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 Abstract. Connectivity among populations and habitats is important for a wide range of
 ecological processes. Understanding, preserving, and restoring connectivity in complex
 landscapes requires connectivity models and metrics that are reliable, efficient, and process
 based. We introduce a new class of ecological connectivity models based in electrical circuit
 theory. Although they have been applied in other disciplines, circuit-theoretic connectivity

 models are new to ecology. They offer distinct advantages over common analytic connectivity
 models, including a theoretical basis in random walk theory and an ability to evaluate
 contributions of multiple dispersal pathways. Resistance, current, and voltage calculated
 across graphs or raster grids can be related to ecological processes (such as individual
 movement and gene flow) that occur across large population networks or landscapes. Efficient
 algorithms can quickly solve networks with millions of nodes, or landscapes with millions of
 raster cells. Here we review basic circuit theory, discuss relationships between circuit and
 random walk theories, and describe applications in ecology, evolution, and conservation. We
 provide examples of how circuit models can be used to predict movement patterns and fates of
 random walkers in complex landscapes and to identify important habitat patches and
 movement corridors for conservation planning.

 Key words: circuit theory; dispersal; effective distance; gene flow; graph theory; habitat fragmentation;
 isolation; landscape connectivity; metapopulation theory; reserve design.

 Introduction

 Connectivity among habitats and populations is
 considered a critical factor determining a wide range
 of ecological phenomena, including gene flow, meta
 population dynamics, demographic rescue, seed dispers
 al, infectious disease spread, range expansion, exotic
 invasion, population persistence, and maintenance of
 biodiversity (Kareiva and Wennergren 1995, Ricketts
 2001, Moilanen and Nieminen 2002, Calabrese and
 Fagan 2004, Moilanen et al. 2005, Crooks and Sanjayan
 2006, Damschen et al. 2006, Fagan and Calabrese 2006).
 Preserving and restoring connectivity has become a
 major conservation priority, and conservation organi

 Manuscript received 9 November 2007; revised 8 February
 2008; accepted 12 February 2008. Corresponding Editor:
 D. P. C. Peters.

 5 Present address: The Nature Conservancy, 1917 1st
 Avenue, Seattle, Washington 98101 USA.
 E-mail: McRae@nceas.ucsb.edu

 zations are investing considerable resources to achieve
 these goals (Beier et al. 2006, Kareiva 2006).
 Understanding broad-scale ecological processes that

 depend on connectivity, and making effective conserva
 tion planning decisions to conserve them, requires
 quantifying how connectivity is affected by landscape
 features. Thus, there is a need for efficient and reliable
 tools that relate landscape composition and pattern to
 connectivity for ecological processes. Many ways of
 predicting connectivity using landscape data have been
 developed (reviewed by Tischendorf and Fahrig
 2000(2, b, Moilanen and Nieminen 2002, Calabrese and
 Fagan 2004, Fagan and Calabrese 2006). Common
 approaches include the derivation of landscape pattern
 indices (e.g., Schumaker 1996), individual-based move

 ment simulations (e.g., Schumaker 1998, Hargrove et al.
 2005), and analytic measures of network connectivity,
 such as graph theory and least-cost path models (Keitt et
 al. 1997, Urban and Keitt 2001, Adriaensen et al. 2003,
 Minor and Urban 2007). The latter have gained
 increasing attention in recent years and are widely

 2712
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 applied in connectivity modeling and in conservation
 planning.
 We propose that connectivity models from electrical

 circuit theory can make a useful addition to the
 approaches available to ecologists and conservation
 planners. Circuit theory has been applied to connectivity
 analyses in chemical, neural, economic, and social
 networks, and has recently been used to model gene
 flow in heterogeneous landscapes (McRae 2006, McRae
 and Beier 2007). The same properties that make circuit
 theory useful in these fields hold promise for ecology
 and conservation as well. Because connectivity increases
 with multiple pathways in circuit networks, distance
 metrics based on electrical connectivity are applicable to
 processes that respond positively to increasing connec
 tions and redundancy. Additionally, previous work has
 shown that current, voltage, and resistance in electrical
 circuits all have precise relationships with random walks
 (Doyle and Snell 1984, Chandra et al. 1997). These
 relationships mean that circuit theory can be related to
 movement ecology via random-walk theory, providing
 concrete ecological interpretations of circuit-theoretic
 parameters and predictions. Finally, because algorithms
 to implement circuit models are well developed, they can
 be applied to large networks and raster grids.
 Here we present several ways in which circuit theory

 can be used to model connectivity in ecology and
 conservation. We describe ecological applications of
 previously developed theory relating resistance, current,
 and voltage in electronic circuits to random walks on
 analogous graphs (Doyle and Snell 1984, Klein and
 Randic 1993, Chandra et al. 1997). This theory can be
 applied to predict movement patterns and probabilities
 of successful dispersal or mortality of random walkers
 moving across complex landscapes, to generate mea
 sures of connectivity or isolation of habitat patches,
 populations, or protected areas, and to identify impor
 tant connective elements (e.g., corridors) for conserva
 tion planning. Our approach does not require new ways
 of representing landscape data; rather, it takes advan
 tage of graph-theoretic data structures, which are
 already familiar to many ecologists, and can be applied
 in traditional graph-theoretic or raster GIS frameworks.
 Coupled with applications of circuit theory to predict
 equilibrium patterns of gene flow (McRae 2006, McRae
 and Beier 2007), these new applications comprise a
 modeling framework that integrates spatial aspects of
 ecology, evolution, and conservation.

