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STATE OF NEW YORK
PUBLIC SERVICE COMMISSION

CASE 18-M-0376 - Proceeding on Motion of the Commission Regarding

Cyber Security Protocols and Protections in the
Energy Market Place.

CASE 15-M-0180 - In the Matter of Regulation and Oversight of

Distributed Energy Resource Providers and
Products.

CASE 98-M-1343 - In the Matter of Retail Access Business Rules.

ORDER ESTABLISHING MINIMUM CYBERSECURITY
AND PRIVACY PROTECTIONS AND MAKING OTHER FINDINGS

Issued and Effective: October 17, 2019



CASE 18-M-0376 et al.

incorporated into the DSA and SA that take into consideration the

differences for GBC, such as requirements for consent.

CONCLUSI0ON

Maintaining the security of customer utility data and

the distribution utilities” IT systems i1s essential to ensure that
markets operate efficiently and that customers are not harmed by
the unauthorized release of their data. The DSA presented by the
Joint Utilities in the Petition, with the modifications discussed
above, establishes the minimum cybersecurity and data protection
requirements necessary to access customer data through utility IT
systems. Cybersecurity Is an ever-changing issue, and one the
Commission expects to address iIn future proceedings, including the
examination of a more risk-based approach to supplement the
foundational protections provided for in this Order.

Additionally, notably absent from the DSA are the
obligations of the utility for service levels and processes when
they are providing data to ESEs. The UBP does include some
utility responsibility provision but these have not been developed
for use by all ESEs. The i1dentification of applicable utility
side obligations, including timely and meaningful access to
accurate data, should continue to be discussed and developed,
including development and inclusion in the terms and conditions
for GBC participation. The Commission supports the provision of
useful access to useful data for entities offering potentially
valuable products and services to customers, with customer

consent.

The Commission orders:

1. Consolidated Edison Company of New York, Inc.,
Orange and Rockland Utilities, Inc., Central Hudson Gas &

Electric Corporation, National Fuel Gas Distribution
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CASE 18-M-0376 et al.

Corporation, The Brooklyn Union Gas Company d/b/a National Grid
NY, KeySpan Gas East Corporation d/b/a National Grid, and
Niagara Mohawk Power Corporation d/b/a National Grid, New York
State Electric & Gas Corporation, and Rochester Gas and Electric
Corporation are directed to, within 60 days from the date of
this Order, file a revised Data Security Agreement and Self
Attestation consistent with the discussion in the body of this
Order.

2. Energy Service Entities seeking access to
customer data through utility IT systems shall be required to
execute a Data Security Agreement and Self Attestation as
revised in conformance with Ordering Clause No. 1 as a
prerequisite of accessing such customer data.

3. In the Secretary’s sole discretion, the deadline set
forth in this order may be extended. Any request for an extension
must be In writing, must include a justification for the
extension, and must be filed at least one day prior to the
affected deadline.

4. These proceedings are continued.

By the Commission,

(SIGNED) KATHLEEN H. BURGESS
Secretary
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The Narragansett Electric Company

d/b/a Rhode Island Energy

Docket No. 22-49-EL

In Re: Rhode Island Energy Advanced Metering Functionality Business Case and
Cost Recovery Program

Responses to Mission:Data Coalition’s First Set of Data Requests

Issued on January 31, 2023

MDC 1-5 Supplemental

Request:

In AMF Book 1 at 49:13, Mr. Walnock and Ms. Reder mention “in-home device support through
the newly created CP.”

(a) What requirements will Rhode Island Energy impose on Home Area Network
(“HAN”) devices (or the manufacturers of such devices) in order to connect with
customers’ meters? Please explain and provide copies of all contracts, testing
protocols, and the like.

(b) Will Rhode Island Energy commit to a policy of “bring your own device”
(“BYOD”) with regard to Home Area Network (“HAN”) devices, meaning that
Rhode Island Energy will honor any customer’s attempt to connect a device of the
customer’s choosing to the customer’s meter without pre-clearance or advance
certification by Rhode Island Energy?

(c) If the answer to (b) is anything other than an unqualified yes, then please explain
in detail the rationale for the Company’s response. Provide all documents related
to the Company’s decision-making regarding HAN device compatibility.

(d) Will HAN capability be available to customers at the “AMF Deploy Ready”
phase — in other words, immediately after an advanced meter is installed? Why or
why not? If not, please explain in detail when HAN capability will be available
for customers.

Original Response:

a)

b)

On February 10, 2023, the Company filed a Motion to Object to Data Requests by
Mission:Data Coalition Nos. 1-3, 1-5(a), 1-6, 1-7(¢)-(g), 1-8, 1-9, and 1-10(a)-(c) and
Motion for a Protective Order With Respect to Mission:Data Coalition Data Request Nos.
1-5(a) and 1-7, in which it asserted an objection to this data request. That motion remains
pending, and pursuant to the direction provided in Public Utilities Commission
(“Commission”) counsel’s February 16, 2023 email, the Company is not providing a
response to this part of this data request at this time. To the extent required after the
Commission rules on the Company’s objection, the Company will provide a response as
and when directed.

The details around the types of devices to be included have not been determined yet. The
Company’s affiliates have in-home device support capabilities in both Pennsylvania and

Prepared by or under the supervision of: William J. Hennegan and Philip J. Walnock



The Narragansett Electric Company

d/b/a Rhode Island Energy

Docket No. 22-49-EL

In Re: Rhode Island Energy Advanced Metering Functionality Business Case and
Cost Recovery Program

Responses to Mission:Data Coalition’s First Set of Data Requests

Issued on January 31, 2023

d)

Kentucky using ZigBee as the wireless technology for connecting a device to the meter.
The Company’s Pennsylvania and Kentucky affiliate have adopted a “bring your own
device” approach. The meters being deployed in Rhode Island will use Wi-Fi as opposed
to ZigBee. The Company needs to conduct an analysis of the impacts of connecting a
device by Wi-Fi, as well as the types of devices in the market, before it can specify the
types if devices to include.

To guide Home Area Network (“HAN”) device compatibility, the Company will follow
its Cybersecurity, Data Privacy and Data Governance Plan, included in the AMF
Business Case as Attachment G, which provides provisions to making data accessible
while keeping it secure and maintaining customers’ privacy.

No. The Customer Portal in-home Device Support is scheduled in Group 3 of the AMF
Functionality Roadmap which is in the Phase “AMF Enhancements from Meter
Deployment Start.” The capability to provide HAN device compatibility is considered an
“AMF Enhancement During Meter Deployment”, which is scheduled to occur six months
after meter deployment starts to provide time for development of systems, enrollment
requirements and customer communications. See Figure 6.1 in the AMF Business Case,
Bates page 70 for additional detail regarding the timing of the functionalities.

Supplemental Response:

Pursuant to the Chairman of the Public Utilities Commission’s Procedural Order regarding the
Company’s objection to Mission:Data Coalition’s Data Request 1-5(a), the Company provides
the following response to the first inquiry in subpart (a). The Company’s objection to the second
inquiry of subpart (a) was sustained; hence, the Company is not providing a response.

(2)

AMF meters that will be deployed in Rhode Island will include Wi-Fi for HAN; however
the technical details are still to be determined. The Company’s affiliates have in-home
device support capabilities in both Pennsylvania and Kentucky using ZigBee as the
wireless technology for connecting a device to the meter. The Company intends to
leverage the learnings from both the Pennsylvania and Kentucky HAN implementations
while factoring in the differences for Rhode Island in developing both the technical
specifications as well as the business processes to be used in Rhode Island. The
Company needs to conduct an analysis of the impacts of connecting a device by Wi-Fi, as
well as the types of devices in the market, before it can specify the types and
specifications of devices to include.

Prepared by or under the supervision of: William J. Hennegan and Philip J. Walnock
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Reguest to Connect a Home Area Network (HAN) Device to Your Smart Meter
Please fill out the form below to connect your HAN-enabled device to your smart meter.

l. Customer Information
Please fill out the account information, as seen on your electric bill.

Name

Account Number Meter Serial Number

Account Holder Name

Service Address

City ZIP Code

Phone Number Email Address

Il. Product Information
Enter information about the product you want to connect to your smart meter.
The HAN device must be turned on and placed within 50 feet of the meter to allow communication between the meter and the HAN device.
Please include pictures of your HAN Device MAC Address and Install Code when submitting this completed form.
Note: The MAC Address and Install Code should be located on your device.

Device Manufacturer Make or Model Number

MAC ID/ EUI Code (16-digit alpha-numeric code on the back of the device or packaging box)

Install Code (16-digit alpha-numeric code on the back of the device or packaging box)

FirstEnergy Service Company’s Ohio affiliate utilities, (Ohio Edison Company, The Toledo Edison Company, and The Cleveland
Electric Illuminating Company) and Pennsylvania affiliate utilities, (Metropolitan Edison Company, Pennsylvania Electric
Company, Pennsylvania Power Company and West Penn Power Company), hereafter referred to collectively or individually as
“FirstEnergy Companies,” shall have no liability hereunder in connection with any non-compatibility of Customer’s HAN-
enabled devices with the smart meter system or other technology systems. FirstEnergy Companies may upgrade or modify any
such systems at any time, in their sole discretion, which may render such devices inoperable with such systems. The Customer agrees to
disclose this to purchasers and lessees of its business or residence if such purchase or lease includes any such devices. Such upgrades
or modifications may require device changes by Customer and retesting, at the discretion of the vendor of such devices, to be re-
validated. “HAN-enabled device” shall mean any device which is capable of being connected via a home or business area network to
FirstEnergy Companies’ smart meter system or other technology systems, and which is listed above.

FirstEnergy Companies, their current and future parent companies, subsidiaries, affiliates, and their respective directors,
officers, managers, shareholders, employees, agents, and representatives shall have no liability whatsoever for any damages,
losses, liabilities, expenses, fines, penalties and costs (including, reasonable outside and allocated in-house attorneys’ fees),
whether consequential, indirect, direct, incidental, special, punitive or otherwise, and whether arising in connection with
personal injury, property damage, data loss or otherwise, arising out of or in any way in connection with Customer’s HAN-
enabled devices.

FIRSTENERGY COMPANIES MAKE NO REPRESENTATIONS OR WARRANTIES, VERBAL OR WRITTEN, EXPRESS
OR IMPLIED, INCLUDING WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR AS TO THE SAFETY, RELIABILITY, PERFORMANCE, SECURITY, SUFFICIENCY OF
PURPOSE OR EFFICIENCY OF SUCH HAN-ENABLED DEVICES.

The Customer agrees to promptly notify FirstEnergy Companies if any HAN-enabled device is disconnected from the smart meter system.
Such notification shall be made according to one of the contact methods specified in the Customer Guide. It shall occur within one (1)
business day of disconnection. Additionally, FirstEnergy Companies have the right to disconnect any HAN-enabled device, without notice,
in their sole discretion if they determine in good faith that such HAN-enabled device poses a potential risk to the safety, reliability,
performance, security, or integrity of their smart meter systems, technology systems, or ability to provide electric service, or as required by
any regulatory agency.



Please sign below to acknowledge that you have read and agree to the above terms. Your request will not be
processed without this acknowledgment.

Please send this form, completed in its entirety, to FirstEnergySmartMeterProgram@Honeywell.com For all questions, please direct all calls to 1-855-830- 2922.



mailto:FirstEnergySmartMeterProgram@Honeywell.com
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Mission:data Coalition is a national coalition of 30
innovative energy technology companies that empower
consumers with access to their own energy data.
Mission:data advocates for customer-friendly data
portability policies throughout the country in order

to deliver benefits to consumers and enable a vibrant
market for energy management services.
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EXECUTIVE SUMMARY

A decade after ARRA, only 2.9% of federally-
funded smart meters have real-time data features
enabled.

In the years following Congressional passage of

the American Recovery and Reinvestment Act
(ARRA) in 2009, the U.S. Department of Energy
disbursed $3.0 billion to electric utilities for projects
involving advanced metering infrastructure (AMI).
The Department of Energy’s Smart Grid Investment
Grant (SGIG) program was pivotal in sparking
widespread deployment of AMI, which today has
reached over 115 million electric meters nationwide.!

In addition to providing operational benefits to
utilities, advanced meters promised to empower
consumers in two ways: (1) with access to real-time
electric usage information and (2) with access

to new energy management tools that analyze
interval usage data, typically collected at 15-minute
intervals.

However, according to an analysis by Mission:data,
a decade after ARRA funded the installation of
17.38 million advanced meters nationwide, most of
the data access benefits promised to customers
have been deactivated. Despite 89.7% of federally-
funded meters having real-time access capabilities,
today only 2.9% are enabled. This essential feature
of advanced metering has been rendered unusable
in 13.99 million meters funded by federal taxpayers.
Furthermore, only 14.3% of customers are offered
an application programming interface (API) by
their electric utility in order to access new energy
management tools. While 77 utilities received SGIG
funds for advanced metering, today only two (2)
utilities provide APIs to access smart meter data:
CenterPoint Energy (via the Smart Meter Texas
system) and Fort Collins Utilities in Colorado.
Mission:data’s analysis is based on utility reports

to the Department of Energy; our regulatory

experience in 15 states over the past decade; and
sources within the energy management industry
who wish to remain anonymous due to fears of
retaliation by utilities.

The resulting impact on consumers is significant.
According to a previous analysis by Mission:data,
energy savings of 6% to 18% are possible when
energy usage data is easily portable.? Residential
energy use accounts for about 20% of greenhouse
gas emissions in the U.S. Unfortunately, utilities
focused instead on their own web portals for bill
payment instead of empowering consumers to
access energy management tools.

Looking Ahead

The Department of Energy (DOE) has a historic
opportunity to correct the mistakes of the past
and give consumers access to tools to help cut
carbon emissions and manage monthly bills. In
November, 2021, Congress passed the Infrastructure
Investment and Jobs Act (IIJA) which allocated

an additional $3 billion to the SGIG program. As
funding requirements are being established by

the Biden Administration, there are several key
ways DOE can ensure data access outcomes in the
future. Specifically, DOE should require SGIG grant
recipients to provide real-time usage data to any
customer-provided device in the home or business
for the life of the advanced meter. In addition, SGIG
grant recipients should be required to provide a
certified Green Button Connect implementation
with a complete dataset to benefit consumers.
Finally, the costs associated with providing these
essential services should be expressly eligible for
SGIG funding.

