography, weather, animals, and other factors. The industry accepted failure rates for overhead distribution equipment are shown in Table 1.

Table 1

| Description              | Failure Rate (failure per year) |         |       |
|--------------------------|---------------------------------|---------|-------|
|                          | Low                             | Typical | High  |
| Overhead Lines           |                                 |         |       |
| Primary Trunk            | 0.020                           | 0.100   | 0.300 |
| Lateral Tap              | 0.020                           | 0.160   | 0.300 |
| Secondary & Service Drop | 0.020                           | 0.088   | 0.300 |
| Pole Mounted Transformer | 0.004                           | 0.010   | 0.015 |
| Disconnect Switch        | 0.004                           | 0.014   | 0.140 |
| Fuse Cutout              | 0.004                           | 0.009   | 0.030 |
| Line Recloser            | 0.005                           | 0.015   | 0.030 |
| Shunt Capacitor          | 0.011                           | 0.020   | 0.085 |
| Voltage Regulator        | 0.010                           | 0.029   | 0.100 |

Failure rates for overhead lines are per circuit mile.

Low & high numbers are the lowest and highest values found in published literature.



Typical number is a reasonable generic value for a typical US distribution system.

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15.00.002

Although most distribution circuit-miles in PPL's system are overhead, underground distribution systems are becoming more common. This increase can be largely attributed to two factors: aesthetics and reliability. Underground equipment is sheltered from vegetation and weather and usually has lower failure rates than associated overhead equipment. The industry accepted failure rates for underground distribution equipment are shown in Table 2.

Table 2

| Description            | Failure | Failure Rate (failure per year) |       |  |
|------------------------|---------|---------------------------------|-------|--|
|                        | Low     | Typical                         | High  |  |
| Underground Cable      |         |                                 |       |  |
| Primary Cable          | 0.020   | 0.100                           | 0.300 |  |
| Secondary Cable        | 0.020   | 0.160                           | 0.300 |  |
| Elbow Connectors       | 0.004   | 0.010                           | 0.015 |  |
| Cable Splices & Joints | 0.004   | 0.014                           | 0.140 |  |
| Padmount Transformers  | 0.004   | 0.009                           | 0.030 |  |
| Padmount Switches      | 0.005   | 0.015                           | 0.030 |  |

Failure rates for overhead lines are per circuit mile.

Low & high numbers are the lowest and highest values found in published literature.

Typical number is a reasonable generic value for a typical US distribution system.

Once a failure rate for a typical material item is calculated, it can then be compared to such industry accepted failure rates to help determine future risk and exposure.

#### 25.3 <u>SELF-HEALING ELECTRIC SYSTEMS</u>

Self-healing electric systems use Intelligent Electronic Devices (IED) such as: reclosers, switchgear, and sophisticated protective equipment; advanced capacitor banks, voltage regulating equipment (e.g., power electronics / inverters, line regulators, etc.); and power quality sensors. Together, these IEDs allow for a more reliable grid that is less dependent on traditional, distribution equipment. Telemetry from such assets provides increased insight and visibility of distribution and subtransmission system performance. Subsequently, the self-healing grid requires a robust communications infrastructure to monitor, report, control, and optimize the reconfiguration process of the distribution network.

#### 25.4 FAULT LOCATION, ISOLATION, AND SERVICE RESTORATION (FLISR)

Fault Location, Isolation, and Service Restoration (FLISR) is the most recent technology advancement made for fast outage restoration. When a fault is detected, the upstream switch opens, which immediately initiates the FLISR technology. Using programmed logic, FLISR quickly implements a switching scheme to isolate the outage to as few customers as possible.