 Basic Concepts

 Graph data structures and terminology

 Connectivity models from circuit theory are applied to
 graphs (Harary 1969), so we will use the terminology of
 graph theory here (see Urban and Keitt 2001 for a
 review). Briefly, graphs are networks comprised of sets
 of nodes (connection points which represent, e.g., habitat
 patches, populations, or cells in a raster landscape)
 connected by edges (Fig. 1). Edges reflect functional

 A a?- -?b Da??vW? ?vW?*b

 Fig. 1. Three graphs at left (A, B, C), with edge weights of
 1. Traditional shortest path or geodesic distance, d, between
 nodes a and b is identical (d=2) all three cases. At right (D, E,
 F), edges have been replaced with unit resistors to create
 analogous circuits. Effective resistance, R, measured between
 nodes a and b decreases from top to bottom (R = 2, 1, and 2/3,
 respectively), reflecting additional contributions from multiple
 pathways (figure modified from Klein and Randic [1993]).

 connections, such as dispersal, between nodes. The
 weight of each edge typically corresponds to the strength
 of the connection (e.g., the ease of movement or number
 of dispersers exchanged) between the nodes it connects. O

 Circuit theory O

 In this paper, circuits are defined as networks of nodes ?>
 connected by resistors (electrical components that Tj
 conduct current) and are used to represent and analyze CO
 graphs (Fig. 1). The basic concepts of resistance,
 conductance, current, and voltage all apply, and their
 definitions and ecological interpretations are summa

 fi*
 (/>
 -<

 rized in Table 1. Recall Ohm's law, which states that Z
 when a voltage Fis applied across a resistor, the amount X

 of current / that flows through the resistor depends on ^
 (1) the voltage applied and (2) the resistance R, such that ^
 I = V/R. The lower the resistance (or the higher the
 conductance, G, which is simply the reciprocal of
 resistance), the greater the current flow per unit voltage.
 Similarly, when a voltage is applied across two nodes in
 a resistive circuit (e.g., between nodes a and b in the
 circuits shown in Fig. 1), the total amount of current
 that flows across the circuit is determined by (1) the
 voltage applied and (2) the configuration and the
 resistances of the resistors the circuit contains. The

 effective resistance (R) between the nodes is the
 resistance of a single resistor that would conduct the
 same amount of current per unit voltage applied
 between the nodes as would the circuit itself, i.e.,
 R = Vj I.

 In simple circuits, such as those shown in Fig. 1,
 effective resistance can be calculated using some basic
 rules. First, two resistors connected in series may be
 replaced by a single resistor with a resistance is that the
 sum of the two resistances. Thus, the effective resistance
 in the top circuit in Fig. ID would be R = R\ + R2 = 2
 ohms. Conversely, connecting resistors in parallel
 decreases their effective resistance, such that they may
 be replaced by a single resistor whose conductance is
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 Table 1. Electrical terms and their ecological interpretations.

 Electrical term (symbol, unit)  Ecological interpretation

 Resistance (R, ohm), the opposition that a resistor
 offers to the flow of electrical current.

 Conductance ((7, Siemens), inverse of resistance and a
 measure of a resistor's ability to carry electrical
 current.

 Effective resistance (R, ohm), the resistance to
 current flow between two nodes separated by
 a network of resistors.

 Effective conductance (G, Siemens), inverse of effective
 resistance, a measure of a network's ability to
 carry current between two nodes.

 Current (/, ampere), flow of charge through a node
 or resistor in a circuit.

 Voltage ( V, volt), the potential difference in electrical
 charge between two nodes in an electrical circuit.
 Related to current and resistance by V = IR.

 Opposition of a habitat type to movement of organisms, similar to
 ecological concepts of landscape resistance or friction. Graph edges
 or grid cells allowing less movement are assigned higher resistance.

 Analogous to habitat permeability. In random-walk applications, it is
 directly related to the likelihood of a walker choosing to move
 through a cell or along a graph edge relative to others available to
 it. In population genetic applications (see McRae 2006), it is a

 measure of migrants exchanged between neighboring populations.
 Also known as the resistance distance, a measure of isolation between

 pairs of nodes on a graph or cells on a raster grid. Similar to
 ecological concept of effective distance, but it incorporates multiple
 pathways (Fig. 1D-F). It scales linearly with equilibrium genetic
 differentiation in population genetic applications.

 A measure of connectivity between pairs of nodes on a graph or cells
 on a raster grid. It increases with additional available pathways and
 scales linearly with effective migration in population genetic
 applications.

 Current through nodes or resistors can be used to predict expected
 net movement probabilities for random walkers moving through
 corresponding graph nodes or edges (Fig. 2).

 Voltages can be used to predict the probability that random walkers
 leaving any point on a graph will reach a given destination
 (representing, e.g., successful dispersal) before another (representing,
 e.g., mortality; Fig. 3).

 if)

 tn
 if) given by the sum of the conductances of the two

 -? resistors, that is, G = G\ + G2. (In terms of resistance,
 \z these quantities are given by: R ? R\R2/[R\ + R2].)

 > Applying these equations to the circuits shown in Fig. 1,
 the effective resistance declines from the top to the

 l^J bottom circuit.
 g} Applying circuit theory to graphs involves preserving

 J? the same graph structure with interconnected nodes, but
 Ld replacing graph edges with resistors, as in Fig. 1. The
 2 conductance of each resistor is typically a function of the

 O corresponding edge weight or probability of movement
 ^ between the pair of nodes it connects. The resistance of a

 resistor is the reciprocal of its conductance and can be
 thought of as representing isolation or movement cost
 between nodes.