1  https:/www.edisonfoundation.net/-/media/Files/IEl/publications/IEl_Smart_Meter_Report_April_2021.ashx

2 “Got Data? The Value of Energy Data Access to Consumers.” Mission:data Coalition, February, 2016. Available at http:/www.missiondata.

io/s/Got-Data-value-of-energy-data-access-to-consumers.pdf
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2.0

Demand (kw)

12PM 3PM 6PM

5-, 15-, 30- or 60-minute usage delivered
via Green Button Connect with 4 to 24 hours delay

KEY TERMS

WHAT IS GREEN BUTTON CONNECT (GBC)?

GBC is a technical standard developed by
industry for exchanging energy usage, account
and billing information. GBC defines application
programming interfaces (APIs) for energy
management services to automatically access
energy data after a customer has granted
authorization. Due to the time lag associated
with smart meters reporting back to the utility
and processing delays, it can take from 4 to

24 hours or more for interval usage values

to be available in most cases. GBC has been
implemented by 16 utilities nationwide, covering
over 36.5 million electric meters, and is currently
under consideration by regulators in 12 other
states.

WHAT IS GBC USED FOR?

Energy management services, solar installers,
home performance contractors and others
use GBC for many purposes, including getting
snapshots of current usage trends, weather
sensitivity analysis over historical periods,
and even settlement of demand response
transactions in wholesale markets.

9PM 12AM

Real-time broadcasts from the HAN

WHAT IS THE HOME AREA NETWORK (HAN)?

The HAN is a radio in the meter that can
communicate real-time usage (among other
functions) with devices in the home. Most smart
meters deployed from 2012 to 2022 have a
Zigbee HAN; Zigbee broadcasts kW and kWh
measurements approximately every 5-7 seconds
over a secure link. Beginning in 2022, many smart
meters come with a Wifi HAN, allowing the meter
to connect to home or business Wifi networks.
Using the IEEE2030.5 protocol over Wifi,

energy usage in kW and kWh can be broadcast
approximately once per second.

WHAT IS HAN USED FOR?

Whether Zigbee or Wifi, activating the HAN is

the only way for customers (or their devices/
appliances) to respond in real-time to their usage,
enabling timely alerts to peak pricing periods;
diagnostics of faulty equipment; battery charging/
discharging based on usage characteristics; and
various “smart home” uses in which 24-hour
delayed usage is inadequate. In some wholesale
markets, real-time HAN usage data can be used
for settlement purposes.
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METHODS

Sources for this analysis include:

Utility reports to the U.S. Department of Energy:
These publicly-available reports are available at
https://smartgrid.gov/projects/. There were 77 grant
recipients with smart grid projects that involved
advanced metering. Non-AMI projects, such as
distribution system upgrades or synchrophasers,
were excluded.

Mission:data’s experience in state regulatory
proceedings: Over the past decade, Mission:data
has played an active role in over 15 states’

public utility commission dockets, covering AMI
deployment, data privacy rules and rate cases.
Citations to regulatory proceedings are provided.

Industry sources: Mission:data has approximately
30 member companies that provide energy
management services of various types, ranging
fromm demand response to smart home devices and
solar.® Our coalition of entrepreneurs have first-
hand experience trying to acquire their customers’
energy data, giving Mission:data unique access

to information from a wide range of utilities with
AMI. These industry sources have provided us with
information that is often not available publicly.
Mission:data does not identify these sources due to
the threat of retaliation from utilities that they face.

EXCLUSIONS. Of the 77 entities receiving ARRA
funds for AMI projects, 29 were excluded from the
analysis for the following reasons:

¢ The number of advanced meters deployed
was very small or even zero;

* Insufficient information could be obtained

The excluded entities represent 954,000 meters,
only 5.5% of the total number of meters deployed
with federal funds. As a result, the excluded
meters are unlikely to significantly alter the study’s
conclusions. Attempts were made to contact every
utility where information was not available from
any source listed above. Utilities are invited to
contact Mission:data if they believe corrections are
warranted.

PILOTS AND PARTIAL OFFERINGS. Several utilities
incorporated pilot studies with real-time usage data
in order to study whether behavior changes could
lead to energy conservation. In many cases, these
pilots were limited in scope and duration, typically
only lasting for the ARRA grant period. For example,
Sacramento Municipal Utility District studied
consumer behavior as a function of information
availability and various rate structures. While such
offerings may have been available in 2010-2014, we
treated these utilities as “No”s if real-time usage
data or API connectivity are not generally available
in 2022.

Two utilities (DTE Energy and FirstEnergy) receive
partial scores for real-time usage data and API
functionality, respectively. DTE Energy only allows
customers to connect devices that are made by a
DTE Energy affiliate. While DTE Energy’s “energy
bridge” is generally available to customers, it is
arguably not an open ecosystem because HAN
devices from other manufacturers cannot be
connected. FirstEnergy has an automated method
for licensed retail suppliers to access commercial
customers’ energy usage data via Electronic

Data Interchange (EDI), but as of August 2022
licensed suppliers have no automated method to
receive residential customers’ energy usage data.
Furthermore, no API for non-licensed entities
(such as energy management firms) is available

in any FirstEnergy utility. Thus, due to only partial
achievement in each category, DTE Energy and
FirstEnergy are treated as “No”s in the quantitative
analysis.

3 See listing at missiondata.io.
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RESULTS
HISTORIC USAGE DATA (API) REAL-TIME USAGE DATA

16.4 million meters 100 %

14.7 million with
appropriate hardware

2.34 million with
Green Button Connect API

With $3.0 billion, 17.38 million smart meters were funded by Smart Grid Investment Grants (2010-2014). We gathered
information on the current data portability status of 16.43 million or 94.5% of federally-funded meters.

The Utilities Empowering Consumers with their Data

Ten years after ARRA funding, a handful of grant recipients provide data portability in the form of real-time
usage data or API-based access. Only a single utility, Fort Collins Utilities in Colorado, provides both.

Provides real-time Provides API for
Utility usage data energy management
® Yes ® No
Fort Collins Utilities (CO) o ()
Vermont Transco (Burlington Electric PY PY
and Green Mountain Power)
CenterPoint Energy —
via Smart Meter Texas ® ®
Guam Power Authority o o

Madison Gas & Electric (WI)

* Commercial customers only
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RHETORIC VS, REALITY

Reports submitted by utilities to the Department of Energy often portrayed utilities making strides in
providing consumers with energy data in various forms: in-home displays (IHDs), web portals with interval
usage data, and even detailed consumer behavior studies. However, a decade later, most utilities have
discontinued the offerings that put consumers in charge of their energy data.

Utility Rhetoric from reports to DOE

Reality

AEP Ohio “The customer gets timely information

$67 million taxpayer on how much power they are using,

subsidy how much it costs and when they are

using it.”4

“AEP Ohio deployed 110,000 General
Electric kV2c and 1210+c model meters,
including...Zigbee communication.”®

Industry sources report that AEP Ohio will not
connect customer-provided devices to meters.

DTE Energy (formerly “DTE also enabled customers to make

Detroit Edison) more informed decisions about

$84 million taxpayer electricity usage to control costs.”

subsidy Equipment installed includes “Home
Area Networks,” which “facilitate
two-way information exchange
between DTE and customers, allowing
customers to manage their electricity

use through appliance control.”®

Industry sources report that DTE does not
support meter connectivity with customer-
provided devices or energy management
services. Real-time usage data can only

be accessed by renting from DTE a device
manufactured by a utility affiliate for $1.99/
month,’ raising anti-trust concerns.

City of Glendale, CA Water “SGIG funding enabled GWP to offer
and Power customers several options to access

$20 million taxpayer real-time energy usage data, including

subsidy a web portal and in-home displays on a

digital photo frame. ‘We expect annual
energy savings of ten to twelve percent,
if not more, once all GWP customers
are fully engaged with the usage data
provided by the smart meters,” said
Craig Kuennen, GWP’s Smart Grid
Project Manager.”®

Industry sources report that Glendale declines
to connect customer-provided devices to
their meters. One HAN device maker’s website
reads: “Please contact the City of Glendale
Water and Power before purchasing. While
they have compatible AMI Smart Meters, they
might not allow you to connect [our product]
to their meter...”®

4 https://smartgrid.gov/files/documents/Smart_Meters_First_Step_into_Tomorrow_201007.pdf (page 2, accessed Aug 2022)
5 AEP Ohio gridSMART Final Technical Report. June 2014. https://smartgrid.gov/files/documents/AEP_Ohio_DE-OE-O000193_Final_

Technical_Report_06-23-2014.pdf (page 14, accessed Aug 2022)

6 https://www.smartgrid.gov/files/documents/Detroit_Edison_Project_Description_ HRRINw4.pdf (accessed Aug 2022)

7 https://newlook.dteenergy.com/wps/wcm/connect/dte-web/insight/dte-insight-fag (accessed Aug 2022)
8 https:/www.smartgrid.gov/files/documents/Glendale_Case_Study_3_19_12.pdf (accessed Aug 2022)
9

https:/www.emporiaenergy.com/utilities (accessed Aug 2022)
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Other utilities reported challenges with managing
the energy data generated by smart meters,

both technologically and operationally. Despite
knowing that advanced meters would generate
large volumes of data, many utilities seemed to

be ill-equipped to put these data to use, whether
internally or for customers. Instead of overcoming
these challenges and empowering their customers
with data for the long term, many grant recipients
treated their SGIG projects as a learning experience,
discontinuing their data access efforts once the
grant-funded project was over. For example:

« AEP Ohio ($67 million): AEP installed 110,000
advanced meters with Zigbee radios capable
of providing real-time usage and pricing
information to customers. AEP evaluated
Zigbee devices specifically in its SGIG project.
In its final technical report to the Department
of Energy, AEP stated, “Overall, the integration
of devices into AEP Ohio systems proved to be
interoperable.””® However, AEP discontinued
its Zigbee device program for customers in
November 2020, and the program’s website is
no longer available on the internet.”

* Lakeland Electric ($14.9 million): After
installing over 121,000 advanced meters,
Lakeland stated the following as a “lesson
learned” in its final report to the Department
of Energy: “It is essential to plan how to utilize
the voluminous data that will be received. A
data analytics software package will help
maximize the benefits of the system.”

* Long Island Power Authority (New York,
$12.5 million): LIPA told DOE, “[Only] a small
number of commercial customers received
consumption data but not cost data due to
the complex pricing formulas that the system
cannot easily handle...””? Industry sources
report that LIPA no longer provides real-
time usage data to its customers, whether
commercial or residential.

* Denton County Electric Cooperative (Texas,
$17.2 million): In its report to DOE Denton
stated as a lesson learned, “Deploy a meter
data management system. This technology
is a necessary component of the AMI system
and should be implemented before or during
AMI deployment.”™ A meter data management
system is a prerequisite for an API to be used
by energy management services.

Instead of using SGIG funds to provide customer
benefits over the long term, many utilities
underutilized the capabilities they purchased. The
vast majority of utilities deactivated real-time data
capabilities in the decade after receiving federal
funding.

10 https://www.smartgrid.gov/files/documents/AEP_Ohio_DE-OE-0000193_Final_Technical_Report_06-23-2014.pdf, page 296 (accessed

Aug 2022)

11 https://web.archive.org/web/20210119062039/https://ohio-aep.com/ItsYourPower-ProgramEnd (accessed Aug 2020)
12 https://smartgrid.gov/files/documents/DE-OE0000220-Final-Report-04-27-15.pdf (page 9, accessed Aug 2022)

13 https://smartgrid.gov/files/documents/Denton-County-Electric-Cooperative-CoServ-Advanced-Metering-Project-2015.pdf (accessed

Aug 2022)
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RECOMMENDATIONS

In November 2021, Congress passed the
Infrastructure Investment and Jobs Act (IIJA)
which allocated an additional $3 billion to the SGIG
program. Tens of millions of advanced meters will
be installed across the country by 2030, many
with federal money. Advanced meters have a
lifespan of 15-20 years. As funding requirements
are being established by the Biden Administration,
Mission:data recommends that the Department

of Energy incorporate the lessons learned from
ARRA as highlighted in this report. Specifically,
DOE should address the following topics in funding
guidelines:

1. Real-time usage data should be required.
Utilities that receive SGIG funds for advanced
meters should be required to provide all
customer classes with access to real-time
usage data for the service life of the meter.
Open standards should be a prerequisite;
which means that a customer should be able
to connect any device they wish to their
meter, whether over Zigbee, the IEEE2030.5
protocol over Wifi, or another open, non-
proprietary standard. This is similar to a

“bring your own device” or “BYOD” program,
meaning that utilities should not be
permitted to discriminate against the types
of devices that customers can connect to
their meter.

2. Green Button Connect, with a complete
data set, should be required. Utilities that
receive SGIG funds should offer Green Button
Connect and provide periodic proof of
independent certification, thereby ensuring
standards compliance and maximum
interoperability with distributed energy
resources. A complete data set includes (i)

24+ months of a customer’s historic usage
data suitable for settlement in wholesale
markets; (ii) 24+ months of billing and
account information for cost management
purposes; and (iii) any other data that is
specific to a customer that may be necessary
to participate in, or determine eligibility for,
demand-side management or renewable
energy programs.”

3. Utilities’ costs of achieving data portability
should be eligible for SGIG funding.
While the costs of Green Button Connect
are modest — about $0.25 to $1.77 per
household, according to publicly-available
cost data since 2018 — many utilities
have objected to GBC on the basis of cost.
Whether for offering GBC or making real-
time usage data accessible, DOE should
expressly identify such costs as eligible
expenses under its SGIG program.

Conceptually, these recommendations together
constitute an optimal model for a “meter-to-
customer” data interoperability scheme. Whether
customers choose to view their real-time usage
on a smartphone app, connect their meter to

a home automation system, or simply transfer
their energy data to a rooftop solar installer in
order to get a price quote — interoperability is
what makes a cleaner, more distributed power
grid possible. Unfortunately, as demonstrated

in this report, utilities’ track record of success in
empowering consumers with their energy data from
ARRA-funded programs is poor. By establishing
interoperability guidelines for a renewed SGIG
program, DOE can ensure that Americans will be
able to realize tangible benefits such as reduced
utility bills and access to innovative clean energy
products that will combat climate change.