#### 25.4.10 Restoration Logic

Restoration logic uses sophisticated processing to ensure that several pre-set constraints are respected. The following factors and priorities should be considered in determining an optimal load restoration strategy:

- 1. Recommendations do not cause new overloads or violations beyond a user-specified tolerance when implemented.
- 2. Recommendations will minimize switching actions.
- 3. The priority is to restore entire de-energized islands. If it is unable to do that, FLISR attempts to restore the maximum load possible by splitting de-energized islands.
- 4. When transferring loads, feeders belonging to the same substation are prioritized. If this is not possible, transfers to feeders from other substations are considered.

|      | FEEDER APPLICATION & COMMUNICATIONS |             |                                   |       |  |  |
|------|-------------------------------------|-------------|-----------------------------------|-------|--|--|
|      | ISSUE                               | PAGE NUMBER |                                   | SMIZZ |  |  |
| Busi | <b>7/21</b><br>ness Use             | 25-3        | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |  |  |

© 2022 PPL Corporation. All rights reserved. Doc. # ST. 15.00.002

 The priority is to transfer loads to immediately adjacent feeders (i.e.: first neighbor). If this is not possible without overloading adjacent feeders, transfers to second neighbors are possible.

- 6. An available configuration option is to consider the estimated network loading for the next 24 hours when validating switching recommendations. This option guarantees that the recommendations are valid for that specified time frame.
- 7. Recommendations include consideration for Distributed Energy Resources (DERs) that may affect loading levels, post-restoration, in accordance with associated interconnection agreements, etc.

#### 25.5 VOLT-VAR CONTROL AND OPTIMIZATION

Implementing Volt/Var Optimization (VVO) throughout the distribution system is paramount to optimizing the grid. To do this, remote monitoring via sensors must provide the distribution management system with real-time data from many points along the distribution line down to the grid's edge. These advanced sensors throughout the distribution system allow utilities to control VAR demand and voltage regulation for intelligent decision-making. The smart sensors record and provide real-time and accurate data about distribution feeder line and equipment conditions. This data provides utilities with a comprehensive understanding of feeder load and voltage conditions from the substation to the end of the line. When used in conjunction with advanced capacitor banks and voltage regulating devices, VVO can minimize losses by optimizing VAR levels to control the system voltage. A simple VVO scheme is represented in Figure 1.

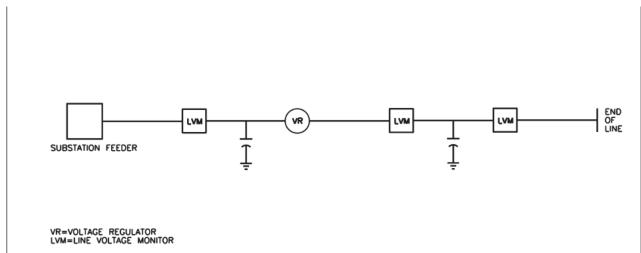



Figure 1 - Simple VVO Scheme

VVO benefits are significant. They provide enhanced reliability, efficiency and more. By optimizing the grid conditions, utilities can minimize system losses and demand through a lower voltage profile and in turn reduce end users' energy consumption, lowering their costs and environmental impacts. This form of distribution automation allows electric utilities to control demand and increase distribution system efficiency. Peak demand can also be alleviated by using VVO, which would optimize asset utilization, extend the life of the infrastructure and, thus, reduce the need for additional investment in new infrastructure.

| FEEDER APPLICATION & COMMUNICATIONS |                                   |             |       |  |  |
|-------------------------------------|-----------------------------------|-------------|-------|--|--|
| SMIZZ                               |                                   | PAGE NUMBER | ISSUE |  |  |
| ppl                                 | OVERHEAD<br>CONSTRUCTION STANDARD | 25-4        | 7/21  |  |  |

#### 25.6 ADVANCED METER INFRASTRUCTURE (AMI)

Advanced Metering Infrastructure (AMI) provides monitoring and granular data to support customer decisions, grid operations, and control capabilities that will enable the desired functions of a modern distribution system.

Granular, time-series data from smart meters and other intelligent devices at customers' premises enable advanced analyses, innovative rate designs, and customer engagement strategies which benefit both the customers and the grid. Voltage sensing and measurement functions support increased system efficiency and enable improved outage detection and restoration processes.