 Interpretation of Resistance, Current, and Voltage

 Resistance and conductance

 The simplest connectivity measure from circuit theory
 is the resistance distance (Klein and Randic 1993), a
 distance metric defined as the effective resistance
 between a pair of nodes when all graph edges are
 replaced by analogous resistors (as in Fig. 1D-F). A
 convenient property of the resistance distance is that it
 incorporates multiple pathways connecting nodes, with
 resistance distances measured between node pairs
 decreasing as more connections are added. Hence, the
 resistance distance does not reflect the distance traveled

 or movement cost accrued by a single individual.
 Rather, it incorporates both the minimum movement
 distance or cost and the availability of alternative
 pathways. As additional links are added, individuals
 do not necessarily travel shorter paths, but have more
 pathways available to them. For example, in the three

 graphs in Fig. 1A-C, the minimum distance required to
 travel from node a to b (called geodesic distance in
 graph theory) is the same. However, the resistance
 distance decreases as more connections are added,
 reflecting increased flow capacities and levels of redun
 dancy. In short, the resistance distance is small when
 two nodes are connected by many paths with low
 resistance (high conductance) edges and large when
 there are few paths with high resistance. Resistance
 distances can be calculated across irregular networks or
 with continuous landscape data, which are typically
 represented as discretized lattices or grids. On continu
 ous surfaces, the resistance distance increases linearly
 with Euclidean distance in homogeneous one-dimen
 sional habitats and with its log transformation in two
 dimensional habitats, a property important for modeling
 gene flow (McRae 2006).

 Resistance distances can also be related to random
 walk times between nodes. For the theory and examples
 that follow, we assume that conductances are chosen so
 that the probability of moving from a node along any
 given edge is equal to the conductance assigned to the
 edge divided by the sum of the conductances of all edges
 connected to the node. For an organism moving through
 a habitat network (the main focus of this paper), this
 would correspond to a scenario where the individual
 chooses to move along an edge in proportion to the
 edge's conductance, a surrogate for habitat quality or
 (inverse) perceived risk, relative to the quality of all other
 choices of direction; this choice is then repeated at each
 subsequent step. For genes moving across a network of
 populations over many generations, this would corre
 spond to a scenario where edge conductances correspond
 to per-generation migration rates (McRae 2006).
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 Chandra et al. (1997) showed that, when resistors are
 parameterized in this way, the resistance distance
 between a pair of nodes is precisely related to the
 commute time between the nodes, i.e., the expected time
 for a random walker to move from one node to the other

 and back again. The commute time between any pair of
 nodes u and v can be calculated using the following
 formula:

 n n

 Commute time = Ruv ^ ^ (1 /Rxy ) ( 1 )
 x=\ y=\

 where Rxy is the resistance of the resistor connecting
 nodes x and v and n is the number of nodes in the
 network. Note that Eq. 1 accommodates resistors
 connecting a node to itself, which would reflect a
 nonzero probability of staying at the node for any time
 step. Chandra et al. (1997) also provided formulas to
 calculate a commute cost, if there is a cost imposed for
 each step that is independent of the resistance (and thus
 independent of the behavior of a random walker). An
 interesting result of Eq. 1 is that if the goal is to

 minimize commute times between a pair of nodes, there
 is a penalty for adding connections which is offset by the
 degree to which the new connections help to lower
 effective resistance between the two nodes. Within a
 fixed network, commute times between different pairs of
 nodes will be directly proportional to the effective
 resistances measured between them. Another potentially
 useful way to apply resistance calculations across graphs
 is to compute upper and lower bounds for the cover
 time, or the expected number of steps of a random walk
 visiting all nodes in the graph (Chandra et al. 1997).

 "Functional" or "effective" distance.?Used as an
 ecological distance metric, the resistance distance
 provides a conceptual complement to commonly used
 least-cost distances in two important ways. First, it
 integrates all possible pathways into distance calcula
 tions, whereas least-cost distances are measured along a
 single optimal pathway. Second, it offers a measure of
 isolation assuming a random walk, whereas least-cost
 distances presumably reflect the route of choice if a
 disperser has complete knowledge of the landscape it is
 traversing.

 The resistance distance also provides a quantitative
 complement to least-cost distances. If only a single
 pathway between two nodes is available (e.g., in Fig. 1A
 or in any graph that is a tree), the resistance distance will
 equal the least-cost distance. On the other hand, when
 two identical and independent pathways connect a pair
 of nodes in parallel, the resistance distance will be half
 the least-cost distance. This suggests an interpretation of
 the resistance distance as an indicator of redundancy in
 connections relative to the least-cost distance:

 Redundancy = (least-cost distance)/(/?).

 Thus, the two measures can be compared directly, their

 ratio providing a rough measure of parallel pathways
 available to dispersers.

 The relationship between resistance distances and
 commute times is one way to link circuit and ecological
 theories and is the basis of using resistance distances to
 predict patterns of gene flow and genetic structuring in
 heterogeneous landscapes (McRae 2006). Calculating
 commute times directly may provide valuable additional
 information because commute times take into account

 how efficiently a given landscape configuration will
 channel dispersal between source and destination nodes.
 Additional pathways that primarily result in increased
 wandering behavior rather than directed movement may
 reduce resistance distances but will increase commute
 times. Low commute times and low resistance distances

 between pairs of nodes indicate that dispersers will be
 efficiently directed between them.

 Current

 Currents in circuits can also be interpreted in terms of
 random walks on corresponding graphs. Consider again
 a graph in which the probability that a random walker
 will move from a node along any graph edge is
 proportional to its conductance. Doyle and Snell 0
 (1984) showed that when 1 A (ampere) of current is Z
 injected into one node (node a in Fig. 2A) and a second m
 node (node e) is tied to ground, the current ixv flowing 3!
 through the resistor connecting any pair of nodes x and CO
 y is equivalent to the expected net number of times that a cy\
 random walker, starting at a and walking until it reaches
 e, will move along that branch. Because we are tallying
 net passages through the branch, movements from x to y

 O

 CO
 -<
 z
 H

 are counted as positive, whereas movements from y back I
 to x are counted as negative. (j)
 Corridor identification and dispersal predictions.?By (/)

 predicting net movement probabilities along branches or
 through nodes, current density can be used to identify
 landscape corridors or "pinch points," i.e., features
 through which dispersers have a high likelihood (or
 necessity) of passing. High current through a node or
 branch indicates that removing or converting it will have
 a high impact on connectivity. In Fig. 2, all the current
 passes through node b; removing that node (or the link
 between nodes a and b) would completely disconnect
 nodes a and e, whereas removing node c, through which
 only half the current passes, would reduce redundancy
 but would still leave nodes a and e connected via the

 lower branch. In graph terminology, node b is a cutnode,
 and the resistor connected nodes a and b is a cutlink.