14 This includes, for example, I-CAP tags in NYSIO and Sub-LAP and PNode in CAISO.

15 Direct Testimony of Michael E. Murray on behalf of Mission:data Coalition. New Hampshire Public Utilities Commission Docket No. DE
19-197. August 12, 2020 at p. 19. Available at https:/www.puc.nh.gov/Regulatory/Docketbk/2019/19-197/TESTIMONY/19-197_2020-08-17_

MISSIONDATA_TESTIMONY_MURRAY.PDF
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DATA

APPENDIX 1 | Utilities and Data Portability, 10 years after ARRA funding

Number of Installed Zighee Provides Provides
meters bought Home Area real-time automated
with federal Network (HAN)  energy usage  API for energy

Utility ARRA subsidy funds hardware? data? management?  Notes

® Yes @ No O partially @ Unknown

Florida Power $200 million 3,068,136

& Light

CenterPoint $200 million 2,257,860 [ ) () (] 15-minute usage is available via Smart Meter Texas APIs.

Baltimore G&E $200 million 1,302,595 [ ] ) o According to a source, BG&E chose not to install security
certificates in the meters (at a cost of about $0.05 per meter)
that would have enabled real-time access.

NV Energy $139 million 1,202,248 () o o According to a source, NV Energy has provided only limited
access via a single manufacturer’s Zigbee gateway.

Duke Energy $200 million 1,062,169 [ ) () (] Like DTE, Duke has attempted to build its own proprietary

Business Services Zigbee gateway.”

Oklahoma G&E $130 million 818,414 [ ] (] (]

PECO $200 million 784,253 [ ) [ (] PECO does not provide real-time access nor an API despite
a state law, Act 129, that requires utilities to “with customer
consent, make available direct meter access and electronic
access to customer meter data to third parties...”

DTE Energy $84 million 688,717 [ ] O [ Customers can only use devices purchased from a utility affiliate
to access real-time usage data.

Central Maine $95 million 622,380 ()

Power (CMP)

Sacramento $127.5 million 617,502 [ ]

Municipal Utility

District (SMUD)

Pepco (MD) $105 million 552,982 [ ) [ ) [ )

Salt River Project $57 million 458,742 [ ] [ [

Idaho Power $47 million 380,928 () (] (]

Vermont Transco,  $68.9 million 305,464 [ ] [ ) (]

LLC

Cleco Power $20 million 284,797 [ ] o o

Pepco $45 million 277,222 [ ) (] (]

(Washington,

D.C.)

Denton County $17.2 million 179,818 [ ] [ ] (]

Electric

Cooperative

Electric Power $112 million 17516 () [ ) [ )

Board of

Chattanooga

Duke Energy $200 million 130,315 (] (] Like DTE, Duke has attempted to build its own proprietary

Progress Zigbee gateway.”®

Lakeland Electric ~ $14.9 million 121,900 [ ] ® ®

AEP Ohio $14.9 million 10,087 [ ) o o In a pilot (now discontinued), AEP exclusively tied real-time

usage functionality with AEP-supplied smart home equipment,
offering only a closed ecosystem. Devices were “bricked” if
customers stopped paying a monthly fee.

16 https://fcc.report/FCC-ID/2AUYW-AO010001/4695781
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Number of Installed Zighee Provides Provides
meters bought Home Area real-time automated
with federal Network (HAN)  energy usage  API for energy
Utility ARRA subsidy funds hardware? data? management?  Notes
® Yes @ No O Partially (@ Unknown
City of Glendale $20 million 85,582 [ ) [ ] [ ] According to a source, only one manufacturer’s HAN device is
supported.
City of Fort $18.1 million 85,328 [ ) [ ) [ )
Collins Utilities
New Hampshire $15.2 million 83,595 () Only about 1,000 meters have Zigbee.
Electric
Cooperative
South Kentucky $9.5 million 69,065 (] (] (]
Rural Electric
Cooperative
Black Hills Power $9.6 million 68,980 () [ ) [ )
City of Naperville, IL  $11.0 million 58,407 [ ] ® ®
Talquin Electric $8.1 million 54,945 () (] [ ]
Cooperative
Rappahannock $15.7 million 54,200 () [ ) [ )
Electric
Cooperative
Burbank $20 million 51,928 [ [ [}
Guam Power $16.6 million 50,233 [ ] [ ) (]
Authority
LADWP $60 million 49,500 () [ ) [ )
Westar Energy $19.0 million 47,899 o [ ) [ )
Navajo Tribal $5.0 million 40,001 () [ ) [ )
Utility Authority
Jacksonville $12.9 million 40,000 [ ] (] ® According to a source, JEA has done only limited pilots of
Electric Authority Zigbee gateways for some commercial customers.
Cheyenne Light, $5.0 million 39,102 [ [ [}
Fuel and Power
Company
Central Lincoln $9.6 million 38,620 [ ) ® ®
People’s Utility
District
FirstEnergy $57 million 34,309 o [ ] O As of 2020, some 11 years after being selected by the
Department of Energy for an award, licensed suppliers in Ohio
are able to automatically commercial and industrial customers’
interval usage via an EDI system. However, no date has been
established for the availability of residential customer interval
usage to licensed suppliers. No API for unlicensed entities exists.*
City of Leesburg, $9.7 million 16,683 [ ] ® ®
FL
KCP&L $24 million 13,417 o (] (]
City of $5.3 million 12,600 [ ) ® ®
Wadsworth, OH
Indianapolis $20 million 10,275 o [ ) [ )
Wellsboro Electric  $0.4 million 4,913 () [ ) [ )
Company
Entergy New $4.9 million 4,436 o (] (]
Orleans
Madison Gas & $5.6 million 4,346 [ ] [ ) [
Electric Company
Knoxville Utilities $3.6 million 3,759 [ ) @ @
board
Modesto Irrigation  $1.5 million 3,538 [ ] ® ®
District
Long Island Power $12.5 million 2,349 [ ] [ [

Authority

* FirstEnergy Ohio Grid Modernization 1 Collaborative Meeting slideshow, August 8, 2022
* “Its Your Power” program ended November 30, 2020: https.//web.archive.org/web/20210119062039/https.//ohio-aep.com/Its YourPower-ProgramEnd
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APPENDIX 2 | Utilities Excluded from the Analysis

Number of meters
Utility ARRA subsidy bought with federal funds  Notes
South Mississippi Electric Power $29.8 million 224,757 No information available; meters were installed across 5
Association different co-ops
Cobb Electric Membership Corp $15.8 million 194,195 No information available
Pacific Northwest Generating $19.6 million 97,281 No information available; meters were installed across 9
Cooperative different co-ops
Golden Spread Electric Cooperative $17.3 million 88,411 No information available
Battelle Memorial Institute $88.8 million 67,286 No information available; meters were installed across

10 different utilities and a university campus
Lafayette Consolidated Government $11.1 million 65,375 No information available
Black Hills/Colorado Electric $5.5 million 44,920 No information available
Connecticut Municipal Electric Energy  $9.2 million 38,598 No information available
Cooperative
Sioux Valley Energy $3.6 million 27,641 No information available
Tri-State Electric Membership Corp $1.1 million 15,156 No information available
Woodruff Electric Cooperative $2.4 million 14,900 No information available
Town of Danvers, MA $8.3 million 12,963 No information available
lowa Association of Municipal Utilities $2.8 million 1,265 No information available
City of Ruston, Louisiana $4.3 million 10,596 No information available
Marblehead Municipal Light $1.3 million 10,215 No information available
Department
Minnesota Power $1.5 million 8,030 No information available
City of Auburn, IN $2.1 million 7,474 No information available
City of Anaheim $5.4 million 7140 No information available
City of Fulton, MO $1.5 million 5,505 No information available
Stanton County Public Power District $0.4 million 2,293 No information available
Pecan Street Project $10.4 million 318 Not a utility; very small number of meters were federally
funded

SCE $40 million 38 Very small number of meters were federally funded
Reliant Retail Energy Services $19.8 million 0] No meters were federally funded
SDG&E $28 million 0] No meters were federally funded
NSTAR (Eversource) $5.3 million ] No meters were federally funded
City of Tallahassee, FL $7.5 million 0] No meters were federally funded
Southwest Transmission Cooperative $32.2 million No information available
National Rural Electric Cooperative $33.9 million AMI was installed by 5 out of 27 cooperatives;
Association information from the 5 cooperatives was not available
City of Quincy, FL $2.5 million No information available

954,357 Sum of excluded meters
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The Narragansett Electric Company

d/b/a Rhode Island Energy

RIPUC Docket No. 22-49-EL

In Re: Advanced Metering Functionality Business Case
and Cost Recovery Proposal

Responses to the Commission’s First Set of Data Requests
Issued December 8, 2022

PUC 1-9

Request:

Please explain what the Company considers as “placed in service” for each category of
investments included in the AMF Business Case and provide the rationale.

Response:

Capital investments in the Company’s AMF Business Case and cost-recovery proposal are
considered placed in service when the costs have been incurred and the investment is ready for
its intended use. If there are future enhancements after an investment is placed into service,
those enhancements would be placed into service as an additional capital investment.

For Meters and related costs, the Company will consider these as placed in service once they
have been purchased and sample meter tested for quality. Once the new meters have been tested
and determined to satisfy the guidelines, they will be functioning as a customer meter and
considered as placed in service in the Company’s plant accounting records.

For Software Systems and related costs in the AMF Business Case, many of the costs are
expected to be incurred over a multi-year deployment. Each software system related to AMF
will be tracked separately and will not be considered as placed in service in the Company’s plant
accounting records until the Company has incurred all costs for that specific system and has
determined that the system is ready to function for its intended use. Once the Company has
completed a software system and incurred the costs for that work, the Company will evaluate
whether (1) the system is ready to function for its intended use independent of other software or
network costs and should be considered as placed in service in the plant accounting records or
(2) the system is not ready to function for its intended use because it depends on another system
or network to be completed before it can be placed in service.

Similar to software system costs, the majority of the Communications Network Equipment and
Installation costs are expected to be incurred over a multi-year deployment. The Company will
apply the same process described above for software costs to determine whether the investment
is considered as placed in service in the Company’s plant accounting records. Specifically, once
the Company has completed the Communications Network investment work and incurred the
costs for that work, the Company will evaluate whether (1) the investment is ready to function
for its intended use and should be considered as placed in service in the Company’s plant
accounting records or (2) the investment is not ready to function for its intended use because it
depends on another project to be completed before it can be considered as placed in service in
the Company’s plant accounting records.

Prepared by or under the supervision of: Stephanie A. Briggs and Wanda Reder
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#1

AcmeEnergySaver.com

Create account:
You can begin using

our service in a few
minutes.

email

password

Create account

#2

AcmeEnergySaver.com

Account created!

Now connect real-time
data from your smart
meter. You will be
redirected to
RIEnergy.com to grant
permission.

Go to RI Energy

#3

#4

RIEnergy.com

Acme Energy Saver is requesting access to your data:

RIEnergy.com

Sign In

Email/Usermname

sky.collins@domain.com ‘

Password Forgot Password?

EETT TR Show

Don't have an account? Register

« Meter readings (every 5 sec)
« Energy insights (as they occur)

* Your electric rate

#5

For all your electric meters connected to your online
profile

%

Q 452 Washington Ave, Warwick

Figure MEM-1: The direct upload customer authorization
experience using OAuth 2.0.

Time period: Effective until terminated

Scope of use: We will use your data to deliver our
energy management service. Read more in our terms of
service.

(written by Acme Energy Saver)

Authorize Decline

When you authorize, Acme Energy Saver will be able to access your
data described above. You may revoke your authorization at any time
by going to rienergy.com. See RIEnergy’s detailed terms here.

AcmeEnergySaver.com

Success!

You can begin using
our service in a few
minutes.

Get Energy Tips
Connect Devices

Invite Friends
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Abstract

This paper aims to address two timely energy problems. First, significant low-cost energy
reductions can be made in the residential and commercial sectors, but these savings have not been
achievable to date. Second, billions of dollars are being spent to install smart meters, yet the
energy saving and financial benefits of this infrastructure — without careful consideration of the
human element — will not reach its full potential. We believe that we can address these problems
by strategically marrying them, using disaggregation. Disaggregation refers to a set of statistical
approaches for extracting end-use and/or appliance level data from an aggregate, or whole-
building, energy signal. In this paper, we explain how appliance level data affords numerous
benefits, and why using the algorithms in conjunction with smart meters is the most cost-effective
and scalable solution for getting this data. We review disaggregation algorithms and their
requirements, and evaluate the extent to which smart meters can meet those requirements.
Research, technology, and policy recommendations are also outlined.

Keywords

Disaggregation, energy efficiency, smart meter
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“If you cannot measure it, you cannot improve it.”” - Derived from Lord Kelvin
1. Introduction

We face several looming energy problems at this junction in history, yet taken together they
may offer a unique opportunity for resolution. The first problem relates to the fact that significant
low-cost energy reductions can be made in the residential and commercial sectors, but these
savings have not been achievable to date. In the United States, the residential and commercial
sectors account for much of the demand: buildings in these sectors contribute roughly equally to
40% of U.S. energy consumed and greenhouse gases emitted (Energy Information
Administration, 2008; U.S. Environmental Protection Agency, 2008; Vandenbergh, Barkenbus, &
Gilligan, 2008). It is estimated that about 20% of this, or 8% of all U.S. energy use and emissions,
could be avoided with efficiency improvements to these buildings (McKinsey & Company, 2007;
Creyts et al., 2007; Gardner and Stern 2008; Laitner, Ehrhardt-Martinez, and McKinney 2009).*
Further, this estimate is derived from changes that can be achieved with little or even negative
cost?, making savings here particularly attractive (Creyts, 2007). Importantly, experts believe that
a major reason why reductions have not yet been achieved in these sectors involves behavioral
barriers (IPCC, 2007; American Physical Society, 2008).