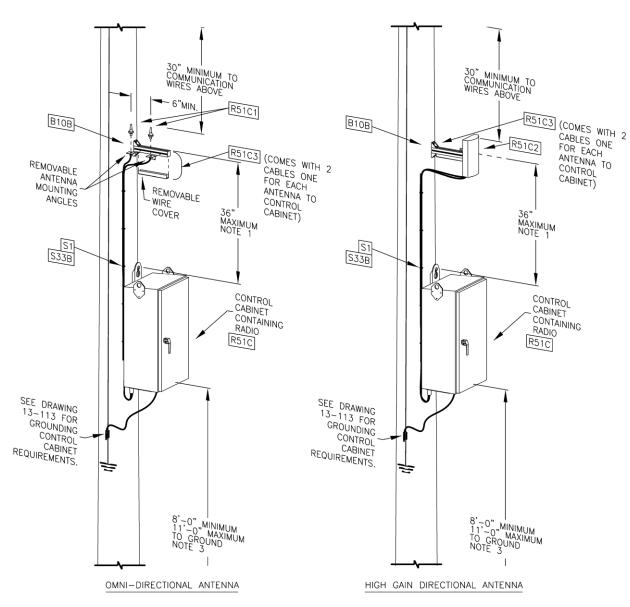
Pole-mounted meter aggregation nodes allow for the utilization of AMI by grid system operators.

#### 25.7 COMMUNICATION SYSTEMS

Communication infrastructure is critical for the successful operation of the distribution and subtransmission systems. The use of communication technologies ensures the reduction of energy consumption and optimal operation of all intelligent electronic devices.

#### 25.8.10 <u>Distributed Network Protocol (DNP3)</u>

The Distributed Network Protocol (DNP3) is the standard protocol for distribution and subtransmission devices. The protocol is suitable for operation on a variety of communication media consistent with the makeup of most electric power communication systems. The IEEE Standard for Electric Power Systems Communications—Distributed Network Protocol (DNP3) (IEEE Std 1815) specifies the DNP3 protocol structure, functions, and application alternatives.


#### 25.8.20 Cellular Communication Solutions

The Company has standardized on the wireless GE MDS Orbit cellular router. The wireless router enables the Company to extend secure and reliable cellular connectivity using public networks to distribution and sub-transmission devices for monitoring and control. A low-gain omnidirectional pole mounted radio antenna is required to transmit signals.

If cellular coverage is limited, a high-gain directional pole mounted radio antenna is required to increase signal strength.

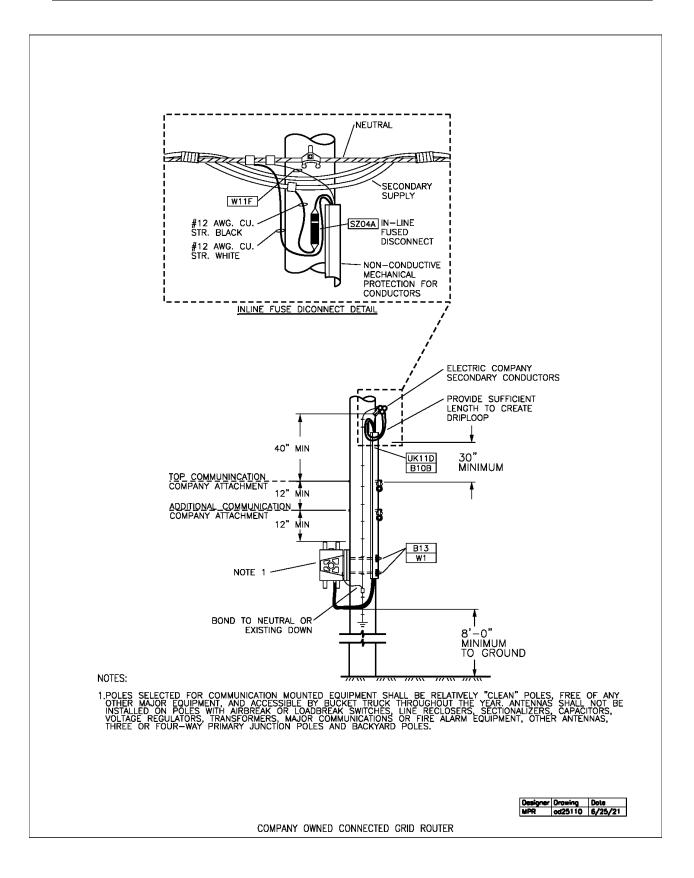
The pole mounted radio antenna construction drawings are shown on drawing 25-100.