 Voltage

 Doyle and Snell (1984) also showed that voltage can be
 related to random walk probabilities. Consider a graph in
 which a voltage source set to 1 V is connected to one
 node (or to a set of nodes), and another node (or set of
 nodes) is connected to ground (Fig. 3). The voltage
 measured at any remaining node on the graph will equal
 the probability that a random walker, starting at that
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 Fig. 2. (A) A simple circuit, with a 1-A (ampere) current source (/) placed at node a, and with node e tied to ground. Branch
 currents that would be observed with unit resistors are shown and reflect the net number of times that a random walker, starting at
 node a, is expected to pass along each branch before reaching node e. All random walkers must pass across the first branch, but half
 would be expected to take the upper pathway, and half the lower. Resistances connecting nodes were set to 1 ohm for this simple
 example; the methods we describe here can accommodate heterogeneous resistances with values from 0 to infinity. (B) The same
 circuit as in (A), but with ground resistors added to reflect a 1% probability of mortality as the random walker passes through each
 node. To achieve this, resistances to ground for nodes a-d were set to 99, 33, 49.5, and 49.5 ohms, respectively. Currents show the
 expected number of net movements along each branch, as well as the expected number of deaths at each node. For example, the
 proportion of dispersers leaving node a expected to successfully reach node e is 0.9332 (933.2 raA equivalent). Deaths at each node
 exceed 1% because nodes are visited multiple times by random walkers, with the highest numbers of deaths observed in nodes with
 the highest numbers of visits. Only one possible dispersal destination was included here, but the method can accommodate as many
 dispersal destinations as desired. Although we tied the destination node directly to ground, resistors could be added between
 destination nodes and ground, with their conductances set to reflect a finite probability that a walker would settle rather than
 continue walking once reaching a node.

 node, will reach any of the nodes set to 1 V before
 reaching any node connected to ground. The most
 obvious application of this property is to predict the
 probability of successful dispersal via a random walk
 from any node on a graph. Suitable destination patches
 for dispersal can be set to 1 V, whereas mortality can be
 represented by resistors connected to ground, with their
 conductances reflecting probabilities of mortality (Fig. 3).

 Applying Circuit Analyses to Raster Grids

 Predicting connectivity using circuit theory requires
 translating spatial data sets into a graph structure, but
 that doesn't mean that primary landscape data must be
 in a patch-based or network-style format. In fact, we
 envision most landscape applications operating on raster
 data, with a graph extracted from these data as is done
 for least-cost path analyses (Adriaensen et al. 2003).
 Since well-developed computer algorithms allow mil
 lions of cells to be processed, large raster landscapes can
 be accommodated.

 Analyzing a raster grid involves first assigning
 resistances to different habitat types in the grid. Fig. 4
 shows a simple example with three different habitat
 types: assigned unit, infinite, and zero resistance. The
 last is useful when practitioners wish to measure
 connectivity or identify important connective elements
 between areas (representing, for example, habitat

 patches or reserves), rather than points on a landscape.
 To represent a grid as a circuit, cells with finite
 resistances are converted to nodes (gray), whereas cells
 with infinite resistance (i.e., those representing complete
 barriers, black) are dropped. Adjacent nodes are
 connected by resistors, with resistances reflecting a
 function (typically the mean) of the resistances of the
 cells they connect. Adjacent cells with zero resistance
 (open) are consolidated into a single node that is then
 connected by resistors to all nodes adjacent to the zero
 resistance patch. Following this procedure, the 16-cell

 Fig. 3. The same circuit shown in Fig. 2B, but with a
 voltage source (V) of one volt at node e instead of a current
 source at node a. Node voltages reflect the probability that a
 random walker, starting at each node, will successfully reach
 node e. Consistent with the result from Fig. 2B, the probability
 of successful dispersal from node a to node e is 0.9332.

 50
 en
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 >
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 Fig. 4. A simple landscape represented as both a grid and a
 circuit. The landscape contains two contiguous patches of
 O-resistance cells (open), dispersal habitat of finite resistance
 (gray), and one "barrier" cell with infinite resistance (black).
 Cells with finite resistance are replaced with nodes (small dots),
 and adjacent nodes are connected by resistors. Patches of cells
 with 0 resistance are each consolidated into a single node (large
 dots). Connections between diagonal neighbors and nonadja
 cent cells can also be incorporated, the latter representing
 "hops" over intervening cells. Current sources, voltage sources,
 and ground connections can be added as in Figs. 2 and 3.

 grid in Fig. 4 is now represented as a circuit with 13
 nodes and 18 resistors.

 Computation

 Although simple circuits can be solved by hand, nodal
 analysis is typically used to analyze larger circuits, such
 as those derived from raster grids (McRae 2006). Given
 a circuit with current or voltage sources, nodal analysis
 uses Kirchoffs and Ohm's laws in matrix form to solve

 for a vector, specifying voltages at each node; once these
 are known, Ohm's law can be used to calculate currents
 passing through individual resistors or nodes. Effective
 resistance between a pair of nodes is given by the voltage
 between them when one is connected to a 1-A current
 source and the other is connected to ground (e.g., Fig.
 2A). The method is described in standard circuit theory
 textbooks (e.g., Dorf and Svoboda 2003); an example of
 its use to calculate effective resistances is provided by