The second problem we face is that billions of dollars are being spent to install smart meters
yet the energy saving and financial benefits of this infrastructure — without careful consideration
of the human element — will not reach its full potential. Business cases justify ratepayer
expenditures with reduced labor costs (e.g., meter readers), as well as the avoided generation
capacity and lower consumer energy bills that are expected from shifting and reducing energy use
(e.g., California Public Utilities Commission, 2006; Faruqui et al., 2011).3 It is estimated that the
energy shifting and conserving benefits from consumer activities will respectively be about 10%
(Hledik, 2009) and between 1-8% (EPRI, 2009; Hledik, 2009; Pratt et al., 2010). Estimates to
break even on smart grid costs and to attain net positive benefits depend upon consumers
achieving these benefits®, and it is further hoped that consumer benefits are achieved beyond
those estimated (Faruqui et al., 2011; NARUC, 2011). However, some public utility commissions
and public interest groups have questioned the benefit (e.g., initial decisions regarding smart
meter expenditures in Maryland and Florida; National Association of State Utility Consumer
Advocates, 2010). Clearly the ultimate cost or benefit rests to a large degree on facilitating
consumer behavior with the meters. Furthermore, the window for realizing the potential of smart
meters is closing, if greater hardware capabilities are required.’

! For comparison, 10% of the total U.S. energy consumption is roughly equivalent to the total yearly energy
consumption in Brazil or the UK, or the quantity of fossil fuels that would be saved and greenhouse gas
emissions reduced in the U.S. by a 25-fold increase in wind plus solar power, or a doubling of nuclear
power (Energy Information Administration, 2009; Sweeney, 2007).

2 Assuming a cost of $50 per ton of CO.e.

® Business cases are mostly based on those factors (in California, estimates of avoided capacity and reduced
energy bills are mostly from demand response). Additional benefits may include: CO, reductions and other
environmental benefits (from reducing energy use, and also load shifting in states where the base load is
cleaner than the peaking plants); improved operational efficiency; automatic outage notification, avoidance,
and faster recovery; faster transactions and customer service; remote connection and disconnection service;
prepayment capability; meter tampering alert; acceleration of electric vehicle adoption; and others (Faruqui
etal., 2011; EPRI, 2009; Hledik, 2009; Pratt et al., 2010).

* This group estimated that costs per million households are likely to be $198-272M, while operational
savings are likely $77-208M, and consumer-driven savings are likely $100-150M. The reader is directed to
Faruqui et al. (2011) for specific scenarios from which these figures are derived.

® As of June 2011, approximately 20 million smart meters had been deployed in the U.S. It is estimated the
number will rise to approximately 65 million meters by 2015, or about 50 percent of all U.S. households,



Disaggregation 4

How can we address both of these problems simultaneously? Can we leverage smart
infrastructure to maximize energy savings and peak shifting in the residential and commercial
sectors? We believe that the answer is yes — contingent upon the infrastructure’s ability to support
disaggregation. Energy disaggregation® refers to a set of statistical approaches for extracting end-
use and/or “appliance level”’ data from an aggregate, or whole-building, energy signal. This
information affords numerous consumer, R&D, utility, and policy benefits, as detailed below.
Leveraging data from smart meters to perform disaggregation is crucial because other approaches
are more costly and labor intensive, and do not provide opportunities for scale.

This paper provides a detailed justification for these ideas. It discusses the benefits of
appliance level data, reviews disaggregation algorithms and their requirements, and evaluates
whether the technical specifications of smart meters are adequate to support the algorithm
requirements.? We close with a set of specific recommendations for realizing the potential of
disaggregation.

2. Benefits of Appliance-Specific Information

There are numerous benefits of appliance-specific over whole-home data, summarized in
Table 1. These fall into three categories: (1) benefits to the consumer through direct feedback as
well as automated personalized recommendations and more, (2) research and development
benefits, and (3) utility and policy benefits. The discussion is weighted towards the residential
sector due to a bias in existing research, although many of the findings and recommendations
should transfer to the commercial sector. Several of these benefits are also discussed in Pratt et al.
(2010).

Benefits | Domain Explanation

Residential Energy Use Greater energy reductions from this type of feedback

(a) Automated personalized recommendations (through
auto-commissioning, fault detection, elucidating
behavioral patterns, analysis of when and what type of
new appliance to purchase based on current use, etc.), (b)
personalized recommendations allow for personalized
information to reduce barriers to energy efficient actions
(e.g., mapped recommendations on where to purchase
recommended items); enabling of additional/enhanced
behavioral techniques (feedback, competition,
visualizations, markets, incentives, etc.)

Consumer

Commercial Energy Use | Similar application to residential; large untapped savings
here

and that by the end of this decade smart meters may be deployed to almost all U.S. households (Faruqui et
al., 2011; Institute for Electric Efficiency, 2010). The window for change is even narrower when one
considers the contractual and manufacturing timelines that precede installations.

® Also referred to as disambiguation, non-invasive load monitoring (NILM), or cognitive metering.

" Referred to simply as “appliance level” from here forward. Note this includes anything that draws
electricity, such as appliances, electronics, air conditioning and heating, pumps and motors, and water
heating loads. This paper focuses on electricity, but similar disaggregation approaches are under
development for gas, water, and transportation.

® The work presented here grew out of a workshop held at Stanford University in May of 2010. The
workshop included a diverse set of stakeholders including disaggregation algorithm developers (both start-
ups and large companies), solid state meter companies, smart meter networking companies, home area
network companies, academic researchers, investors, utilities, and government representatives.
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Appliance Innovation Better data to (a) redesign appliances for energy
efficiency, (b) improved standards, and (c) back up
appliance energy efficiency marketing

Building Research and Improved building simulation models to increase design
Design and operational efficiency (commissioning and auto-
commissioning)

Research and
Development

Segmentation for Energy | Strategic, specific, energy efficiency marketing
Efficiency Marketing

Program Evaluation () Improved objectivity, sensitivity, and causal inference
in program evaluation; secondary benefits of (b)

2 improved program design from improved evaluation

S learnings, and (c) diversification of program types,

° because these can be quantified, and utilities in many

s states are incentivized when program savings can be

£ quantified

5 Building and Contractor | Affords performance based metrics, ratings, and
Ratings and Incentives incentives of buildings which could impact real estate

value, and evaluation of contractor performance

Economic Modeling and | (a) Improved load forecasting; (b) Improved economic
Policy Recommendations | models to better inform policies and funding allocations

Table 1. A summary of the benefits of appliance specific energy information.
2.1. Benefits to the Consumer

Approximately fifty studies have investigated the effects of providing consumers with
feedback on their electricity consumption, as illustrated in Figure 1 (for reviews, see Darby 2006;
Fischer 2008; Neenan & Robinson, 2009; Faruqui, Sergici, & Sharif, 2009; Siddqui, 2008;
Ehrhardt-Martinez, Donnelly, & Laitner, 2010). Several of these suggest that the greatest savings
result from appliance-specific feedback (Neenan & Robinson, 2009; Ehrhardt-Martinez,
Donnelly, & Laitner, 2010), and findings from a recent well-designed simulation study are also
consistent (Herter & Wayland, 2009), although the limited number and size of these studies
invites additional work. There are several reasons why appliance specific feedback should
facilitate greater reductions than aggregate feedback®, and why it offers even greater savings in
the future if augmented with additional approaches such as those described below.

° Feedback and goal-setting are more effective when they are specific and proximate instead of aggregated
and distal (for a successful real-world example consider Weight Watchers Points budgeting program; for an
academic review see Locke, Saari, Shaw, & Latham, 1981). Specific feedback improves error management
by allowing one to see where actions misalign with goals, and adjust accordingly (Frese and Zapf, 1994). It
also provides confirmation about the effectiveness of one’s actions, which is reinforcing and increases
similar future behavior (Bandura, 1982; Bandura & Schunk, 1981). Aggregate feedback is limited, given it
places the burden of disaggregation on the person (i.e., people typically get useful information from
aggregate data by recollecting their activities and mentally decomposing a data graph), and individuals are
likely to have difficulty discerning appliance patterns nearly as well as algorithms. It is worth noting that
goal-setting has repeatedly enhanced the effectiveness of feedback in a variety of fields, including energy
conservation (Bravata et al., 2007; McCalley & Midden, 2002; Becker, 1978), although it is not yet
common in energy feedback programs.
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Figure 1. Residential savings due to energy consumption feedback. The five left-most bars are
derived from 36 residential electricity studies between 1995-2010 (taken from Ehrhardt-Martinez,
Donnelly, & Laitner, 2010). Many studies were comprised of small samples; the authors estimate
that more representative samples and participation rates may result in population savings closer to
about half of those indicated. The right-most bar has been added to illustrate that disaggregation
and its associated services (diagnostics, recommendations, channeling to programs, new
behavioral techniques, targeted marketing, etc.) could be pivotal in achieving greater electricity
savings; they could also be used to achieve energy savings in gas use. Achievable energy savings
in residential buildings are estimated to be around 20%, taking population penetration into
account (Gardner and Stern 2008; Laitner, Ehrhardt-Martinez, and McKinney 2009)."%*

The most important reason why appliance information facilitates greater energy reductions
is that it enables automated personalized recommendations — it identifies which specific HVAC
systems, appliances, or electronics out of the dozens present could most effectively reduce energy
use for a given household or business***? - and then enables the automated provision of additional

19 See Footnote 1. Also, some case studies and online user communities report achievable savings for
individuals above 20% (e.g., 50% in Meier, 2010; 75% in Bailey, 2011; and up to 90% in the 90 Percent
Reduction online group http://groups.yahoo.com/group/90PercentReduction/).

1 A frequent question about feedback concerns its persistence. Several reviews suggest that savings decline
somewhat after the initial few months, and then often remain constant, according to studies that lasted up to
three years and used long term feedback (Neenan & Raobinson, 2009; Ehrhardt-Martinez, Donnelly, &
Laitner, 2010).

12 Some believe this information is intuitive and is limited to obvious appliances like the refrigerator and air
conditioner. There are several flaws with this. First, recommendations are likely to vary considerably
between households, given that energy consumption varies by 200-300% in identical housing units, and
appliance saturation and use patterns vary significantly across individuals and cultural heritage (Energy
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information to overcome barriers and foster action. For example, once actions with the biggest
bang for the buck are identified, households or organizations can be matched with appropriate
programs, rebates, and contractor options. Recommendations can take into consideration cost,
projected energy savings over time, life-cycle energy impact, rebate offers, and local services,
and even channel folks into such programs by geographically mapping options and scheduling
services. Diagnostics can be performed, for example, to achieve auto-commissioning —
recommended adjustments to the building operation to improve performance and efficiency - and
fault detection - notification if an appliance should be fixed because it is consuming more energy
than it should due to a malfunction (Hart, 1992). Naotification could be provided if an appliance
should be replaced because the lifecycle energy use of a new appliance would be less than the
current energy hog. When automated diagnostics are difficult, appliance data could enable remote
or virtual diagnostics by experts. Determining how much energy is consumed by different
appliances is a first step, and automated recommendation and action systems next steps, to
realizing savings."

Once such a system is in place, behavioral approaches — i.e., community, media, and
incentive programs — will be much more effective in reducing energy use. For example,
engagement channels such as existing real-world community programs and online social
networks can be tapped into at low cost to foster widespread use of the recommendation system
(Fuller et al., 2010; Sullivan, 2011; Rogers, 1995; Gladwell, 2000). The recommendation system
helps people determine what actions they should take, overcome barriers, and connect to action
channels (e.g., specific retrofit or appliance replacement programs, contractors, places to purchase
the recommended energy efficient items, etc.). Media and incentive programs can continue to
engage people once they use the recommendation system, so that they will continue to take
energy saving actions. Furthermore, behavioral programs can employ a variety of approaches that
all become more effective when quantifying and targeting specific actions, for example:
incentives, energy markets, competitions, visualizations, and games and social networking.

Information Administration, 2009; Sudarshan, 2010; for reviews see Lutzenhiser, 1993; Lutzenhiser &
Bender, 2008). Second, reducing energy use on these large appliances may be difficult (not malleable)
because they are typically only replaced when they break or during a remodel. Third, limiting
recommendations to large appliances or retrofits would miss out on large savings. For example, anecdotal
reports from plug monitoring companies, disaggregation developers, and researchers overseeing feedback
studies suggest that the largest savings often come from surprising places, such as an extra Tivo, a pool
pump, a pottery wheel, or an electric towel or floor warmer, inadvertently left on (personal communication
with listed entities; for published work, see Parker et al., 2006; Parker, Hoak, & Cummings, 2008).

3 There are numerous actions through which energy savings are achievable, in addition to (1) reducing
waste (e.g., above, or a second refrigerator), including (2) the purchase, installation, and proper use of
energy efficient technology, (3) the changing of settings and use of control devices (e.g., changing fridge
and hot water heater temperature and pool pump cycling rates, and the use of timers and plug monitors), (4)
maintenance actions (e.g., cleaning filters), and (5) habits (e.g., turning off the lights and hang drying
clothes), and (6) using existing materials creatively e.g. hanging a sheet outside a window to better reduce
solar radiation.

! Note energy savings from disaggregation can come from identifying opportunities in both machine
efficiency (repair and replacement) and operational efficiency (settings, use patterns, etc.).
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Figure 2. lllustration of an energy behavior change system leveraging appliance level
information.

Appliance information is also likely to create demand for control systems, smart appliances,
and demand response programs, once people understand where they waste energy. The majority
of consumers are unlikely to invest in such devices until they are convinced of the benefit to them
personally. Further, the plug controllers and timers needed to perform these functions would be
cost prohibitive and too effortful to put on more than a handful of end-uses in the majority of
residences, and appliance information would provide guidance on whether and where these would
be useful. If consumer demand is present, extensions of these products are likely to emerge. For
example, learning algorithms could be developed to detect regularities in consumers’ appliance
use and preferences to improve efficiency through automated scheduling.

Here we wove together the benefits of appliance specific data into a proposed system
capable of realizing the energy saving potential of sensors in the residential sector. Importantly, a
similar system could be of significant value in commercial. As a preliminary indication of the size
of potential savings, pilot studies with plug monitors in commercial buildings have identified
institutional rules and automation that saved a total of between 15-40% of electricity consumed
across the dozens of devices monitored (Mercier & Moorefield, 2011; Houk, 2010).
Disaggregation could be made more tractable in the commercial sector if each segment or even
franchise were analyzed separately — for example, all coffee shops or all Starbucks — due to
greater homogeneity of devices within that sector. Further, the top-down organizational structure,
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large aggregate savings achievable within a chain or franchise, and greater interest in the bottom
line, may make this sector particularly appealing.