|      | FEEDER APPLICATION & COMMUNICATIONS |             |                                   |       |  |  |
|------|-------------------------------------|-------------|-----------------------------------|-------|--|--|
|      | ISSUE                               | PAGE NUMBER |                                   | SMIZZ |  |  |
| Busi | <b>7/21</b><br>ness Use             | 25-5        | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |  |  |

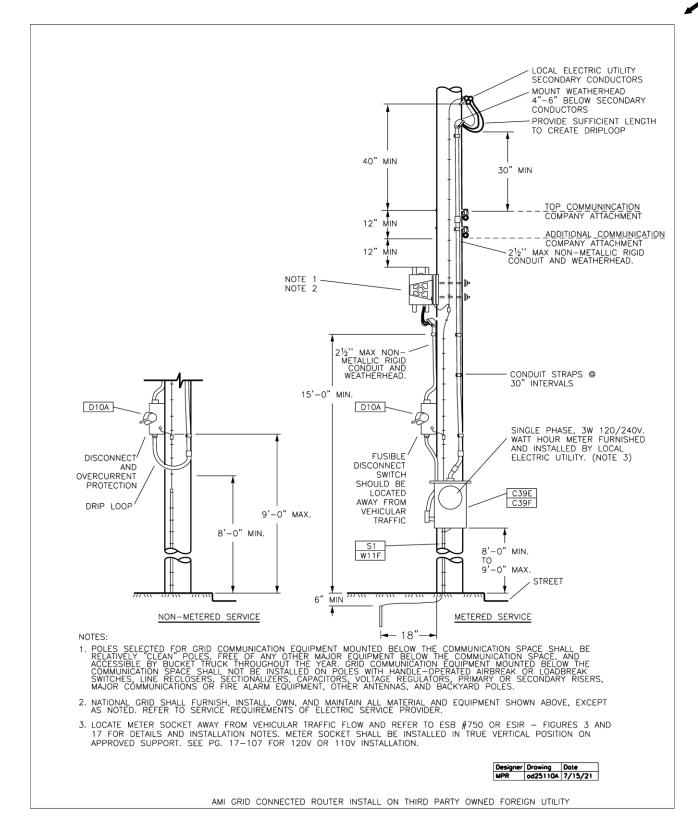


#### NOTE

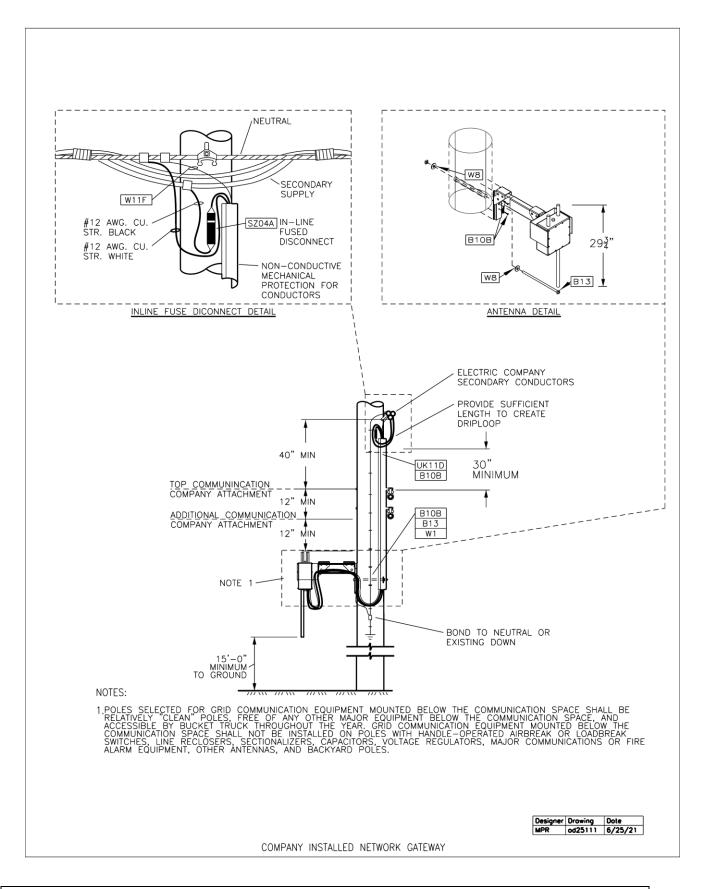
- 1.ON NEW INSTALL 3' MAXIMUM ABOVE ENCLOSURE, FOR RETROFIT ANY DISTANCE ABOVE ENCLOSURE. OPERATION CAN INSTALL FROM LADDER.
- 2. OMNI-DIRECTIONAL ANTENNA IS THE STANDARD INSTALLATION TO BE USED ON ANY OVERHEAD STANDARD ARRANGEMENT WITH EQUIPMENT THAT REQUIRES SUCH. HIGH GAIN DIRECTIONAL ANTENNA TO BE USED WHEN IT IS DETERMINED BY ENGINEERING AND OPERATIONS.
- 3. THE CONTROL CABINET MAY BE MOUNTED LOWER THAN 8' PROVIDED SUCH CONTROL CABINETS DO NOT OVERHANG ROADWAYS OR OBSTRUCT PEDESTRIAN TRAFFIC, AND AFTER FULL CONSIDERATION OF WORKER AND PUBLIC SAFETY, POSSIBLE VANDALISM, AND AESTHETICS. A GROUND GRID (13-114) SHALL BE INSTALLED.