 McRae (2006).
 Computer languages used for scientific computing

 such as Java, C, MATLAB, and Python include linear
 solver routines that can solve for effective resistances on

 graphs. Fast graph operations can be used to define
 connected components in a landscape and discard from
 a graph any components that are completely isolated.
 Very large graphs can be processed relatively easily and
 efficiently; we have solved for effective resistances,
 voltages, and current on landscapes containing over 1
 million cells using Java (Sun Microsystems, Mountain
 View, California, USA), and up to 48 million cells using
 a parallel version of MATLAB (MathWorks, Natick,
 Massachusetts, USA) implemented using Star-P (Inter
 active Supercomputing, Waltham, Massachusetts,
 USA). Solving 1 million cells on a notebook computer

 with a 2-GHz processor and 2 GB of RAM took us 16
 minutes using Java and only 20 seconds using MAT
 LAB. This calculation must be repeated for each
 configuration of current sources and grounds, but
 typical connectivity applications will require a small
 number of calculations (e.g., for each pair of popula
 tions or reserves between which connectivity is to be

 modeled). Calculations between multiple pairs can be
 sped up considerably using matrix preconditioning
 and/or parallel processing. Software implementing many
 of the algorithms in this manuscript is available (B. H.
 McRae, unpublished data).

 Example Applications to Heterogeneous Landscapes

 Here we provide examples of the applications
 described above to predict connectivity and movement
 of random walkers across large raster grids. For the
 example analyses described next, we solved for effective
 resistances and node currents using code written in
 MATLAB R2007b. The example landscapes (i.e.,
 resistance surfaces) were all created using ArcView
 GIS 3.2 (ESRI, Redlands, California, USA) and
 exported as ASCII raster grids, with cell values
 corresponding to resistances ranging from 0 to infinity O
 (Fig. 5). For circuit analyses, cells with finite resistances ~
 were converted to nodes, whereas those with infinite O
 resistances were dropped. Cells were connected to their ^
 eight neighbors such that the resistance between a pair ;rj
 of first-order neighbors was set to the mean of the two
 cells' resistances, and the resistance between a pair of *^
 second-order (diagonal) neighbors was set to the mean (J)
 resistance multiplied by the square root of 2 to reflect the ^

 Fig. 5. Nine simple raster landscapes (A-I), consisting of
 1000 X 1000 cells. Habitat patches (shown in white and assigned
 0 resistance, or infinite conductance) are connected by different
 configurations of dispersal habitat (light gray, 10 ohms/cell;
 dark gray [lower corridor in panel C], 20 ohms/cell; black =
 infinite resistance or 0 conductance).
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 Fig. 6. Least-cost distances and resistance distances be

 tween habitat patches for the nine simple landscapes shown in
 Fig. 5. Least-cost distances decrease from (A) to (B) but are
 equivalent for all remaining maps. Effective resistances decrease
 not only from (A) to (B), but also from (B) to (I), reflecting the
 availability of more and wider pathways. Redundancy, denned
 here as the ratio of least-cost distance to effective resistance,
 would be roughly equal for cases (A) and (B) but would
 increase from (B) to (I). Cost-weighted distance (measured in
 cost units) were calculated using PATHMATRIX software.
 Resistance distances (measured in ohms) were calculated using
 Circuitscape software.

 greater distance between cell centers. We converted
 individuar cells to single nodes, except for cells in areas
 of zero resistance, i.e., open source/target patches; as in
 the simple landscape in Fig. 4, these cells were
 considered collectively and consolidated into a single
 node for the analyses. For all examples, we used the
 same resistance surfaces to calculate least-cost distances

 and map least-cost corridors using PATHMATRIX
 software (Ray 2005).
 We started with nine simple landscapes (Fig. 5) meant

 to illustrate different properties of circuit models. The
 landscapes consisted of 1000 X 1000 cells each and
 contained two primary habitat patches, which were
 always the same distance from one another and always
 occupied the same total area. Least-cost and resistance
 distances calculated between habitat patches in the nine
 simple landscapes illustrate some advantages of the
 resistance distance (Fig. 6). Although least-cost distanc
 es correctly identify decreased isolation between habitat
 patches in landscape B relative to A, they were identical
 in landscapes B through I. Resistance distances show a
 similar decrease from landscape A to B, but they also
 decrease from B to I, reflecting the availability of
 additional, or wider, pathways. Note that between
 landscapes H and I, only the shape of the primary
 habitat patches has changed, and not their area or the
 distance separating them. Yet the resistance distance
 differs because the greater surface area of each habitat
 patch in landscape / acts as a "drift fence" to better
 intercept or release disperser s.

 Commute times ranged from 1.2 million steps
 (landscapes B, C, and G) to 6.2 million steps (landscape

 A). They were intermediate for landscapes D, E, F, H,
 and I, which had commute times of 2.6, 3.0, 1.6, 2.7, and
 2.0 million steps, respectively. Lower commute times
 reflect configurations in which dispersers are efficiently
 channeled between habitat patch pairs, minimizing
 wandering time.

 These same simple landscapes also demonstrate how
 current maps (Fig. 7) can highlight connective elements
 in raster frameworks. As the availability of multiple
 pathways increases, current density?indicating cells
 through which dispersers are likely to pass moving from
 one patch to the other?decreases. Pinch points are
 highlighted in landscapes D-F, and the "drift fence"
 effect resulting from the more linear shape of the habitat
 patches in landscape I is evident as well. Fig. 7J shows a
 least-cost path map for the "braided stream" corridor
 configuration. The technique identifies the route with the
 lowest cumulative cost, but gives no information about
 the contribution of alternative pathways. By contrast,
 the current map (Fig. 7D) clearly indicates the
 importance of different corridor segments, with current
 densities at their highest in the two critical linkages and
 at their lowest in segments that are most redundant.
 We can now illustrate how these models can be used

 to analyze connectivity in more realistic landscapes. Fig.
 8A shows a complex landscape, with patches of high
 quality habitat, lower quality "matrix" habitat, corri
 dors, and complete barriers. Fig. 8B shows cumulative
 travel cost mapped between two high-quality patches
 using standard least-cost path techniques. The map
 highlights the most efficient pathway between the two
 patches, as well as low-cost detours that do not actually
 contribute to connectivity, e.g., into habitat cul-de-sacs
 or along "corridors to nowhere." By contrast, the
 current map between the same two habitat patches
 (Fig. 8C) highlights critical pinch points between the two
 patches. Habitat cul-de-sacs and corridors that do not
 contribute to connectivity have minimal current flow.
 The current map also indicates two broad routes linking
 the habitat patches, whereas only one is highlighted in
 the least-cost map. The current map thus gives
 important insight into the redundancy that would be
 lost if the second route were to be blocked.