2.2. Research and Development Benefits

Innovations in energy efficiency would be accelerated with end use specific information. Start-up
companies and corporate engineers, academics, and garage dilettantes could all make use of data
collected on the actual energy consumption of different appliances and electronics to strategically
focus their efforts. Currently, such data is surprisingly sparse and dated. The energy savings due
to different appliance modifications could be more easily evaluated, and the best would inform
companies about effective revisions to be made to their manufactured goods. As an example,
redesign and strategic automated rules developed using such an approach have the potential to
produce 15-50% energy savings on computer and office equipment (Kazandjieva et al., 2010) and
servers (Tolia et al., 2008) during idling periods. Companies could also use the information to
calculate cost savings from energy efficient appliances to guide investments and marketing
strategies (e.g., whether to advertise savings from an appliance upgrade).

End use specific information could improve building efficiency, by clarifying why predicted
(i.e., modeled) and actual (i.e., measured) building energy use are discrepant. This discrepancy is
large in conventional buildings, but, perhaps more importantly, in “green” buildings, where there
are likely to be the best opportunities for building efficiency learnings. Several studies have
documented that LEED and other green buildings are only about as efficient as conventional
buildings (Scofield, 2002, 2009; Nilsson & Elmroth, 2005; Kunz, Maile, & Bazjanac, 2009;
Maile, 2010). Much of the discrepancy may be due to a failure in understanding how buildings
are being used. Besides differences due to culture, individual routines, occupancy, and appliance
saturation (Lutzenhiser, 1993; Lutzenhiser & Bender, 2008), occupants may use buildings or
appliances “incorrectly” for health or comfort reasons (e.g., leaving windows open while heat is
on to get fresh air). There is a growing emphasis on measurement and verification to improve
energy modeling, and then using these models to improve efficiency (USGBC, 2005; Morrison,
Azerbegi, & Walker, 2008; Turner & Frankel, 2008). End use specific information is important
for three aspects of the building modeling process: (1) to validate the simulation by connecting
the parts to the system, (2) to identify opportunities for energy savings, and (3) to help inform
interventions in current buildings, and improve designs in new ones, to realize savings.

2.3. Utility and Policy Benefits

Energy sensor data, particularly appliance specific data, has the potential to improve energy
efficiency marketing — by improving market segmentation, diversifying programs, and
transforming program development and evaluation. Market segmentation refers to the process of
defining and subdividing a large homogenous market into clearly identifiable segments having
similar needs, wants, or demand characteristics. Historical behavior is a strong way of performing
market segmentation and targeted messaging — think of book recommendations by Amazon — but
most utility marketing is based upon demographic or psychographic characteristics instead.
Strategic use of historical energy consumption patterns would allow program designers to target
individual consumers as well as whole communities with more specific recommendations and
offers. For example, knowing which consumers or consumer groups (residents, residential
communities, businesses, or business sectors) are using energy through air conditioning, pool
pumps, or old refrigerators, would allow program designers to target the most appropriate
audiences with specific rebates and usage tips. In a similar way, audit and retrofit organizations,
and appliance repair companies, could more effectively identify those in need of their services.
Such targeted consumer messaging could significantly improve relevance and effectiveness, and
reduce the number of people a program must “touch” to achieve a given amount of uptake,


http://www.businessdictionary.com/definition/process.html
http://www.businessdictionary.com/definition/market.html
http://www.businessdictionary.com/definition/segment.html
http://www.businessdictionary.com/definition/need.html
http://www.businessdictionary.com/definition/want.html
http://www.businessdictionary.com/definition/demand.html
http://www.businessdictionary.com/definition/characteristic.html
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thereby improving the efficiency of marketing dollars, and ultimately achieving greater energy
reductions.

More granular data, particularly appliance data, can also transform program development
and evaluation, and diversify the types of programs supported. The data offers a game-changing
opportunity because it draws strong links between programs and their energy saving effects that
were previously not feasible. This is because energy savings resulting from a given behavior are
likely to be swamped in an aggregate energy signal, particularly because consumers are likely to
change only a small number of behaviors at any given time. Further, there is strong proof of a
program’s effectiveness if consumers save energy on the specific behaviors targeted by a
program, but not other behaviors. These opportunities significantly improve the objectivity and
rigor of program evaluation. Armed with this information, program evaluators can be more
successful in their job. Program developers can evaluate, revise, and improve programs more
effectively. Programs can be diversified because additional program types can be objectively
evaluated, including community and media programs, and when utilities can feasibly evaluate
new types of programs, they™® have an incentive to diversify their programs and techniques.
Improved programs and diversification of programs increase opportunities for energy reductions.

More granular data, including appliance data, could also improve energy models. Enhanced
granularity of business and residential energy consumption patterns may increase our ability to
predict energy demand annually and seasonally — load forecasting — which is critical for utility
company energy purchasing and generation, load switching, contract evaluation, and
infrastructure development. More granular data can also improve our understanding of energy
consumption patterns, and this can be used to improve the representation of behavior in energy
models. Such better representation can make the models more useful when interventions other
than pure economic incentives are being considered. This may help policy makers better evaluate
utility energy efficiency programs, and allow for better allocation of funds. Most existing models
of energy demand are constructed upon a very sparse representation of human behavior and
decision making, in part because rich data has not been available to date.

Together, these benefits could provide economic gains, enhance energy security, and help
address climate change. Consumers and utilities should be better able to reduce and shift demand.
The uptake of energy efficient appliances and electronics may increase because consumers know
where energy efficiency improvements need to be made in their homes, or which appliances
should be repaired or replaced. The data could lead to performance based metrics, ratings, and
incentives in buildings, which could impact their real estate value, and also enable evaluation of
contractor performance. Appliance specific data could also spur innovation. Marketing,
evaluation, and modeling improvements from more granular data would benefit utilities and other
companies selling energy related products and services, program designers and evaluators, and
public utility commissions.

3. How Should We Acquire Appliance-Specific Energy Data? The Business Case for
Disaggregation and Smart Meters

3.1 Options for Acquiring Appliance-Specific Data

This section provides an overview of different technologies capable of providing appliance
specific data, and their respective pros and cons, particularly those relevant to cost-effectiveness
and diffusion potential (see Table 2).

A commonly touted way of obtaining appliance-specific data is to put plug devices on
individual appliances, as part of a Home Area Network (HAN). However, this approach has

1 particularly those in states which provide incentives to utilities for verified savings from energy
efficiency programs.
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drawbacks. Cost is high for plug monitoring systems, ranging from $25-50 per appliance monitor
(this could perhaps get to $10 at volume) plus a hub or gateway device. Set-up and maintenance
are prone to hassle (plugging appliances in and labeling them, redoing this when moving
appliances to a new outlet, unless appliance signature identification is used; many prospects for
system and node failure). Furthermore, plug level monitoring systems are likely to miss critical
energy saving opportunities. Consumers would be unlikely to monitor large appliances due to the
difficulty in moving these, as well as the fact that monitors for higher voltage appliances are
currently unavailable. Cost and hassle prohibit installation on all plugs, and with a limited number
of monitors consumers would be unlikely to monitor “surprise” devices — as mentioned above,
much of the energy savings reported by individuals come from devices that they did not
anticipate (e.g., potters wheels, x-box, hot tub) (Parker et al., 2006; Parker, Hoak, & Cummings,
2008; personal communication with energy researchers, plug monitoring companies, and
disaggregation developers). Plug monitors also require duplicate hardware and additional energy
to operate if a more elegant solution with smart meters can be achieved.

Smart appliances have uncertain impact. These appliances would most likely be limited to
white goods, thus missing out on other energy saving opportunities. Also, energy savings would
take some time to realize, given that white goods tend to require 12 years for a full market turn-
over. Further, representatives from two of the largest white good manufacturers told us that their
companies planned on introducing smart functionality into high end appliances at a mark-up of
approximately $100. Only if consumer demand were apparent would they introduce smart
features into other lines. Furthermore, the smart features typically emphasize responding to utility
demand response events and time of use pricing signals (or consumer convenience); these
features would have limited impact if the complementary policies are not in place, creating a
chicken and egg problem. These issues raise uncertainty as to the likely impact of smart
appliances.

What are the hardware options for enabling disaggregation? Whole-home monitoring
devices are commercially available, such as The Energy Detective, BlueLine, and WattVision,
which sell for $150-300 and can forward data of limited resolution (one minute, perhaps up to
one second) to disaggregation cloud services (e.g., PlotWatt and Bidgely). Based on extensive
experience installing such devices in pilot and study homes, these devices are difficult to get
functioning properly and are not compatible with some housing stock (e.g., many apartments).
Belkin may be developing an easier to install and higher data frequency device that would
perform disaggregation locally, but would likely cost more than these other devices. In addition,
these hardware solutions may have some technical and feasibility issues that are not possible to
ameliorate®, and consume resources to manufacture and energy to operate in addition to that
which will be consumed anyhow by smart meters.

In contrast, smart meters offer the lowest cost and lowest installation effort sensor for
consumers, and thus show the best potential for high market penetration. This is because there is
no apparent cost to the consumer, and installation is performed by utilities. Furthermore, smart
meters may be the main option for acquiring gas data.

It is worth noting that one advantage of plug devices over disaggregation is the fact that
those devices typically offer control. Thus, we anticipate that the optimal solution will be a
combined one of disaggregation leveraging smart meter hardware, augmented with a few
strategically placed plug control devices or smart appliances in a subset of homes. Disaggregated
appliance information can guide strategic application of control devices, and the two can leverage
policies such as time of use pricing and demand response events to encourage efficient timed
automation and remote control.

18 E.g., problems with circuit breaker hardware compatibility or location (e.g., outside), connecting to a
power supply (or requiring battery replacement several times a year), landlord approval, etc.
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The above analysis suggests an important role for disaggregation algorithms, and for smart
meters in providing data to these algorithms. Next we assess the feasibility of that solution.
Section 4 surveys different types of disaggregation algorithms and their performance, as well as
their data requirements. Section 5 assesses whether smart meters can meet these requirements.

Sensing Technology | Cost to Consumer | Installation Effort Adoption Rate
Plug Devices (e.g., $25-$50/plug plus | Most plugs — Med | Low (in existence
Kill-A-Watt, hub cost; hundreds | 240V plugs - Hard | for past 7-8 years)
L @ | EnergyHub, to thousands per
£ .8 | ThinkEco, Enmetric) | home
°3
T3 Smart Appliances $100+ additional Med 10-15 years after
compared to non- introduction for
Smart appliances mass adoption
House Level Current | $150-300+/house Hard Low
« | Sensor (e.g., TED, (high effort + cost)
S | Blueline)
5
& | Monitor of Circuit
L | Breakers (Powerhouse
‘§ Dynamics, Square D)
S | Smart Meter None None Very high & fast
@ (installed by
utilities)

Table 2. Options for obtaining appliance-specific data. Smart meters are the lowest cost and
lowest installation effort sensor for consumers, and thus show the best potential for high market
penetration. Furthermore, they may be the main option for acquiring gas data for disaggregation.

3.2 Business Case for Disaggregation

This section characterizes the cost versus benefit of disaggregation technology (assuming
that smart meters are already deployed by the utility and that disaggregation was not considered
in the business case'’). We focus on the consumer benefits from residential energy use savings,
although other benefits are described in Section 2. As shown in the table below, the cost per kWh
saved can range from $0.015 (now) to $0.005 (near future). The benefit per kWh is avoided
generation and distribution cost that ranges from $0.06 to $0.10. Hence, the benefit outweighs the
cost by at least a factor of four, and higher in future — making software based disaggregation
highly viable for commercialization. For comparison, the average levelized cost of saved energy
for electricity efficiency programs is $0.025 per kWh saved, with a range of $0.016-0.033 and a
median value of $0.027 (Friedrich et al., 2009)."® These figures are based on technology programs
(rather than behavioral programs like Opower) which assume persistence for extended periods; a
disaggregation program could target technology replacements such as these, as well as other one
time actions (e.g., settings, control, repair) or repeated actions. Because of the program evaluation
benefits described above, evaluation of savings could potentially be performed on an ongoing
basis, and the monitoring fee adjusted accordingly. Furthermore, whereas programs targeted at

17 Although note that some smart meter business cases rest upon consumer energy saving benefits that have
yet to be achieved, as discussed in Section 1, so that disaggregation could help realize these benefits.

'8 The average cost of natural gas programs is $0.34 per therm and the median is $0.32 (Friedrich et al.,
2009).
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CFL bulbs or appliances are limited in their potential due to the fact that they can only achieve
the savings associated with one end use, disaggregation can target a wide variety of end uses,
potentially resulting in much greater total savings.

Time -> Now (2012-13) Future (2014+)
Smart Meter,

External External or Broadband
Disaggregation Done Where? -> Gateway/Cloud | Gateway/Cloud Router/Cloud
Average monthly household kWh used® 1,064 1,064 1,064
Average reduction with energy
monitor” 10% 10% 10%
Years of life for hardware 10 10 10
Lifetime kWh saved from home energy
monitor 12,768 12,768 12,768
Up front cost of home energy monitor
hardware $70° $50° $10°
Monthly monitoring fee® $1.00 $0.50 $0.50
Lifetime cost of home energy monitor
(up front cost + monthly fee) $190 $110 $70
Cost/kWh $0.015 $0.009 $0.005

Source: Energy Information Administration, 2008
®Source: Figure 1 in section 2.1. For a more conservative estimate, a 5% reduction will
double the cost/kWh which is still attractive. Upcoming pilots can inform actual effectiveness
and persistence.
‘Cost for micro-gateway (ZigBee to Ethernet or Wifi bridge with no display) from two
vendors in quantities of 10,000. This cost is unnecessary if smart meters or broadband routers
are enhanced instead, as in the final column of the table, and discussed in Section 6.2 and
Footnote 30.
%Cost of smart meter enhancements based on Section 6.3.
*Acceptable monthly price per home by disaggregation technology providers when sold in
high volumes to a utility.
"The energy consumed by the device itself is small, on the order of 1.2W, or 105 kWh over its
lifetime if run continously.
Table 3. Business case for using disaggregation software with smart meter hardware to obtain
appliance specific data.

Regarding the size of the market, as of June 2011 approximately 20 million meters had been
deployed in the U.S. with more planned"?; furthermore, software based disaggregation can also be
run with millions of already deployed AMR (Automatic Meter Reading) meters containing Itron
technology. This is particularly useful for municipal utilities that are not planning on migrating to
smart meters in the near future, and which additionally benefit from the fact that data for billing
could be acquired through the same hardware used to enable the disaggregation, thereby reducing
costs associated with drive by meter reading. AMR meters produce a reading every minute, and
micro-gateways (e.g., from the hardware vendor Digi) can receive this data. The data is then sent
to the cloud for disaggregation by algorithms utilizing one minute frequencies, as described in
Section 4.1. The cost of these gateways (see Table 3) could come down substantially when read
in batch mode (i.e., one gateway reading up to 10 meters in multi-family dwellings, condos, and
apartment complexes).