| Designer | Drawing | Date     |
|----------|---------|----------|
| MDD      |         | 6/13/20  |
| MIL IX   | 0023100 | 0/ 13/20 |

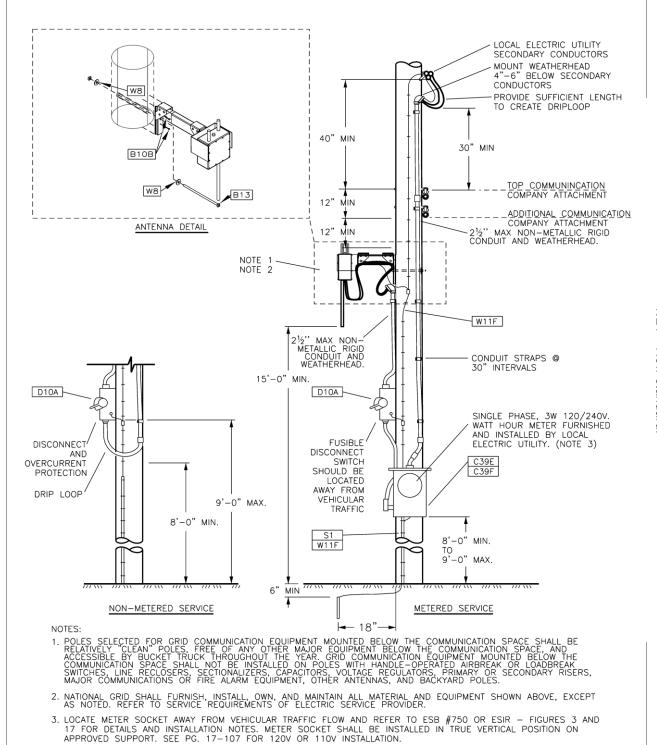
#### COMPANY OWNED POLE MOUNTED RADIO ANTENNA INSTALLATION




OVERHEAD CONSTRUCTION STANDARD


PAGE NUMBER ISSUE 25-100 7/19




|      | COMPANY OWNED GRID CONNECTED ROUTER |        |                                   |     |  |  |
|------|-------------------------------------|--------|-----------------------------------|-----|--|--|
|      | ISSUE PAGE NUMBER ANI/A             |        |                                   |     |  |  |
| Busi | <b>7/21</b><br>ness Use             | 25-110 | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |  |  |