 Often it will be useful to summarize connectivity
 between many habitat patches or protected areas in a
 single map. Fig. 9A shows the result of adding 10
 pairwise current maps calculated among all pairs of ?vq
 habitat patches. These maps show which landscape
 elements are most important for overall connectivity
 among the five habitat patches, indicating the net
 number of times random walkers are expected to move
 through raster cells if one random walker moves from
 each patch to each other patch.
 We could also extend the analyses of our raster maps

 in much the same way as the analyses in Fig. 2A were
 extended in Figs. 2B and 3. Ground resistors could be
 added to incorporate mortality or finite probabilities of
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 Current flow

 Iriicjn

 Low

 Fig. 7. Current flow through landscapes shown in Fig. 5 when 1 A (ampere) of current is injected into one habitat patch and the
 other is connected to ground. Current maps were log-transformed to facilitate display. Among the nine panels, three different
 quantitative scales are applied to the color schemes in order to most clearly illustrate differences in current densities. The three
 schemes are applied in panels (A)-(D), (E)-(G), and (H)-(I). Highest maximum current densities (indicating the greatest impact
 of habitat cell removal or conversion) are observed in (A), (B), and (D)-(E), where connectivity depends on single, narrow corridor
 segments. The lowest maximum current densities are observed in landscape (I), which provides the most redundancy and lowest
 effective resistance. This landscape also exhibits a drift-fence effect, in which the linear shapes of the habitat patches act to intercept
 dispersing individuals. (J) The least-cost path solution of the "braided stream" landscape shown in Fig. 5D. Whereas this technique
 highlights the most efficient travel path, it gives no indication of pinch points or effects of multiple parallel corridors.
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 settling once a disperser reaches a habitat patch or
 protected area. With multiple destination patches, a
 matrix of asymmetrical dispersal rates between all patch
 pairs could be generated. Or, target patches could be set
 to 1 V and probabilities of successful dispersal (or
 dispersal to one patch vs. others) from any point on the
 landscape could be mapped. Finally, additive maps
 (such as the one shown in Fig. 9A) could be adjusted to

 give greater weight to important source or destination
 patches, with more current released or absorbed by
 larger or higher quality habitat patches.

 Model sensitivity to landscape scale

 Representing a landscape as a raster grid always
 involves choosing an appropriate scale of analysis (cell
 size and map extent). Because different species respond
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 Fig. 8. Connective elements identified using least-cost path and circuit models in a complex landscape. (A) Map of the
 landscape, with resistances and costs for circuit and least-cost path analyses ranging from 1 (light gray) to 100 (dark gray) to infinite
 (black). (B) Results from least-cost modeling between habitat patches in lower left and upper right corners of the map. The value
 assigned to each cell indicates the cost accumulated moving along the most efficient possible route that passes through the cell from
 one habitat patch to the other; brighter areas indicate cells along the route of lowest cumulative cost. Some habitat cul-de-sacs are
 highlighted because the most efficient path connecting one patch to the other via the cul-de-sac has a low cost relative to most other
 features in the landscape. For the same reason, some "corridors to nowhere" are highlighted, such as the one leading off of the top
 of the map. (C) Current map between the same two habitat patches. Higher current densities indicate cells with higher net passage
 probabilities for random walkers moving from one patch to the other. The map highlights "pinch points," or critical habitat
 connections, between the two patches. Habitat cul-de-sacs have minimal current flow because they do not contribute new,
 independent pathways between habitat patches.

 to landscape structure at different scales (Wiens 1985,
 Wiens and Milne 1989; Beier et'al., in press), there will
 be no single correct approach to this. The extent of an
 analysis will obviously have important consequences,
 since map edges will constrain potential movement
 routes. Cell size is also important, but our analyses
 indicate that as long as it remains fine enough to capture
 relevant landscape elements, such as narrow corridors
 and barriers, there is considerable robustness in the
 technique to changes in cell size. Fig. 9B shows the same

 landscape as in Fig. 9A, but analyzed using cell sizes that
 are an order of magnitude larger. Notably, current
 densities and resistance distances calculated among
 habitat patches are highly correlated between the two
 scales, a consistent result in our analyses in a wide range
 of natural and artificial landscapes. However, these
 analyses also show that it is particularly important to
 capture absolute barriers to movement that may not
 easily be detected at coarser cell sizes. Such barriers
 (such as the narrow roads in Fig. 9A) were automatically

 Fig. 9. Summed current from all pairwise current maps between five habitat patches, each shown in white. Calculations were
 performed (A) at the original 1000 X 1000 cell resolution and (B) at a reduced 100 X 100 cell resolution. To produce the coarser
 resolution habitat map, blocks of 10 X 10 cells were converted to single cells, with the resistance of each new cell set equal to the

 mean resistance of the 100 cells it contained. The current maps at the two resolutions identify the same pinch points and important
 corridors, and pairwise effective resistances measured between all habitat patch pairs at the two scales are highly correlated (R2 =
 0.963), illustrating the method's robustness to scale.
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 Plate 1. Puma mother and kitten in Caspers Wilderness Park, Orange County, California. Cirtuit theory is being applied to
 inform efforts to conserve connectivity for pumas in the region. Photo credit: Donna Krucki.

 incorporated into our analyses in Fig. 9B because we
 averaged resistances among consolidated cells, with
 infinite resistances "trumping" all others.