19 See Footnote 5 for more detail.
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4. Disaggregation Algorithms and Their Requirements

This section surveys different types of disaggregation algorithms and their performance, as
well as their data requirements. The survey of algorithm types draws from about 40 academic
peer-reviewed empirical studies as well as interviews with smart meter professionals and
algorithm developers®. For example, some of the companies currently working in this space
include High Energy Audits, PlotWatt, Bidgely, Desert Research Institute (DRI), Navetas,
General Electric, Intel, and Belkin®. An extensive review of the work and a description of the
interview questions are included in the appendices. Zeifman and Roth (2011) also recently
surveyed this literature; their focus is on comparing algorithmic approaches. Although electricity
is the focus of the rest of this paper, the use of disaggregation for other energy-related
applications is also promising (i.e., gas, water, and transportation)? (Yamagami, Nakamura,
Meier, 1996; Cohn et al., 2010; Patel et al., 2007; Larson et al., 2010; Froehlich et al., 2009a,b).

4.1. Patterns: Classification of disaggregation algorithms and data requirements

Disaggregation refers to the extraction of appliance level data from an aggregate, or whole-
building, energy signal, using statistical approaches. All of the algorithms use the library
comparison technique in which an appliance signature database or library is developed by
performing physical measurements on appliances. Then new unidentified appliance signals are
compared to those signatures in the library to determine the best match.

% These included interviews with six developers, four smart meter companies, and one policy expert April-
May, 2010. See Appendix C for the core interview script. Non-scripted interviews were also performed
with additional professionals when needed for clarification.

21 Others may include Verdigris Technologies, Detectent, EcoDog, GridSpy, Check-It Monitoring
Solutions, and EMME.

%2 Note that the number of appliances or end uses to be disaggregated for gas, water, and transportation is
fewer than with electricity, which makes disaggregation easier. However, the frequency of gas and water
data may be lower.
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Figure 3. Disaggregation refers to the extraction of appliance level energy use data from an
aggregate, or whole-building, energy signal. A set of statistical approaches that extract patterns
characteristic of a given appliance are applied to accomplish this. (Figure from Hart, 1992)

The statistical approaches utilize electricity data characteristics including type of power,
power level resolution, and frequency. We will next discuss requirements of the algorithms for
each of these characteristics. Regarding power, both real and reactive power are useful. The
availability of reactive power in addition to real power helps the algorithms running on data
sampled at lower frequency in differentiating between loads that have similar real power levels,
because they often have different reactive power levels (e.g., a pool pump and a heater).

Power level resolution preferences vary depending on frequency, based on our interviews
with disaggregation algorithm developers. Ideally, developers working at the higher frequency
ranges (>1 Hz) and attempting to disaggregate a wider range of appliances want data with power
changes of around 0.1W. This is important in that it allows the algorithms to potentially detect
small devices in the homes, especially "small" electronic devices (e.g., DVD players, lower
output CFL lights, wireless routers, some printers) which can add up if they are on for a
significant portion of the time. Such high resolution requirements become slightly less important
at lower frequencies, as the data here is typically not high fidelity enough to identify small loads
to begin with. It should be noted that many algorithms will work well with less granular data
(e.g., 10W), in that they will still identify the main loads in a house, but simply will have more
difficulty identifying smaller loads.

Perhaps the most important pattern to emerge relates to frequencys; it is the fact that different
ranges of temporal frequency afford different data features, which in turn enable the identification
of different numbers and types of appliances (see Table 4). It can be seen that hourly data
typically identifies around three end-use categories (i.e., loads that correlate with outdoor
temperature, loads that are continuous, and loads that are time-dependent such as pool pumps and
outdoor lighting), one minute to one second data allows for identification of ~8 appliance types,
data in the multiple kHz range identification of 20-40 appliance types, and data in the MHz range
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identification of potentially close to 100 distinct appliances (e.g., light 1, light 2, etc.). Improved
data frequency increases both the number of appliances recognized, and the accuracy with which
they are detected, by providing more detailed appliance signatures. It is possible that the
frequency-appliance relationship might have shown diminishing returns — e.g., that 10 second
data might have identified close to the maximum number of appliances — but that does not appear
to be the case (although it might be the case for other measures of accuracy, see footnote 19).
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Data 1 hr-15min 1min-1s(1Hz) 1-60 Hz 60 Hz-2 kHz 10-40 kHz >1 MHz
Frequency
Analyzed
Data 6 6 3 100kHz
Appearance | s 51 =21 N ‘
§‘4 :4 | § 1,/-/‘/\””“
=3 T3/ 0 S0kHz |
:g 2 g z JJLJM -1 \VJ
1 1 ‘ J 3, |
0 0 — 8 02 04 06 08 1 ot
2PM 4 EM 8 PM 2pm 4pm 6pm 8pm Time (fraction of a cycle, where Low
Time (hr) Time (hr) 1 cycle = 1/60th of a second)
Data Visually observable Steady state steps/ Steady state | Current and Current and voltage, | Current and voltage,
Features patterns; duration and | transitions of power | steps/ voltage, providing medium providing very high
Used by time of appliance use transitions of | providing order harmonics to order harmonics to
Algorithms power low order identify type of identify both transients
harmonics electrical circuitry in | & the background noise
appliance of appliances
Appliances | Differentiates ~3 Top <10 appliance 10-20 Not known, 20-40 appliance 40-100 specific
Identified general categories: types: Refrigerator, | appliance see text for types: Toasters, appliances: e.g.,
loads that correlate ACs, Heaters, Pool | types more details | Computers, etc. differentiates between 2
with outdoor Pump, Washers, along with larger lights; requires separate
temperature, loads Dryers etc. loads identified at power consumption
that are continuous, lower frequencies data stream
and loads that are
time-dependent

Table 4. Summary of patterns across existing electricity disaggregation work, derived from approximately 40 studies in Appendix A. Frequencies
are grouped into six bins according to developers’ preferences, based on hardware and data considerations. Regarding visual appearance, figures in
the middle columns appear similar to those on either side. The MHz figure shows a graphical representation of harmonics when the device comes
on and off. Regarding data features, power is comprised of current and voltage and when analyzing data at frequencies higher than 60 Hz
practitioners commonly use features derived from the harmonics of these waveforms. Data features at lower frequencies are also available at
higher frequencies. Importantly, at different frequencies, different numbers and types of appliances are recognizable. Sampling frequencies above
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60 Hz afford the ability to identify types of appliances even if they are always-on (~15% of home energy), whereas lower frequencies would have
difficulty with this (Zico Kolter, personal communication). Also, algorithms utilizing data of lower frequency require longer durations to get the
same number of data points, so that an algorithm using hourly data may require a week to months of data, and one using MHz data can produce
results essentially in real time. (LMHz data image from Gupta, Reynolds, & Patel, 2010)
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Two other findings are worth highlighting. First, higher frequencies (e.g., 60 Hz+) afford the
ability to identify types of appliances even if they are always-on (~15% of home energy), whereas
lower frequencies would have difficulty with this (Zico Kolter, personal communication). This is
because many devices (even those that are always on) have distinct waveform or harmonic
signatures, and sampling frequencies higher than 60 Hz look at the actual AC current and voltage
waveforms (signatures can be observed even in a single aggregate current waveform). In
contrast, looking at real power alone (below 60 Hz), loses this information. Second, appliance
identification takes longer with lower frequency data, because more time must transpire to collect
the same number of data points. Thus, hourly data may require a week to several months of data
to tell how much energy was consumed by different end-uses, whereas MHz sampling can
provide this information instantaneously, and the frequencies in between are likely to take from
minutes to a few days. This issue may be more or less relevant depending on the use case —e.g., a
homeowner with a year’s worth of historical data who receives periodic updates, versus a player
of a real-time energy video game.

4.2. Open development questions

Table 4 also raises questions for future work related to algorithm performance and
requirements. First, why has little work been performed in the frequency sampling range from 1
Hz to 10 kHz? This may occur for two reasons. To date, the data to develop the algorithms has
been collected by academic researchers using laboratory grade sensor hardware, and the cost to
sample at 1 Hz versus 10 kHz is similar, so that there has been no reason to limit the sampling
rate below 10 kHz. Also, the harmonics available just above 60 Hz may provide less distinctive
signatures of appliances as compared to the signatures obtained at higher frequency (10 kHz and
up). Regardless, 1 Hz+ data may differentiate appliances turned on in quick succession, whereas a
rate of 10s (HAN frequency) is not likely to, so that even this modest improvement could be
significant. The 1 Hz — 2 kHz range is of particular interest, given the potential benefit in
appliance recognition, and the fact that smart meter hardware may currently be capable of getting
this but not 10 kHz data.

Second, there is a large range in the number of appliances recognized in the 10-40 kHz range,
and this seems more related to experimental set-ups (e.g., the laboratory selected a set of
convenient appliances) rather than the specific frequencies. Clarifying the upper bound on the
number of appliances that could be identified in this range would be informative. Note there may
be little additional benefit between 15-40 kHz because the noise in that range in real buildings,
compared to laboratory set-ups, is likely to obscure any gains in signal detection.

Third, two studies stand out in performing far beyond their class, and suggest a need for
innovative thinking in algorithm development. One of these studies (Kolter & Jaakkola, 2012)
was able to identify a number of appliance types from hourly data by utilizing behavioral
patterns, such as time of day and duration of use. This suggests that additional types of
information could significantly constrain the appliance recognition problem, and opens the door
to evaluating the usefulness of property, weather, demographic, and other types of data. Although
the accuracy levels of correctly identifying appliances in this study were likely insufficient for
commercial use, applying these ideas with higher frequency data (e.g., 1s-1min) seems
promising.

The second approach that performed beyond its class utilized a competition strategy among
multiple algorithms within the system (Berges et al., 2009, 2010). It matched each new
unidentified appliance signature to a library value (i.e., a known appliance signature in a database
of such signatures) using several different algorithms, and the one that produced the best match
“won”. Thus, different appliances might be recognized by different algorithms. Using this
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approach, Berges et al. (2010) improved accuracy around 10% beyond other algorithms that used
a similar frequency.

Thus, 1s-1min data may be sufficient, particularly if appliance recognition is augmented with
improved algorithms. However, there may be significant added benefit in the next three higher
frequency ranges, warranting additional research. Additional recommendations to facilitate
algorithm development include the need for a common reference dataset and definitions of
accuracy®, testing of the algorithms on commercial meters, and addressing key behavioral
research questions®.

5. Smart Meter Hardware Capabilities

Figure 4 shows a generalized block diagram of a smart meter and its key components.
Below we also describe the function of each component, as well as its key data

% Results reported by different algorithm developers are difficult to compare in greater detail because of
their differing data sets and definitions of accuracy. We believe that algorithm development and application
would benefit from the creation of a richer, more standardized data set that could be made available
publicly (or on an on-request basis). Each algorithm development team has outfitted only a few homes so
far, and they include different appliances in their datasets. A standardized dataset would improve the
robustness of algorithms across diverse conditions, and facilitate the comparison of different algorithms.
Ideally such a data set would capture variability over appliances as well as operating conditions, including a
diversity of geographic regions, housing stock, and demographic groups. To be useful for analysis and
testing, the dataset should contain both whole-home and ground-truth (i.e., “answer key” data obtained
though plug-level monitors) readings at a relatively high sampling rate (e.g., 15 kHz+). It would be then
possible to down sample the high-frequency signal to train and test learning algorithms on data at different
frequencies and observe their performance. Collecting such a dataset may require a government funded
academic effort, given that developers with the most useful data are reticent to pool it (personal
communication). In order to advertise and attract interest from academic and industry researchers, this
reference dataset could be the object of a conference or of a competition, in which teams would develop
and present innovative algorithms.

Furthermore, common metrics for evaluation should be used. Definitions for accuracy and their
formulas should be agreed upon because their diversity currently makes comparing algorithms very
difficult. The following definitions have been used: the fraction of correctly recognized events, the fraction
of total energy explained, the difference in estimated and true power draw of a given appliance,
classification accuracy, fraction of explained energy of each appliance, appliance-wise fraction of load
duration, and fraction of “on” intervals missed (Zeifman & Roth, 2011). Also, the use of the receiver
operating characteristic (ROC) curve is likely to be beneficial in showing the tradeoff between sensitivity
(probability of Type Il error or false negatives) and specificity (probability of Type I error or false
positives). Furthermore, other performance characteristics such as delay (e.qg., real time appliance
identification vs. identification after a week’s worth of data) should be articulated for comparison.

2 1t would be beneficial to identify popular use cases and their information requirements, as this has
relevance to data handling and consumer display requirements. For example, it would be beneficial to
determine which appliances are most important to target with disaggregation. Also, real time processing
may be unnecessary if users do not benefit from immediate feedback, and long term storage requirements
may be reduced if hourly appliance level information is sufficient (note that the higher frequency data is
still required initially to run the algorithms and extract the appliance level data). Perhaps even “snapshots”
of energy use patterns are sufficient, so that the algorithms need only to be run, say, on a week of data
every few months. To what extent, and in what format, will users answer questions to augment
recommendations may also be informative.

Also, in order to develop recommendations of how to reduce energy use based on disaggregated data,
it is useful to determine the savings that are achievable from possible recommendations. Disaggregation
systems can track energy reduced following a recommendation, and thus readily quantify the impact of
many behavioral recommendations that are currently difficult to get (e.g., impact of moving a fridge away
from the wall, cleaning its coils, etc.).
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processing/transmission constraints. We then explain what would be required to extend
capabilities of each component if required. In some cases this would only require firmware
upgrade (which is the same as software update); these can be performed remotely and can be
appended to routine updates to minimize cost. In other cases extending capabilities might require
upgrading the meter hardware. Note there is some ambiguity on constraints, due to variability
across meters as well as the fact that exact meter specifications are proprietary and therefore not
available to the authors.
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Figure 4. Generalized block diagram of a smart meter. The RAM and Flash memories, although
shown off of the processor chip, may be on the processor chip in some cases.