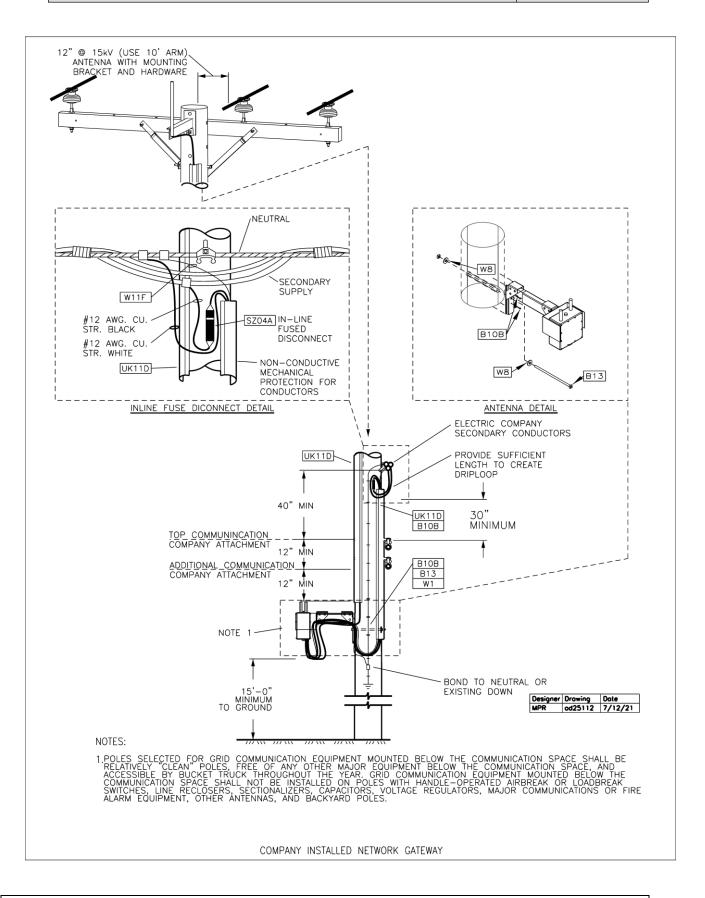


|      | COMPANY INSTALL NETWORK GATEWY WITH SINGLE ANTENNA |             |                                   |       |  |
|------|----------------------------------------------------|-------------|-----------------------------------|-------|--|
|      | ISSUE                                              | PAGE NUMBER |                                   | SMIZ. |  |
| Busi | <b>7/21</b><br>ness Use                            | 25-111      | OVERHEAD<br>CONSTRUCTION STANDARD | ppl   |  |