 Discussion

 Although a wide variety of methods exists for
 predicting connectivity across landscapes, circuit-theo
 retic models provide some distinct advantages. First, the
 precise relationships between circuit theory and random
 walks lend theoretical justification to these models and
 mean that the metrics they generate can genuinely be
 considered to be process based. Second, these relation
 ships also mean that circuit models will often be more
 straightforward to parameterize than other connectivity

 models because conductances and resistances assigned
 to edges or raster cells have clear interpretations in terms
 of movement probabilities. Third, unlike commonly
 applied least-cost path approaches, circuit methods
 incorporate multiple pathways, not only in generating

 metrics of connectivity and isolation, but also in
 identifying corridors and other important landscape
 elements connecting habitat patches or protected areas.
 An advantage of this property is that when dispersal
 pathways are lost, the predicted importance of remain
 ing pathways increases. Finally, circuit models have an
 intuitive appeal in that the idea of using resistance and
 current to model connectivity across landscapes is
 readily understood by both practitioners and nonscien
 tists. In effect, we find that the method objectively
 identifies important connective elements similar to those

 identified by the human eye, replicating expert opinion
 but removing potential sources of bias once relative
 resistance values and scales of analysis have been
 defined.

 Niches for circuit models

 We envision several roles for circuit theory in
 evolution, ecology, and conservation. Circuit theory
 has already been shown to be useful for predicting
 patterns of gene flow in heterogeneous landscapes,
 particularly when data on absolute population sizes
 and migration rates are lacking, but relative population
 densities or permeabilities to movement are hypothe
 sized for different landscape features (McRae 2006,

 McRae and Beier 2007). As discussed in the section
 below, the theory underlying gene flow modeling is
 similar to that described here, but relates resistance
 distances to random walks of genes over multiple
 generations rather than to random walks of individuals
 within single lifetimes.

 In ecology, circuit models can be used as simple
 movement models, e.g., when data or time required for
 simulations are lacking or when the comparison of
 simple and complex model predictions is desirable. An
 example application would be to predict dispersal rates
 between populations based on simple landscape data in
 order to parameterize metapopulation models. Addi
 tionally, just as it can be used to predict gene flow,
 circuit theory may be useful in modeling other emergent
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 processes that depend on dispersal. Some ecological
 phenomena, e.g., community similarity and diversity,
 may respond to dispersal not of one species, but of
 several species with only somewhat similar dispersal
 abilities or habitat requirements. Here, simulations may
 be prohibitive or inappropriate because of the large
 number of species involved. However, analytic ap
 proaches like ours may be able to adequately capture
 these processes without imposing prohibitive data or
 computational requirements.
 Measurements of resistance distances, commute times,

 and current densities have clear applications in conser
 Ivation planning, such as corridor design or predicting

 the effects of different land use practices on connectivity.
 Circuit theory should provide an especially powerful
 tool for designing robust reserve networks, i.e., those
 that still provide for connectivity in the face of
 uncertainty in species distribution data and/or future
 habitat loss (Moilanen et al. 2006a, O'Hanley et al. 2007;
 Pinto and Keitt, in press). Importantly, circuit methods
 can be applied to the same resistance surfaces that are
 commonly employed in least-cost path analyses, and
 with little added computational expense.

 In this paper, we limited our examples of circuit-based
 analyses to accessible interpretations of resistance,
 voltage, and current. However, there should be a large
 number of tools that could be derived from these basic

 properties. For example, metrics that combine predic
 tions of efficient travel paths, pinch points, and
 mortality risks could allow practitioners to map
 landscape features that most effectively contribute to
 connectivity while minimizing mortality rates. Or,
 metrics derived from shortest path or least-cost distanc
 es, such as the Harary index (Ricotta et al. 2000, Jord?n
 et al. 2003) or the integral index of connectivity
 (Pascual-Hortal and Saura 2006) could be modified by
 substituting resistance distances for least-cost distances
 in their calculation. Additionally, algorithms like edge
 and node thinning, used to evaluate impacts to
 connectivity of habitat loss in graph theory (Urban
 and Keitt 2001), can also be applied using circuit-based

 A note about ecological vs. evolutionary applications

 It is important to be aware of subtle differences in
 assumptions behind applications of circuit theory to
 different processes. So far we have identified two distinct
 frameworks, one which models gene flow across
 population networks and the other focused on individ
 ual movement across habitat networks. The former

 assumes nodes (or cells) represent subpopulations (or
 occupied habitat for continuously distributed popula
 tions), with resistors representing numbers of migrants
 exchanged between adjacent nodes per generation
 (McRae 2006). By contrast, applications focused on
 individual movement will typically be implemented at
 finer temporal and spatial scales, with nodes (cells)
 mapped at the scale at which individual movement

 decisions are made. Thus, the two will often be applied
 at different scales and with (at least somewhat) different
 habitat models. Similarly, predictions from the two
 frameworks must also be interpreted differently. For
 example, in applications where nodes or cells represent
 occupied habitat exchanging migrants, a decrease in the
 resistance distance between two nodes corresponds to a
 proportional increase in gene flow predicted between
 them; however, when nodes represent dispersal habitat
 rather than subpopulations, a decrease in the resistance
 distance corresponds only to an increase in available
 dispersal pathways, and not necessarily a commensurate
 increase in individual movement rates or gene flow. It
 does, however, indicate that there will be more pathways
 available to dispersers, and presumably greater robust
 ness of the network to future habitat loss. Conservation

 applications may be implemented using either frame
 work, but it is important to specify the process being
 modeled.