Every manufacturer’s products will vary slightly, although the block diagram in Figure 4 is
intended to be generic enough to capture the common components and architecture. Smart meters
typically have two major components: Metrology and Communications/Network Interface. This
distinction is functional — in most cases, they are on separate cards, and to date are typically
provided by different vendors, although in some cases they may be integrated on the same card.
In most cases, the network interface card is designed to be embedded inside the meter body along
with the metrology card so that one product is supplied to the utility in the form of a smart meter.
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5.1. Metrology Card

The Metrology card (also referred to simply as the meter) of the smart meter samples the
main power line on the load side, measures the instantaneous voltage and current at a certain
sampling frequency and uses various calculations to generate the average real power, reactive
power, power factor, power quality and several other parameters. It is comprised of:

A. Analog to Digital (A/D) Converter - The A/D converter takes the analog electricity signals

for voltage and current which are sampled at predetermined frequencies, converts them to
digital values. The power level resolution values that are typically read out of the meter by
the communication card are reported on the order of 10W to meet the billing requirements.
However, data may be capable of being computed to higher resolution internal to the meter,
ranging from ~0.5W to ~0.0015W (depending on the resolution of the A/D converter used in
the meter®®) and therefore, without any hardware changes, the meter should be able to supply
better power level resolution to support energy disaggregation.

Regarding frequency, the meters available in the market offer a range of sampling
frequencies. According to the Cisco representative, at the low-medium end of meters, the
sampling is around (or below) the fundamental frequency —i.e., 60 Hz. However, at the high
end of meters, this can be in the 1-2 kHz range. For example, Itron meters have a sampling
rate of 600 Hz which is equivalent to capturing the 5™ harmonic, whereas the Landis+Gyr
Focus AX meter samples at 1724 Hz which is equivalent to capturing the 14™ harmonic.?

. Processor(s) — Out of several processors on the metrology card, the signal processor runs
algorithms on the data received from the A/D converter. In particular, it takes the sampled
voltage and current values and calculates average power. Regarding type of power, most
meters calculate real and reactive power (although they may not send reactive power to the
communications card, this could be done with a firmware upgrade). Regarding frequency,
interviewees indicated that data leaving the signal processor is likely to be 1-10 Hz, but is
likely capable of several kHz. Also, data may currently be smoothed (e.g., averaged over a
time window) rather than simply down-sampled, complicating the ability to draw inferences
from the data. These issues can be addressed with firmware upgrades to the Flash memory
(provided there is enough memory available)

. Memories (RAM and Flash): Read-Only Access Memory (RAM) is typically used by the
processor for intermediate storage during various operations and is not used for storing any
results of the signal processing. RAM is a volatile memory and loses its contents if the power
to the meter goes down. Data processing constraints from RAM would occur only in the most
extreme disaggregation scenarios, and under these scenarios would be upgraded with the
Flash memory by sending data to be temporarily stored there. Flash on the other hand is the
non-volatile memory (NVM) and holds its contents even if the power to the meter goes down.
Since the meter is a cash register for utilities and utilities do not want to lose the information
on amount of power consumed by the consumer, most calculations to be sent to utility are
stored in Flash memory. When using on-chip memory, the typical size of Flash memory is

% Using 200A max current and 120V power supply (standard for most residential meters in the United

States), an 8-bit A/D converter yields about 93W (=200/(2"8) ) in power resolution, a 16-bit A/D converter

yields ~0.36W in power resolution, a 20-bit A/D converter yields ~0.023 W and a 24 bit A/D converter
yields ~0.0015W. In practice, the actual power resolution may be slightly lower due to the fact that most
A/Ds have several bits of additional noise, plus a possible mismatch in voltage scales of the A/D and the
current transformer.

% Recall the fact that, from Nyquist theorem, we need samples at 120N Hz rate to reconstruct the N-th
harmonic. That is, the internal sampling in the 1-2 kHz range can easily provide accurate information up to
the 16™ harmonic.
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between 8Kbytes and 256Kbytes, and when using off-chip memory, the Flash size is chosen
by the meter designer but is typically higher than the on-chip memory. The relevant
constraints — the size of Flash memory and the rate of read and write from memory — is
usually adequate to support the storage of >1 kHz sampled data.

5.2. Network Interface Card

The second part of the smart meter is the Network Interface Card (NIC). The NIC is the
interface to the outside world. It communicates with the metrology part to extract the stored
information and communicates with the external world on two interfaces, the Wide Area Network
or WAN, and the Home Area Network or HAN. The parts specifications include:

D. Serial Interface: The interface between the metrology section and the network interface card
is typically a high speed serial link which is capable of handling data transfer rates of a few
kHz.

E. Processor(s): The high end NICs are capable of reading, storing, and reporting data up to 1
kHz, according to a representative of Silver Spring Networks, and potentially higher,
depending on the model chosen by a utility. A majority, but not all, communication cards
contain processors, which may be sufficiently powerful and have enough memory to perform
disaggregation if desirable.

F. Wide Area Network (WAN) Modem/Transceiver (used interchangeably here with
Advanced Metering Infrastructure or AMI): The WAN is used by the utilities to extract
information out of the smart meter and to send it to the utility central office for further
processing. This interface essentially supports automatic meter reading (AMR) for billing and
monitoring purposes. The utilities also aim to use this interface for demand side management
(DSM), as it would allow them to send signals to the meter and then through the Home Area
Network (HAN) to reduce electricity consumption on targeted appliances in the home during
high peak periods. WAN can use different kinds of physical interfaces, including power-line
communication (e.g., Echelon meters); wireless mesh (e.g., SilverSpring Networks cards);
and cellular technology — 3G or 4G (e.g., SmartSynch communication cards). The WAN
interface typically provides fifteen minute or hourly data. These physical WAN interfaces
may have limited capacity to convey information at higher frequencies to the utility central
office due to data capacity on the utility servers, the fact that utilities have no obligation or
interest in processing higher resolution data, and to a lesser extent bandwidth constraints in
the communication networks.

G. Home Area Network (HAN) Modem/Transceiver: HAN refers to a home’s local
network, rather than the utility’s network. It allows the meter to communicate with the
home's appliances and/or internet gateway once activated to do so by the utility. HAN can
also refer to the network that enables communication of these devices with one another
absent the meter, although that is not the focus of this paper. The meter communicates with
the in-home devices using the ZigBee PRO standard in most previous and currently planned
deployments in United States. * ZigBee PRO is intended to send data up to every 6-7.5
seconds (though some meters based on their design may not send updated data for periods as
long as a minute); thus, HAN offers higher frequency data than WAN. We elaborate on HAN
frequency below.

2T While this paper references ZigBee PRO as the prevalent HAN communication standard between Smart
Meters and in-home devices, several other technologies are under development and standards
consideration. We believe most of the recommendations made in this paper will stay relevant if current
ZigBee firmware stack is replaced by one of the forthcoming technologies.
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6. Smart Meter Solutions Enabling Disaggregation
6.1. Gap Between Algorithm Data Requirements vs. Smart Meter Hardware Capabilities

Now we look into whether there is a gap between the data requirements of disaggregation
algorithms and the current data providing capabilities of smart meters. We look at the three key
features of the data described earlier: (a) Type of power; (b) Power level resolution; and (c)
Frequency of the data. We specify hardware imposed data constraints and compare these to the
algorithm requirements.

6.1.1. Type of Power

Reactive power, in addition to real, is useful in disaggregation, as it helps differentiate loads
sampled at lower frequencies. Typical meters in the market provide real power, and are generally
capable of providing reactive power, in that reactive power is generally available internally to the
meter and can be brought out with a firmware upgrade.

6.1.2. Power Level Resolution

Developers working at the higher frequency ranges (>1 s) and attempting to disaggregate a
wider range of appliances want power level at 0.1W or better resolution. The power level
resolution depends on the resolution of the A/D converter and the maximum current supply
capability of the meter. Most residential meters in United States provide up to 200A (some go up
to 320A) which requires an A/D converter of 20-bit resolution or higher to meet the 0.1W data
resolution requirement (also see Footnote 25). Developers working at lower frequencies were
satisfied with power reported at 10W or equivalent magnitude. Current meters are typically
constrained to 10W to meet the billing requirements, although the meter should be capable of
supplying 0.1W power level resolution if required.

6.1.3. Frequency of the Data

Frequency is the most uncertain in terms of algorithmic requirements and hardware
capabilities. Table 5 below shows four different frequency ranges at which the data can be
obtained from a smart meter for disaggregation algorithm processing. Regarding the first range,
hourly or 15 minutes data delayed by approximately 36 hours may be the only data that is
available for the foreseeable future through the Utility WAN. The next two ranges (1 min - 1 s;
and 1 s - 2 kHz) use the HAN to get the data. The 1s - 2 kHz range is where harmonics would
begin to become available. Regarding the third range, 1-2 kHz is very close to the internal
sampling frequency of the meters and would most certainly need a firmware upgrade to the meter
to add more functionality. The fourth frequency range requires changes in meter hardware to
support sampling at 10 kHz+, which is not currently supported by the A/D converter.

lhr- 1 min-— 1Hz (1s)- 10-15 kHz
15 min 1% 2 kHz or higher
A | A/D Converter N \ X - Needs X - Needs
firmware hardware upgrade
upgrade
B | Metrology Processor ~ N N Hardware
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dependent
C | Memories N N May support (if
not, needs
hardware upgrade)
D | Serial Interface N May support (if X - Needs
not, needs hardware upgrade
firmware
upgrade)
E | Communications/Network N Hardware
Interface Processor dependent
F | WAN Communication X - Needs X X
firmware
upgrade
G | HAN Communication N X - May be X - may be
possible with possible with high
compression compression;
(which needs otherwise
firmware disaggregation
upgrade) would need to be
done on the meter
(which needs
firmware upgrade)

*These times are approximate. Currently, as described elsewhere in the text, the highest frequency

available through the HAN would 6-7.5s.
Table 5. Which data frequency range(s) would be feasible to extract from smart meters, given
their constraints, for use in disaggregation algorithms? This table assesses, for each frequency
range, whether smart meters could currently supply the data, and, if not, what upgrades would be
required to do so. The table was populated with meters from the most popular vendors. Note that
either WAN or HAN communication is sufficient; in other words, the WAN constraint is not
relevant in the higher frequency ranges as long as HAN communication is viable.

As the frequency requirement increases, we see additional bottlenecks in getting the data out
of meter, progressively, due to the WAN, the HAN (ZigBee interface), current meter firmware,
the meter hardware (A/D converter) sampling rate, and the network interface card. Regarding the
WAN or HAN interfaces, which may impose the biggest bottlenecks, several cases and proposed
work-arounds are described below:

1. Sending High Frequency Data (1 s - 2 kHz) over the HAN. Currently HAN only
supports sending one energy value every 6-15 s. The high frequency data can be sent
over the HAN by using a combination of following techniques:

a. Compress the data. Several compression techniques are under research that are
very promising; for example, a compression ratio of 10,000:1 has been tested
(Zico Kaolter, in preparation). If successful, this suggests that ~10 kHz data could
be sent over the HAN, if used in conjunction with the next technique below.

b. Send packets of higher frequency data. ZigBee provides a connection once
every 6-7.5 s and can send up to 80bytes at a time (without the headers). Thus,
we could send up to 20 readings every 6-7.5 s — effectively one reading every
0.3-0.375 s — assuming 32-bit values.

c. Replace ZigBee with WiFi or low power WiFi, on next generation meters.
This could lessen constraints, given that the typical bandwidth of ZigBee
technology is 250kbps and typical bandwidth of WiFi or low power Wifi is over
1Mbps.
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2. Sending 1 min — 1 s data over the WAN. Currently smart meters only record and send
either 1 hour or at best 15 minute integrated data over the WAN. Given connections are
made 1-4 times per day, storing raw data in the meter and sending it through the WAN
increases memory and bandwidth requirements. However, sending only event changes
can reduce that burden to the point where it could be sent using the existing WAN.?
Communication cards with processors should be capable of doing local processing to
detect event changes, with a firmware upgrade. Sending 1 kHz sampled data over WAN
would likely not be possible with basic compression.?

6.2. Where to Perform Algorithm Processing?

The previous two sections focused on whether smart meter hardware is capable of supplying
adequate data for disaggregation. This section explores where the data can be stored and
algorithms run. The options include:

1&2. Ina HAN device or In the Cloud: The first option is to send the data from the meter
through the HAN to a consumer display (e.g., in-home display, desktop, laptop, or
smartphone), either directly or through the cloud. Either the HAN device or the
computers in the cloud would perform disaggregation.®

3. Onthe smart meter: The second option is for data to be stored and processed inside the
meter on the network interface card. This is the most scalable option as it does not require
any other hardware to be deployed either by the utility or the consumer. The
disaggregated results can be sent directly to both the utility and HAN devices - the data
size of the disaggregated results is small enough to be sent over both of these interfaces.
Since raw sampled data is not sent outside the meter, this option can handle 1 kHz+
sampling algorithms, and is only dependent on the meter memory and processing
constraints.*

4. At the Utility back office: The third option is for the data to be sent to the utility back
office via the AMI network and perform the disaggregation on the utility servers, or
servers hosted by third parties with data access approved by utilities. We consider this
option because it could minimize data duplication at all points in the data chain, so that it

%8 For example, a typical household has 2,000 to 4,000 transitions every day (measured from real life data
of 10 homes in California by the authors, for transitions greater than 30 watts at 1 second sampling rate);
each transition can be stored for 4bytes each. This translates into sending ~12Kbytes = ~100kbits per day.
 For example, each 1kHz sampling transition can be stored for about 4bytes*1000 = 4KB of memory.
Hence, 2-4,000 transitions would consume about 8M-16MB of memory. This may be beyond the meter
memory and network bandwidth capability.