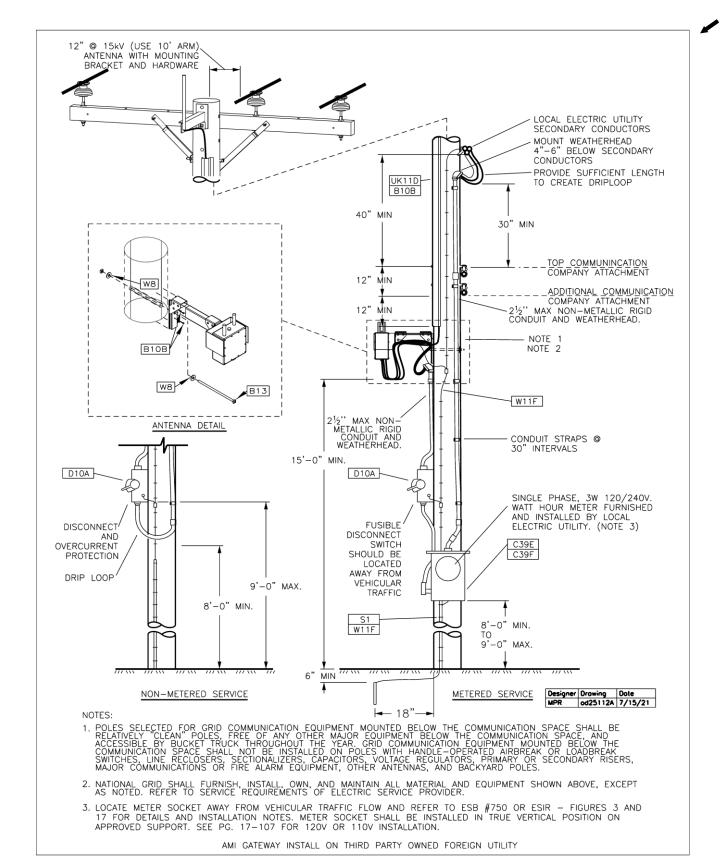


# NETWORK GATEWAY WITH SINGLE ANTENNA INSTALL ON THIRD PARTY OWNED FOREIGN UTILITY




OVERHEAD CONSTRUCTION STANDARD

AMI GATEWAY INSTALL ON THIRD PARTY OWNED FOREIGN UTILITY

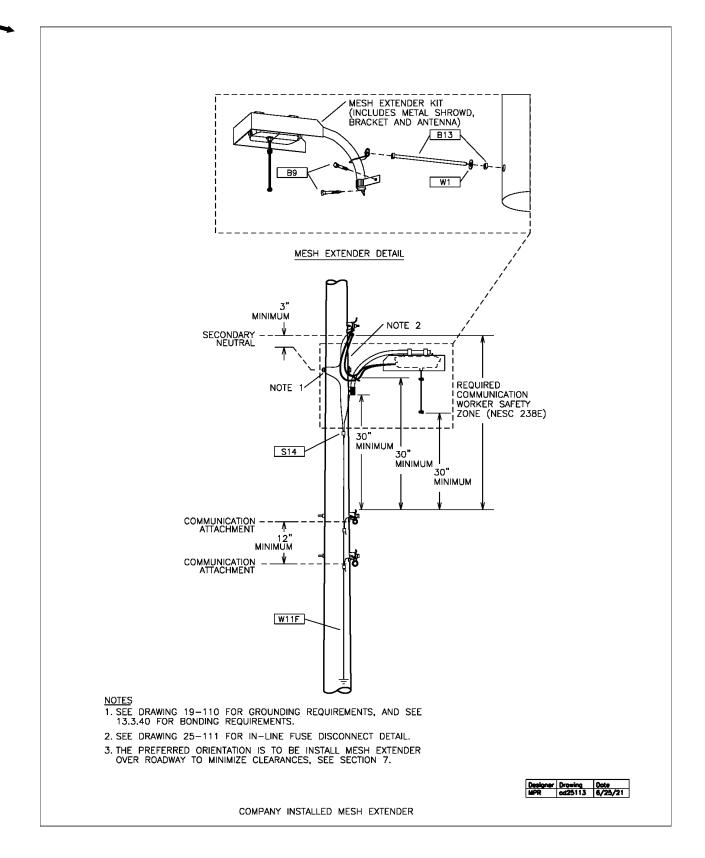

PAGE NUMBER ISSUE 25-111A 7/21

 Designer
 Drowing
 Date

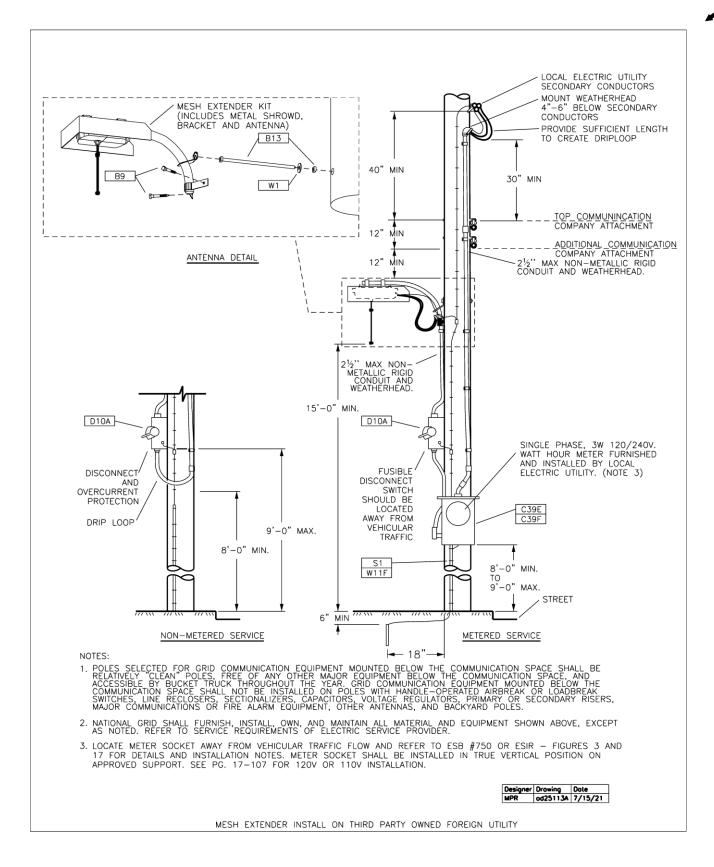
 MPR
 od25111A
 7/15/21



|      | COMPANY INSTALLED NETWORK GATEWAY WITH REMOTE SINGLE ANTENNA |             |                                   |     |  |  |
|------|--------------------------------------------------------------|-------------|-----------------------------------|-----|--|--|
|      | ISSUE                                                        | PAGE NUMBER |                                   | SMI |  |  |
| Busi | <b>7/21</b><br>ness Use                                      | 25-112      | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |  |  |