 Model parameterization

 A critical and challenging step in applying circuit
 models to landscape data will be assigning relative
 movement, mortality, and/or settlement probabilities to
 different land cover classes. Many of the same strategies
 for parameterizing least-cost path models using expert
 opinion, literature review or data on species occurrences,
 animal movement paths, or interpatch movement rates
 (reviewed by Beier et al., in press) will be useful in circuit

 modeling, particularly when viewed in light of the
 concrete interpretations of resistances in terms of
 random walk probabilities outlined here. Practitioners
 should also consider approaches taken to parameterize
 other models that consider habitat heterogeneity, such
 as diffusion and simulation models (e.g., Dunning et al.
 1995, Schumaker 1996, Ovaskainen 2004; Arellano et
 al., in press; Ovaskainen et al., in press).

 Connections between resistance distances and gene
 flow (McRae 2006, McRae and Beier 2007) should
 facilitate the use of genetic data to estimate relative
 resistances of different habitats. Still, because assump
 tions differ between evolutionary and ecological appli
 cations of circuit theory (as discussed here), using data
 from one to parameterize the other must be done with
 care.

 Regardless of the method used to assign them, there
 will always be uncertainty in resistance values. We
 encourage uncertainty analyses to address how decisions
 at each modeling step affect results; Beier et al. (in press)
 reviewed strategies for conducting uncertainty analysis
 in least-cost path modeling, and these should be equally
 applicable to circuit theory. Additionally, for corridor
 and reserve designs, uncertainty in landscape resistances
 could be incorporated in much the same way as
 proposed by Moilanen et al. (20066), with penalties that
 reflect modeled error incorporated into landscape
 resistance input maps.

This content downloaded from 192.112.66.182 on Tue, 04 Oct 2016 14:08:23 UTC
All use subject to http://about.jstor.org/terms



 October 2008 CONNECTIVITY MODELS FROM CIRCUIT THEORY 2723

 Limitations and alternatives

 As with other methods for describing connectivity in
 complex landscapes, there are limitations to our
 approach that should be considered when deciding if it
 is appropriate for a given problem. First, because
 resistors are isotropic, i.e., their resistance to current
 flow is the same in both directions, the methods
 described here cannot accommodate movement that is

 biased in one direction (as in directed graphs). This will
 limit applications in some systems, e.g., marine environ
 ments, where directional currents play a large role in
 determining dispersal rates. Second, circuit models are
 restricted to Markovian random walks, i.e., random
 walks in which each step is independent of previous
 moves. Random walkers thus have no "memory," and
 our framework cannot incorporate correlated random
 walks, changes in movement behavior with time, or
 mortality rates that increase with an organism's age.
 Even when the assumption of constant mortality with
 time is reasonable, incorporating mortality into circuit
 models must be done with care. Because they have no
 memory or long distance perception, random walkers
 can retrace their steps over and over, inflating mortality
 rates because travel time and exposure to mortality risks
 are increased (Fig. 2B).

 Several other connectivity modeling frameworks
 provide complements to ours. The conceptually and
 computationally simplest are based on Euclidean
 distances, and can be quickly calculated on grids with
 millions of cells (e.g., Moilanen et al. 2005, Moilanen
 and Wintle 2007). Least-cost path models have been
 applied for over a decade in connectivity analyses and
 have proven useful in conservation planning efforts
 (e.g., Beier et al. 2006, Rouget et al. 2006). Although
 they do not have the theoretical foundation in random
 walk theory that circuit models do, their intuitive appeal
 and ability to identify efficient movement pathways
 make them useful counterparts to the applications we
 have described here. Recently, variants on these
 approaches have been developed that identify and rank
 the importance of multiple pathways across landscapes
 (Theobald 2006; Pinto and Keitt, in press).
 More sophisticated analytical and simulation models

 can be used to derive results similar to those produced
 by circuit theory, with some advantages. Markov chain
 models use the same data structures as those described
 here, but can accommodate directionality in movement
 along edges, providing more flexibility for modeling,
 e.g., effects of directed dispersal, prevailing winds, or
 ocean currents. Still, although Markov chain models
 have been available for decades, ecologists and conser
 vationists have been slow to adopt them, whereas
 simpler, more intuitive least-cost path models have been
 widely employed. Spatially structured diffusion models
 (Ovaskainen 2004) are promising because they also
 integrate over all movement paths and can approximate
 correlated random walks in their long-term behavior,
 but their mathematical formulation can be quite

 challenging. Of course, individual-based movement
 simulations (e.g., Schumaker 1998, Hargrove et al.
 2005) offer much more flexibility than analytic models,
 can incorporate subtle effects of dispersal behavior and
 other aspects of life history, and can simulate transient
 effects of landscape characteristics that evolve over time.
 However, the data and computational requirements of
 such models will likely continue to limit their use in
 many applications (Minor and Urban 2007). Our hope is
 that circuit models will fill a niche between simpler
 Euclidean or least-cost path analyses and more powerful
 analytic and simulation approaches.

 Future prospects

 Our focus has been on measuring connectivity in
 heterogeneous landscapes using models from circuit
 theory. Even in this context, there remain many exciting
 applications to explore. Nonequilibrium circuit analyses
 may be applicable to ecological problems (McRae and
 Beier 2007), and nonlinear circuit elements show promise
 as well (for example, diodes would allow incorporation of
 movement probabilities with directional bias). Addition
 ally, analytical techniques developed to minimize effec
 tive resistances across networks (Ghosh et al. 2006) may
 be useful in designing optimal networks for connectivity
 conservation. More broadly, circuit theory will likely
 benefit other areas of ecology that deal with networks,
 such as the analysis of community interactions, food web
 structure, exotic invasion, or disease transmission. In the
 meantime, circuit models are being actively applied to
 conservation planning for species of concern in rapidly
 developing landscapes, including pumas (Puma concolor;
 see Plate 1) in southern California.
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