This option could take several different hardware configurations. That is, the meter could send
information through the HAN to a consumer display via: (a) A HAN device capable of receiving ZigBee
data from the Smart Meter and communicating with a broadband router (i.e., a WiFi or Ethernet gateway).
(b) A broadband router alone, if it is ZigBee enabled. (c) A broadband router alone, if the communications
protocol on the meter were WiFi or low power WiFi. Given the availability of WiFi receivers inside most
homes already, this option reduces the total cost of ownership and set-up effort, and the increased
bandwidth of WiFi also enables transmission of higher frequency data. (d) A <$100 USB dongle that is
capable of receiving ZigBee; however, this would need to be plugged into a continuously running laptop or
desktop that would perform the data storage and disaggregation. (e-g) Any of these configurations could
also send data to the cloud for disaggregation (instead of performing disaggregation on the HAN
device/router/home computer), as an intermediate step before sending information to the consumer
displays.
® Indeed, some models of Smart Meters may currently have the capability to perform disaggregation in the
communications card, according to one company’s representatives, with a firmware upgrade.
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has the possibility of being the most cost and energy efficient solution if well-
implemented. However, we consider this option highly unlikely due to the burden and

low perceived benefit to utilities.
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Figure 5. Hardware options for running the algorithms.

Disaggregation Requirements for the meter/network
Reference Meter Data
to Figure Meter Processing | WAN/ HAN | Frequency
5. Where? Comments Memory Power Bandwidth | Supported Dependencies
1&2 HAN | Currently need Low Low Low to 1Hz 1 Utility activation
gateway | to send data to Moderate, kHz+® with of HAN; A
device | HAN gateway depending | compression | ZigBee enabled
or cloud device via on HAN gateway
ZigBee frequency device for
and deployed meters,
compression or low power Wi-
capabilities Fi on future
meters
3 Meter Send Low High/ Low 1Hz 1 Firmware
disaggregated Moderate kHz+ with updates® for
results back to compression | deployed meters,
Utility or to improved
HAN gateway hardware for
device future meters
4 Utility Need to send | Moderate Low Moderate 1 hr, 1Hz Firmware update
back data back to /High with
office Utility back compression
office via
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[ WAN | | | | |

® Denotes the two higher frequency ranges from Table 5 (1 Hz — 2 kHz and 10-15 kHz).

Y Firmware is a part of device software that gets updated periodically for new features or bug fixes.
Table 6. Hardware options for running the algorithms and their memory, processing, and
bandwidth requirements.

We believe that in the long term, for meters deployed in the future, that Option 3 may be the
most efficient and scalable approach, because no hardware is required in the home and bandwidth
requirements are minimized. However, in the short term the best option is likely to compress data
on the meter, and then use Options 1 or 2 above for performing the disaggregation. This is
because for the next couple of years the early algorithms may require frequent updating, which
firmware updates are not well-suited for. By compressing the data on the meter and then sending
it elsewhere for disaggregation, the processing performed inside the meter does not need to
change frequently, but the memory requirements and bandwidth for sending the data outside the
meter is reduced. This would entail a firmware upgrade.

In these scenarios, in order to support the actual running of the algorithms, a firmware
upgrade is typically sufficient without requiring any hardware changes to the deployed smart
meters. It is instructive to note that options 1 and 2 require additional hardware simply because
current smart meters predominantly communicate through ZigBee, which cannot communicate
directly with the existing internet or other devices commonly found in the home — in other words,
such a device is needed for any HAN use. The availability of other HAN protocols that can
communicate with the internet, such as WiFi or low-power WiFi, would ameliorate this problem
and would open communication between the meter and a variety of internet enabled devices.
Note that this does not introduce security problems, but would rather benefit from existing
solutions, given the system is already in widespread use and transmits sensitive personal data
such as financial and medical information. This option also allows smart meters to be connected
to the anticipated “internet of things” for additional consumer applications.

Another way of addressing the sampling, storage, and processing issues discussed here would
be to build meters in the future with a serial port and a power supply. Then a large variety of third
party devices could be plugged in, directly sampling the power waveform data at the desired
frequency; and further storing, processing, and communicating through any networks — for
example, the HAN, internet, or cell network. This would enable applications other than
disaggregation as well. Some utilities in Europe have chosen meters that have open serial ports
for third party hardware that can be installed by the consumers, although this may be difficult to
implement in the United States.*

6.3. Cost to Support Disaggregation
The smart meter changes suggested in the above sections can be classified into two categories

— firmware upgrades and hardware modifications. This section describes the cost of making these
changes in the smart meters and network infrastructure (either WAN or HAN).

%2 |n the United States a redesign is required for the meter case since meters are mostly installed
outdoors and any device connecting to the meter needs to be ruggedized just like the meters are.
Meter tampering methods would also need to be tightened when deploying such options that
allow a user to attach their own device to the meter. Further, a firmware update would likely be
required in order to quantify the energy consumption of the third party device in the household’s
energy bill, rather than being absorbed by utilities as energy consumption of the meter itself as it
currently is. Such changes would likely need to be facilitated by policy makers, as incentives are
not strongly aligned currently with utilities or meter manufacturers.
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Firmware is a part of device software that gets updated periodically for new features or bug
fixes. This would be required when the hardware can perform a function but currently is not. It
would include sampling or storing data at higher frequencies, compressing or preprocessing data,
sending packets of higher frequency data every 6-7.5 s, expanding the maximum ZigBee packet
size, or performing disaggregation on the meter. The typical cost of a firmware upgrade includes:
(a) testing the new firmware in the meter or communication card manufacturer’s or utility’s
laboratory, (b) downloading the new firmware over the air into the meter, and (c) supporting the
new firmware. When done in conjunction with regular firmware upgrades (typical periodic
upgrades done every quarter), the cost for firmware upgrades related to enabling disaggregation
can be minimal.

The hardware modifications required vary depending on the sampling frequency used for
disaggregation. There are no hardware modifications required to support lower sampling
frequency data, but higher frequencies (1 kHz+) may require one of the following:

a) Increase A/D converter sampling rate, and any corresponding processor or memory
changes. A rough estimate of the hardware modifications cost for this change may be
about $2-$4 at cost and about $10 at the selling price of the smart meter, according to one
of the author’s professional experience in smart meter hardware development. Compared
to $200+ that it takes to purchase and install a smart meter, $10 is a modest cost addition
to enable a large uptick in energy efficiency.

b) Use WiFi or Low Power WiFi instead of ZigBee® (applicable to where ZigBee might be
used as a HAN interface) to support higher data transfer rate from the meter to inside the
house, and to ensure more widespread use of the HAN because less installation effort is
required by consumers. It is possible that the cost and power consumption for a WiFi chip
may be incrementally higher compared to a ZigBee chip, but the incremental cost and
power is unlikely to approach that of an extra ZigBee to WiFi gateway required to
support HAN functionality. ZigBee enabled routers could address the installation barrier
in consumers; however, the broadband router manufacturers will only include ZigBee in
mainstream routers if the demand reaches a certain volume which is likely to take several
years, and market turnover will take several additional years. The cost and energy
consumption comparison of WiFi or Low Power WiFi in the meter versus ZigBee
receiver in a router has yet to be determined.

7. Recommendations and Conclusions

The work reviewed above suggests that there are compelling reasons to pursue
disaggregation, and that it may be possible to leverage existing or future smart meters so that
appliance specific information can provide benefits at scale. The following are several specific
research and policy recommendations for moving forward.

The following research and development activities are suggested, as well as fiscal support for
these:

% The hardware change required would be to replace IEEE 802.15.4 based radio (used by ZigBee) with
IEEE 802.11 (WiFi or low power WiFi) for HAN communication interface in the Smart Meters. If the
power consumption of the WiFi chipset is a concern, there are many techniques for reducing wireless
energy consumption, such as duty cycling, which is when a device keeps its radio mostly off except when
it needs to transmit (Phil Levis, personal communication). Alternatively, there are efforts to develop lower
power WiFi chips, for example, by companies such as Gainspan, Marvell, and Atheros (a division of
Qualcomm).
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Improve disaggregation algorithms, in order to improve robustness, accuracy, and
number of appliances identified by the algorithms, while reducing frequency, processing,
and training requirements. The frequency range of 1 second to 15 kHz is of particular
importance, given that insufficient algorithmic work has been performed to date in this
range, and this range could be achievable in meters. Develop high-yield data
compression algorithms to enable the use of 1 second to 2 kHz data on current meters,
and up to 15 kHz data on future meters.

Develop a common data set that captures variability over appliances as well as
operating conditions. This should increase the rate of development and enable
comparison of algorithms, which have been problems to date due to the dearth and
variability of data. High resolution data should be recorded when feasible, because it
allows for down-sampling and thus for development across a range of frequencies, as
well as an assessment of the performance trade-off at different frequencies and
resolutions. Such a data set is being created at Stanford, along with a protocol to allow
others in geographically diverse regions to contribute. In conjunction with the common
dataset, it would be beneficial to: (a) Establish performance metrics, such as common
definitions of accuracy to enable the comparison of algorithms. (b) Organize a
competition, as has been done previously with algorithm development (e.g., the
InfoVis/IEEE Visualization Challenge, http://visweek.org), as this would utilize the
dataset and foster algorithm development at universities and beyond.

Facilitate testing of compression and disaggregation algorithms on actual smart
meters, to evaluate capabilities. Collaboration between universities and industry may
prove useful here, for example, in setting up testing facilities.

Perform key behavioral research: Identify popular use cases and their information
requirements, as this has relevance to data handling and consumer display requirements.
For example, it would be beneficial to determine which appliances are most important to
target with disaggregation, how often or quickly feedback is required, and whether
periodic snapshots of energy use are sufficient in lieu of complete records.

The following steps should be taken to improve data on existing meters. Regarding firmware
upgrades, these are similar to software updates, and can be performed remotely and can be
appended to routine updates so as to minimize cost.

1.

2.

Upgrade firmware to make reactive power available in addition to real power. This
allows algorithms to disaggregate more devices.

Upgrade firmware to support data compression. Transmitting events/transitions
instead of raw load profiles could significantly improve the frequency of data available to
HAN devices, as band-with is currently the bottleneck.

Regarding future smart meter hardware and firmware, we recommend the following. These
would enable sufficient disaggregation on the meters, without requiring additional hardware that
is likely to attain more limited market penetration thereby hindering data access and consumer
benefits. New meters should:

1.

Be capable of 10-15 kHz frequency, which would only cost $5-10 more (details in
Section 6.3), but would likely enable a jump in accuracy and the number of appliances
recognized. Improving wattage granularity by enhancing A/D converter resolution
(details in Section 6.1.2) would also improve recognition, particularly of smaller
electronics, which is of increasing importance given plug loads are the fastest growing
segment of electricity use (Ecos, 2006, 2011).
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Be capable of supporting disaggregation inside smart meters. This would avoid AMI
or HAN network constraints. Firmware loaded onto the meters could be updated for
compression and disaggregation either before installation, or through remote firmware
upgrades at a later date. Although the algorithms may not be refined enough to make
disaggregation on the meters desirable for the next couple of years, ultimately this may
be the most cost-effective and scalable solution.

Add or replace 802.15.4 based radio (used by ZigBee) with 802.11 (WiFi or low
power WiFi) so that meters can communicate directly with the broadband routers,
rather than require additional hardware. The additional hardware required by 802.15.4
interface costs consumers, and is likely to attain limited market penetration thereby
hindering data access. The cost of this replacement in the meter would be negligible.

Public utility commissions, utilities, and meter manufacturers should consider the
recommendations above when contemplating policy rulings and technology specifications for
current and future smart meters. Additional policy recommendations include:

1.

Disaggregation developers should contribute use case specifications and
requirements to the standards process so that other forthcoming communications
technologies are better suited for disaggregation.

Institute policies to ensure that utilities enable the HAN communication interface
(example ZigBee radios in the meters deployed in CA) soon, at a minimum beginning
with pilots. Until such a date few of the benefits of investment into smart meters will be
passed on to the consumer. Institute policies to ensure that utilities share de-identified
data collected during HAN pilots with research institutes and perhaps companies that
are not large enough to participate in the pilots, in order to facilitate algorithm
development and other HAN applications.

Institute policies, such as rebates, to make HAN gateways (that enable consumers to
get real time data from their smart meter) effectively free to consumers. This is
similar to $50-$150 appliance rebates approved for purchasing an ENERGY STAR
appliance on the basis that energy savings during the life of the appliance will be higher
than the rebate provided.

Institute policies to ensure that utilities select HAN devices during pilots that allow
consumers to access or share their data with any third party. This fosters innovation
since small businesses can now sell directly to consumers and invest time into developing
superior solutions.

Federal agencies and PUCs should demand improved transparency about meter
specifications, and enable universities to test real meters to establish actual
constraints. Currently, some of the relevant meter specifications are proprietary. Large
public expenditures are going towards the smart grid, and there is great potential for
innovation and consumer benefit, but this is likely to go unrealized without greater
transparency.

Utilities and regulatory agencies should expediently approve guidelines for addressing
privacy issues, if they have not already. Delays prevent individuals from sharing data
they own, and limit third parties from helping to realize consumer benefits. Policy is
supportive (Chopra, 2011; Chopra, Kundra, & Weiser, 2011; NARUC, 2011; CPUC,
2011), but implementation has not yet occurred.®

 We believe that privacy should not be a concerning issue for the majority of the public, if addressed
appropriately. Individuals have largely become accustomed to the use of personal data, and there is
significant precedent for addressing legal and other issues, in numerous domains such as: property records
(e.g., Zillow), internet cookies, Google maps, grocery store club cards purchases, health information (Blue
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7. Consider slowing the deployment of future smart meters until consumer benefits have
been demonstrated, and learnings can be incorporated into future roll outs.

In summary, disaggregation may be the lynchpin to realizing large-scale, cost-effective
energy savings in residential and commercial buildings. To date, these “$20 on the sidewalk”
energy savings have been onerous to collect, but disaggregation offers an opportunity for
significant automation. Smart meters, given their widespread roll-outs, and ability to circumvent
cost and effort barriers, offer an opportunity for quick, sweeping market penetration of sensing
hardware required for disaggregation. There are a number of research, meter, and policy steps
needed to realize the application of disaggregation with smart meters, but all are tractable within a
relatively short time frame. Further, this work could clear the way for similar energy
disaggregation work on gas, water, and transport. We are optimistic this work will progress, along
with its anticipated benefits.

Button initiative), and online finance (transactions, Mint.com). Successful traits of these applications likely
include high security, improved convenience, opt-in set-up, and, in the case of online finance, recourse for
identity theft. A robust empirical literature on risk perceptions could potentially help improve education
and ameliorate concerns (e.g., Slovic, 1987). Additional work extends learnings regarding privacy from
other domains to energy sensors such as smart meters and home area networks (Pai et al., 2008; Mulligan
& Perzanowski, 2007; Lisovich & Wicker, 2008; Subrahmanyam, 2008).
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