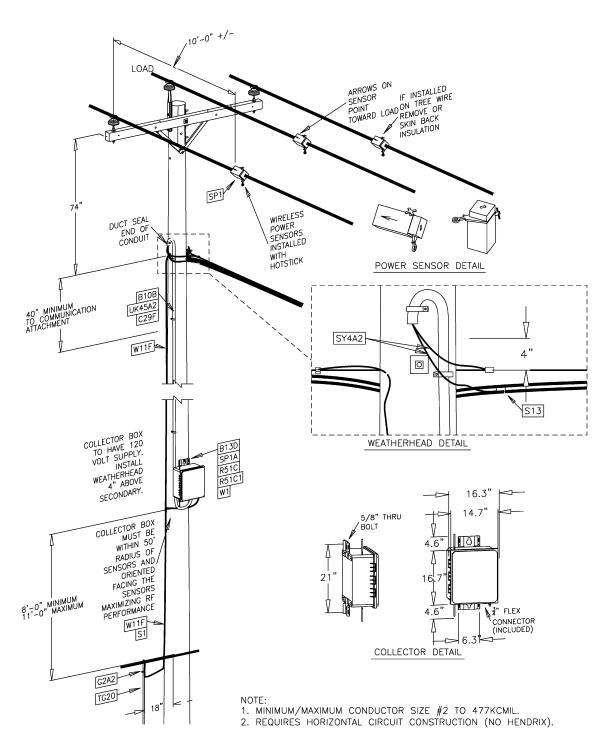


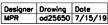

## NETWORK GATEWAY WITH REMOTE SINGLE ANTENNA INSTALL ON THIRD PARTY OWNED FOREIGN UTILITY




OVERHEAD CONSTRUCTION STANDARD

PAGE NUMBER ISSUE 25-112A 7/21





|      | COMPANY INSTALLED MESH EXTENDER |             |                                   |     |  |  |
|------|---------------------------------|-------------|-----------------------------------|-----|--|--|
|      | ISSUE                           | PAGE NUMBER |                                   | SMI |  |  |
| Busi | <b>7/19</b><br>ness Use         | 25-113      | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |  |  |





© 2022 PPL Corporation. All rights reserved. Doc. # ST.25.00.001





|      | TYPI                    | TYPICAL INSTALLATION OF POWER LINE SENSOR WITH COLLECTOR BOX |                                   |     |  |  |  |
|------|-------------------------|--------------------------------------------------------------|-----------------------------------|-----|--|--|--|
|      | ISSUE                   | PAGE NUMBER                                                  |                                   | SMI |  |  |  |
| Busi | <b>7/19</b><br>ness Use | 25-650                                                       | OVERHEAD<br>CONSTRUCTION STANDARD | ppl |  |  |  |

Doc. # ST.25.00.001

| Version | Date | Modification                                                                                                       | Author(s) | Approval by (Name/Title) |
|---------|------|--------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|
| 3       | 7/21 | <ul> <li>Added drawings 25-110, 25-<br/>110A, 25-111, 25-111A, 25-112,<br/>25-112A, 25-113, and 25-113A</li> </ul> | REDACTED  | REDACTED                 |
| 2       | 7/20 | <ul><li>Updated drawing 25-100</li><li>Added drawing 25-100</li></ul>                                              | REDACTED  | REDACTED                 |
| 1       | 7/19 | Created new standard                                                                                               | REDACTED  | REDACTED                 |

| SUMMARY OF RECENT CHANGES |                                   |             |       |  |  |  |  |
|---------------------------|-----------------------------------|-------------|-------|--|--|--|--|
| SMIZ                      |                                   | PAGE NUMBER | ISSUE |  |  |  |  |
| ppl                       | OVERHEAD<br>CONSTRUCTION STANDARD | 25-Notes    | 7/21  |  |  |  |  |